1
|
Zhang D, Shen Q, Li XF. Evaluating Powdered Activated Carbon for Adsorption of Nitrogenous Organics in Water Using HDPairFinder. ACS ENVIRONMENTAL AU 2025; 5:308-318. [PMID: 40416845 PMCID: PMC12100545 DOI: 10.1021/acsenvironau.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 05/27/2025]
Abstract
Amino-containing compounds are key precursors to highly toxic nitrogenous disinfection byproducts (DBPs) and odorous DBPs, posing a critical challenge for drinking water utilities. This study systematically evaluated the adsorption performance of six commercial powdered activated carbons (PACs) for removing soluble amino-containing compounds using amino acids as model compounds. Among them, PHF and AN PAC demonstrated superior removal efficiencies for six tested amino acids, ranging from 77 to 98% for PHF PAC and 83 to 96% for AN PAC. Subsequent analysis focused on PHF, AN, and HB PACs to investigate adsorption kinetics and effects of water parameters, including initial amino acid concentration, pH, and natural organic matter (NOM) on removal efficiencies. Optimal removal efficiencies were observed for PHF and AN PACs at pH levels between 6 and 8, while increased NOM levels significantly reduced amino acid adsorption. Finally, a hydrogen/deuterium isotopic labeling-based nontargeted analysis was applied to evaluate the removal of amino-containing compounds from source water (represented by Suwannee River standard reference materials). PHF exhibited the highest removal efficiency, achieving a 47% reduction in the total ion chromatogram (TIC) intensity of labeled amino-containing features, followed by AN at 21% and HB at 19%. The decrease in the TIC intensity and number of labeled amino-containing features aligned with the trends observed in adsorption, establishes a consistent ranking of PHF > AN > HB PAC. PAC can be seamlessly integrated into existing drinking water treatment processes and applied on an as-needed basis. Our results could provide valuable guidance for its effective application in water treatment plants.
Collapse
Affiliation(s)
- Di Zhang
- Division of Analytical and
Environmental Toxicology, Department of Laboratory Medicine and Pathology,
Faculty of Medicine and Dentistry, University
of Alberta, Edmonton, AlbertaT6G 2G3, Canada
| | - Qiming Shen
- Division of Analytical and
Environmental Toxicology, Department of Laboratory Medicine and Pathology,
Faculty of Medicine and Dentistry, University
of Alberta, Edmonton, AlbertaT6G 2G3, Canada
| | - Xing-Fang Li
- Division of Analytical and
Environmental Toxicology, Department of Laboratory Medicine and Pathology,
Faculty of Medicine and Dentistry, University
of Alberta, Edmonton, AlbertaT6G 2G3, Canada
| |
Collapse
|
2
|
Ma Y, Huo Y, Zhou Y, Wen N, Gu Q, Chen M, He M, Xie J. The mechanisms of self-inhibited reactions during hydroxyl radical-induced degradation of aniline disinfection by products. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138568. [PMID: 40373406 DOI: 10.1016/j.jhazmat.2025.138568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/31/2025] [Accepted: 05/08/2025] [Indexed: 05/17/2025]
Abstract
Municipal wastewater post-treatment processes can effectively reduce the concentration of highly toxic disinfection by-products (DBPs) to minimize their ecological hazards. In this study, the reaction mechanisms and kinetics of 38 aniline disinfection by-products (AN-DBPs) degraded by ·OH in the post-treatment of municipal wastewater were investigated. Results showed that the apparent second-order reaction rate constants for the degradation of AN-DBPs by ·OH ranged from 1.25 × 108 M-1 s-1 to 1.71 × 1010 M-1 s-1, and the products generated were mainly hydroxyl adducts (AN-OH) and AN-DBPs cation radicals (AN-DBPs+·). Based on the differences in the reduction potentials (ΔEox) of AN-DBPs and their degradation products, we proposed two self-inhibited reaction pathways in the degradation process. AN-OH and AN-DBPs can reduce AN-DBPs+· to the parent compound via single electron transfer reactions. AN-OH and AN-DBPs with fewer halogen atoms were more likely to inhibit AN-DBPs+·. It was noteworthy that self-inhibited reactions would occur when ·OH-dominated processes were used to degrade AN-DBPs. In addition, Cl- in municipal wastewater usually has little effect on the self-inhibition efficiency, while the presence of Br-, HCO3-, and NH4+ usually promotes the self-inhibition reaction. These findings provide important theoretical insights for the effective removal of AN-DBP from water bodies.
Collapse
Affiliation(s)
- Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yanru Huo
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Nuan Wen
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qingyuan Gu
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Meichao Chen
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
3
|
Zhou H, Duan X, Huang B, Zhong S, Cheng C, Sharma VK, Wang S, Lai B. Isotope Techniques in Chemical Wastewater Treatment: Opportunities and Uncertainties. Angew Chem Int Ed Engl 2025; 64:e202422892. [PMID: 40040468 PMCID: PMC12051784 DOI: 10.1002/anie.202422892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/06/2025]
Abstract
A comprehensive and in-depth analysis of reaction mechanisms is essential for advancing chemical water treatment technologies. However, due to the limitations of conventional experimental and analytical methods, the types of reactive species and their generation pathways are commonly debatable in many aqueous systems. As highly sensitive diagnostic tools, isotope techniques offer deeper insights with minimal interference from reaction conditions. Nevertheless, precise interpretations of isotope results remain a significant challenge. Herein, we first scrutinized the fundamentals of isotope chemistry and highlighted key changes induced by the isotope substitution. Next, we discussed the application of isotope techniques in kinetic isotope effects, presenting a roadmap for interpreting KIE in sophisticated systems. Furthermore, we summarized the applications of isotope techniques in elemental tracing to pinpoint reaction sites and identify dominant reactive species. Lastly, we propose future research directions, highlighting critical considerations for the rational design and interpretation of isotope experiments in environmental chemistry and related fields.
