1
|
Hou Z, Mo F, Zhou Q, Gao D, Zheng T, Tao Z, Lu Y. Illuminating the nexus between non-biodegradable microplastics and soil nitrogen dynamics: A modulation through plant-derived organic matter. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137913. [PMID: 40107101 DOI: 10.1016/j.jhazmat.2025.137913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/21/2025] [Accepted: 03/09/2025] [Indexed: 03/22/2025]
Abstract
The characteristics of vegetation cover significantly influence nitrogen (N) cycling in soils. However, there is currently a lack of comprehensive assessment regarding how altered vegetation cover types affect soil N cycling in the context of emerging contaminants, such as non-biodegradable microplastics (MPs). Initial observations indicated substantial priming effects across all experimental groups upon the introduction of polystyrene MPs (PSMPs). Shrub soil demonstrated greatest resistance and resilience to PSMPs disturbance, while tree soils exhibited lower tolerance. In contrast, grass soils displayed maximum sensitivity, as evidenced by early peaks in N₂O emissions in shrub group, primarily driven by denitrification and nitrification before and after emission peaks, respectively. From a microbial perspective, Rhizobiales and Xanthomonadales/Nitrososphaerales exhibited significant roles in enhancing the resistance and resilience of shrub soils by facilitating efficient N transformation (particularly oxidation reaction-mediated N₂O emissions) and retention (manifested by stable amino acids and reduced bio-available dissolved organic matter). These findings contribute crucial theoretical insights into the capacity of vegetation cover to mitigate N₂O emissions induced by MP inputs, underscoring the pivotal role of biodiversity in maintaining ecosystem stability.
Collapse
Affiliation(s)
- Zelin Hou
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban, Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Fan Mo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban, Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Tong Zheng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zongxin Tao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yin Lu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban, Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
2
|
Wentao G, Tingting L, Zhitong F, Lingyi X, Chen J, Honglin C, Dongfeng L, Shuangshuang L, Zuolin X, Xiaofeng W. Aquatic plants dominate spatiotemporal dynamics of N 2O fluxes in small urban lake by regulating nutrient distribution and emission path. ENVIRONMENTAL RESEARCH 2025; 274:121290. [PMID: 40043933 DOI: 10.1016/j.envres.2025.121290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
Small urban lakes are recognized as significant sources of nitrous oxide (N2O) to the atmosphere. Despite the crucial role of aquatic plants in landscape construction and pollutant removal within urban lakes, the modulation of N2O emission dynamics and associated mechanisms by these plants remains elusive. This study investigated the N2O concentrations and fluxes from aquatic habitats covered with seven species of aquatic plants in a small urban lake, and estimated the contribution of plant-mediated N2O emissions. Meanwhile, the physicochemical parameters of water and periradicular sediments were measured synchronously to clarify the main controls of aquatic plants in regulating aquatic N2O emissions. N2O concentrations in the surface waters covered by different aquatic plants (0.041-0.659 μmol L-1) exhibit substantial variation, being 1.2-5.4 (mean of 2.8) times higher than those in open water areas (0.015-0.096 μmol L-1). The range of total N2O fluxes was 11.3-1009.0 μmol m-2 d-1, exhibiting significant spatial and temporal variations, with considerable differences observed among various plant-covered areas. Total N2O fluxes from different plant-covered areas were 1.5-16.7 times (average 7.5 times) higher than those in open water areas. It suggests that diverse aquatic plants could observably intensify the spatial variability in N2O emissions within the small urban lake. The estimated plant-mediated fluxes may contribute approximately 21%-66% of total N2O fluxes. Specifically, N2O concentrations in the stem cavities of different plants were generally higher than atmospheric levels, evidencing the mediated effect of aquatic plants on N2O emissions. While aquatic plants reduce the abundance of nutrients in surface water to varying degrees, the accumulations of carbon and nitrogen in periradicular sediments, combined with plant transport, observably enhance N2O emissions in urban lake with low pollution loads. Furthermore, the phenological processes of aquatic plants and seasonal temperature changes were found to co-affect the seasonal dynamics of aquatic N2O fluxes. Varied aquatic plants can significantly dominate spatiotemporal dynamics of the N2O emissions in urban landscape lakes.
Collapse
Affiliation(s)
- Guo Wentao
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing, 405400, China.
| | - Liu Tingting
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Fan Zhitong
- Yunwuping Forest Farm in Jiangjin District, Chongqing, 404000, China
| | - Xiang Lingyi
- Chongqing Institute of Geology and Mineral Resources, Chongqing, 400000, China
| | - Jian Chen
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing, 405400, China
| | - Chen Honglin
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing, 405400, China
| | - Li Dongfeng
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing, 405400, China
| | - Liu Shuangshuang
- Chongqing Institute of Geology and Mineral Resources, Chongqing, 400000, China
| | - Xiao Zuolin
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing, 405400, China
| | - Wang Xiaofeng
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing, 405400, China.
| |
Collapse
|
3
|
Li J, Wang L, Wu B, Wang J, Yu Y, Kuzyakov Y, Ding S, Xu X. Convergence and divergence of microbial communities in river- Qinghai lake sediment continuum on Tibetan Plateau. WATER RESEARCH 2025; 282:123757. [PMID: 40347897 DOI: 10.1016/j.watres.2025.123757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025]
Abstract
Microbiota within interconnected river-lake systems define cycles of carbon and nutrients, yet the mechanisms underlying the assembly of microbial communities during their transition from tributaries to lake remains to be deciphered. This study examined the communities of protists, fungi and bacteria in sediments of Qinghai Lake - a saline lake on the Tibetan Plateau, China - and its connected upstream freshwater tributaries, using high-throughput amplicon sequencing targeting the 18S, ITS2 and 16S rDNA regions. Our findings reveal divergent assembly mechanisms across microbial groups: communities of microeukaryotes (protists and fungi) in tributaries were predominantly shaped by stochastic processes (∼85% contribution), shifting to environmental selection dominance in the lake (∼55%). In contrast, bacterial community assembly in tributaries was primarily deterministic (∼60% environmental selection), shifting to stochastic dominance (∼70%) in the lake. Despite the differences, all groups exhibited congruent biogeographic patterns in terms of diversity and network complexity. The tributary-to-lake transition enhanced the complexity of microbial co-occurrence network but resulted in significant species loss, with α-diversity reduced by 56%-62%. β-diversity increased from tributaries to the estuary but decreased within the lake. Microbial α- and β-diversity correlated positively with sediment C: N ratio but negatively with total sediment C content. Notably, only 1% to 13% of microbial taxa in lake sediments originated from tributaries, suggesting alternative pathways that warrant further geological investigation. This study provides new insights into the convergent biogeographical patterns of diversity and network complexity, coupled with divergent assembly mechanisms, among protist, fungal, and bacterial communities along the river-Qinghai Lake sediment continuum.
