1
|
Yan X, Cao T, Chen H, Wu J, Xu C, Song J, Zhong Y, Chen Y, Zhang G, Peng P. Formation and evolution of environmentally persistent free radicals in charcoal and soot generated from biomass materials. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137523. [PMID: 39923371 DOI: 10.1016/j.jhazmat.2025.137523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/23/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Environmentally persistent free radicals (EPFRs) are emerging pollutants that are highly reactive and toxic, posing potential health risks. Biomass burning is a significant source of EPFRs, but there has been a notable gap in research regarding the EPFRs present in charcoal and soot produced from the same combustion process. Our study detected EPFRs in both charcoal and soot, but there were significant differences in their characteristics. The EPFR concentrations in charcoal were much higher than that in soot, by approximately 2-4 orders of magnitude, suggesting that charcoal may be more chemically reactive. Differences in the formation mechanisms between charcoal and soot were found to result in variations in the characteristics of EPFRs observed in each material. Furthermore, the ability of EPFRs to generate reactive oxygen species (ROS) differed considerably between charcoal and soot. Charcoal exhibited a strong ability to produce ROS, including 1O2 and ·OH radicals, and the abundances of 1O2 was further enhanced (∼1.2 -2.1 times) after illumination. In contrast, only the 1O2 radical was found in soot produced at 300 °C. These findings enhanced our understanding of the environmental impact and potential toxicity of EPFRs, offering valuable insights for evaluating the risks associated with wildfires and agricultural burning.
Collapse
Affiliation(s)
- Xu Yan
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Cao
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hao Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhong Wu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuncun Xu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianzhong Song
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China.
| | - Yin Zhong
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Guohua Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
| |
Collapse
|
2
|
Zhang Q, Wang Y, Zhang Y, Zhang J, Hou F, He C, Shi Q, Zhang G, Wang J. Heating-Induced Changes in Content and Molecular Characteristics of Pyrogenic Dissolved Organic Matter across Soil Types. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3937-3948. [PMID: 39968708 DOI: 10.1021/acs.est.4c08306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Wildfires remarkably alter the quantity and quality of dissolved organic matter (DOM) that regulates postfire biogeochemical processes and environmental quality. However, it remains unclear how the heating-induced percent changes (%HIC) in DOM quantity and quality differ among soil types on a wide geographic scale. Here, we used dissolved organic carbon (DOC) quantification, absorption, and fluorescence spectroscopies, and Fourier transform ion cyclotron resonance mass spectrometry to investigate the variations in %HIC in DOM quantity and quality of Chinese soil reference materials after heating at 250 and 400 °C. Our results reveal that as soil pH increased, %HIC in DOC content increased, while %HIC in aromaticity-related indices of DOM decreased for both heating temperatures. Moreover, the %HIC in DOM biolability and contents of aliphatics increased with soil pH for 250 °C heating but remained relatively stable for 400 °C heating. Results suggest that compared to those in acidic soil-dominated forests, wildfires in alkaline soil-dominated forests may cause greater DOM content and biolability in soils, which may facilitate postfire microbial recovery. These findings deepen our understanding of the site-specific impacts of wildfires on DOM and the subsequent implications for biogeochemical cycling and environmental quality across different geographic regions.
