1
|
Zou S, Cui Q, Liu J, Wu Q, Zhu L, Chen D, Du Y, Wu T. Local Asymmetric Gaussian Fitting Algorithm for Enhanced Peak Detection of Liquid Chromatography-High Resolution Mass Spectrometry Data. Anal Chem 2025. [PMID: 40325991 DOI: 10.1021/acs.analchem.5c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Feature detection is a crucial step in the data preprocessing workflow of liquid chromatography-mass spectrometry (LC-MS). However, many existing methods are hindered by intricate parameter adjustments and high false positive rates during extracted ion chromatogram (EIC) construction and peak detection, which challenges the identification of spurious and missing compounds. This study introduces a novel algorithm, local asymmetric Gaussian fitting (LAGF), for peak detection. LAGF integrates with the "data points bins" EIC extraction algorithm to enhance the feature detection efficiency. By using a 1 Da data points bin for EIC extraction, computational time is significantly reduced, making the method well-suited for batch metabolomics analysis. LAGF minimizes parameter numbers of generalized two-sided asymmetric Gaussian fitting by automatically determining the peak center (μ) and height (α) while accommodating two-sided standard deviations (σ1 and σ2) to self-adaptively model peak patterns. Features are filtered based on a goodness-of-fit threshold of 0.5. The performance of LAGF was validated using standard mixtures and serum samples at different concentrations in reversed-phase or hydrophilic interaction LC mode. In most cases, LAGF outperformed conventional tools in terms of determination coefficient (R2) and relative standard deviation for automatically detected peak areas. The LAGF algorithm is available as open-source Python code alongside an interactive interface, facilitating implementation in both nontargeted and targeted LC-MS analysis to enhance peak detection and compound identification.
Collapse
Affiliation(s)
- Shengsi Zou
- School of Chemistry and Molecular Engineering & Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| | - Qingxiao Cui
- School of Chemistry and Molecular Engineering & Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| | - Jinyue Liu
- School of Chemistry and Molecular Engineering & Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| | - Qiong Wu
- School of Chemistry and Molecular Engineering & Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| | - Lijia Zhu
- School of Chemistry and Molecular Engineering & Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yiping Du
- School of Chemistry and Molecular Engineering & Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| | - Ting Wu
- School of Chemistry and Molecular Engineering & Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Gao Y, Feng M, Li X, Zhang Y, Hu J, Li K, Duan J, Zhang Q. Strategy to improve the confidence level of qualitative screening by high resolution mass spectrometry: A case study of mycotoxins in maize. Food Chem X 2025; 27:102467. [PMID: 40386304 PMCID: PMC12084407 DOI: 10.1016/j.fochx.2025.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/05/2025] [Accepted: 04/14/2025] [Indexed: 05/20/2025] Open
Abstract
Targeted, suspect and non-targeted screening by high-resolution mass spectrometry (HRMS) is developing rapidly. In this study, a qualitative screening method was established using HPLC-HRMS on data dependent acquisition for the analysis of mycotoxins in maize. To ensure the sensitivity and applicability of the method, 41 mycotoxin standards were applied for method optimization. A quantitative structure-retention relationships (QSRR) model was developed for retention time prediction and projection using machine learning, providing supplementary evidence for molecule annotation. The predicted errors were all below 0.5 min, contributing to improve the confidence level of suspect and non-targeted screening for mycotoxins. Thresholds affecting the accuracy of screening results were also investigated systematically. Performance metrics including Accuracy, F1 score, Matthew's correlation coefficient (MCC) were introduced to evaluate the qualitative screening method. The developed method was applied in the qualitative screening of collected maize samples, where 11 mycotoxins were screened at high confidence level.
Collapse
Affiliation(s)
- Yan Gao
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
| | - Mengyu Feng
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Xiuqin Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
| | - Yan Zhang
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Jinglei Hu
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Kangcong Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Jianhua Duan
- Key Laboratory of Cattle and Sheep Milk and Meat Products Risk Control and Key Technology, State Administration for Market Regulation, Hohhot 010110, China
| | - Qinghe Zhang
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
| |
Collapse
|
3
|
Du R, Zhou J, Zhang S, Chen Y, Lei B, Zhang X. Detection and screening of organophosphate esters in infant formula from Shanghai, China: distribution characteristics and risk evaluation. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2025; 42:465-478. [PMID: 39913853 DOI: 10.1080/19440049.2025.2459218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 03/26/2025]
Abstract
Organophosphate esters (OPEs) have raised great concerns in recent years. However, information regarding their occurrence in infant formula remains limited. Thus, thirty-two OPEs were measured in infant formula sold in Shanghai, China in 2023. The results showed that OPE occurrence in infant formula was widespread. The median concentrations of organophosphate diesters, organophosphate triesters, and total OPEs were 2.28, 5.20, and 8.63 ng/g, respectively. Tris(2-chloroisopropyl) phosphate (TCPP) showed the highest median concentration (1.95 ng/g), followed by triethyl phosphate, bis(1-chloro-2-propyl) phosphate (BCPP), tri-isobutyl phosphate, and triphenyl phosphate (0.532-0.581 ng/g). The dominant chloro-OPEs (TCPP and BCPP) were regional-specific. Compared to corresponding triesters, the diester concentrations were often lower, except for bis(2-butoxyethyl) phosphate and tributoxyethyl phosphate. Additionally, five novel OPEs with phenyl groups were identified, showing high detection frequencies and comparable concentrations to TCPP. Raw materials and food processing methods might affect individual OPEs. The estimated daily intakes (EDIs) ranged from 62.3 to 355 ng/kg bw/day. The highest EDI occurred in infants of 0-6 months of age but posed no obvious health risk for infants and toddlers. Further studies are still needed to evaluate the possible health implications arising from the novel OPEs and their metabolites, as well as the potentially synergistic effects.
Collapse
Affiliation(s)
- Ruiqi Du
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology, State Administration for Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Jing Zhou
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology, State Administration for Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai, China
| | - Shenping Zhang
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology, State Administration for Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai, China
| | - Yuanyuan Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Bingli Lei
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Xiaolan Zhang
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology, State Administration for Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| |
Collapse
|
4
|
Meng J, Long C, Fang L, Huang S, Liu H, Li G, Yu Y. National urinary metabolites of organophosphate flame retardants in urban Chinese residents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125886. [PMID: 39984015 DOI: 10.1016/j.envpol.2025.125886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Organophosphate flame retardants (OPFRs) are extensively added to household products for fire safety. However, little is understood about the national scale of human exposure levels and the factors influencing OPFRs in developing countries. In this study, five metabolites of OPFRs (mOPFRs) were determined for the first time in the urine of 1184 general population in 26 provincial capitals of mainland China. The detection frequency and median concentration of ∑5mOPFRs were 86.0% and 61 μg/L, respectively, with bis(1-chloro-2-propyl) phosphate, bis(2-chloroethyl) phosphate (BCEP), and diphenyl phosphate predominantly accounting for 75.9% of the total. Human exposure to OPFRs is higher in western China than in other Chinese regions. Gender, age, bottled water, and takeout consumption significantly influenced the urinary mOPFRs. Monte Carlo simulations showed that 3.6% of participants had hazard indices values higher than one, indicating that a small proportion of the Chinese population exposed to OPFRs had potential non-carcinogenic risks. Here, BCEP was the primary contributor, making up 81.5% of the total risk. This study indicated that investigating human exposure to OPFRs is imperative, especially the safety of these substances as a substitute for polybrominated diphenyl ethers.