Collapse
Affiliation(s)
- Hongyu Zhou
- State Key Laboratory of Hydraulics and Mountain River EngineeringCollege of Architecture and Environment, Sichuan UniversityChengdu610065China
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| | - Xiaoguang Duan
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| | - Bingkun Huang
- State Key Laboratory of Hydraulics and Mountain River EngineeringCollege of Architecture and Environment, Sichuan UniversityChengdu610065China
| | - Shuang Zhong
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| | - Cheng Cheng
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| | - Virender K. Sharma
- Department of Chemical, Environmental and MaterialsUniversity of Miami1251 Memorial DriveCoral GablesFlorida33146USA
| | - Shaobin Wang
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River EngineeringCollege of Architecture and Environment, Sichuan UniversityChengdu610065China
| |
Collapse
|
4
|
Zhang T, Yang P, Ji Y, Lu J. The Role of Natural Organic Matter in the Degradation of Phenolic Pollutants by Sulfate Radical Oxidation: Radical Scavenging vs Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3325-3335. [PMID: 39916582 DOI: 10.1021/acs.est.4c12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Dissolved natural organic matter (NOM) significantly influences the performance of water treatment processes. It is generally recognized that NOM acts as a radical scavenger, thus inhibiting the degradation of organic pollutants in advanced oxidation processes (AOPs). This study examined the impacts of 8 different NOM isolates on the degradation of 4-chlorophenol (CP), a representative phenolic pollutant, in sulfate radical (SO4•-)-based AOPs. We developed an improved probe method to measure the steady-state concentration of SO4•- ([SO4•-]ss) in both the absence and presence of NOM. Results show that adding 1.00 mgC L-1 NOM resulted in only a 1.3-3.4% decrease in [SO4•-]ss. However, the apparent rate constants of CP degradation decreased by 76-88%. This discrepancy indicates that radical scavenging cannot be the primary mechanism for observed inhibition. We proposed NOM primarily acts as a reducing agent, reacting with the phenoxy radical intermediates generated from the single-electron oxidation of CP by SO4•-. Based on this hypothesis, we developed and validated a kinetic model using experimental data. The reductive capacity of NOM, as determined by the kinetic model, correlates positively with its electron-donating capacity. These findings enhance the understanding of NOM's role in SO4•--based AOPs and provide a foundation for developing strategies to mitigate its adverse effects.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Peizeng Yang
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuefei Ji
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Ma Y, Li M, Huo Y, Zhou Y, Gu Q, Wen N, He M. Combination of oxidative and reductive effects of phenolic compounds on the degradation of aniline disinfection by-products by free radicals. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135686. [PMID: 39236530 DOI: 10.1016/j.jhazmat.2024.135686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
In this study, we selected 13 phenolic compounds containing -COOH, -CHO, -OH, and -COCH3 functional groups as model compounds for dissolved organic matter (DOM), and explored the redox reactions during the co-degradation of phenolic compounds with aniline disinfection by-products (DBPs) at the molecular level. When phenolic compounds and aniline DBPs were degraded, phenoxy radicals and aniline radicals were the most important intermediates. Phenoxy radicals can degrade aniline DBPs via hydrogen atom abstraction (HAA) reactions, and the reaction rates were related to the reduction potentials of the compounds. Compounds containing electron-withdrawing groups were more likely to oxidize aniline DBPs. Aniline DBPs were more easily degraded by phenoxy radicals when they contained electron-donating groups, and the increase in the number of chlorine atoms inhibited the reaction rates of aniline DBPs degradation by phenoxy radicals. Although phenolic compounds can reduce aniline DBPs, there was no significant correlation between the reaction rates and the reduction potentials of the compounds. Considering the redox effects of phenolic compounds on aniline DBPs, co-degradation simulations showed that phenolics inhibited the degradation efficiency of aniline DBPs. This work provided new insights into the transformation mechanisms and degradation efficiencies of DOM and aniline DBPs when they were co-degraded.
Collapse
Affiliation(s)
- Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Mingxue Li
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Yanru Huo
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Qingyuan Gu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Nuan Wen
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
6
|
Cheng S, Cui R, Zhou Y, Lei Y, Wang N, Pan Y, Yang X. The reverse-reduction effect of dissolved organic matter on the degradation of micropollutants induced by halogen radicals (Cl 2•- and Br 2•-). WATER RESEARCH 2024; 268:122720. [PMID: 39515245 DOI: 10.1016/j.watres.2024.122720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Reactive halogen radicals (e.g., Cl2•- and Br2•-) greatly impact the degradation of micropollutants in natural waters and engineered water treatment systems. The ubiquitous dissolved organic matter (DOM) in real waters is known to greatly inhibit the degradation of micropollutants by reducing micropollutant's intermediate (i.e., TC•+/TC(-H)•), however, such DOM's effects on the halogen-radical-induced system have not been understood yet. The present study focuses on investigating and quantifying such inhibitory effects of DOM during Cl2•-- and Br2•--mediated process. Guanosine (Gs) was selected as a model compound. The transient spectra show that Cl2•- and Br2•- react with Gs generating intermediates (i.e., Gs•+/Gs(-H)•) via single-electron transfer. In the presence of 1.0 mgCL-1 DOM, over 70% of this oxidized Gs was reduced back to Gs. Comparing the extent of reverse-reduction inhibitory among different reaction systems, this inhibitory in Br2•- system was slightly lower than that in Cl2•- and SO4•- system, corresponding the slightly difference of inhibition factor (IF) values as SO4•- < Cl2•- < Br2•-. The reverse-reduction effect of DOM was further quantified for 19 common micropollutants. It varied significantly with IF values of 0.21-1.26 and 0.28-1.40 in Cl2•-- and Br2•--mediated process, respectively. Purines and amines generally exhibited more pronounced inhibition than phenols in both systems. A good correlation of IF values with micropollutant's reduction potential was observed, which can be applied to predict the degradation of more unstudied micropollutants. This study highlights the important role of the reverse-reduction effect of DOM on micropollutant degradation. It can significantly improve the accuracy in predicting degradation rate in advanced oxidation processes for treating water containing halides.