Collapse
Affiliation(s)
- Qiang Zhang
- Guangdong Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan 637009, China
| | - Yinghui Wang
- Guangdong Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yuhang Zhang
- Guangdong Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Junwen Zhang
- Guangdong Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Fuyou Hou
- Guangdong Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Junjian Wang
- Guangdong Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
3
|
Zhang Z, Cui X, Qu X, Fu H, Tao S, Zhu D. Revealing Molecular Structures of Nitrogen-Containing Compounds in Dissolved Black Carbon Using Ultrahigh-Resolution Mass Spectrometry Combined with Thermodynamic Calculations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11998-12007. [PMID: 38935345 DOI: 10.1021/acs.est.4c01829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Landscape wildfires generate a substantial amount of dissolved black carbon (DBC) annually, yet the molecular nitrogen (N) structures in DBC are poorly understood. Here, we systematically compared the chemodiversity of N-containing molecules among three different DBC samples from rice straw biochar pyrolyzed at 300, 400, and 500 °C, one leached dissolved organic carbon (LDOC) sample from composted rice straw, and one fire-affected soil dissolved organic matter (SDOMFire) sample using Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS). N-Containing molecules contributed 20.0%, 36.1%, and 43.7% of total compounds in Combined DBC (pooling together the three DBC), LDOC, and SDOMFire, respectively, and molecules with fewer N atoms had higher proportions (i.e., N1 > N2 > N3). The N-containing molecules in Combined DBC were dominated by polycyclic aromatic (62.2%) and aromatic (14.4%) components, while those in LDOC were dominated by lignin-like (50.4%) and aromatic (30.1%) components. The composition and structures of N-containing molecules in SDOMFire were more similar to those in DBC than in LDOC. As the temperature rose, the proportion of the nitrogenous polycyclic aromatic component in DBC significantly increased with concurrent enhanced oxidation and unsaturation of N. As indicated by density functional theory (DFT)-based thermodynamic calculations, the proportion of aliphatic amide N decreased from 23.2% to 7.9%, whereas that of nitroaromatic N increased from 10.0% to 39.5% as the temperature increased from 300 to 500 °C; alternatively, the proportion of aromatic N in the 5/6 membered ring remained relatively stable (∼31%) and that of aromatic amide N peaked at 400 °C (32.7%). Our work first provides a comprehensive and thorough description of molecular N structures of DBC, which helps to better understand and predict their fate and biogeochemical behavior.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Key Laboratory of the Ministry of Education for Earth Surface Processes, School of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiurui Cui
- Key Laboratory of the Ministry of Education for Earth Surface Processes, School of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Shu Tao
- Key Laboratory of the Ministry of Education for Earth Surface Processes, School of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Dongqiang Zhu
- Key Laboratory of the Ministry of Education for Earth Surface Processes, School of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Myers-Pigg AN, Grieger S, Roebuck JA, Barnes ME, Bladon KD, Bailey JD, Barton R, Chu RK, Graham EB, Homolka KK, Kew W, Lipton AS, Scheibe T, Toyoda JG, Wagner S. Experimental Open Air Burning of Vegetation Enhances Organic Matter Chemical Heterogeneity Compared to Laboratory Burns. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9679-9688. [PMID: 38776554 PMCID: PMC11155678 DOI: 10.1021/acs.est.3c10826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Wildfires produce solid residuals that have unique chemical and physical properties compared to unburned materials, which influence their cycling and fate in the natural environment. Visual burn severity assessment is used to evaluate post-fire alterations to the landscape in field-based studies, yet muffle furnace methods are commonly used in laboratory studies to assess molecular scale alterations along a temperature continuum. Here, we examined solid and leachable organic matter characteristics from chars visually characterized as low burn severity that were created either on an open air burn table or from low-temperature muffle furnace burns. We assessed how the different combustion conditions influence solid and dissolved organic matter chemistries and explored the potential influence of these results on the environmental fate and reactivity. Notably, muffle furnace chars produced less leachable carbon and nitrogen than open air chars across land cover types. Organic matter produced from muffle furnace burns was more homogeneous than open air chars. This work highlights chemical heterogeneities that exist within a single burn severity category, potentially influencing our conceptual understanding of pyrogenic organic matter cycling in the natural environment, including transport and processing in watersheds. Therefore, we suggest that open air burn studies are needed to further advance our understanding of pyrogenic organic matter's environmental reactivity and fate.