Collapse
Affiliation(s)
- Junli Meng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Chaoyang Long
- Center for Disease Prevention and Control of Guangdong Province, Guangzhou, 510430, PR China
| | - Lei Fang
- Center for Disease Prevention and Control of Guangdong Province, Guangzhou, 510430, PR China
| | - Senyuan Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Hongli Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
5
|
Cui Y, Zhou R, Yin Y, Liu Y, Zhao N, Li H, Zhang A, Li X, Fu J. Occurrence of Organophosphate Esters in Food and Food Contact Materials and Related Human Exposure Risks. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4455-4465. [PMID: 39935401 DOI: 10.1021/acs.jafc.4c11439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Organophosphate esters (OPEs) are a class of anthropogenic chemicals that have long been used as plasticizers and flame retardants. Dietary intake is an important OPE exposure pathway for humans. Since OPEs are usually used as industrial additives in food contact materials (FCMs), OPEs can enter foods through contact to FCMs. This paper focused on FCM-related exposure risks in foods, summarizing the presence of OPEs in FCMs and foods, analyzing the migration of the OPEs from FCMs to food, and assessing the dietary exposure risk of the OPEs to humans. Overall, the levels of the OPE in FCMs were at higher levels than those in foods. Processed and packaged foods contained higher levels of OPEs than nonprocessed/fresh foods. The migration investigations revealed that OPEs can be more likely transferred from FCMs to foods under the conditions of higher temperature and longer exposure time. We hope that this work will extend our current knowledge of the apportionment of OPE sources in foods and highlight the existing research gaps.
Collapse
Affiliation(s)
- Yajing Cui
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruoxian Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhan Yin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yuxin Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Nannan Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Hongting Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Yin Y, Zhou J, Fu H, Liu S, Zhu Q, Liao C, Jiang G. Occurrence and migration of synthetic phenolic antioxidants in food packaging materials: Effects of plastic types and storage temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178459. [PMID: 39824100 DOI: 10.1016/j.scitotenv.2025.178459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
Synthetic phenolic antioxidants (SPAs) are widely used in food packaging materials to extend product shelf life. Not much attention has been paid to high molecular weight SPAs (HMW SPAs) so far, despite their potential health risks. In this study, we first analyzed the concentrations of ten HMW SPAs in food plastic packaging materials (including 6 plastic categories, n = 116). The total concentrations of HMW SPAs (∑SPAs) ranged from 0.0844 to 894 mg/kg, with a geometric mean of 71.7 mg/kg. The predominant HMW SPAs included AO1010 (accounting for 71.8 % of total concentrations of HMW SPAs), AO1076 (21.4 %), and AO3114 (3.14 %), with AO1010 detected in all samples. Higher concentrations were notably found in polypropylene (PP), polyethylene (PE), and polyethylene terephthalate (PET) materials. Migration tests revealed that HMW SPAs could readily transfer into food simulants, with PP exhibiting the lowest migration levels. Migration of SPAs into fatty foods was pronounced, increasing with temperature (temperature gradients: 4 °C, 25 °C, and 60 °C). In the 95 % ethanol food simulants, the maximum migration amounts of AO1076 in PE (7.05 mg/kg at 25 °C) and PET (9.79 mg/kg at 25 °C; 10.8 mg/kg at 60 °C) surpassed the specific migration limit (SML) set by the national standards, posing potential food safety risks. This was the first report on the presence and migration patterns of ten HMW SPAs in food plastic packaging materials, providing crucial insights into food packaging material safety.
Collapse
Affiliation(s)
- Yexi Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayi Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiyang Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Shuang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; School of Environment and Health, Jianghan University, Wuhan 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; School of Environment and Health, Jianghan University, Wuhan 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Zhang Y, Chen T, Wang Z, Liang W, Wang X, Zhang X, Lu X, Liu X, Zhao C, Xu G. High-resolution mass spectrometry-based suspect and nontarget screening of natural toxins in foodstuffs and risk assessment of dietary exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125338. [PMID: 39577611 DOI: 10.1016/j.envpol.2024.125338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Daily dietary intake inevitably exposes individuals to various natural toxins, which may pose potential health threats. Focusing only on specific toxins could underestimate dietary risks. Therefore, we have developed a suspect and nontarget method based on ultrahigh-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) to screen both known and unknown natural toxins in various foodstuffs. An in-house database containing 2952 natural toxins including fungal toxins, phytotoxins, animal toxins and cyanotoxins was established, facilitating suspect screening. Predicted retention time and mass spectrometry data were employed to enhance the confidence levels. Subsequently, Nontarget screening method was conducted based on molecular network analysis, annotating the edges and nodes through modified types and fragmentation characteristics. Finally, we analyzed 102 foodstuff samples and identified a total of 90 natural toxins, including mycotoxins and phytotoxins, with 65 identified by suspect screening and 25 by nontarget screening. Based on measured concentrations, the daily per capita dietary intake of total natural toxins was estimated, it was below risk doses for natural toxins with available reference values. Overall, this work established a novel method for the comprehensive identification of natural toxins in foodstuffs and emphasized the importance of dietary risk assessment for natural toxins.
Collapse
Affiliation(s)
- Yujie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tiantian Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zixuan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wenying Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xinxin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiuqiong Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| |
Collapse
|
8
|
Mok S, Lee S, Lee N, Kim S, Choi K, Park J, Kho Y, Moon HB. Nationwide human biomonitoring strategy in Korea: Prioritization of novel contaminants using GC/TOF-MS with suspect and non-target screening. CHEMOSPHERE 2024; 369:143814. [PMID: 39608654 DOI: 10.1016/j.chemosphere.2024.143814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/12/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
According to global regulations on hazardous chemicals, numerous alternatives have been manufactured and used in various consumer products. Suspect and non-target analyses are advanced analytical techniques used for identifying novel contaminants. In the present study, suspect and non-target analytical approaches using a gas chromatography coupled to a time-of-flight mass spectrometer were applied to identify novel contaminants in 40 pooled serum samples from a sub-population (n = 400) of the 2015-2017 national biomonitoring program. Suspect screening analysis was performed using an in-house library based on retention times and quantifier and qualifier ions for 222 contaminants, including persistent organic pollutants and emerging contaminants. Non-target analysis was performed by matching deconvoluted mass spectra to the spectral library from the National Institute of Standards and Technology. The suspect screening analysis identified organochlorinated pesticides, organophosphate esters, phthalate esters, and alternative plasticizers. Among the 68 compounds identified in the non-target analysis, siloxanes, novel organophosphate esters, and UV ink photoinitiators were considered candidates for future inclusion in the biomonitoring program based upon significant human exposure. Our findings demonstrate the feasibility of suspect and non-target analysis to identify novel contaminants to prioritize for inclusion within a national human biomonitoring program.