Collapse
Affiliation(s)
- Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Rui Cui
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yangjian Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Ni Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
7
|
Luo D, Lin H, Li X, Wang Y, Ye L, Mai Y, Wu P, Ni Z, Lin Q, Qiu R. The Dual Role of Natural Organic Matter in the Degradation of Organic Pollutants by Persulfate-Based Advanced Oxidation Processes: A Mini-Review. TOXICS 2024; 12:770. [PMID: 39590951 PMCID: PMC11598379 DOI: 10.3390/toxics12110770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/09/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
Persulfate-based advanced oxidation processes (PS-AOPs) are widely used to degrade significant amounts of organic pollutants (OPs) in water and soil matrices. The effectiveness of these processes is influenced by the presence of natural organic matter (NOM), which is ubiquitous in the environment. However, the mechanisms by which NOM affects the degradation of OPs in PS-AOPs remain poorly documented. This review systematically summarizes the dual effects of NOM in PS-AOPs, including inhibitory and promotional effects. It encompasses the entire process, detailing the interaction between PS and its activators, the fate of reactive oxygen species (ROS), and the transformation of OPs within PS-AOPs. Specifically, the inhibiting mechanisms include the prevention of PS activation, suppression of ROS fate, and conversion of intermediates to their parent compounds. In contrast, the promoting effects involve the enhancement of catalytic effectiveness, contributions to ROS generation, and improved interactions between NOM and OPs. Finally, further studies are required to elucidate the reaction mechanisms of NOM in PS-AOPs and explore the practical applications of PS-AOPs using actual NOM rather than model compounds.
Collapse
Affiliation(s)
- Dan Luo
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (D.L.); (H.L.); (X.L.); (Z.N.); (R.Q.)
| | - Hansen Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (D.L.); (H.L.); (X.L.); (Z.N.); (R.Q.)
| | - Xingzhen Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (D.L.); (H.L.); (X.L.); (Z.N.); (R.Q.)
| | - Yu Wang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Long Ye
- Guangdong Provincial Academy of Building Research Group Co., Ltd., Guangzhou 510510, China; (L.Y.); (Y.M.); (P.W.)
| | - Yuebang Mai
- Guangdong Provincial Academy of Building Research Group Co., Ltd., Guangzhou 510510, China; (L.Y.); (Y.M.); (P.W.)
| | - Peihao Wu
- Guangdong Provincial Academy of Building Research Group Co., Ltd., Guangzhou 510510, China; (L.Y.); (Y.M.); (P.W.)
| | - Zhuobiao Ni
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (D.L.); (H.L.); (X.L.); (Z.N.); (R.Q.)
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (D.L.); (H.L.); (X.L.); (Z.N.); (R.Q.)
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (D.L.); (H.L.); (X.L.); (Z.N.); (R.Q.)
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
8
|
Zheng M, Sánchez-Montes I, Li J, Duan X, Xu B, El-Din MG. Attenuation of phenylnaphthenic acids related to oil sands process water using solar activated calcium peroxide: Influence of experimental factors, mechanistic modeling, and toxicity evaluation. WATER RESEARCH 2024; 263:122188. [PMID: 39098152 DOI: 10.1016/j.watres.2024.122188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Refractory naphthenic acids (NAs) are among the primary toxic compounds in oil sands process water (OSPW), a matrix with a complex chemical composition that poses challenges to its remediation. This study evaluated the effectiveness of calcium peroxide (CaO2) combined with solar radiation (solar/CaO2) as an advanced water treatment process for degrading model NAs (1,2,3,4-tetrahydronaphthalene-2-carboxylic acid, pentanoic acid, and diphenylacetic acid) in synthetic water (STW) and provide preliminary insights in treating real OSPW. Solar light and CaO2 acted synergistically to degrade target NAs in STW (>67 of synergistic factor) following a pseudo-first-order kinetic (R2 ≥ 0.95), with an optimal CaO2 dosage of 0.1 g L-1. Inorganic ions and dissolved organic matter were found to hinder the degradation of NAs by solar/CaO2 treatment; however, the complete degradation of NAs was reached in 6.7 h of treatment. The main degradation mechanism involved the generation of hydroxyl radicals (•OH), which contributed ∼90% to the apparent degradation rate constant (K), followed by H2O2 (4-5%) and 1O2 (0-5%). The tentative transformation pathways of three NAs were proposed, confirming an open-ring reaction and resulting in short-chain fatty acid ions as final products. Furthermore, a reduction in acute microbial toxicity and genotoxic effect was observed in the treated samples, suggesting that solar/CaO2 treatment exhibits high environmental compatibility. Furthermore, the solar/CaO2 system was successfully applied as a preliminary step for real-world applications to remove natural NAs, fluorophore organic compounds, and inorganic components from OSPW, demonstrating the potential use of this technology in the advanced treatment of oil-tailing-derived NAs.
Collapse
Affiliation(s)
- Ming Zheng
- Department of Civil and Environmental Engineering, University of Alberta, T6G 1H9, Edmonton, AB, Canada; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Isaac Sánchez-Montes
- Department of Civil and Environmental Engineering, University of Alberta, T6G 1H9, Edmonton, AB, Canada
| | - Jia Li
- Department of Civil and Environmental Engineering, University of Alberta, T6G 1H9, Edmonton, AB, Canada
| | - Xiaodi Duan
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, T6G 1H9, Edmonton, AB, Canada.
| |
Collapse
|
9
|
Fu H, Zheng W, Duan W, Fang G, Duan X, Wang S, Feng C, Zhu S. Overlooked Roles and Transformation of Carbon-Centered Radicals Produced from Natural Organic Matter in a Thermally Activated Persulfate System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14949-14960. [PMID: 39126387 DOI: 10.1021/acs.est.4c06770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
The presence and induced secondary reactions of natural organic matter (NOM) significantly affect the remediation efficacy of in situ chemical oxidation (ISCO) systems. However, it remains unclear how this process relates to organic radicals generated from reactions between the NOM and oxidants. The study, for the first time, reported the vital roles and transformation pathways of carbon-centered radicals (CCR•) derived from NOM in activated persulfate (PS) systems. Results showed that both typical terrestrial/aquatic NOM isolates and collected NOM samples produced CCR• by scavenging activated PS and greatly enhanced the dehalogenation performance under anoxic conditions. Under oxic conditions, newly formed CCR• could be oxidized by O2 and generate organic peroxide intermediates (ROO•) to catalytically yield additional •OH without the involvement of PS. Nuclear magnetic resonance (NMR) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) results indicated that CCR• predominantly formed from carboxyl and aliphatic structures instead of aromatics within NOM through hydrogen abstraction and decarboxylation reactions by SO4•- or •OH. Specific anoxic reactions (i.e., dehalogenation and intramolecular cross-coupling reactions) further promoted the transformation of CCR• to more unsaturated and polymerized/condensed compounds. In contrast, oxic propagation of ROO• enhanced bond breakage/ring cleavage and degradation of CCR• due to the presence of additional •OH and self-decomposition. This study provides novel insights into the role of NOM and O2 in ISCO and the development of engineered strategies for creating organic radicals capable of enhancing the remediation of specific contaminants and recovering organic carbon.