Collapse
Affiliation(s)
- Jie Li
- China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, 100091, China
| | - Lingqing Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bo Wu
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jianjun Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yajing Yu
- China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, G¨ottingen, 37077, Germany
| | - Shiming Ding
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Xingliang Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
4
|
Roothans N, Pabst M, van Diemen M, Herrera Mexicano C, Zandvoort M, Abeel T, van Loosdrecht MCM, Laureni M. Long-term multi-meta-omics resolves the ecophysiological controls of seasonal N 2O emissions during wastewater treatment. NATURE WATER 2025; 3:590-604. [PMID: 40417422 PMCID: PMC12098122 DOI: 10.1038/s44221-025-00430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 03/20/2025] [Indexed: 05/27/2025]
Abstract
Nitrous oxide (N2O) is the third most important greenhouse gas and originates primarily from natural and engineered microbiomes. Effective emission mitigations are currently hindered by the largely unresolved ecophysiological controls of coexisting N2O-converting metabolisms in complex communities. To address this, we used biological wastewater treatment as a model ecosystem and combined long-term metagenome-resolved metaproteomics with ex situ kinetic and full-scale operational characterization over nearly 2 years. By leveraging the evidence independently obtained at multiple ecophysiological levels, from individual genetic potential to actual metabolism and emergent community phenotype, the cascade of environmental and operational triggers driving seasonal N2O emissions has ultimately been resolved. We identified nitrifier denitrification as the dominant N2O-producing pathway and dissolved O2 as the prime operational parameter, paving the way to the design and fostering of robust emission control strategies. This work exemplifies the untapped potential of multi-meta-omics in the mechanistic understanding and ecological engineering of microbiomes towards reducing anthropogenic impacts and advancing sustainable biotechnological developments.
Collapse
Affiliation(s)
- Nina Roothans
- Delft University of Technology, Delft, the Netherlands
| | - Martin Pabst
- Delft University of Technology, Delft, the Netherlands
| | | | | | | | - Thomas Abeel
- Delft University of Technology, Delft, the Netherlands
- Broad Institute of MIT and Harvard, Cambridge, MA USA
| | | | | |
Collapse
|
5
|
Wang S, Huang J, Wu Z, Li S, Zhu X, Liu Y, Ji G. Global mapping of flux and microbial sources for oceanic N 2O. Nat Commun 2025; 16:3341. [PMID: 40199896 PMCID: PMC11978886 DOI: 10.1038/s41467-025-58715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/31/2025] [Indexed: 04/10/2025] Open
Abstract
The ocean is the largest source of N2O emissions from global aquatic ecosystems. However, the N2O production-consumption mechanism and microbial spatial distribution are still unclear. Our study established a bottom-up model based on the source‒sink boundary and the microbial sources of N2O. A high-resolution (0.1°) global distribution of oceanic N2O was depicted, confirmed by approximately 150,000 surface measurements. The microbial N2O flux is 2.9 Tg/yr N-N2O, with the oxygen-deficient zones (ODZs) disproportionately accounting for more than half of the total emission. High primary productivity, sharp oxyclines, and shallow emission depths caused the ODZs to be N2O hotspots. Geographically, ammonia-oxidizing archaea (AOA, 1.0 Tg) are the most widely distributed contributors to N2O emissions in the ocean, completely overtaking ammonia-oxidizing bacteria (AOB). Heterotrophic denitrification, mainly occurring in ODZs, contributes the most (1.6 Tg) to N2O emissions. Overall, this study offers a bottom-up framework for understanding microbial source-sink mechanism in the ocean.
Collapse
Affiliation(s)
- Shuo Wang
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
| | - Jilin Huang
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
| | - Zhen Wu
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shengjie Li
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Xianfang Zhu
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
| | - Yong Liu
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China.
| | - Guodong Ji
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China.
| |
Collapse
|
6
|
Li G, Zhang S, Shi X, Zhao S, Zhan L, Pan X, Zhang F, Yu H, Sun Y, Arvola L, Huotari J. Significant spatiotemporal pattern of nitrous oxide emission and its influencing factors from a shallow eutropic lake in Inner Mongolia, China. J Environ Sci (China) 2025; 149:488-499. [PMID: 39181661 DOI: 10.1016/j.jes.2024.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 08/27/2024]
Abstract
Eutrophic shallow lakes are generally considered as a contributor to the emission of nitrous oxide (N2O), while regional and global estimates have remained imprecise. This due to a lack of data and insufficient understanding of the multiple contributing factors. This study characterized the spatiotemporal variability in N2O concentrations and N2O diffusive fluxes and the contributing factors in Lake Wuliangsuhai, a typical shallow eutrophic and seasonally frozen lake in Inner Mongolia with cold and arid climate. Dissolved N2O concentrations of the lake exhibited a range of 4.5 to 101.2 nmol/L, displaying significant spatiotemporal variations. The lowest and highest concentrations were measured in summer and winter, respectively. The spatial distribution of N2O flux was consistent with that of N2O concentrations. Additionally, the hotspots of N2O emissions were detected within close to the main inflow of lake. The wide spatial and temporal variation in N2O emissions indicate the complexity and its relative importance of factors influencing emissions. N2O emissions in different lake zones and seasons were regulated by diverse factors. Factors influencing the spatial and temporal distribution of N2O concentrations and fluxes were identified as WT, WD, DO, Chl-a, SD and COD. Interestingly, the same factor demonstrated opposing effects on N2O emission in various seasons or zones. This research improves our understanding of N2O emissions in shallow eutrophic lakes in cold and arid areas.