Collapse
Affiliation(s)
- Sori Mok
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sunggyu Lee
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Nahyun Lee
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sungkyoon Kim
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeongim Park
- Department of Environmental Health Sciences, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Seongnam, 13135, Gyeonggi-do, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
9
|
de Carvalho JGR, Augusto HC, Ferraz R, Delerue-Matos C, Fernandes VC. Micro(nano)plastic and Related Chemicals: Emerging Contaminants in Environment, Food and Health Impacts. TOXICS 2024; 12:762. [PMID: 39453182 PMCID: PMC11510996 DOI: 10.3390/toxics12100762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Microplastic pollution is a problem of increasing concern in food, and while food safety issues around the world are serious, an increasing number of food safety issues related to microplastics have become the focus of people's attention. The presence of microplastics in food is a worldwide problem, and they are present in all kinds of foods, foods of both animal and plant origin, food additives, drinks, plastic food packaging, and agricultural practices. This can cause problems for both humans and the environment. Microplastics have already been detected in human blood, heart, placenta, and breastmilk, but their effects in humans are not well understood. Studies with mammals and human cells or organoids have given perspective about the potential impact of micro(nano)plastics on human health, which affect the lungs, kidneys, heart, neurological system, and DNA. Additionally, as plastics often contain additives or other substances, the potentially harmful effects of exposure to these substances must also be carefully studied before any conclusions can be drawn. The study of microplastics is very complex as there are many factors to account for, such as differences in particle sizes, constituents, shapes, additives, contaminants, concentrations, etc. This review summarizes the more recent research on the presence of microplastic and other plastic-related chemical pollutants in food and their potential impacts on human health.
Collapse
Affiliation(s)
- Juliana G. R. de Carvalho
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.G.R.d.C.); (R.F.)
| | - Helga Coelho Augusto
- Cofisa—Conservas de Peixa da Figueira, S.A., Terrapleno do Porto de Pesca—Gala, 3090-735 Figueira da Foz, Portugal;
| | - Ricardo Ferraz
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.G.R.d.C.); (R.F.)
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
- Centro de Investigação em Saúde Translacional e Biotecnologia Médica (TBIO)/Rede de Investigação em Saúde (RISE-Health), Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal;
| | - Virgínia Cruz Fernandes
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.G.R.d.C.); (R.F.)
- Centro de Investigação em Saúde Translacional e Biotecnologia Médica (TBIO)/Rede de Investigação em Saúde (RISE-Health), Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal;
| |
Collapse
|
10
|
Wang X, Liu Y, Jiang JM, Zhang XL, Li M, Hong WJ, Guo LH. Aggregated health risk assessment of perfluoroalkyl acids migrated from convenience food contact materials. J Food Sci 2024; 89:6774-6786. [PMID: 39218817 DOI: 10.1111/1750-3841.17313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024]
Abstract
Ingestion of perfluoroalkyl acids (PFAAs) via contaminated food contact materials (FCMs) is an important human exposure source. This study adopts a toxicity equivalent approach to evaluate the collective health risk of multiple PFAAs in FCMs. A comprehensive extraction and analysis of 21 PFAAs in FCMs was performed. Among the analyzed substances, 15 PFAAs were detected. Migration experiment using three food simulants revealed the migration range of seven PFAAs from FCMs into the simulant to be 0.47-46.7 ng/cm2. The hazard quotient results suggest minimal health risk, except for 9% of packaged samples where perfluorooctanoic acid (PFOA) poses a higher risk. Utilizing PFOA toxic equivalent concentrations, comprehensive risk calculations showed ∼77% of samples potentially posing elevated health risks due to PFAA exposure. This emphasizes the substantial contribution of PFAAs beyond PFOA and underscores the importance of considering them in related assessments. The aggregated risk assessment reflects actual exposure circumstances more accurately.
Collapse
Affiliation(s)
- Xun Wang
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, China
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, China
| | - Yao Liu
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, China
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jian-Ming Jiang
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, China
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, China
| | - Xi-Long Zhang
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, China
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, China
| | - Minjie Li
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, China
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, China
| | - Wen-Jun Hong
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, China
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, China
| | - Liang-Hong Guo
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, China
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
11
|
Shen X, Li Q, Huang C, Xu C, Hu J. Diisodecyl phenyl phosphate promotes foam cell formation by antagonizing Liver X receptor alpha. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135048. [PMID: 38964041 DOI: 10.1016/j.jhazmat.2024.135048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
While the cardiovascular system is a primary target of organophosphorus flame retardants (OPFRs), particularly aryl-OPFRs, it is still exclusive whether the diisodecyl phenyl phosphate (DIDPP), widely used and broadly present in the environment at high concentrations, elicits atherosclerosis effects. Liver X receptors (LXRs) play a direct role in regulating the formation of atherosclerotic lesions. This study was the first to demonstrate that DIDPP acts as an LXRα ligand and functions as an LXRα antagonist with a half-maximal inhibitory concentration of 16.2 μM. We showed that treatment of an in vitro macrophage model with 1 to 10 μM of DIDPP resulted in the downregulation of direct targets of LXRα, namely ABCA1, ABCG1 and SR-B1, thereby leading to a 7.9-13.2 % reduction in cholesterol efflux. This caused dose-dependent, 24.1-43.1 % increases in the staining intensity of foam cells in the macrophage model. This atherosclerotic effect of DIDPP was proposed to be due to its antagonism of LXRα activity, as DIDPP treatment did not alter cholesterol influx. In conclusion, the findings of this study demonstrate that exposure to DIDPP may be a risk factor for atherosclerosis due to the LXRα-antagonistic activity of DIDPP and its ubiquity in the environment.