Collapse
Affiliation(s)
- Hengyi Fu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Wenxiao Zheng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Weijian Duan
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Shishu Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
10
|
Wang H, Wang S, Jia Z, Li H, Wang J, Zhang T, Dong J, Yang P, Chen J, Ji Y, Lu J. Photo-transformation of isoproturon under UV-A irradiation: The synergy of nitrite and natural organic matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 353:124153. [PMID: 38750808 DOI: 10.1016/j.envpol.2024.124153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
Isoproturon (IPU), a widely utilized phenylurea herbicide, is recognized as an emerging contaminant. Previous studies have predominantly attributed the degradation of IPU in natural waters to indirect photolysis by natural organic matter (NOM). Here, we demonstrate that nitrite (NO2-) also serves as an important photosensitizer that induces the photo-degradation of IPU. Through radical quenching tests, we identify hydroxyl radicals (•OH) and nitrogen dioxide radicals (NO2•) originating from NO2- photolysis as key players in IPU degradation, resulting in the generation of a series of hydroxylated and nitrated byproducts. Moreover, we demonstrate a synergistic effect on the photo-transformation of IPU when both NOM and NO2- are present in the reaction mixture. The observed rate constant (kobs) for IPU removal increases to 0.0179 ± 0.0002 min-1 in the co-presence of NO2- (50 μM) and NOM (2.5 mgC/L), surpassing the sum of those in the presence of each alone (0.0135 ± 0.0004 min-1). NOM exhibits multifaceted roles in the indirect photolysis of IPU. It can be excited by UV and transformed to excited triplet states (3NOM*) which oxidize IPU to IPU•+ that undergoes further degradation. Simultaneously, NOM can mitigate the reaction by reducing the IPU•+ intermediate back to the parent IPU. However, the presence of NO2- alters this dynamic, as IPU•+ rapidly couples with NO2•, accelerating IPU degradation and augmenting the formation of mono-nitrated IPU. These findings provide in-depth understandings on the photochemical transformation of environmental contaminants, especially phenylurea herbicides, in natural waters where NOM and NO2- coexist.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Sunxinyi Wang
- Department of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zixuan Jia
- Department of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Li
- Department of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayu Wang
- Department of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Teng Zhang
- Department of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayue Dong
- Department of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peizeng Yang
- Department of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jing Chen
- Department of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuefei Ji
- Department of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhe Lu
- Department of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Tang L, Sun Y, Lu W, Chen X, Mosa A, Minkina T, Gao Y, Ling W. A novel remediation strategy of mixed calcium peroxide and degrading bacteria for polycyclic aromatic hydrocarbon contaminated water. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134122. [PMID: 38552397 DOI: 10.1016/j.jhazmat.2024.134122] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of toxic organic pollutants commonly detected in the aqueous phase. Traditional biodegradation is inefficient and advanced oxidation technologies are expensive. In the current study, a novel strategy was developed using calcium peroxide (CP) and PAH-degrading bacteria (PDB) to effectively augment PAH degradation by 28.62-59.22%. The PDB consisted of the genera Acinetobacter, Stenotrophomonas, and Comamonas. Applying the response surface model (RSM), the most appropriate parameters were identified, and the predictive degradation rates of phenanthrene (Phe), pyrene (Pyr), and ΣPAHs were 98%, 76%, and 84%, respectively. The constructed mixed system could reduce 90% of Phe and more than 60% of ΣPAHs and will perform better at pH 5-7 and lower salinity. Because PAHs tend to bind to dissolved organic matter (DOM) with larger molecular weights, humic acid (HA) had a larger negative effect on the PAH-degradation efficiency of the CP-PDB mixed system than fulvic acid (FA). The proposed PAH-degradation pathways in the mixed system were based on the detection of intermediates at different times. The investigation constructed and optimized a novel environmental PAH-degradation strategy. The synergistic application of PDB and oxidation was extended for organic contaminant degradation in aqueous environments.
Collapse
Affiliation(s)
- Lei Tang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yulong Sun
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyi Lu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuwen Chen
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Tatiana Minkina
- Academy of Biology and Biotechnology named after D I Ivanovsky, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Wang J, Chai Z, Su H, Du E, Guan X, Guo H. Unraveling the Role of Humic Acid in the Oxidation of Phenolic Contaminants by Soluble Manganese Oxo-Anions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8576-8586. [PMID: 38696240 DOI: 10.1021/acs.est.4c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Humic acid (HA) is ubiquitous in natural aquatic environments and effectively accelerates decontamination by permanganate (Mn(VII)). However, the detailed mechanism remains uncertain. Herein, the intrinsic mechanisms of HA's impact on phenolics oxidation by Mn(VII) and its intermediate manganese oxo-anions were systematically studied. Results suggested that HA facilitated the transfer of a single electron from Mn(VII), resulting in the sequential formation of Mn(VI) and Mn(V). The formed Mn(V) was further reduced to Mn(III) through a double electron transfer process by HA. Mn(III) was responsible for the HA-boosted oxidation as the active species attacking pollutants, while Mn(VI) and Mn(V) tended to act as intermediate species due to their own instability. In addition, HA could serve as a stabilizer to form a complex with produced Mn(III) and retard the disproportionation of Mn(III). Notably, manganese oxo-anions did not mineralize HA but essentially changed its composition. According to the results of Fourier-transform ion cyclotron resonance mass spectrometry and the second derivative analysis of Fourier-transform infrared spectroscopy, we found that manganese oxo-anions triggered the decomposition of C-H bonds on HA and subsequently produced oxygen-containing functional groups (i.e., C-O). This study might shed new light on the HA/manganese oxo-anion process.