Collapse
Affiliation(s)
- Guohua Li
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Sheng Zhang
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China.
| | - Xiaohong Shi
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China.
| | - Shengnan Zhao
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China
| | - Liyang Zhan
- Key Laboratory of Global Change and Marine-Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xueru Pan
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Fan Zhang
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Haifeng Yu
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yue Sun
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lauri Arvola
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, Lammi Biological Station, University of Helsinki, Lammi FI-16900, Finland
| | - Jussi Huotari
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, Lammi Biological Station, University of Helsinki, Lammi FI-16900, Finland; Masinotek Oy, Ensimmäinen Savu 2, Vantaa FI-01510, Finland
| |
Collapse
|
7
|
Zhang Y, Zhao G, Yang P, Song C, Wang Y, Zhang Y, Zou Y, Zheng Z, Tang KW, Li S. Aquaculture source of atmospheric N 2O in China: Comparison of system types, management practices and measurement methods. ENVIRONMENTAL RESEARCH 2025; 267:120685. [PMID: 39710234 DOI: 10.1016/j.envres.2024.120685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Aquaculture systems contribute to atmospheric N2O, but the magnitude of this N2O source is largely uncertain. Here, we synthesized data from 139 aquaculture sites based on 59 peer-reviewed publications, and estimated that China's aquaculture systems emitted 9.68 Gg N yr-1 (4.12 Tg CO2-eq yr-1). N2O emission varied significantly according to system types, farmed species, physical dimensions of the system, hydrographical conditions, and management practices. Of these, inland pond systems had a higher N2O flux (268.38 ± 75.96 mg N m-2 yr-1) and indirect N2O emission factor (4.4 ± 0.9‰) than the other system types. Mixed species farming tended to emit less N2O than monospecific farming, whereas small (<1 ha) and shallow ponds (<1 m) were hotspots for N2O emission. Flux values based on different wind-driven diffusion models varied widely, and the model CC98 agreed most closely with direct measurements using floating chamber. Overall, aquaculture waters had a lower emission intensity than streams, rivers and reservoirs, but comparable to estuaries and lakes. Rapid expansion of the aquaculture sector and the limited N2O data for this sector, especially for rice-aquaculture co-culture systems, highlight the need for better monitoring and on-site measurements to refine the inventory of greenhouse gas emissions from the aquaculture systems.
Collapse
Affiliation(s)
- Yifei Zhang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Guanghui Zhao
- Department of Earth Science and Engineering, Shanxi Institute of Technology, Yangquan, 045000, China
| | - Ping Yang
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China.
| | - Changchun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yang Wang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yiwen Zhang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yuxing Zou
- College of Tourism and Resources Environment, Zaozhuang University, Zaozhuang, 277160, China
| | - Zhuangpeng Zheng
- School of Tourismand Historical Culture, Zhaoqing University, Zhaoqing, 526061, China
| | - Kam W Tang
- Department of Life Sciences, Texas A&M University-Corpus Christi, TX 78412, USA.
| | - Siyue Li
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
8
|
Wang S, Zhi W, Li S, Lyu T, Ji G. Sustainable management of riverine N 2O emission baselines. Natl Sci Rev 2025; 12:nwae458. [PMID: 39834561 PMCID: PMC11745158 DOI: 10.1093/nsr/nwae458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
The riverine N2O fluxes are assumed to linearly increase with nitrate loading. However, this linear relationship with a uniform EF5r is poorly constrained, which impedes the N2O estimation and mitigation. Our meta-analysis discovered a universal N2O emission baseline (EF5r = k/[NO3 -], k = 0.02) for natural rivers. Anthropogenic impacts caused an overall increase in baselines and the emergence of hotspots, which constitute two typical patterns of anthropogenic sources. The k values of agricultural and urban rivers increased to 0.09 and 0.05, respectively, with 11% and 14% of points becoming N2O hotspots. Priority control of organic and NH4 + pollution could eliminate hotspots and reduce emissions by 51.6% and 63.7%, respectively. Further restoration of baseline emissions on nitrate removal is a long-term challenge considering population growth and declining unit benefits (ΔN-N2O/N-NO3 -). The discovery of EF lines emphasized the importance of targeting hotspots and managing baseline emissions sustainably to balance social and environmental benefits.
Collapse
Affiliation(s)
- Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Wei Zhi
- The National Key Laboratory of Water Disaster Prevention, Yangtze Institute for Conservation and Development, Key Laboratory of Hydrologic-Cycle and Hydrodynamic-System of Ministry of Water Resources, College of Hydrology and Water Resources, Hohai University, Nanjing 210024, China
| | - Shengjie Li
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
| | - Tao Lyu
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Yang F, Zheng X, Wang D, Yao E, Li Y, Huang W, Zhang L, Wang J, Zhong J. Significant diurnal variations in nitrous oxide (N 2O) emissions from two contrasting habitats in a large eutrophic lake (Lake Taihu, China). ENVIRONMENTAL RESEARCH 2024; 261:119691. [PMID: 39074775 DOI: 10.1016/j.envres.2024.119691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
Algae and macrophytes in lake ecosystems regulate nitrous oxide (N2O) emissions from eutrophic lakes. However, knowledge of diurnal N2O emission patterns from different habitats remains limited. To understand the diurnal patterns and driving mechanisms of N2O emissions from contrasting habitats, continuous in situ observations (72 h) of N2O fluxes from an algae-dominated zone (ADZ) and reed-dominated zone (RDZ) in Lake Taihu were conducted using the Floating Chamber method. The results showed average N2O emission fluxes of 0.15 ± 0.06 and 0.02 ± 0.04 μmol m-2 h-1 in the ADZ and RDZ in autumn, respectively. The significantly higher (p < 0.05) N2O fluxes in the ADZ were mainly attributed to differences in nitrogen (N) levels. The results also showed significant diurnal differences (p < 0.05) in the N2O emission fluxes within the ADZ and RDZ, and daytime fluxes were significantly higher (p < 0.05) than nighttime fluxes. The statistical results indicated that N2O emissions from the ADZ were mainly driven by diurnal variations in N loading and the dissolved oxygen (DO) concentration, and those from the RDZ were more influenced by DO, redox potential, and pH. Finally, we determined the proper time for routine monitoring of N2O flux in the two habitats. Our results highlight the importance of considering diverse habitats and diurnal variations when estimating N2O budgets at a whole-lake scale.