Collapse
Affiliation(s)
- Xinming Shen
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Qiang Li
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Chong Huang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Cheng Xu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
12
|
Yao S, Chen X, Lyu B, Zhang L, Wu Y, Liu J, Shi Z. Comprehensive dietary exposure assessment of the Chinese population to organophosphate esters (OPEs): Results of the sixth China total diet study. CHEMOSPHERE 2024; 364:143281. [PMID: 39243898 DOI: 10.1016/j.chemosphere.2024.143281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Organophosphate esters (OPEs) are emerging pollutants, while data on their occurrence in foods and human dietary intake are limited. Based on the 6th China total diet study conducted in 2016-2019, this study implemented a comprehensive survey of OPEs in plant-derived foods of cereals, potatoes, legumes, fruits, vegetables, and further assessed dietary exposure from both plant- and animal-derived food. The sum concentrations of 15 OPEs in the plant-derived samples ranged from 0.567 to 106 ng/g ww. 2-Ethylhexyl diphenyl phosphate (EHDPP) (median: 1.14 ng/g ww) had the highest level in plant-derived foods, with a proportion of 35.6% in the total median OPEs. Regional distribution analysis showed a higher contamination of OPEs in plant-derived food from northern area of China. Estimated dietary intakes (EDIs) of ∑OPEs for Chinese population were from 109 ng/kg bw/day in Beijing to 1164 ng/kg bw/day in Gansu province, with mean and median of 296 and 222 ng/kg bw/day, respectively. Although animal-derived foods had higher levels of OPEs, plant-derived foods, specifically cereals, was the major source of dietary OPE intake. The EDIs were much lower than reference doses, which suggested the intakes of OPEs via food consumption could not cause significant health risks to the Chinese population at present.
Collapse
Affiliation(s)
- Shunying Yao
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xuelei Chen
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Bing Lyu
- Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing, 100022, China; NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Lei Zhang
- Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing, 100022, China; NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Yongning Wu
- Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing, 100022, China; NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Jiaying Liu
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100091, China.
| | - Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
13
|
Zhang Y, Lv Z, Yu XY, Zhang Y, Zhu L. Integration of Nontarget Screening and QSPR Models to Identify Novel Organophosphate Esters of High Priority in Aquatic Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39087809 DOI: 10.1021/acs.est.4c04891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
With the development of large numbers of novel organophosphate esters (OPEs) alternatives, it is imperative to screen and identify those with high priority. In this study, surface water, biofilms, and freshwater snails were collected from the flow-in rivers of Taihu Lake Basin, China. Screened by target, suspect, and nontarget analysis, 11 traditional and 14 novel OPEs were identified, of which 5 OPEs were first discovered in Taihu Lake Basin. The OPE concentrations in surface water ranged from 196 to 2568 ng/L, with the primary homologue tris(2,4-ditert-butylphenyl) phosphate (TDtBPP) being newly identified, which was likely derived from the transformation of tris(2,4-ditert-butylphenyl) phosphite. The majority of the newly identified OPEs displayed substantially higher bioaccumulation and biomagnification potentials in the biofilm-snail food chain than the traditional ones. Quantitative structure-property relationship models revealed both hydrophobicity and polarity influenced the bioaccumulation and biomagnification of the OPEs, while electrostatic attraction also had a contribution to the bioaccumulation in the biofilm. TDtBPP was determined as the utmost priority by toxicological priority index scheme, which integrated concentration, bioaccumulation, biomagnification, acute toxicity, and endocrine disrupting potential of the identified OPEs. These findings provide novel insights into the behaviors of OPEs and scientific bases for better management of high-risk pollutants in aquatic ecosystem.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Zixuan Lv
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Xiao-Yong Yu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yanfeng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
14
|
Zhou R, Geng J, Jiang J, Shao B, Lin L, Mu T, Wang B, Liu T. Contamination of dairy products with tris(2,4-di-tert-butylphenyl) phosphite and implications for human exposure. Food Chem 2024; 448:139144. [PMID: 38579559 DOI: 10.1016/j.foodchem.2024.139144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/07/2024]
Abstract
Tris(2,4-di-tert-butylphenyl) phosphite (AO168), an organophosphite antioxidant, can be oxidized to tris(2,4-di-tert-butylphenyl) phosphate (AO168 = O) during the production, processing, and application of plastics. AO168 = O can be further transformed to bis(2,4-di-tert-butylphenyl) phosphate and 2,4-di-tert-butylphenol. Here, we discovered the contamination of AO168 and its transformation products in dairy products for the first time. More samples contained AO168 (mean concentration: 8.78 ng/g wet weight [ww]), bis(2,4-di-tert-butylphenyl) phosphate (mean:11.1 ng/g ww) and 2,4-di-tert-butylphenol (mean: 46.8 ng/g ww) than AO168 = O (mean: 40.2 ng/g ww). The concentrations of AO168 and its transformation products were significantly correlated, and differed with the packaging material and storage conditions of the product. Estimated daily intakes (EDIs) of AO168 and its transformation products were calculated. Although the overall dietary risks were below one, transformation products accounted for 96.7% of the total hazard quotients. The high-exposure EDIs of total AO168 were above the threshold of toxicological concern (300 ng/kg bw/day), and deserve continual monitoring.
Collapse
Affiliation(s)
- Ruize Zhou
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Jianqiang Geng
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Jie Jiang
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Bing Shao
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China.
| | - Li Lin
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Tongna Mu
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Baolong Wang
- College of Science, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China
| | - Ting Liu
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| |
Collapse
|
15
|
Han B, Shang Y, Wang H, Shen Y, Li R, Wang M, Zhuang Z, Wang Z, Fang M, Jing T. Prevalence of synthetic phenolic antioxidants in food contact materials from China and their implications for human dietary exposure through take-away food. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134599. [PMID: 38788569 DOI: 10.1016/j.jhazmat.2024.134599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
The application of disposable tableware has increased substantially in recent times due to the rapidly growing food delivery business in China. Synthetic phenolic antioxidants (SPAs) are widely used in food contact materials (FCMs) to delay the process of oxidation; however, their compositions, concentrations, and potential health hazards remain unclear. Therefore, FCMs comprised of five materials obtained from 19 categories (n = 118) in China were analyzed for SPAs concentrations. FCMs have been found to contain a variety of SPAs, with ∑SPAs concentrations ranging from 44.18 to 69,485.12 μg/kg (median: 2615.63 μg/kg). The predominant congeners identified in the sample include 2,4-di-tert-butylphenol (2,4-DTBP), 2,6-di-tert-butylphenol (2,6-DTBP), and 2,6-di-tert-butyl-p-benzoquinone (BHT-Q) with a median concentration of 885.75, 555.45 and of 217.44 μg/kg, respectively. Milky tea paper cups, instant noodle buckets, milky teacups, and disposable cups showed high levels of SPAs. 2,2'-methylenebis(4-methyl-6-tert-butylphenol) (AO 2246) was predominantly detected in polyethylene and polyethylene terephthalate-based products. The migration test identified disposable plastic cups and bowls as the predominant FCMs and 2,4-DTBP as the dominant SPA. The exposure risk of SPAs decreased with age. In children, the estimated daily intake of ∑SPAs from FCMs was determined to be 17.56 ng/kg body weight/day, which was 8.3 times higher than that of phthalic acid esters. The current findings indicate the potential ingestion risk of SPAs during the daily life application of multiple FCM categories.