Collapse
Affiliation(s)
- Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhizhuo Chai
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Haizheng Su
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Erdeng Du
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Xiaohong Guan
- Department of Environmental Science, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
13
|
Tang L, Yan J, Zhou X, Wang J, Gao Y, Mosa A, Czech B, Oleszczuk P, Ling W. Dissolved organic matter influences the indigenous bacterial community and polycyclic aromatic hydrocarbons biodegradation in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171662. [PMID: 38485009 DOI: 10.1016/j.scitotenv.2024.171662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
In polycyclic aromatic hydrocarbon (PAH) contaminated soils, bioremediation is superior to other strategies owing to its low cost and environmental friendliness. However, dissolved organic matter (DOM) and indigenous bacterial communities can affect the efficiency of PAH-degrading bacteria (PDB). This study found that exogenous PDB (C1) including the genera Acinetobacter, Stenotrophomonas, and Comamonas, decreased the bacterial diversity of Alfisol, Ultisol, Inceptisol, and Mollisol, and DOM enhanced the diffusion of PDB and the bioavailability of PAH. In addition, bacteria preferred to ingest low molecular weight DOM fractions, and the abundances of lipid-like and protein-like substances decreased by 0.12-3.03 % and 1.73-4.60 %. The DOM fractions had a more marked influence on the indigenous bacteria than the exogenous PDB, and PDB dominated the PAH biodegradation process in the soils. More COO functional groups promoted the utilization of higher molecular weight-related homologue fractions by bacteria, and lower molecular weight fractions carrying more CH2 functional groups declined during biodegradation. This study investigated the variations in bacterial communities during biodegradation and revealed the effects of DOM fractions on biodegradation in PAH-contaminated soils at the molecular level. These results will promote the development of bioremediation strategies for organics-contaminated soil and provide guidance for prediction models of soil biodegradation kinetics.
Collapse
Affiliation(s)
- Lei Tang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayi Yan
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt
| | - Bozena Czech
- Department of Radiochemistry and Environmental Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
14
|
Luo J, Liu X, Huang W, Cheng X, Wang F, Fang S, Cao J, Liu J, Cheng S. Novel calcium oxide activated peroxymonosulfate system for methylene blue removal: Identification of key influencing factors, transformation pathway and toxicity assessment. CHEMOSPHERE 2024; 349:140955. [PMID: 38104737 DOI: 10.1016/j.chemosphere.2023.140955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
The activation of peroxymonosulfate (PMS) has gained significant interest in the removal of organic pollutants. However, traditional methods usually suffer from drawbacks such as secondary contamination and high energy requirements. In this study, we propose a green and cost-effective approach utilizing calcium oxide (CaO) to activate PMS, aiming to construct a simple and reliable PMS based advanced oxidation processes (AOPs). The proposed CaO/PMS system achieved fast degradation of methylene blue (MB), where the degradation rate of CaO/PMS system (0.24 min-1) was nearly 2.67 times that of PMS alone (0.09 min-1). Under the optimized condition, CaO/PMS system exhibited remarkable durability against pH changes, co-exists ions or organic matters. Furthermore, singlet oxygen (1O2) was identified as the dominant reactive oxygen species by electron paramagnetic resonance (EPR) and quenching tests. Accordingly, the degradation pathways of MB are proposed by combing the results of LC/MS analysis and density functional theory (DFT) calculations, and the predicted ecotoxicity of the generated byproducts evaluated by EOCSAR could provide systematic insights into the fates and environmental risks of MB. Overall, the study provides an eco-friendly and effective strategy for treating dyeing wastewater, which should shed light on the application of PMS based AOPs.
Collapse
Affiliation(s)
- Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Xinyi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Song Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China.
| |
Collapse
|
15
|
Merkus VI, Leupold MS, Rockel SP, Lutze HV, Schmidt TC. Effects of organic matter and alkalinity on the ozonation of antiviral purine derivatives as exemplary micropollutant motif. WATER RESEARCH 2023; 243:120387. [PMID: 37506631 DOI: 10.1016/j.watres.2023.120387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/26/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Ozonation of micropollutants strongly depends on the water matrix. Natural organic matter is known to highly affect the hydroxyl radical exposure due to radical promoting and inhibiting effects. Other important matrix components in ozonation are carbonate species which scavenge hydroxyl radicals. However, additional factors such as the formation of other radicals might also play a role but are generally not covered in research or considered in modelling of micropollutant degradation. Hence, the ozonation of purine derivatives, the basic structure of various antiviral micropollutants, in different artificial water matrices is investigated in this study with focus on the impact of natural organic matter and increasing alkalinity on the degradation and product formation. The degradation of purine and adenine is inhibited by bicarbonate in the water matrix due to the anion's scavenging of hydroxyl radicals. This effect is already observed for low bicarbonate concentrations of 0.3 mM. However, formed carbonate radicals contribute to the compounds' degradation and also affect the stability of transformation products. This effect gains in relevance with increasing alkalinity and needs consideration in evaluating ozonation of very hard waters. Three ozonation products are evaluated in detail, which are affected by the matrix due to impacts on ozone stability, hydroxyl radical yield and carbonate radical formation. One product of adenine with the mass 147 was reported for the first time and only occurs in presence of matrix components. Under typical water treatment conditions rough predictions of pollutants' degradation are possible by the Rct concept using ozone and hydroxyl radical exposures. However, other reactive species such as carbonate radicals are not considered leading to deviations between modelled and experimental data at extreme conditions such as industrial wastewater. A general correlation between the Rct and the fraction f of hydroxyl radicals scavenged by bicarbonate (ln(Rct) = - 5.9 × f - 16.3) calculated from the concentration of organic matter and alkalinity was observed for various water samples allowing the estimation of micropollutant degradation during ozone treatment at moderate conditions by simple organic and inorganic carbon measurements.
Collapse
Affiliation(s)
- Valentina I Merkus
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Michael S Leupold
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Sarah P Rockel
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Holger V Lutze
- Technical University of Darmstadt, Institute IWAR, Chair of environmental analytics and pollutants, Franziska-Braun-Straße 7, 64287, Darmstadt, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141, Essen, Germany; IWW Water Centre, Moritzstraße 26, 45476, Mülheim an der Ruhr, Germany
| | - Torsten C Schmidt
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141, Essen, Germany; IWW Water Centre, Moritzstraße 26, 45476, Mülheim an der Ruhr, Germany.