Collapse
Affiliation(s)
- Allison N. Myers-Pigg
- Marine
and Coastal Research Laboratory, Pacific
Northwest National Laboratory, Sequim, Washington 98382, United States
- Department
of Environmental Sciences, University of
Toledo, Toledo, Ohio 43606, United States
| | - Samantha Grieger
- Marine
and Coastal Research Laboratory, Pacific
Northwest National Laboratory, Sequim, Washington 98382, United States
| | - J. Alan Roebuck
- Marine
and Coastal Research Laboratory, Pacific
Northwest National Laboratory, Sequim, Washington 98382, United States
| | - Morgan E. Barnes
- Pacific
Northwest National Laboratory, Richland, Washington 99354, United States
| | - Kevin D. Bladon
- Department
of Forest Ecosystems and Society, Oregon
State University, Corvallis, Oregon 97331, United States
- Department
of Forest Engineering, Resources and Management, Oregon State University, Corvallis, Oregon 97331, United States
| | - John D. Bailey
- Department
of Forest Engineering, Resources and Management, Oregon State University, Corvallis, Oregon 97331, United States
| | - Riley Barton
- Department
of Earth and Environmental Sciences, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
- Center
for Environmental and Stable Isotope Analysis, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Rosalie K. Chu
- Environmental
Molecular Science Laboratory, Richland, Washington 99354, United States
| | - Emily B. Graham
- Pacific
Northwest National Laboratory, Richland, Washington 99354, United States
- School
of Biological Sciences, Washington State
University, Pullman, Washington 99164, United States
| | - Khadijah K. Homolka
- Marine
and Coastal Research Laboratory, Pacific
Northwest National Laboratory, Sequim, Washington 98382, United States
| | - William Kew
- Environmental
Molecular Science Laboratory, Richland, Washington 99354, United States
| | - Andrew S. Lipton
- Environmental
Molecular Science Laboratory, Richland, Washington 99354, United States
| | - Timothy Scheibe
- Pacific
Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jason G. Toyoda
- Environmental
Molecular Science Laboratory, Richland, Washington 99354, United States
| | - Sasha Wagner
- Department
of Earth and Environmental Sciences, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
- Center
for Environmental and Stable Isotope Analysis, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
5
|
Lyu H, Zhong R, Kilasara M, Hartono A, Sun Z, Funakawa S, Watanabe T. Impact of Climate on Soil Organic Matter Composition in Soils of Tropical Volcanic Regions Revealed by EGA-MS and Py-GC/MS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9646-9657. [PMID: 38758106 DOI: 10.1021/acs.est.3c07000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Soil organic matter (SOM) crucially influences the global carbon cycle, yet its molecular composition and determinants are understudied, especially for tropical volcanic regions. We investigated how SOM compounds change in response to climate, vegetation, soil horizon, and soil properties and the relationship between SOM composition and microbial decomposability in Tanzanian and Indonesian volcanic regions. We collected topsoil (0-15 cm) and subsoil (20-40 cm) horizons (n = 22; pH: 4.6-7.6; SOC: 10-152 g kg-1) with undisturbed vegetation and wide mean annual temperature and moisture ranges (14-26 °C; 800-3300 mm) across four elevational transects (340-2210 m asl.). Evolved gas analysis-mass spectrometry (EGA-MS) documented a simultaneous release of SOM compounds and clay mineral dehydroxylation. Subsequently applying double-shot pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) at 200 and 550 °C, we detailed the molecular composition of topsoil and subsoil SOM. A minor portion (2.7 ± 1.9%) of compounds desorbed at 200 °C, limiting its efficacy for investigating overall SOM characteristics. Pyrolyzed SOM closely aligns with the intermediate decomposable SOM pool, with most pyrolysates (550 °C) originating from this pool. Pyrolysates composition suggests tropical SOM is mainly microbial-derived and subsoil contains more degraded compounds. Higher litter inputs and attenuated SOM decomposition due to cooler temperatures and lower soil pH (<5.5) produce less-degraded SOM at higher elevations. Redundancy analyses revealed the crucial role of active Al/Fe (oxalate-extractable Al/Fe), abundant in low-temperature/high-moisture conditions, in stabilizing these less-degraded components. Our findings provide new insights into SOM molecular composition and its determinants, critical for understanding the carbon cycle in tropical ecosystems.
Collapse
Affiliation(s)
- Han Lyu
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
- Organization for WISE Program, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Tokyo, Japan
| | - Ruohan Zhong
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Method Kilasara
- College of Agriculture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Arief Hartono
- Faculty of Agriculture, Bogor Agricultural University, Bogor 16680, West Java, Indonesia
| | - Zheng Sun
- CNRS, EPHE, UMR 7619 METIS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France
| | - Shinya Funakawa
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
6
|
Buckley S, McKay G, Leresche F, Rosario-Ortiz F. Inferring the Molecular Basis for Dissolved Organic Matter Photochemical and Optical Properties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9040-9050. [PMID: 38743693 DOI: 10.1021/acs.est.3c10881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Despite the widespread use of photochemical and optical properties to characterize dissolved organic matter (DOM), a significant gap persists in our understanding of the relationship among these properties. This study infers the molecular basis for the optical and photochemical properties of DOM using a comprehensive framework and known structural moieties within DOM. Utilizing Suwannee River Fulvic Acid (SRFA) as a model DOM, carboxylated aromatics, phenols, and quinones were identified as dominant contributors to the absorbance spectra, and phenols, quinones, aldehydes, and ketones were identified as major contributors to radiative energy pathways. It was estimated that chromophores constitute ∼63% w/w of dissolved organic carbon in SRFA and ∼47% w/w of overall SRFA. Notably, estimations indicate the pool of fluorescent compounds and photosensitizing compounds in SRFA are likely distinct from each other at wavelengths below 400 nm. This perspective offers a practical tool to aid in the identification of probable chemical groups when interpreting optical and photochemical data and challenges the current "black box" thinking. Instead, DOM photochemical and optical properties can be closely estimated by assuming the DOM is composed of a mixture of individual compounds.