Collapse
Affiliation(s)
- Bin Han
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yinzhu Shang
- Technology Center of Wuhan Customs, #15 Jinyinhu Road, Dongxihu District, Wuhan, Hubei 430050, China
| | - Hui Wang
- Technology Center of Wuhan Customs, #15 Jinyinhu Road, Dongxihu District, Wuhan, Hubei 430050, China
| | - Yang Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Ruifang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Mengyi Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Zhijia Zhuang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Zhu Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Min Fang
- Institute of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Institute of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Tao Jing
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China.
| |
Collapse
|
16
|
Yang J, Yao Y, Li X, He A, Chen S, Wang Y, Dong X, Chen H, Wang Y, Wang L, Sun H. Nontarget Identification of Novel Organophosphorus Flame Retardants and Plasticizers in Indoor Air and Dust from Multiple Microenvironments in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7986-7997. [PMID: 38657129 DOI: 10.1021/acs.est.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The indoor environment is a typical source for organophosphorus flame retardants and plasticizers (OPFRs), yet the source characteristics of OPFRs in different microenvironments remain less clear. This study collected 109 indoor air samples and 34 paired indoor dust samples from 4 typical microenvironments within a university in Tianjin, China, including the dormitory, office, library, and information center. 29 target OPFRs were analyzed, and novel organophosphorus compounds (NOPs) were identified by fragment-based nontarget analysis. Target OPFRs exhibited the highest air and dust concentrations of 46.2-234 ng/m3 and 20.4-76.0 μg/g, respectively, in the information center, where chlorinated OPFRs were dominant. Triphenyl phosphate (TPHP) was the primary OPFR in office air, while tris(2-chloroethyl) phosphate dominated in the dust. TPHP was predominant in the library. Triethyl phosphate (TEP) was ubiquitous in the dormitory, and tris(2-butoxyethyl) phosphate was particularly high in the dust. 9 of 25 NOPs were identified for the first time, mainly from the information center and office, such as bis(chloropropyl) 2,3-dichloropropyl phosphate. Diphenyl phosphinic acid, two hydroxylated and methylated metabolites of tris(2,4-ditert-butylphenyl) phosphite (AO168), and a dimer phosphate were newly reported in the indoor environment. NOPs were widely associated with target OPFRs, and their human exposure risk and environmental behaviors warrant further study.
Collapse
Affiliation(s)
- Ji Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ana He
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shijie Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yulong Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoyu Dong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
17
|
Peng X, Yang T, Guo S, Zhou J, Chen G, Zhu Z, Tan J. Revealing chemical release from plastic debris in animals' digestive systems using nontarget and suspect screening and simulating digestive fluids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123793. [PMID: 38513944 DOI: 10.1016/j.envpol.2024.123793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
Plastic debris in the environment are not only pollutants but may also be important sources of a variety of contaminants. This work simulated kinetics and potential of chemical leaching from plastic debris in animals' digestive systems by incubating polyvinyl chloride (PVC) cord particles in artificial digestive fluids combined with nontarget and suspect screening based on UHPLC-Orbitrap HRMS. Impacts of particle size, aging, and digestive fluid were investigated to elucidate mechanisms of chemical leaching. Thousands of chemical features were screened in the leachates of PVC cord particles in the artificial digestive fluids, among which >60% were unknown. Bisphenol A (BPA) and bis(2-ethylhexyl) phthalate (DEHP) were the dominant identified CL1 compounds. Finer size and aging of the PVC particles and prolonged incubation time enhanced chemical release, resulting in greater numbers, higher levels, and more complexity in components of the released chemicals. The gastrointestinal fluid was more favorable for chemical leaching than the gastric fluid, with greater numbers and higher levels. Hundreds to thousands of chemical features were screened and filtered in the leachates of consumer plastic products, including food contact products (FCPs) in the artificial bird gastrointestinal fluid. In addition to BPA and DEHP, several novel bisphenol analogues were identified in the leachate of at least one FCP. The results revealed that once plastic debris are ingested by animals, hundreds to thousands of chemicals may be released into animals' digestive tracts in hours, posing potential synergistic risks of plastic debris and chemicals to plastic-ingesting animals. Future research should pay more attentions to identification, ecotoxicities, and environmental fate of vast amounts of unknown chemicals potentially released from plastics in order to gain full pictures of plastic pollution in the environment.
Collapse
Affiliation(s)
- Xianzhi Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Tao Yang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shang Guo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhou
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangshi Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zewen Zhu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhua Tan
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, 510050, China
| |
Collapse
|
18
|
Zhao F, Ping H, Liu J, Zhao T, Wang Y, Cui G, Ha X, Ma Z, Li C. Occurrence, potential sources, and ecological risks of traditional and novel organophosphate esters in facility agriculture soils: A case study in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171456. [PMID: 38442758 DOI: 10.1016/j.scitotenv.2024.171456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Although traditional organophosphate esters (OPEs) in soils have attracted widespread interest, there is little information on novel OPEs (NOPEs), especially in facility agriculture soils. In this work, we surveyed 11 traditional OPEs, four NOPEs, and four corresponding organophosphite antioxidant precursors (OPAs) for the NOPEs in soil samples collected from facility greenhouses and open fields. The median summed concentrations of traditional OPEs and NOPEs were 14.1 μg/kg (range: 5.38-115 μg/kg) and 702 μg/kg (range: 348-1952 μg/kg), respectively, in film-mulched soils from greenhouses. These concentrations were much higher than those in soils without mulch films, which suggests that OPEs in soils are associated with plastic mulch films. Tris(2,4-di-tert-butylphenyl) phosphate, which is a NOPE produced by oxidation of (2,4-di-tert-butylphenyl) phosphite, was the predominant congener in farmland soils, with concentrations several orders of magnitude greater than those of traditional OPEs. Comparisons of OPEs in different mulch films and the corresponding mulched soils revealed that degradable and black films caused more severe pollution than polyethylene and white films. Traditional OPEs, including tris(2-ethylhexyl) phosphate and tricresyl phosphate, exhibited moderate risks in farmland soils, especially in film-mulched soils. NOPEs, including trisnonylphenol phosphate, posed high ecological risks to the terrestrial ecosystem. Risk evaluations should be conducted for a broad range of NOPEs in the environment.