| |
Collapse
|
16
|
Wu G, Wang J, Wan Q, Cao S, Huang T, Lu J, Ma J, Wen G. Kinetics and mechanism of sulfate radical-and hydroxyl radical-induced disinfection of bacteria and fungal spores by transition metal ions-activated peroxymonosulfate. WATER RESEARCH 2023; 243:120378. [PMID: 37482005 DOI: 10.1016/j.watres.2023.120378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/20/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
Peroxymonosulfate(PMS)-based advanced oxidation process have been recognized as efficient disinfection processes. This study comprehensively investigated the role of sulfate radical (SO4•-) and hydroxyl radical (•OH)-driven disinfection of bacteria and fungal spores by the PMS/metals ions (Me(II)) systems and modeled the CT value based on the relationship between survival and ∫[Radical]dt, with the aim to provide an accurate and quantitative kinetic data of inactivation processes. The results indicated that •OH played a more central role than SO4•- in the inactivation process, and bacteria were more vulnerable to radical attack than fungal spores due to the differences in antioxidant mechanisms and external structures. The k value of •OH -induced inactivation of E. coli was approximately 3-fold higher than that of A. niger, and the shoulder length of •OH -induced inactivation of E. coli was closely 52-fold shorter than that of A. niger after treated with the PMS/Co(II) system. The morphological and biochemical changes revealed that PMS/Me(II) treatment caused membrane damage, intracellular ROS accumulation and esterase activity loss in microorganisms. This study significantly improved the understanding of the contribution of radicals in the process of microbial inactivation by PMS/Me(II) and would provide important implications for the further development of technologies to cope with the highly resistant fungal spores in drinking water.
Collapse
Affiliation(s)
- Gehui Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in Western China, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shumiao Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jinsuo Lu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in Western China, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
17
|
Kong Q, Ye L, Pan Y, Zhou Y, Lei Y, Zeng Z, Chen S, Yao L, Zhang X, Westerhoff P, Yang X. Photochemical Transformation of Free Chlorine Induced by Triplet State Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37428984 DOI: 10.1021/acs.est.3c02458] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Photolysis of free chlorine is an increasingly recognized approach for effectively inactivating microorganisms and eliminating trace organic contaminants. However, the impact of dissolved organic matter (DOM), which is ubiquitous in engineered water systems, on free chlorine photolysis is not yet well understood. In this study, triplet state DOM (3DOM*) was found to cause the decay of free chlorine for the first time. By using laser flash photolysis, the scavenging rate constants of triplet state model photosensitizers by free chlorine at pH 7.0 were determined to be in the range of (0.26-3.33) × 109 M-1 s-1. 3DOM*, acting as a reductant, reacted with free chlorine at an estimated reaction rate constant of 1.22(±0.22) × 109 M-1 s-1 at pH 7.0. This study revealed an overlooked pathway of free chlorine decay during UV irradiation in the presence of DOM. Besides the DOM's light screening ability and scavenging of radicals or free chlorine, 3DOM* played an important role in the decay of free chlorine. This reaction pathway accounted for a significant proportion of the decay of free chlorine, ranging from 23 to 45%, even when DOM concentrations were below 3 mgC L-1 and a free chlorine dose of 70 μM was present during UV irradiation at 254 nm. The generation of HO• and Cl• from the oxidation of 3DOM* by free chlorine was confirmed by electron paramagnetic resonance and quantified by chemical probes. By inputting the newly observed pathway in the kinetics model, the decay of free chlorine in UV254-irradiated DOM solution can be well predicted.
Collapse
Affiliation(s)
- Qingqing Kong
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Lei Ye
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yangjian Zhou
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Lei
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Zihan Zeng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Siqi Chen
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Liaoliao Yao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinran Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Xin Yang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
18
|
Pan Y, Garg S, Ouyang Y, Yang X, Waite TD. Inhibition of photosensitized degradation of organic contaminants by copper under conditions typical of estuarine and coastal waters. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131812. [PMID: 37331060 DOI: 10.1016/j.jhazmat.2023.131812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
Dissolved organic matter (DOM) driven-photochemical processes play an important role in the redox cycling of trace metals and attenuation of organic contaminants in estuarine and coastal ecosystems. In this study, we evaluate the effect of Cu on 4-carboxybenzophenone (CBBP) and Suwannee River natural organic matter (SRNOM)-photosensitized degradation of seven target contaminants (TCs) including phenols and amines under pH conditions and salt concentrations typical of those encountered in estuarine and coastal waters. Our results show that trace amounts of Cu(II) (25 -500 nM) induce strong inhibition of the photosensitized degradation of all TCs in solutions containing CBBP. The influence of TCs on the photo-formation of Cu(I) and the decrease in the lifetime of transformation intermediates of contaminants (TC•+/ TC•(-H)) in the presence of Cu(I) indicated that the inhibition effect of Cu was mainly due to the reduction of TC•+/ TC•(-H) by the photo-produced Cu(I). The inhibitory effect of Cu on the photodegradation of TCs decreased with the increase in Cl- concentration since less reactive Cu(I)-Cl complexes dominate at high Cl- concentrations. The impact of Cu on the SRNOM-sensitized degradation of TCs is less pronounced compared to that observed in CBBP solution since the redox active moieties present in SRNOM competes with Cu(I) to reduce TC•+/ TC•(-H). A detailed mathematical model is developed to describe the photodegradation of contaminants and Cu redox transformations in irradiated SRNOM and CBBP solutions.
Collapse
Affiliation(s)
- Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shikha Garg
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yiming Ouyang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - T David Waite
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
19
|
Wang Y, Li N, Fu Q, Cheng Z, Song Y, Yan B, Chen G, Hou L, Wang S. Conversion and impact of dissolved organic matters in a heterogeneous catalytic peroxymonosulfate system for pollutant degradation. WATER RESEARCH 2023; 241:120166. [PMID: 37290196 DOI: 10.1016/j.watres.2023.120166] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Dissolved organic matters (DOM) are widely present in different water sources, causing significant effects on water treatment processes. Herein, the molecular transformation behavior of DOM during peroxymonosulfate (PMS) activation by biochar for organic degradation in a secondary effluent were comprehensively analyzed. Evolution of DOM was identified and inhibition mechanisms to organic degradation were elucidated. DOM underwent oxidative decarbonization (e.g., -C2H2O, -C2H6, -CH2 and -CO2), dehydrogenation (-2H) and dehydration reactions by ·OH and SO4·-. N and S containing compounds witnessed deheteroatomisation (e.g., -NH, -NO2+H, -SO2, -SO3, -SH2), hydration (+H2O) and N/S oxidation reactions. Among DOM, CHO-, CHON-, CHOS-, CHOP- and CHONP-containing molecules showed moderate inhibition while condensed aromatic compounds and aminosugars exhibited strong and moderate inhibition effects on contaminant degradation. The fundamental information could provide references for the rational regulation of ROS composition and DOM conversion process in a PMS system. This in turn offered theoretical guidance to minimize the interference of DOM conversion intermediates on PMS activation and degradation of target pollutants.