Collapse
Affiliation(s)
- Fanyan Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China; School of Geographical Sciences, Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, PR China
| | - Xiaolan Zheng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Dongqi Wang
- School of Geographical Sciences, Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, PR China
| | - Enqin Yao
- Huzhou Ecological and Environmental Monitoring Center, Zhejiang Province, Huzhou, 313000, PR China
| | - Yunchuang Li
- China Construction First Group Corporation Limited, Beijing, 100161, PR China
| | - Wei Huang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Lei Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Jicheng Zhong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China.
| |
Collapse
|
10
|
Zhao S, Liu Y, Xu L, Ye J, Zhang X, Xu X, Meng H, Xie W, He H, Wang G, Zhang L. nosZ II/nosZ I ratio regulates the N 2O reduction rates in the eutrophic lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175852. [PMID: 39214369 DOI: 10.1016/j.scitotenv.2024.175852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Nitrous oxide (N2O) is a more potent greenhouse gas with an atmospheric lifetime of 121 years, contributing significantly to climate change and stratospheric ozone depletion. Lakes are hotspots for N2O release due to the imbalance between N2O sources and sinks. N2O-reducing bacteria are the only biological means to mitigate N2O emission, yet their roles in lakes are not well studied. This study investigated the potential for N2O reduction, keystones of typical and atypical N2O-reducing bacterial communities, and their correlations with environmental factors in the sediments of Lake Taihu through microcosm experiments, high-throughput sequencing of the nosZ gene, and statistical modeling. The results showed that potential N2O reduction rates in sediments ranged from 13.71 to 76.95 μg N2O g-1 d-1, with lower rates in December compared to March and July. Correlation analysis indicated that the nosZ II/nosZ I ratio and the trophic lake index (TLI) were the primary factors influencing N2O reduction rates and N2O-reducing bacterial community structures. The genera Pseudogulbenkiania and Ardenticatena were identified as the most abundant typical and atypical N2O-reducing bacteria, respectively, and were also recognized as the keystone taxa. Quantitative real-time PCR (qPCR) results revealed that nosZ II was more abundant than nosZ I in the sediments. Partial least squares path modeling (PLS-PM) further demonstrated that atypical N2O-reducing bacteria had significant positive effects on N2O reduction process in the sediments (p < 0.05). Overall, this study highlights the crucial ecological roles of atypical N2O-reducing bacteria in the sediments of the eutrophic lake of Taihu, underscoring their potential in mitigating N2O emissions.
Collapse
Affiliation(s)
- Sichuan Zhao
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Yihong Liu
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Lu Xu
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Jinliu Ye
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiaofeng Zhang
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Han Meng
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China; School of Environment, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, PR China.
| | - Wenming Xie
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing 210023, PR China
| |
Collapse
|
11
|
He Y, Li Y, Yang X, Liu Y, Guo H, Wang Y, Zhu T, Tong Y, Ni BJ, Liu Y. Biodegradable microplastics aggravate greenhouse gas emissions from urban lake sediments more severely than conventional microplastics. WATER RESEARCH 2024; 266:122334. [PMID: 39213682 DOI: 10.1016/j.watres.2024.122334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Freshwater ecosystems, such as urban lake sediments, have been identified as important sources of greenhouse gases (GHGs) to the atmosphere, as well as persistent sinks for ubiquitous microplastics due to the high population density and frequent anthropogenic activity. The potential impacts of microplastics on GHG production, however, remain underexplored. In this study, four types of common biodegradable microplastics (BMPs) versus four conventional non-biodegradable microplastics (NBMPs) were artificially exposed to urban lake sediments to investigate the responses of nitrous oxide (N2O) and methane (CH4) production, and make a comparison regarding how the biodegradability of microplastics affected GHG emissions. Importantly, results suggested that BMPs aggravated N2O and CH4 production in urban lake sediments more severely than conventional NBMPs. The production rates of N2O and CH4 increased by 48.78-71.88 % and 30.87-69.12 %, respectively, in BMPs groups, while those increased by only 0-25.69 % and 6.46-10.46 % with NBMPs exposure. Moreover, BMPs insignificantly affected nitrification but facilitated denitrification, while NBMPs inhibited both processes. BMPs not only created more oxygen-limited microenvironment, greatly promoting N2O production via nitrifier denitrification pathway, but also provided dissolved organic carbon favoring heterotrophic denitrification, which was primarily supported by the enriched denitrifiers and functional genes. In contrast, NBMPs slightly upregulated nitrifier denitrification pathway to generate N2O, and showed a toxic inhibition on both nitrifiers and denitrifiers. In addition, both BMPs and NBMPs promoted hydrogen-dependent methanogenic pathway but suppressed acetate-dependent pathway. The greater enhancement of CH4 production with BMPs exposure was attributed to the additional organic carbon substrates derived from BMPs and the stimulated microbial methane metabolism activities.
Collapse
Affiliation(s)
- Yanying He
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yiming Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Xianli Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yingrui Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
12
|
Chen X, Wang J, Liu J, Zhang S, Gao H, Xia X. Unveiling riverine N 2O dynamics along urbanization gradients by integrating hydrological, biogeochemical and microbial processes. WATER RESEARCH 2024; 268:122620. [PMID: 39427348 DOI: 10.1016/j.watres.2024.122620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
Human-disturbed rivers are globally significant sources of atmospheric nitrous oxide (N2O). Yet, the underlying mechanisms of urbanization impact on riverine N2O dynamics are not well understood. This study unveiled the effects of urbanization on N2O dynamics by integrating hydrological, biogeochemical and microbial processes in a river with various urbanization intensities. Riverine NO3- concentration enhanced with increasing urban land percentage, primarily because of the increased proportional contribution of sewage & manure source. The 15N site preference and relevant isotopic evidences revealed that the proportion of denitrification derived N2O increased from 60 % to 76 %, with the urban land percentage increasing from 〈 5 % to 〉 22 %, which was caused by decreases in flow velocity and dissolved oxygen saturation, increases in NO3- concentration and N2O-denitrifying genes. The non-negligible contribution of nitrification to N2O production (∼ 40 %) in lower-urbanized river stretches may be attributed to aerobic conditions and lower impermeable riparian zone facilitating the occurrence of in-river nitrification and the access of in-soil nitrification to river. Urbanization-mediated decreases in flow velocity and dissolved oxygen and increases in nitrogen availability and denitrification process resulted in an increase in N2O concentration and flux, with N2O concentration approximately four times higher in higher-urbanized river reaches (50.7 ± 26.3 nmol/L) than in lower-urbanized river reaches (14.4 ± 2.5 nmol/L). In addition, increased proportional contribution of sewage & manure source also provides the possibility for exogenous N2O inputs with urban expansion. These findings contribute to deepening our understanding of how urbanization drives N2O dynamics in river systems.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Junfeng Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Jiao Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Sibo Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Hui Gao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
13
|
Yan X, Han H, Li X, Rong X, Xia L, Yan X, Xia Y. Small water body significantly contributes to nitrous oxide emissions in China's aquaculture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121472. [PMID: 38879968 DOI: 10.1016/j.jenvman.2024.121472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Aquaculture systems are expected to act as potential hotspots for nitrous oxide (N2O) emissions, largely attributed to substantial nutrient loading from aquafeed applications. However, the specific patterns and contributions of N2O fluxes from these systems to the global emissions inventory are not well characterized due to limited data. This study investigates the patterns of N2O flux across 127 freshwater systems in China to elucidate the role of aquaculture ponds and lakes/reservoirs in landscape N2O emission. Our findings show that the average N2O flux from aquaculture ponds was 3.63 times higher (28.73 μg N2O m-2 h-1) than that from non-aquaculture ponds. Additionally, the average N2O flux from aquaculture lakes/reservoirs (15.65 μg N2O m-2 h-1) increased 3.05 times compared to non-aquaculture lakes/reservoirs. The transition from non-aquaculture to aquaculture practices has resulted in a net annual increase of 7589 ± 2409 Mg N2O emissions in China's freshwater systems from 2003 to 2022, equivalent to 20% of total N2O emissions from China's inland water. Particularly, the robust negative regression relationship between N2O emission intensity and water area suggests that small ponds are hotspots of N2O emissions, a result of both elevated nutrient concentrations and more vigorous biogeochemical cycles. This indicates that N2O emissions from smaller aquaculture ponds are larger per unit area compared to equivalent larger water bodies. Our findings highlight that N2O emissions from aquaculture systems can not be proxied by those from natural water bodies, especially small water bodies exhibiting significant but largely unquantified N2O emissions. In the context of the rapid global expansion of aquaculture, this underscores the critical need to integrate aquaculture into global assessments of inland water N2O emissions to advance towards a low-carbon future.