Collapse
Affiliation(s)
- Fang Zhao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hua Ping
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jing Liu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Tianyu Zhao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yingjun Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Guanglu Cui
- Daxing District Planting Technology Promotion Station, Beijing 102600, China
| | - Xuejiao Ha
- Daxing District Planting Technology Promotion Station, Beijing 102600, China
| | - Zhihong Ma
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China.
| | - Cheng Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China.
| |
Collapse
|
19
|
Hu J, Lyu Y, Li M, Wang L, Jiang Y, Sun W. Discovering Novel Organophosphorus Compounds in Wastewater Treatment Plant Effluents through Suspect Screening and Nontarget Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6402-6414. [PMID: 38546437 DOI: 10.1021/acs.est.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Limited knowledge on the structure of emerging organophosphorus compounds (OPCs) hampers our comprehensive understanding of their environmental occurrence and potential risks. Through suspect and nontarget screening, combining data-dependent acquisition, data-independent acquisition, and parallel reaction monitoring modes, we identified 60 OPCs (17 traditional and 43 emerging compounds) in effluents of 14 wastewater treatment plants (WWTPs) in Beijing and Qinghai, China. These OPCs comprise 26 organophosphate triesters, 17 organophosphate diesters, 6 organophosphonates, 7 organothiophosphate esters, and 4 other OPCs. Notably, 14 suspect OPCs were newly identified in WWTP effluents, and 16 nontarget OPCs were newly discovered in environmental matrices. Specifically, the cyclic phosphonate, (5-ethyl-2-methyl-1,3,2-dioxaphosphorinan-5-yl)methyl dimethyl phosphonate P-oxide (PMMMPn), consistently appeared in all WWTP effluents, with semiquantitative concentrations ranging from 44.4 to 282 ng/L. Its analogue, di-PMMMPn, presented in 93% of wastewater samples. Compositional differences between the WWTP effluents of two cities were mainly attributed to emerging OPCs. Hazard and ecological risk assessment underscored the substantial contribution of chlorinated organophosphate esters and organothiophosphate esters to overall risks of OPCs in WWTP effluents. This study provides the most comprehensive OPC profiles in WWTP effluents to date, highlighting the need for further research on their occurrence, fate, and risks, particularly for chlorinated OPCs.
Collapse
Affiliation(s)
- Jingrun Hu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Yitao Lyu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Mingzhen Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Lei Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| |
Collapse
|
20
|
Xiong Y, Liu J, Yu J, Chen D, Li T, Zhou F, Wu T, Liu X, Du Y. OPEs-ID: A software for non-targeted screening of organophosphate esters based on liquid chromatography-high-resolution mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133275. [PMID: 38157816 DOI: 10.1016/j.jhazmat.2023.133275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers, presenting a potential threat to the environment and human health. To date, no automatic software exists for the nontargeted screening of OPEs. In this study, OPEs-ID, a user-friendly software, was developed for the identification of OPEs using liquid chromatography-high-resolution mass spectrometry. The main workflow of OPEs-ID included fragments-dependent precursor ion screening, elemental composition determination, extracted ion chromatograms (EIC) comparison, and molecular structure identification via MetFrag strategy. A mixture of 17 OPE standards was identified with an identification rate of 100% by OPEs-ID. OPEs-ID demonstrated a rate of 94.1% for correctly ranking within the top 1 candidate in a local database (41.2% in PubChem) for the 17 OPE standards, which remarkably improved the identification when compared to conventional in silico fragmentation algorithms. Using a pooled airborne fine particle sample (PM2.5), OPEs-ID could automatically retrieve 22 valid molecules with structure candidates. The detection frequencies of 9 newly identified OPEs were between 13% and 100% in the 32 PM2.5 samples. Their semi-quantification concentrations were comparable to those of some traditional OPEs. Overall, OPEs-ID offers a powerful tool to significantly enrich our understanding of the OPEs present in the environment.
Collapse
Affiliation(s)
- Yinran Xiong
- School of Chemistry & Molecular Engineering and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China; Chongqing Municipal Key Laboratory of Scientific Utilization of Tobacco Resources, Chongqing 400060, China
| | - Jinyue Liu
- School of Chemistry & Molecular Engineering and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Yu
- School of Chemistry & Molecular Engineering and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Fengli Zhou
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Ting Wu
- School of Chemistry & Molecular Engineering and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China.
| | - Xiaotu Liu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Yiping Du
- School of Chemistry & Molecular Engineering and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
21
|
Cheng Y, Liu C, Lv Z, Liang Y, Xie Y, Wang C, Wan S, Leng X, Hu M, Zheng G. High-Resolution Mass Spectrometry Screening of Quaternary Ammonium Compounds (QACs) in Dust from Homes and Various Microenvironments in South China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38276914 DOI: 10.1021/acs.est.3c09942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Despite their ubiquitous use, information regarding the presence of quaternary ammonium compounds (QACs) in various microenvironments remains scarce and only a small subset of QACs has been monitored using targeted chemical analysis. In this study, a total of 111 dust samples were collected from homes and various public settings in South China during the COVID-19 pandemic and were analyzed for traditional and emerging QACs using high-resolution mass spectrometry. The total traditional QAC concentrations in residential dust (∑traditional QAC, sum of 18 traditional QACs) ranged from 13.8 to 150 μg/g with a median concentration of 42.2 μg/g. Twenty-eight emerging QACs were identified in these samples, and the composition of ∑emerging QAC (sum of emerging QACs) to ∑QAC (sum of traditional and emerging QACs) ranged from 19 to 42% across various microenvironments, indicating the widespread existence of emerging QACs in indoor environments. Additionally, dust samples from cinemas exhibited higher ∑QAC concentrations compared to homes (medians 65.9 μg/g vs 58.3 μg/g, respectively), indicating heavier emission sources of QACs in these places. Interestingly, significantly higher ∑QAC concentrations were observed in dust from the rooms with carpets than those without (medians 65.6 μg/g vs 32.6 μg/g, p < 0.05, respectively). Overall, this study sheds light on the ubiquitous occurrence of QACs in indoor environments in South China.