Collapse
Affiliation(s)
- Shelby Buckley
- Environmental Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Garrett McKay
- Zachry Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77845, United States
| | - Frank Leresche
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Fernando Rosario-Ortiz
- Environmental Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
7
|
Xu Y, Wang X, Ou Q, Zhou Z, van der Hoek JP, Liu G. Appearance of Recalcitrant Dissolved Black Carbon and Dissolved Organic Sulfur in River Waters Following Wildfire Events. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7165-7175. [PMID: 38597176 PMCID: PMC11044583 DOI: 10.1021/acs.est.4c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Increasing wildfire frequency, a consequence of global climate change, releases incomplete combustion byproducts such as aquatic pyrogenic dissolved organic matter (DOM) and black carbon (DBC) into waters, posing a threat to water security. In August 2022, a series of severe wildfires occurred in Chongqing, China. Samples from seven locations along the Yangtze and Jialing Rivers revealed DBC, quantified by the benzene poly(carboxylic acid) (BPCA) method, comprising 9.5-19.2% of dissolved organic carbon (DOC). High concentrations of BPCA-DBC with significant polycondensation were detected near wildfire areas, likely due to atmospheric deposition driven by wind. Furthermore, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) revealed that wildfires were associated with an increase in condensed aromatics, proteins, and unsaturated hydrocarbons, along with a decrease in lignins. The condensed aromatics primarily consisted of dissolved black nitrogen (DBN), contributing to abundant high-nitrogen-containing compounds in locations highly affected by wildfires. Meanwhile, wildfires potentially induced the input of recalcitrant sulfur-containing protein-like compounds, characterized by high oxidation, aliphatic nature, saturation, and low aromaticity. Overall, this study revealed the appearance of recalcitrant DBC and dissolved organic sulfur in river waters following wildfire events, offering novel insights into the potential impacts of wildfires on water quality and environmental biogeochemistry.
Collapse
Affiliation(s)
- Yanghui Xu
- Key
Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Xintu Wang
- Key
Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- College
of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541004, China
| | - Qin Ou
- Key
Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Zhongbo Zhou
- College
of Resources and Environment, Southwest
University, Chongqing 400715, China
| | - Jan Peter van der Hoek
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
- Waternet,
Department Research & Innovation,
P.O. Box 94370, 1090 GJ Amsterdam, The Netherlands
| | - Gang Liu
- Key
Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
- University
of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
8
|
VanderRoest JP, Fowler JA, Rhoades CC, Roth HK, Broeckling CD, Fegel TS, McKenna AM, Bechtold EK, Boot CM, Wilkins MJ, Borch T. Fire Impacts on the Soil Metabolome and Organic Matter Biodegradability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4167-4180. [PMID: 38385432 DOI: 10.1021/acs.est.3c09797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Global wildfire activity has increased since the 1970s and is projected to intensify throughout the 21st century. Wildfires change the composition and biodegradability of soil organic matter (SOM) which contains nutrients that fuel microbial metabolism. Though persistent forms of SOM often increase postfire, the response of more biodegradable SOM remains unclear. Here we simulated severe wildfires through a controlled "pyrocosm" approach to identify biodegradable sources of SOM and characterize the soil metabolome immediately postfire. Using microbial amplicon (16S/ITS) sequencing and gas chromatography-mass spectrometry, heterotrophic microbes (Actinobacteria, Firmicutes, and Protobacteria) and specific metabolites (glycine, protocatechuate, citric cycle intermediates) were enriched in burned soils, indicating that burned soils contain a variety of substrates that support microbial metabolism. Molecular formulas assigned by 21 T Fourier transform ion cyclotron resonance mass spectrometry showed that SOM in burned soil was lower in molecular weight and featured 20 to 43% more nitrogen-containing molecular formulas than unburned soil. We also measured higher water extractable organic carbon concentrations and higher CO2 efflux in burned soils. The observed enrichment of biodegradable SOM and microbial heterotrophs demonstrates the resilience of these soils to severe burning, providing important implications for postfire soil microbial and plant recolonization and ecosystem recovery.