Collapse
Affiliation(s)
- Xing Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Haojie Han
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Xiaohan Li
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Xiangmin Rong
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Longlong Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Yongqiu Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China.
| |
Collapse
|
14
|
Wang S, Li S, Ji M, Li J, Huang J, Dang Z, Jiang Z, Zhang S, Zhu X, Ji G. Long-neglected contribution of nitrification to N 2O emissions in the Yellow River. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124099. [PMID: 38703980 DOI: 10.1016/j.envpol.2024.124099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Rivers play a significant role in the global nitrous oxide (N2O) budget. However, the microbial sources and sinks of N2O in river systems are not well understood or quantified, resulting in the prolonged neglect of nitrification. This study investigated the isotopic signatures of N2O, thereby quantifying the microbial source of N2O production and the degree of N2O reduction in the Yellow River. Although denitrification has long been considered to be the dominant pathway of N2O production in rivers, our findings indicated that denitrification only accounted for 18.3% (8.2%-43.0%) of the total contribution to N2O production in the Yellow River, with 50.2%-80.2% being concurrently reduced. The denitrification contribution to N2O production (R2 = 0.44, p < 0.01) and N2O reduction degree (R2 = 0.70, p < 0.01) were positively related to the dissolved organic carbon (DOC) content. Similar to urban rivers and eutrophic lakes, denitrification was the primary process responsible for N2O production (43.0%) in certain reaches with high organic content (DOC = 5.29 mg/L). Nevertheless, the denitrification activity was generally constrained by the availability of electron donors (average DOC = 2.51 mg/L) throughout the Yellow River basin. Consequently, nitrification emerged as the primary contributor in the well-oxygenated Yellow River. Additionally, our findings further distinguished the respective contribution of ammonia-oxidizing bacteria (AOB) and archaea (AOA) to N2O emissions. Although AOB dominated the N2O production in the Yellow River, the AOA specie abundance (AOA/(AOA + AOB)) contributed up to 32.6%, which resulted in 25.6% of the total nitrifier-produced N2O, suggesting a significant occurrence of AOA in the oligotrophic Yellow River. Overall, this study provided a non-invasive approach for quantifying the microbial sources and sinks to N2O emissions, and demonstrated the substantial role of nitrification in the large oligotrophic rivers.
Collapse
Affiliation(s)
- Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Shengjie Li
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Mingfei Ji
- Collaborative Innovation Centre of Water Security for the Water Source Region of the Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Jiarui Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Jilin Huang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Zhengzhu Dang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Zhuo Jiang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Shuqi Zhang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Xianfang Zhu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
15
|
Chen W, Zhang X, Wu N, Yuan C, Liu Y, Yang Y, Chen Z, Dahlgren RA, Zhang M, Ji X. Sources and transformations of riverine nitrogen across a coastal-plain river network of eastern China: New insights from multiple stable isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171671. [PMID: 38479520 DOI: 10.1016/j.scitotenv.2024.171671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/10/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Riverine nitrogen pollution is ubiquitous and attracts considerable global attention. Nitrate is commonly the dominant total nitrogen (TN) constituent in surface and ground waters; thus, stable isotopes of nitrate (δ15N/δ18O-NO3-) are widely used to differentiate nitrate sources. However, δ15N/δ18O-NO3- approach fails to present a holistic perspective of nitrogen pollution for many coastal-plain river networks because diverse nitrogen species contribute to high TN loads. In this study, multiple isotopes, namely, δ15N/δ18O-NO3-, δ18O-H2O, δ15N-NH4+, δ15N-PN, and δ15Nbulk/δ18O/SP-N2O in the Wen-Rui Tang River, a typical coastal-plain river network of Eastern China, were investigated to identify transformation processes and sources of nitrogen. Then, a stable isotope analysis in R (SIAR) model-TN source apportionment method was developed to quantify the contributions of different nitrogen sources to riverine TN loads. Results showed that nitrogen pollution in the river network was serious with TN concentrations ranging from 1.71 to 8.09 mg/L (mean ± SD: 3.77 ± 1.39 mg/L). Ammonium, nitrate, and suspended particulate nitrogen were the most prominent nitrogen components during the study period, constituting 45.4 %, 28.9 %, and 19.9 % of TN, respectively. Multiple hydrochemical and isotopic analysis identified nitrification as the dominant N cycling process. Biological assimilation and denitrification were minor N cycling processes, whereas ammonia volatilization was deemed negligible. Isotopic evidence and SIAR modeling revealed municipal sewage was the dominant contributor to nitrogen pollution. Based on quantitative estimates from the SIAR model, nitrogen source contributions to the Wen-Rui Tang River watershed followed: municipal sewage (40.6 %) ≈ soil nitrogen (39.5 %) > nitrogen fertilizer (9.7 %) > atmospheric deposition (2.8 %) during wet season; and municipal sewage (59.1 %) > soil nitrogen (30.4 %) > nitrogen fertilizer (4.1 %) > atmospheric deposition (1.0 %) during dry season. This study provides a deeper understanding of nitrogen dynamics in eutrophic coastal-plain river networks, which informs strategies for efficient control and remediation of riverine nitrogen pollution.