Collapse
Affiliation(s)
- Yao Cheng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chenglin Liu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong Lv
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuge Liang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yichun Xie
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sheng Wan
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinrui Leng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Hu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guomao Zheng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
22
|
Chen Y, Xiao Q, Su Z, Yuan G, Ma H, Lu S, Wang L. Discovery and occurrence of organophosphorothioate esters in food contact plastics and foodstuffs from South China: Dietary intake assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167447. [PMID: 37788781 DOI: 10.1016/j.scitotenv.2023.167447] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/07/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
A recent study revealed the presence of non-pesticide organothiophosphate esters (OTPEs) - precursors to organophosphate esters (OPEs) contaminants - in river water. Since OPEs have demonstrated adverse reproductive outcomes in humans, this accentuates the urgency to explore the prevalence of non-pesticide OTPEs in other potential human exposure matrices. In this study, a nontarget screening method based on high-resolution mass spectrometry was used to identify OTPEs in food contact plastic (FCP) samples collected from South China. O,O,O-triphenyl phosphorothioate (TPhPt) and O,O,O-tris(2,4-di-tert-butylphenyl) phosphorothioate (AO168 = S) were unequivocally identified (Level 1), while O,O-di(di-butylphenyl) O-methyl phosphorothioate (BDBPMPt) was tentatively identified (Level 2b, indicating probable structure based on diagnostic evidence). Among n = 70 FCP samples, AO168 = S emerged with the highest detection frequency and median concentration of 74 % and 111 ng/g, respectively. Significant Pearson correlations were observed in log-transformed peak areas of AO168 = S and TPhPt in FCPs with their respective oxons, respectively. Occurrences of AO168 = S and TPhPt were further investigated in n = 100 foodstuff samples using a market basket method. AO168 = S and TPhPt exhibited detection frequencies of 43 % and 44 % in all food items with mean concentrations of 2.17 ng/g wet weight (ww) (range: <0.53-67.8 ng/g ww) and 0.112 ng/g ww (range: <0.006-2.39 ng/g ww), respectively. The highest mean concentrations for AO168 = S and TPhPt were found in vegetables (4.62 ng/g ww) and oil (3.00 ng/g ww), respectively. The median estimated daily intakes (EDIs) of AO168 = S and TPhPt via diet were calculated as 10.4 and 1.51 ng/kg body weight/day, respectively. For AO168 = S, only meat and vegetables contributed to the median EDI, whereas for TPhPt, oil was identified as the principal contributor to the median EDI. This study for the first time evaluated human exposure to OTPEs via diet, providing new insights to overall human exposure to OPEs.
Collapse
Affiliation(s)
- Yanhao Chen
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhanpeng Su
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Guanxiang Yuan
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Haojia Ma
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| | - Lei Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
23
|
Xiao Q, Su Z, Wang L, Yuan G, Ma H, Lu S. Establishment of an Integrated Nontarget and Suspect Screening Workflow for Organophosphate Diesters (Di-OPEs) and Identification of Seven Previously Unknown Di-OPEs in Food Contact Plastics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20348-20358. [PMID: 38051668 DOI: 10.1021/acs.jafc.3c06207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
In this study, an innovative, integrated nontarget and suspect screening workflow was developed for identifying organophosphate diesters (di-OPEs) using high-resolution mass spectrometry. The workflow featured the utilization of 0.02% acetic acid as a mobile-phase additive, differentiated screening methods for alkyl and aryl di-OPEs, and a combination of electrospray negative ionization and positive ionization. Using this workflow, 18 di-OPEs were identified in the extracts of 75 food contact plastic (FCP) samples sourced from South China. Among these, six alkyl and one aryl di-OPEs were previously unknown (one unequivocal identification and six probable structures based on diagnostic evidence). (Semi)quantification revealed that bis(2,4-di-tert-butylphenyl) phosphate was the major di-OPE in FCPs, with a median concentration of 1079 ng/g (range: 23.4-158,414 ng/g). The migration efficiencies of di-OPEs from an FCP sample to four kinds of food simulants were between 2.58 and 54.3%. This study offered a useful workflow for the comprehensive profiling of di-OPEs in FCPs.
Collapse
Affiliation(s)
- Qinru Xiao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhanpeng Su
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Lei Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Guanxiang Yuan
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Haojia Ma
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
24
|
Chen X, Liang X, Yang J, Yuan Y, Xiao Q, Su Z, Chen Y, Lu S, Wang L. High-resolution mass spectrometry-based screening and dietary intake assessment of organophosphate esters in foodstuffs from South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167169. [PMID: 37730029 DOI: 10.1016/j.scitotenv.2023.167169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Organophosphate esters (OPEs) are a group of emerging contaminants with widespread environmental occurrence, yet research on their occurrence in foodstuffs is limited. We collected 100 foodstuff samples in South China using a market basket method, and analyzed food extracts for the presence of OPEs and organophosphite antioxidants (OPAs) by suspect and nontarget screening through high-resolution mass spectrometry. Our analysis resulted in the identification of 30 OPEs, comprised of 25 OPEs with a confidence level (CL) of 1 (unequivocal identification using standards) and five OPEs with CL = 2b (probable structure based on diagnostic evidence). Interestingly, 11 of these identified OPEs had not been previously reported in food. No OPA was identified. The occurrence of identified OPEs within the food samples was further investigated. The highest median concentration of OPEs in all food samples was reached by tris(2-chloroisopropyl) phosphate (TCPP) (1.55 ng/g ww, range < 0.74-12.0 ng/g wet weight (ww)). Cereals demonstrated the highest median concentration of the cumulative 30 OPEs. Tris(2-chloroethyl) phosphate (TCEP), TCPP, and triethyl phosphate (TEP) predominantly contributed to OPEs contamination in most food categories. Eight OPEs, namely TEP, tris(2-ethylhexyl) phosphate (TEHP), TCEP, triphenyl phosphate (TPhP), 2-ethylhexyl diphenyl phosphate (EHDPP), bis(2-ethylhexyl) phenyl phosphate (BEHPP), resorcinol bis(diphenyl phosphate) (RDP), and methyl diphenyl phosphate (MDPP) exhibited significantly higher concentrations in the processed group as compared to non-processed group, suggesting that food processing may result in contamination of these OPEs. The median sum of estimated dietary intake (ΣEDI) of all OPEs was determined to be 161 ng/kg body weight/day. Cereals (38.5 %) and vegetables (23.5 %) were the predominant food categories contributing to ΣEDI, and TEP (29.0 %), TCEP (20.2 %), and TCPP (18.3 %) were three major OPEs contributing to ΣEDI. This study for the first time offered a comprehensive overview of OPE species and revealed their occurrence in foodstuffs from South China.
Collapse
Affiliation(s)
- Xiwei Chen
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xinhan Liang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Junyu Yang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yinqian Yuan
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhanpeng Su
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yanhao Chen
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Lei Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
25
|
Chen R, Xing C, Shen G, Jones KC, Zhu Y. Indirect Emissions from Organophosphite Antioxidants Result in Significant Organophosphate Ester Contamination in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20304-20314. [PMID: 37978933 DOI: 10.1021/acs.est.3c07782] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Organophosphite antioxidants (OPAs) have been seriously neglected as potential sources of organophosphate esters (OPEs) in environments. This study utilizes a modeling approach to quantify for the first time national emissions and multimedia distributions of triphenyl phosphate (TPHP)─a well-known flame retardant─and three novel OPEs: tris(2,4-ditert-butylphenyl) phosphate (AO168═O), bis(2,4-ditert-butylphenyl) pentaerythritol diphosphate (AO626═O2), and trisnonylphenol phosphate (TNPP). Emphasis is on the quantitative assessment of OPA source in China. TPHP has 1.1-9.7 times higher emission (300 Mg/year in 2019 with half from OPA sources) than AO168═O (278 Mg/year), AO626═O2 (53 Mg/year), and TNPP (32 Mg/year), but AO168═O is predominant in environments (63-79%) except freshwaters. About 72-99% of the studied OPEs are emitted via air, with 88-99% ultimately distributed into soils as the major sink. OPA-source emissions contribute 9.5-57% and 4.7-56% of TPHP masses and concentrations (except in sediments) in different media, respectively. Both AO168═O and AO626═O2 exhibit high overall persistence ranging between 2 and 11 years. Source emissions and environmental concentrations are elevated in economically developed areas, while persistence is higher in northern areas, where precipitation and temperature are lower. This study shows the significance of the sources of OPA to OPE contamination, which supports chemical management of these substances.