Collapse
Affiliation(s)
- Yanshan Wang
- School of Environmental Science and Engineering/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300350, China
| | - Ning Li
- School of Environmental Science and Engineering/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300350, China.
| | - Qinglong Fu
- School of Environmental Studies, China University of Geoscience, Wuhan 430074, China
| | - Zhanjun Cheng
- School of Environmental Science and Engineering/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300350, China.
| | - Yingjin Song
- School of Environmental Science and Engineering/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300350, China
| | - Beibei Yan
- School of Environmental Science and Engineering/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300350, China
| | - Guanyi Chen
- School of Environmental Science and Engineering/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300350, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Li'an Hou
- School of Environmental Science and Engineering/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300350, China; 96911 Unit, Beijing 100011, China.
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
20
|
Peng J, Pan Y, Zhou Y, Kong Q, Lei Y, Lei X, Cheng S, Zhang X, Yang X. Triplet Photochemistry of Effluent Organic Matter in Degradation of Extracellular Antibiotic Resistance Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7230-7239. [PMID: 37114949 DOI: 10.1021/acs.est.2c08036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Wastewater effluent is a major source of extracellular antibiotic resistance genes (eArGs) in the aquatic environment, a threat to human health and biosecurity. However, little is known about the extent to which organic matter in the wastewater effluent (EfOM) might contribute to photosensitized oxidation of eArGs. Triplet states of EfOM were found to dominate the degradation of eArGs (accounting for up to 85%). Photo-oxidation proceeded mainly via proton-coupled electron transfer reactions. They broke plasmid strands and damaged bases. O2•- was also involved, and it coupled with the reactions' intermediate radicals of eArGs. The second-order reaction rates of blaTEM-1 and tet-A segments (209-216 bps) with the triplet state of 4-carboxybenzophenone were calculated to be (2.61-2.75) × 108 M-1 s-1. Besides as photosensitizers, the antioxidant moieties in EfOM also acted as quenchers to revert intermediate radicals back to their original forms, reducing the rate of photodegradation. However, the terrestrial origin natural organic matter was unable to photosensitize because it formed less triplets, especially high-energy triplets, so its inhibitory effects predominated. This study advances our understanding of the role of EfOM in the photo-oxidation of eArGs and the difference between EfOM and terrestrial-origin natural organic matter.
Collapse
Affiliation(s)
- Jianglin Peng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yangjian Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Qingqing Kong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinran Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
21
|
Lei Y, Yu Y, Lei X, Liang X, Cheng S, Ouyang G, Yang X. Assessing the Use of Probes and Quenchers for Understanding the Reactive Species in Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5433-5444. [PMID: 36930043 DOI: 10.1021/acs.est.2c09338] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Advanced oxidation processes (AOPs) are increasingly applied in water and wastewater treatment. Understanding the role of reactive species using probes and quenchers is one of the main requirements for good process design. However, much fundamental kinetic data for the reactions of probes and quenchers with reactive species is lacking, probably leading to inappropriate probe and quencher selection and dosing. In this work, second-order rate constants for over 150 reactions of probes and quenchers with reactive species such as •OH, SO4•-, and Cl• and chemical oxidants such as free chlorine and persulfate were determined. Some previously ill-quantified reactions (e.g., furfuryl alcohol and methyl phenyl sulfoxide reactions with certain chemical oxidants, nitrobenzene and 1,4-dioxane reactions with certain halogen radicals) were found to be kinetically favorable. The selection of specific probes can be guided by the improved kinetic database. The criteria for properly choosing dosages of probes and quenchers were proposed along with a procedure for quantifying reactive species free of interference from probe addition. The limitations of probe and quencher approaches were explicated, and possible solutions (e.g., the combination with other tools) were proposed. Overall, the kinetic database and protocols provided in this work benefit future research in understanding the radical chemistry in AOPs as well as other radical-involved processes.
Collapse
Affiliation(s)
- Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| | - Yafei Yu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xi Liang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - ShuangShuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Gangfeng Ouyang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
22
|
Liu Y, Dai J, Li C, Wang Y, Zhao J, Li B, Ye J. 3D variable Co species carbon foam enhanced reactive oxygen species generation and ensured long-term stability for water purification. J Colloid Interface Sci 2023; 641:737-746. [PMID: 36965344 DOI: 10.1016/j.jcis.2023.03.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
Cobalt (Co) and oxides are the most common catalysts for activating peroxymonosulfate (PMS). However, practical applications of Co-based PMS-advanced oxidation processes are difficult to realize the degradation of the targeted pollutants due to poor yield of reactive oxygen species (ROS) and inaccessible active sites. Here, we designed 3D oxygen vacancy-rich (Vo-rich) variable Co species@carbon foam (CoxOy@CF) via coupling solvent-free and pyrolysis strategies for degrading tetracycline by PMS activation. The kinetic rate of optimized (Co@CoO) CoxOy@CF-1.0 (1.0 presented the molar ratio of Co2+ and 2-methylimidazole) enhanced by an order of magnitude compared to that of ZIFs derivatives (ZIFs-500) (0.073 vs 0.155 min-1) due to the special structure. The flow-through unit maintained over 90% removal within 12 h, which was far better than that of ZIFs-500/PMS system. We used electrochemical analysis, quenching experiment, in-situ FTIR and Raman spectra to further investigate the possible mechanism of the 3D CoxOy@CF-1.0/PMS system. 3D CoxOy@CF-1.0 stimulated the production of the metastable catalyst-PMS* complex obtained O2- as intermediates accompanied by the redox cycling of Co2+/Co3+, which created the dominant ROS (more 1O2) in the presence of Vo, which was completely different for ZIFs-500/PMS with coordinated and dominant radical and non-radical pathways. This study could large-scale generate variable cobalt-based catalysts for enhanced ROS generation, leading the new insight for boosting practical applications.