Collapse
Affiliation(s)
- Wenli Chen
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaohan Zhang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Nianting Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Can Yuan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yinli Liu
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Yue Yang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Southern Zhejiang Water Research Institute, Wenzhou 325035, China
| | - Zheng Chen
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, California 95616, USA
| | - Minghua Zhang
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Southern Zhejiang Water Research Institute, Wenzhou 325035, China; Department of Land, Air and Water Resources, University of California, Davis, California 95616, USA
| | - Xiaoliang Ji
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
16
|
Liu L, Yang X, Ellam RM, Li Q, Feng D, Song Z, Tang J. Evidence that co-existing cadmium and microplastics have an antagonistic effect on greenhouse gas emissions from paddy field soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133696. [PMID: 38341889 DOI: 10.1016/j.jhazmat.2024.133696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Accumulation of microplastics (MPs) and cadmium (Cd) are ubiquitous in paddy soil. However, the combined effects of MPs and Cd on physiochemical and microbial mechanisms in soils and the attendant implications for greenhouse gas (GHG) emissions, remain largely unknown. Here, we evaluated the influence of polylactic acid (PLA) and polyethylene (PE) MPs on GHG emissions from Cd-contaminated paddy soil using a microcosm experiment under waterlogged and drained conditions. The results showed that PLA significantly increased CH4 and N2O emission fluxes and hence the global warming potential (GWP) of waterlogged soil. Soils treated with MPs+Cd showed significantly reduced GWP compared to those treated only with MPs suggesting that, irrespective of attendant consequences, Cd could alleviate N2O emissions in the presence of MPs. Conversely, the presence of MPs in Cd-contaminated soils tended to alleviate the bioavailability of Cd. Based on a structural equation model analysis, both the MPs-derived dissolved organic matter and the soil bioavailable Cd affected indirectly on soil GHG emissions through their direct influencing on microbial abundance (e.g., Firmicutes, Nitrospirota bacteria). These findings provide new insights into the assessment of GHG emissions and soil/cereal security in response to MPs and Cd coexistence that behaved antagonistically with respect to adverse ecological effects in paddy systems.
Collapse
Affiliation(s)
- Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinzuo Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Rob M Ellam
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Qiang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Di Feng
- Shandong Facility Horticulture Bioengineering Research Center/Weifang University of Science and Technology, Weifang 262700, Shandong, China
| | - Zhaoliang Song
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
17
|
Li X, Qi M, Li Q, Wu B, Fu Y, Liang X, Yin G, Zheng Y, Dong H, Liu M, Hou L. Acidification Offset Warming-Induced Increase in N 2O Production in Estuarine and Coastal Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4989-5002. [PMID: 38442002 DOI: 10.1021/acs.est.3c10691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Global warming and acidification, induced by a substantial increase in anthropogenic CO2 emissions, are expected to have profound impacts on biogeochemical cycles. However, underlying mechanisms of nitrous oxide (N2O) production in estuarine and coastal sediments remain rarely constrained under warming and acidification. Here, the responses of sediment N2O production pathways to warming and acidification were examined using a series of anoxic incubation experiments. Denitrification and N2O production were largely stimulated by the warming, while N2O production decreased under the acidification as well as the denitrification rate and electron transfer efficiency. Compared to warming alone, the combination of warming and acidification decreased N2O production by 26 ± 4%, which was mainly attributed to the decline of the N2O yield by fungal denitrification. Fungal denitrification was mainly responsible for N2O production under the warming condition, while bacterial denitrification predominated N2O production under the acidification condition. The reduced site preference of N2O under acidification reflects that the dominant pathways of N2O production were likely shifted from fungal to bacterial denitrification. In addition, acidification decreased the diversity and abundance of nirS-type denitrifiers, which were the keystone taxa mediating the low N2O production. Collectively, acidification can decrease sediment N2O yield through shifting the responsible production pathways, partly counteracting the warming-induced increase in N2O emissions, further reducing the positive climate warming feedback loop.
Collapse
Affiliation(s)
- Xiaofei Li
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Mengting Qi
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Qiuxuan Li
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Boshuang Wu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Yuxuan Fu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| |
Collapse
|
18
|
Shu W, Zhang Q, Audet J, Li Z, Leng P, Qiao Y, Tian C, Chen G, Zhao J, Cheng H, Li F. Non-negligible N 2O emission hotspots: Rivers impacted by ion-adsorption rare earth mining. WATER RESEARCH 2024; 251:121124. [PMID: 38237464 DOI: 10.1016/j.watres.2024.121124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
Rare earth mining causes severe riverine nitrogen pollution, but its effect on nitrous oxide (N2O) emissions and the associated nitrogen transformation processes remain unclear. Here, we characterized N2O fluxes from China's largest ion-adsorption rare earth mining watershed and elucidated the mechanisms that drove N2O production and consumption using advanced isotope mapping and molecular biology techniques. Compared to the undisturbed river, the mining-affected river exhibited higher N2O fluxes (7.96 ± 10.18 mmol m-2d-1 vs. 2.88 ± 8.27 mmol m-2d-1, P = 0.002), confirming that mining-affected rivers are N2O emission hotspots. Flux variations scaled with high nitrogen supply (resulting from mining activities), and were mainly attributed to changes in water chemistry (i.e., pH, and metal concentrations), sediment property (i.e., particle size), and hydrogeomorphic factors (e.g., river order and slope). Coupled nitrification-denitrification and N2O reduction were the dominant processes controlling the N2O dynamics. Of these, the contribution of incomplete denitrification to N2O production was greater than that of nitrification, especially in the heavily mining-affected reaches. Co-occurrence network analysis identified Thiomonas and Rhodanobacter as the key genus closely associated with N2O production, suggesting their potential roles for denitrification. This is the first study to elucidate N2O emission and influential mechanisms in mining-affected rivers using combined isotopic and molecular techniques. The discovery of this study enhances our understanding of the distinctive processes driving N2O production and consumption in highly anthropogenically disturbed aquatic systems, and also provides the foundation for accurate assessment of N2O emissions from mining-affected rivers on regional and global scales.