Collapse
Affiliation(s)
- Rongcan Chen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Changyue Xing
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guofeng Shen
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K
| | - Ying Zhu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- SJTU-UNIDO Joint Institute of Inclusive and Sustainable Industrial Development, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
26
|
Li X, Yao Y, Zhao M, Yang J, Shi Y, Yu H, Cheng Z, Chen H, Wang Y, Wang L, Sun H. Nontarget Identification of Novel Organophosphorus Flame Retardants and Plasticizers in Rainfall Runoffs and Agricultural Soils around a Plastic Recycling Industrial Park. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12794-12805. [PMID: 37579047 DOI: 10.1021/acs.est.3c02156] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Plastic recycling and reprocessing activities may release organophosphate ester (OPE) flame retardants and plasticizers into the surrounding environment. However, the relevant contamination profiles and impacts remain not well studied. This study investigated the occurrence of 28 OPEs and their metabolites (mOPEs) in rainfall runoffs and agricultural soils around one of the largest plastic recycling industrial parks in North China and identified novel organophosphorus compounds (NOPs) using high-resolution mass spectrometry-based nontarget analysis. Twenty and twenty-seven OPEs were detected in runoff water and soil samples, with total concentrations of 86.0-2491 ng/L and 2.53-199 ng/g dw, respectively. Thirteen NOPs were identified, of which eight were reported in the environment for the first time, including a chlorine-containing OPE, an organophosphorus heterocycle, a phosphite, three novel OPE metabolites, and two oligomers. Triphenylphosphine oxide and diphenylphosphinic acid occurred ubiquitously in runoffs and soils, with concentrations up to 390 ng/L and 40.2 ng/g dw, respectively. The downwind areas of the industrial park showed elevated levels of OPEs and NOPs. The contribution of hydroxylated mOPEs was higher in soils than in runoffs. These findings suggest that plastic recycling and reprocessing activities are significant sources of OPEs and NOPs and that biotransformation may further increase the ecological and human exposure risk.
Collapse
Affiliation(s)
- Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Maosen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ji Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
27
|
Xing Y, Gong X, Wang P, Wang Y, Wang L. Occurrence and Release of Organophosphite Antioxidants and Novel Organophosphate Esters from Plastic Food Packaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37470367 DOI: 10.1021/acs.jafc.3c01138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Organic phosphite antioxidants (OPAs) are widely added in plastic products and can be oxidized to generate oxidized derivatives (OPAs = O), namely organic phosphate esters (OPEs), during production and use processing. Herein, the occurrence of OPEs and OPAs in five plastic food packages was detected by liquid chromatography-tandem mass spectrometry. Three OPEs (TPhP, TCEP, and AO168 = O) and three OPAs (TPhPi, TCEPi, and AO168) were found in the plastic packages, with concentrations of <MQL-124 ng/g (∑3OPAs) and 196-831 ng/g (∑3OPEs), respectively. The migration potential of OPAs and OPEs to food was measured by simulation experiments. OPAs and OPEs in plastic can efficiently migrate to oily simulants, alkaline simulants, and acidic simulants. After 14 days, the total concentration of all OPAs and OPEs in the food simulants reached <MQL-1.21 (acidic food simulants), <MQL-0.32 (alkaline food simulants), and 11.4-31.4 ng/mL (oily food simulants), respectively. OPAs and OPEs in 12 kinds of plastic-packaged foods were detected, with high concentrations in dairy food (∑3OPAs + ∑3OPEs: 18.3-28.9 ng/mL) and in oils (∑3OPAs + ∑3OPEs: 32.7-60.9 ng/mL). Accordingly, the estimated ingestion of OPAs and OPEs through plastic-packaged food can reach 2.6 and 32.7 ng/kg in children and 1.1 and 6.5 ng/kg in adults, indicating a non-negligible exposure risk of organic phosphorus pollutants.
Collapse
Affiliation(s)
- Yatong Xing
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinying Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Ping Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
28
|
Huang Q, Mao X, Pan F, Hu X, He Z, Wang Y, Wan Y. Organophosphate esters in source, finished, and tap water in Wuhan, China. CHEMOSPHERE 2023; 325:138288. [PMID: 36871801 DOI: 10.1016/j.chemosphere.2023.138288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
As important plasticizers and flame retardants, organophosphate esters (OPEs) have resulted in the contamination of various water bodies worldwide. However, their removal efficiency by different tap water treatment processes and seasonal variations in drinking water in China are not fully understood. In this study, source (n = 20), finished (n = 20), and tap (n = 165) water samples sourced from the Hanshui and the Yangtze River were collected in Wuhan, central China from July 2018 to April 2019 to measure selected OPE concentrations. The OPE concentrations in the source water samples ranged 10.5-113 ng/L (median: 64.6 ng/L). Most OPEs were not removed effectively by conventional tap water treatment, except for tris(2-chloroisopropyl) phosphate (TCIPP). Interestingly, trimethyl phosphate content was found to increase significantly during chlorination for water sourced from the Yangtze River. The OPEs could be removed more effectively by advanced processes with ozone and activated carbon (maximum removal efficiency of specific OPE was 91.0%). Similar cumulative OPE concentrations (ΣOPEs) values were found for the finished water and tap water in February rather than in July. The ΣOPEs (ng/L) in the tap water ranged 21.2-365 (median: 45.1). TCIPP and tris(2-chloroethyl) phosphate were the predominant OPEs in the studied water samples. Significant seasonal variations in the OPE residues in tap water were observed in this study. OPE exposure via tap water ingestion posed low health risks to human beings. This is the first study reporting the removal efficiencies of OPEs and the seasonal variations in tap water from central China. This is also the first study documenting the occurrence of cresyl diphenyl phosphate and 2,2-bis(chloromethyl)propane-1,3-diyltetrakis (2-chloroethyl) bisphosphate in tap water. Based on currently available data, the contamination of tap water by OPEs is in the order of Korea > eastern China > central China > New York State, the United States. Additionally, this study provides a method involving a trap column, to eliminate OPE contamination from the liquid chromatography system.
Collapse
Affiliation(s)
- Qingzhu Huang
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Xiang Mao
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Feng Pan
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Xun Hu
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Yao Wang
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| |
Collapse
|