Collapse
Affiliation(s)
- Jacob P VanderRoest
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Julie A Fowler
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Charles C Rhoades
- Rocky Mountain Research Station, U.S. Forest Service, Fort Collins, Colorado 80526, United States
| | - Holly K Roth
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Corey D Broeckling
- Bioanalysis and Omics Center, Analytical Resources Core, Colorado State University, Fort Collins, 80521, United States
| | - Timothy S Fegel
- Rocky Mountain Research Station, U.S. Forest Service, Fort Collins, Colorado 80526, United States
| | - Amy M McKenna
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80521, United States
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Dr., Tallahassee, Florida 32310, United States
| | - Emily K Bechtold
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Claudia M Boot
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Thomas Borch
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80521, United States
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80521, United States
| |
Collapse
|
9
|
Madhiyan M, Moor KJ. Singlet Oxygen Quantum Yields of Pyrogenic Dissolved Organic Matter from Lab-Prepared and Wildfire Chars. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1265-1273. [PMID: 38157474 DOI: 10.1021/acs.est.3c03976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Wildfires or prescribed fires release pyrogenic dissolved organic matter (pyDOM) into the environment, which can photochemically produce singlet oxygen (1O2) in sun-lit surface waters. 1O2 quantum yields (ΦΔ) are well-studied for non-pyrogenic DOM, but little is understood about the 1O2 generation from pyDOM, especially the ΦΔ values from real wildfire samples and their wavelength dependence. In this study, time-resolved 1O2 phosphorescence was used to determine the wavelength-dependent ΦΔ values for pyDOM generated from wildfire char and a series of lab-prepared chars produced by combusting oak and pine wood. Wildfire and most lab-prepared pyDOM generally had similar ΦΔ values (2.1-2.7%) at 365 nm compared to the reference Suwannee River Natural Organic Matter (SRNOM) isolate (2.4%). Interestingly, pyDOM from the highest combustion temperature char was found to possess extremely low ΦΔ values compared to SRNOM and other pyDOM at all excitation wavelengths. In addition, it was revealed that the predicted steady-state concentration of 1O2 from pyDOM was similar to that from SRNOM, indicating that the addition of pyDOM from wood chars may not strongly impact surface water photochemistry.
Collapse
Affiliation(s)
- Monika Madhiyan
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, Utah 84322, United States
| | - Kyle J Moor
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, Utah 84322, United States
| |
Collapse
|
10
|
Zhang Q, Wang Y, Guan P, Zhang P, Mo X, Yin G, Qu B, Xu S, He C, Shi Q, Zhang G, Dittmar T, Wang J. Temperature Thresholds of Pyrogenic Dissolved Organic Matter in Heating Experiments Simulating Forest Fires. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17291-17301. [PMID: 37916767 DOI: 10.1021/acs.est.3c05265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Heating temperature (HT) during forest fires is a critical factor in regulating the quantity and quality of pyrogenic dissolved organic matter (DOM). However, the temperature thresholds at which maximum amounts of DOM are produced (TTmax) and at which the DOC gain turns into net DOC loss (TT0) remain unidentified on a component-specific basis. Here, based on solid-state 13C nuclear magnetic resonance, absorbance and fluorescence spectroscopies, and Fourier transform ion cyclotron resonance mass spectrometry, we analyzed variations in DOM composition in detritus and soil with HT (150-500 °C) and identified temperature thresholds for components on structural, fluorophoric, and molecular formula levels. TTmax was similar for detritus and soil and ranged between 225 and 250 °C for bulk dissolved organic carbon (DOC) and most DOM components. TT0 was consistently lower in detritus than in soil. Moreover, temperature thresholds differed across the DOM components. As the HT increased, net loss was observed initially in molecular formulas tentatively associated with carbohydrates and aliphatics, then proteins, peptides, and polyphenolics, and ultimately condensed aromatics. Notably, at temperatures lower than TT0, particularly at TTmax, burning increased the DOC quantity and thus might increase labile substrates to fuel soil microbial community. These composition-specific variations of DOM with temperature imply nonlinear and multiple temperature-dependent wildfire impacts on soil organic matter properties.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg 26129, Germany