Collapse
Affiliation(s)
- Wang Shu
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101408, China; Sino-Danish Centre for Education and Research, Beijing 101408, China
| | - Qiuying Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Joachim Audet
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé, Aarhus 8000, Denmark
| | - Zhao Li
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Peifang Leng
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunfeng Qiao
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Tian
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Chen
- Department of Civil and Environmental Engineering, Florida A&M University (FAMU)-Florida State University (FSU) Joint College of Engineering, 32310, United States
| | - Jun Zhao
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Fadong Li
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
19
|
Wang C, Xv Y, Wu Z, Li X, Li S. Denitrification regulates spatiotemporal pattern of N 2O emission in an interconnected urban river-lake network. WATER RESEARCH 2024; 251:121144. [PMID: 38277822 DOI: 10.1016/j.watres.2024.121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Urban rivers are hotspots of N2O production and emission. Interconnected river-lake networks are constructed to improve the water quality and hydrodynamic conditions of urban rivers in many cities of China. However, the impact of the river-lake connectivity project on N2O production and emission remains unclear. This study investigated dissolved N2O and emission of the river-lake network in Wuhan City, China from March 2021 to December 2021. The results showed that river-lake connection greatly decreased riverine Nitrogen (N) concentration and increased dissolved oxygen (DO) concentration compare to traditional urban rivers. N2O emissions from the urban river interconnected with lakes (LUR: 67.3 ± 92.6 μmol/m2/d) were much lower than those from the traditional urban rivers (UR: 467.3 ± 1075.7 μmol/m2/d) and agricultural rivers (AR: 20.4 ± 15.3μmol/m2/d). Regression tree analysis suggested that the N2O concentrations were extremely high when hypoxia exists (DO < 1.6 mg/L), and TDN was the primary factor regulating N2O concentrations when hypoxia does not occur. Thus, we ascribe the low N2O emission in the LUR and AR to the lower N contents and higher DO concentrations. The microbial process of N2O production and consumption were quantitatively estimated by isotopic models. The mean proportion of denitrification derived N2O (fbD) was 63.5 %, 55.6 %, 42.3 % and 42.7 % in the UR, LUR, lakes and AR, suggested denitrification dominated N2O production in the urban rivers, but nitrification dominated N2O production in the lakes and AR. The positive correlation between logN2O and fbD suggested that denitrification is the key process to regulate the N2O production and emission. The abundance of denitrification genes (nirS and nirK) was much higher than that of nitrification genes (amoA and amoB), also evidenced that denitrification was the main N2O source. Therefore, river-lake interconnected projects changed the nutrients level and hypoxic condition, leading to the inhibition of denitrification and nitrification, and ultimately resulting in a decrease of N2O production and emission. These results advance the knowledge on the microbial processes that regulate N2O emissions in inland waters and illustrate the integrated management of water quality and N2O emission.
Collapse
Affiliation(s)
- Chunlin Wang
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, China
| | - Yuhan Xv
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, China
| | - Zefeng Wu
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, China
| | - Xing Li
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, China.
| | - Siyue Li
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, China.
| |
Collapse
|
20
|
Wang S, Ding S, Zhao H, Chen M, Yang D, Li C. Seasonal variations in spatial distribution, mobilization kinetic and toxicity risk of arsenic in sediments of Lake Taihu, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132852. [PMID: 37890386 DOI: 10.1016/j.jhazmat.2023.132852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/07/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
This study investigated seasonal variations in spatial distribution, mobilization kinetic and toxicity risk of arsenic (As) in sediments of three representative ecological lakes in Lake Taihu. Results suggested that the bioavailability and mobility of As in sediments depended on the lake ecological types and seasonal changes. At the algal-type zones and macrophyte-type zones, elevated As concentrations were observed in April and July, while these occurred at the transition areas in July and October. The diffusion flux of soluble As ranged from 0.03 to 3.03 ng/cm2/d, indicating sediments acted as a source of As. Reductive dissolution of As-bearing iron/manganese-oxides was the key driver of sediment As remobilization. However, labile S(-II) caused by the degradations of algae and macrophytes buffered sediment As release at the algal-type and macrophyte-type zones. Furthermore, the resupply ratio was less than 1 at three ecological lakes, indicating the resupply As capacity of sediment solid phase was partially sustained case. The risk quotient values were higher than 1 at the algal-type zones and transition areas in July, thereby, the adverse effects of As should not be ignored. This suggested that it is urgently need to be specifically monitored and managed for As contamination in sediments across multi-ecological lakes.
Collapse
Affiliation(s)
- Shuhang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shiming Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hanbin Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Musong Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Cai Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
21
|
Jiang C, Zhang S, Wang J, Xia X. Nitrous Oxide (N 2O) Emissions Decrease Significantly under Stronger Light Irradiance in Riverine Water Columns with Suspended Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19749-19759. [PMID: 37945339 DOI: 10.1021/acs.est.3c05526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Nitrous oxide (N2O) emissions from riverine water columns with suspended particles are important for the global N2O budget. Although sunlight is known to influence the activity of nitrogen-cycling microorganisms, its specific influence on N2O emissions in river systems remains unknown. This study analyzed the influences of light irradiance on N2O emissions in simulated oxic water columns with 15N-labeling and biological molecular techniques. Our results showed that N2O emissions were inhibited by light in the ammonium system (only 15NH4+ was added) and significantly decreased with increasing light irradiance in the nitrate system (only 15NO3- was added), despite contrasting variations in N2 emissions between these two systems. Lower N2O emission rates in the nitrate system under higher light conditions resulted from higher promotion levels of N2O reduction than N2O production. Increased N2O reduction was correlated to higher organic carbon bioavailability caused by photodegradation and greater potential for complete denitrification. Lower N2O production and higher N2O reduction were responsible for the lower N2O emissions observed in the ammonium system under light conditions. Our findings highlight the importance of sunlight in regulating N2O dynamics in riverine water columns, which should be considered in developing large-scale models for N2O processing and emissions in rivers.
Collapse
Affiliation(s)
- Chenrun Jiang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Sibo Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Junfeng Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
22
|
Wu W, Niu X, Yan Z, Li S, Comer-Warner SA, Tian H, Li SL, Zou J, Yu G, Liu CQ. Agricultural ditches are hotspots of greenhouse gas emissions controlled by nutrient input. WATER RESEARCH 2023; 242:120271. [PMID: 37399689 DOI: 10.1016/j.watres.2023.120271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/05/2023] [Accepted: 06/24/2023] [Indexed: 07/05/2023]
Abstract
Agricultural ditches are pervasive in agricultural areas and are potential greenhouse gas (GHG) hotspots, since they directly receive abundant nutrients from neighboring farmlands. However, few studies measure GHG concentrations or fluxes in this particular water course, likely resulting in underestimations of GHG emissions from agricultural regions. Here we conducted a one-year field study to investigate the GHG concentrations and fluxes from typical agricultural ditch systems, which included four different types of ditches in an irrigation district located in the North China Plain. The results showed that almost all the ditches were large GHG sources. The mean fluxes were 333 μmol m-2 h-1 for CH4, 7.1 mmol m-2 h-1 for CO2, and 2.4 μmol m-2 h-1 for N2O, which were approximately 12, 5, and 2 times higher, respectively, than that in the river connecting to the ditch systems. Nutrient input was the primary driver stimulating GHG production and emissions, resulting in GHG concentrations and fluxes increasing from the river to ditches adjacent to farmlands, which potentially received more nutrients. Nevertheless, the ditches directly connected to farmlands showed lower GHG concentrations and fluxes compared to the ditches adjacent to farmlands, possibly due to seasonal dryness and occasional drainage. All the ditches covered approximately 3.3% of the 312 km2 farmland area in the study district, and the total GHG emission from the ditches in this area was estimated to be 26.6 Gg CO2-eq yr-1, with 17.5 Gg CO2, 0.27 Gg CH4, and 0.006 Gg N2O emitted annually. Overall, this study demonstrated that agricultural ditches were hotspots of GHG emissions, and future GHG estimations should incorporate this ubiquitous but underrepresented water course.