Collapse
Affiliation(s)
- Yue Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiangdong Dai
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Agrochem Laboratory Co., Ltd, Chang Zhou, Jiangsu 213022, China
| | - ChunXiang Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Jun Zhao
- Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| | - Binrong Li
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jian Ye
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| |
Collapse
|
23
|
Li D, Feng Z, Zhou B, Chen H, Yuan R. Impact of water matrices on oxidation effects and mechanisms of pharmaceuticals by ultraviolet-based advanced oxidation technologies: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157162. [PMID: 35798102 DOI: 10.1016/j.scitotenv.2022.157162] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The binding between water components (dissolved organic matters, anions and cations) and pharmaceuticals influences the migration and transformation of pollutants. Herein, the impact of water matrices on drug degradation, as well as the electrical energy demands during UV, UV/catalysts, UV/O3, UV/H2O2-based, UV/persulfate and UV/chlorine processes were systemically evaluated. The enhancement effects of water constituents are due to the powerful reactive species formation, the recombination reduction of electrons and holes of catalyst and the catalyst regeneration; the inhibition results from the light attenuation, quenching effects of the excited states of target pollutants and reactive species, the stable complexations generation and the catalyst deactivation. The transformation pathways of the same pollutant in various AOPs have high similarities. At the same time, each oxidant also can act as a special nucleophile or electrophile, depending on the functional groups of the target compound. The electrical energy per order (EEO) of drugs degradation may follow the order of EEOUV > EEOUV/catalyst > EEOUV/H2O2 > EEOUV/PS > EEOUV/chlorine or EEOUV/O3. Meanwhile, it is crucial to balance the cost-benefit assessment and toxic by-products formation, and the comparison of the contaminant degradation pathways and productions in the presence of different water matrices is still lacking.
Collapse
Affiliation(s)
- Danping Li
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuqing Feng
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
24
|
Cheng S, Zhao Y, Pan Y, Lei Y, Zhou Y, Li C, Zhang X, Yang X. Quantification of the diverse inhibitory effects of dissolved organic matter on transformation of micropollutants in UV/persulfate treatment. WATER RESEARCH 2022; 223:118967. [PMID: 35973248 DOI: 10.1016/j.watres.2022.118967] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/16/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Dissolved organic matter (DOM), ubiquitous in natural waters, is known to inhibit the degradation of micropollutants in the advanced oxidation processes such as the UV/peroxydisulfate process. However, the quantitative understanding of the inhibitory pathways is missing. In this study, guanosine, aniline and catechol belonging to amines, purines and phenols were first investigated due to their resistance to UV irradiation at 254 nm and similar reactivity with SO4•- and HO•, respectively. The presence of 0.5 mgC L-1 Suwannee River NOM (SRNOM) inhibited their degradation rates by 72.9%, 54.5%, and 32.4%, respectively, despite their similar degradation rates in the absence of SRNOM. The results highlight the importance of reverse reduction of oxidation intermediates to the parent compound by antioxidant moieties in SRNOM besides the inner filtering and radical scavenging effects. The three inhibitory pathways were quantified for 34 common micropollutants. In the presence of 0.5 mgC L-1 SRNOM, inner filtering effect was found to contribute less than 2.8% of the inhibitory percentages (IP). Radical scavenging effects contribute between 10.7% and 38.9% and compounds having lower reactivity with SO4•- (< 4.0 × 109 M-1 s-1) tended to be inhibited more strongly. The IP of reverse reduction effects of SRNOM varied significantly from none up to 70.8%. It was linearly related with a micropollutant's reduction potential. Purines and amines generally exhibited more pronounced reverse reduction inhibition than phenols. The results of this study provide guidance on improving the elimination efficiency of micropollutants.
Collapse
Affiliation(s)
- Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yujie Zhao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yangjian Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Chuanhao Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinran Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
25
|
Yang X, Rosario-Ortiz FL, Lei Y, Pan Y, Lei X, Westerhoff P. Multiple Roles of Dissolved Organic Matter in Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11111-11131. [PMID: 35797184 DOI: 10.1021/acs.est.2c01017] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Advanced oxidation processes (AOPs) can degrade a wide range of trace organic contaminants (TrOCs) to improve the quality of potable water or discharged wastewater effluents. Their effectiveness is impacted, however, by the dissolved organic matter (DOM) that is ubiquitous in all water sources. During the application of an AOP, DOM can scavenge radicals and/or block light penetration, therefore impacting their effectiveness toward contaminant transformation. The multiple ways in which different types or sources of DOM can impact oxidative water purification processes are critically reviewed. DOM can inhibit the degradation of TrOCs, but it can also enhance the formation and reactivity of useful radicals for contaminants elimination and alter the transformation pathways of contaminants. An in-depth analysis highlights the inhibitory effect of DOM on the degradation efficiency of TrOCs based on DOM's structure and optical properties and its reactivity toward oxidants as well as the synergistic contribution of DOM to the transformation of TrOCs from the analysis of DOM's redox properties and DOM's transient intermediates. AOPs can alter DOM structure properties as well as and influence types, mechanisms, and extent of oxidation byproducts formation. Research needs are proposed to advance practical understanding of how DOM can be exploited to improve oxidative water purification.
Collapse
Affiliation(s)
- Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| |
Collapse
|
26
|
Strengthen Air Oxidation of Refractory Humic Acid Using Reductively Etched Nickel-Cobalt Spinel Catalyst. Catalysts 2022. [DOI: 10.3390/catal12050536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nickel-cobalt spinel catalyst (NCO) is a promising catalyst for air oxidation of humic acid, which is a typical natural refractory organic matter and a precursor of toxic disinfection by-products. In this study, reductive etchers, NaBH4 or Na2SO3, were used to adjust the NCO surface structure to increase the performance. The modified catalyst (NCO-R) was characterized, and the relationship between its intrinsic properties and catalytic paths was discovered. The results of O2-temperature programmed desorption, NH3-temperature programmed desorption, and X-ray photoelectron spectroscopy (XPS) demonstrated that reductant etching introduced oxygen vacancies to the surface of NCO and increased active surface oxygen species and surface acidity. In addition, the modification did not change the raw hollow sphere structure of NCO. The crystallinity and specific surface area of NCO-R increased, and average pore size of NCO-R decreased. XPS results showed that the ratio of Co3+/Co2+ in NCO-R decreased compared with NCO, while the ratio of Ni3+/Ni2+ increased. The results of H2-temperature programmed reduction showed that the H2 reduction ability of NCO-R was stronger. Due to these changes in chemical and physical properties, NCO-R exhibited much better catalytic performance than NCO. In the catalytic air oxidation of humic acid at 25 °C, the total organic carbon (TOC) removal rate increased significantly from 44.4% using NCO to 77.0% using NCO-R. TOC concentration of humic acid decreased by 90.0% after 12 h in the catalytic air oxidation using NCO-R at 90 °C.
Collapse
|