| | - Yinghui Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg 26129, Germany
| | - Ping Guan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Peng Zhang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaohan Mo
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Peking University, Shenzhen, Guangdong 518055, China
| | - Gege Yin
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Bo Qu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Shujun Xu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Thorsten Dittmar
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg 26129, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, Oldenburg 26129, Germany
| | - Junjian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
11
|
Sánchez-García C, Santín C, Neris J, Sigmund G, Otero XL, Manley J, González-Rodríguez G, Belcher CM, Cerdà A, Marcotte AL, Murphy SF, Rhoades CC, Sheridan G, Strydom T, Robichaud PR, Doerr SH. Chemical characteristics of wildfire ash across the globe and their environmental and socio-economic implications. ENVIRONMENT INTERNATIONAL 2023; 178:108065. [PMID: 37562341 DOI: 10.1016/j.envint.2023.108065] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/26/2023] [Accepted: 06/24/2023] [Indexed: 08/12/2023]
Abstract
The mobilisation of potentially harmful chemical constituents in wildfire ash can be a major consequence of wildfires, posing widespread societal risks. Knowledge of wildfire ash chemical composition is crucial to anticipate and mitigate these risks. Here we present a comprehensive dataset on the chemical characteristics of a wide range of wildfire ashes (42 types and a total of 148 samples) from wildfires across the globe and examine their potential societal and environmental implications. An extensive review of studies analysing chemical composition in ash was also performed to complement and compare our ash dataset. Most ashes in our dataset had an alkaline reaction (mean pH 8.8, ranging between 6 and 11.2). Important constituents of wildfire ash were organic carbon (mean: 204 g kg-1), calcium, aluminium, and iron (mean: 47.9, 17.9 and 17.1 g kg-1). Mean nitrogen and phosphorus ranged between 1 and 25 g kg-1, and between 0.2 and 9.9 g kg-1, respectively. The largest concentrations of metals of concern for human and ecosystem health were observed for manganese (mean: 1488 mg kg-1; three ecosystems > 1000 mg kg-1), zinc (mean: 181 mg kg-1; two ecosystems > 500 mg kg-1) and lead (mean: 66.9 mg kg-1; two ecosystems > 200 mg kg-1). Burn severity and sampling timing were key factors influencing ash chemical characteristics like pH, carbon and nitrogen concentrations. The highest readily dissolvable fractions (as a % of ash dry weight) in water were observed for sodium (18 %) and magnesium (11.4 %). Although concentrations of elements of concern were very close to, or exceeded international contamination standards in some ashes, the actual effect of ash will depend on factors like ash loads and the dilution into environmental matrices such as water, soil and sediment. Our approach can serve as an initial methodological standardisation of wildfire ash sampling and chemical analysis protocols.
Collapse
Affiliation(s)
- C Sánchez-García
- Centre for Wildfire Research, Department of Geography, Swansea University, Swansea, United Kingdom
| | - C Santín
- Centre for Wildfire Research, Department of Geography, Swansea University, Swansea, United Kingdom; Research Institute of Biodiversity (IMIB; CSIC-UniOvi-PA), Mieres, Spain
| | - J Neris
- Centre for Wildfire Research, Department of Geography, Swansea University, Swansea, United Kingdom; Universidad de La Laguna, Tenerife, Spain
| | - G Sigmund
- Environmental Technology, Wageningen University & Research, Wageningen, The Netherlands; Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - X L Otero
- CRETUS, Departamento de Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain
| | - J Manley
- Centre for Wildfire Research, Department of Geography, Swansea University, Swansea, United Kingdom
| | | | - C M Belcher
- University of Exeter, Exeter, United Kingdom
| | - A Cerdà
- Universitat de València, Valencia, Spain
| | - A L Marcotte
- Plant Ecology and Nature Conservation, Wageningen University & Research, Wageningen, The Netherlands
| | - S F Murphy
- U.S. Geological Survey, Boulder, CO, USA
| | - C C Rhoades
- U.S. Department of Agriculture Forest Service, Rocky Mountain Research Station, Fort Collins, CO, USA
| | - G Sheridan
- The University of Melbourne, Parkville, Australia
| | - T Strydom
- South African National Parks, Skukuza, South Africa
| | - P R Robichaud
- U.S. Department of Agriculture Forest Service, Rocky Mountain Research Station, Fort Collins, CO, USA
| | - S H Doerr
- Centre for Wildfire Research, Department of Geography, Swansea University, Swansea, United Kingdom.
| |
Collapse
|