Collapse
Affiliation(s)
- Wenxin Wu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xueqi Niu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Zhifeng Yan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China.
| | - Siyue Li
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Sophie A Comer-Warner
- School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Hanqin Tian
- Department of Earth and Environmental Sciences, Boston College, Schiller Institute for Integrated Science and Society, Chestnut Hill, MA 02467, United States
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Jianwen Zou
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Guirui Yu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, China
| |
Collapse
|
23
|
Wang Y, Peng Y, Lv C, Xu X, Meng H, Zhou Y, Wang G, Lu Y. Quantitative discrimination of algae multi-impacts on N 2O emissions in eutrophic lakes: Implications for N 2O budgets and mitigation. WATER RESEARCH 2023; 235:119857. [PMID: 36924553 DOI: 10.1016/j.watres.2023.119857] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
It is generally accepted that eutrophic lakes significantly contribute to nitrous oxide (N2O) emissions. However, how these emissions are affected by the formation, disappearance, and mechanisms of algal blooms in these lakes has not been systematically investigated. This study examined and determined the relative contribution of spatiotemporal N2O production pathways in hypereutrophic Lake Taihu. Synchronously, the multi-impacts of algae on N2O production and release potential were measured in the field and in microcosms using isotope ratios of oxygen (δ18O) and bulk nitrogen (δ15N) to N2O and to intramolecular 15N site preference (SP). Results showed that N2O production in Lake Taihu was derived from microbial effects (nitrification and incomplete denitrification) and water air exchanges. N2O production was also affected by the N2O reduction process. The mean dissolved N2O concentrations in the water column during the pre-outbreak, outbreak, and decay stages of algae accumulation were almost the same (0.05 μmol·L-1), which was 2-10 times higher than in lake areas algae was not accumulating. However, except for the central lake area, all surveyed areas (with and without accumulated algae) displayed strong release potential and acted as the emission source because of dissolved N2O supersaturation in the water column. The mean N2O release fluxes during the pre-outbreak, outbreak, and decay stages of algae accumulation areas were 17.95, 26.36, and 79.32 μmol·m-2·d-1, respectively, which were 2.0-7.5 times higher than the values in the non-algae accumulation areas. In addition, the decay and decomposition of algae released large amounts of nutrients and changed the physiochemical properties of the water column. Additionally, the increased algae biomass promoted N2O release and improved the proportion of N2O produced via denitrification process to being 9.8-20.4% microbial-derived N2O. This proportion became higher when the N2O consumption during denitrification was considered as evidenced by isotopic data. However, when the algae biomass was excessive in hypereutrophic state, the algae decomposition also consumed a large amount of oxygen, thus limiting the N2O production due to complete denitrification as well as due to the limited substrate supply of nitrate by nitrification in hypoxic or anoxic conditions. Further, the excessive algae accumulation on the water surface reduced N2O release fluxes via hindering the migration of the dissolved N2O into the atmosphere. These findings provide a new perspective and understanding for accurately evaluating N2O release fluxes driven by algae processes in eutrophic lakes.
Collapse
Affiliation(s)
- Yiping Wang
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China; School of Environment, Nanjing Normal University, No.1, Wenyuan Road, Nanjing 210023, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Yu Peng
- School of Environment, Nanjing Normal University, No.1, Wenyuan Road, Nanjing 210023, China
| | - Chengxu Lv
- School of Environment, Nanjing Normal University, No.1, Wenyuan Road, Nanjing 210023, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, No.1, Wenyuan Road, Nanjing 210023, China.
| | - Han Meng
- School of Environment, Nanjing Normal University, No.1, Wenyuan Road, Nanjing 210023, China
| | - Yiwen Zhou
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, No.1, Wenyuan Road, Nanjing 210023, China
| | - Yongjun Lu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| |
Collapse
|
24
|
Chen X, Zhang S, Liu J, Wang J, Xin Y, Sun S, Xia X. Tracing Microbial Production and Consumption Sources of N 2O in Rivers on the Qinghai-Tibet Plateau via Isotopocule and Functional Microbe Analyses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7196-7205. [PMID: 37097256 DOI: 10.1021/acs.est.3c00950] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nitrous oxide (N2O), a potent greenhouse gas, is produced in rivers through a series of microbial metabolic pathways. However, the microbial source of N2O production and the degree of N2O reduction in river systems are not well understood and quantified. This work investigated isotopic compositions (δ15N-N2O and δ18O-N2O) and N2O site preference as well as N2O-related microbial features, thereby differentiating the importance of nitrification, denitrification, and N2O reduction in controlling N2O emissions from five rivers on the eastern Qinghai-Tibet Plateau (EQTP). The average N2O concentration in overlying water (15.2 nmol L-1) was close to that in porewater (17.5 nmol L-1), suggesting that both overlying water and sediment are potentially important sources of N2O. Canonical and nitrifier denitrification dominated riverine N2O production, with contribution being approximately 90%. Nitrification is a non-negligible source of N2O production, and N2O concentration was positively correlated with nitrification genetic potential. The degree of N2O reduction ranged from 78.1 to 94.1% (averaging 90%), significantly exceeding the reported values (averaging 70%) in other freshwaters, which was attributed to the higher ratios of organic carbon to nitrogen and lower ratio of (nirS + nirK)/nosZ in EQTP rivers. This study indicates that a combination of isotopic and isotopocule values with functional microbe analysis is useful for quantifying the microbial sources of N2O in rivers, and the intense microbial reduction of N2O significantly accounts for the low N2O emissions observed in EQTP rivers, suggesting that both the production and consumption of N2O in rivers should be considered in the future.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Sibo Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Jiao Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Junfeng Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yuan Xin
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Siyue Sun
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|