1
|
Ma J, Zhao S, He K, Tian L, Zhong G, Jones KC, Sweetman AJ, Li J, Zhou Q, Chen D, Chen K, Zhang G. Quantification of micro- and nano-plastics in atmospheric fine particles by pyrolysis-gas chromatography-mass spectrometry with chromatographic peak reconstruction. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137292. [PMID: 39869978 DOI: 10.1016/j.jhazmat.2025.137292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/08/2025] [Accepted: 01/18/2025] [Indexed: 01/29/2025]
Abstract
The effects of micro- and nano-plastics (MNPs) on human health are of global concern because MNPs are ubiquitous, persistent, and potentially toxic, particularly when bound to atmospheric fine particles (PM2.5). Traditional quantitative analysis of MNPs by pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) is often inaccurate because of false positive signals caused by similar polymers and organic compounds. In this study, a reliable analytical strategy combining HNO3 digestion and chromatographic peak reconstruction was developed to improve the precision of pyrolysis-gas chromatography-mass spectrometry analysis of multiple MNPs bound to PM2.5. The optimized HNO3 digestion method using high-pressure oxidation conditions effectively removed organic matter within two hours, giving recovery rates of 64 %-110 % for eight target MNPs. The chromatographic peak reconstruction procedure minimized interferences caused by similar polymers and achieved high accuracy (101 % ± 10 %) for polyvinyl chloride, polyethylene terephthalate, and polystyrene, whose concentrations are often overestimated due to overlapping pyrolysis products. Quantification uncertainties for MNPs in real PM2.5 samples were up to 52 % lower using the new method than using previous methods. The method was validated using PM2.5 from urban Guangzhou. The total concentrations of the eight target MNPs in the PM2.5 samples were 100-990 ng/m3 (median 277 ng/m3) and the dominant MNPs were polyethylene, polyethylene terephthalate, and polyvinyl chloride, which contributed > 90 % of the MNPs. The new method allows the robust and accurate quantification of MNPs in atmospheric fine particles and will be useful in future studies on the environmental behaviors of MNPs and risks they pose.
Collapse
Affiliation(s)
- Jianchu Ma
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shizhen Zhao
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China.
| | - Kun He
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lele Tian
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangcai Zhong
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Andrew J Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jun Li
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Qisheng Zhou
- Frontier Laboratories Ltd, 4-16-20 Saikon, Koriyama, Fukushima 9638862, Japan
| | - Duohong Chen
- Environmental Key Laboratory of Regional Air Quality Monitoring, Ministry of Ecology and Environment, Guangdong Ecological Environment Monitoring Center, Guangzhou 510308, China
| | - Kewei Chen
- Evertech Instrument Technology Ltd, Guangzhou 510320, China
| | - Gan Zhang
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| |
Collapse
|
2
|
Seo Y, Chevali V, Lai Y, Zhou Z, Chen G, Burey P, Wang S, Song P. Microplastics in soils: A comparative review on extraction, identification and quantification methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124556. [PMID: 39987865 DOI: 10.1016/j.jenvman.2025.124556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/27/2025] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
Microplastics (MPs) have been continuously accumulating in soil, posing significant environmental concerns due to their potential toxicity and role as pollutant vectors. Effective monitoring of MPs in soils requires appropriate methods for extraction, identification and quantification. This comparative review systematically examined various methods used in MP analysis from solid matrix environments, highlighting the advantages and disadvantages of each technique. Soils are heterogeneous and complex matrices, which can interact differently with MPs, rendering the separation of MPs from soils a significant challenge. Key challenges include the interactions between MPs and soil organic matter and detection limitations of smaller size MP which can interfere with accurate extraction. Specialized techniques and devices are required for precise identification and quantification. Digestion can be effective in removing organic matter, although harsh digestion can degrade MPs. To improve the liability of MP analysis, it is critical to minimize steps that may reduce accuracy such as filtration, harsh digestion and inappropriate sample size. Conversely, adjusting or combining methods can enhance the precision of MP analysis. This review offers a forward-looking perspective by advocating extraction and detection approaches, thus providing a more accurate, reproducible and holistic framework for MP analysis in soils. These insights are anticipated to guide future research promote standardized protocols and enhance environmental monitoring efforts.
Collapse
Affiliation(s)
- Yoonjung Seo
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Australia.
| | - Venkata Chevali
- Centre for Future Materials, University of Southern Queensland, Springfield, Australia
| | - Yunru Lai
- Centre for Sustainable Agricultural Systems, University of Southern Queensland, Springfield, Australia
| | - Zhezhe Zhou
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Australia; Centre for Future Materials, University of Southern Queensland, Springfield, Australia
| | - Guangnan Chen
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Australia
| | - Paulomi Burey
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Australia; Centre for Future Materials, University of Southern Queensland, Springfield, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Pingan Song
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Australia; Centre for Future Materials, University of Southern Queensland, Springfield, Australia.
| |
Collapse
|
3
|
Jiang J, Liu L, Shen L, Li J, Xu Q, Li Z, Qiu H. Determination of polychlorinated biphenyls in water by CO 2-responsive switchable deep eutectic solvent based homogeneous liquid-liquid microextraction. J Chromatogr A 2025; 1740:465583. [PMID: 39657428 DOI: 10.1016/j.chroma.2024.465583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
A homogeneous liquid-liquid microextraction technique based on switchable deep eutectic solvent (SDES-HLLME), combined with gas chromatography-triple quadrupole tandem mass spectrometry (GC-MS/MS), was developed for the extraction and analysis of 16 polychlorinated biphenyls (PCBs) in water samples. CO2-responsive switchable deep eutectic solvent (SDES), which consists of monoethanolamine (MEA) being used as a hydrogen bond acceptor (HBA) and 3-methoxyphenol (3-MP) being used as a hydrogen bond donor (HBD), was used as the extractant, thus providing an environmentally friendly alternative to conventional toxic organic solvents. The study systematically investigated the effects of various parameters on extraction efficiency, including the type and volume of SDES, vortexing duration, CO2 bubbling time, centrifugation rate and time, ionic strength. Optimal extraction conditions were identified as follows: 40.0 μL of SDES, vortexing for 40.0 s, CO2 bubbling for 2.0 min, 5.0 % (w/v) salt concentration, a centrifugation rate of 5000 rpm, and a centrifugation duration of 3.0 min. Under these optimal conditions, the method exhibited a linear range of 0.1-300 ng·mL-1, with limits of detection (LODs) and quantification (LOQs) ranging from 0.003 to 0.096 ng·mL-1 and 0.009 to 0.321 ng·mL-1, while the relative standard deviation (RSD) <7.98 %. Finally, this method was successfully applied to determine the concentrations of 16 PCBs in various environmental water samples, yielding satisfactory recovery rates. This method provides a green, convenient and accurate new idea in the field of HLLME research.
Collapse
Affiliation(s)
- Jiaqin Jiang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lipeng Liu
- Hangzhou EXPEC Technology Co., Ltd., Hangzhou 311305, China
| | - Lingqi Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jian Li
- Hangzhou EXPEC Technology Co., Ltd., Hangzhou 311305, China
| | - Qiao Xu
- Hangzhou EXPEC Technology Co., Ltd., Hangzhou 311305, China
| | - Zuguang Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hongdeng Qiu
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.
| |
Collapse
|
4
|
Günther M, Imhof W. Highly selective solid-liquid extraction of microplastic mixtures as a pre-preparation tool for quantitative nuclear magnetic resonance spectroscopy studies. Analyst 2024. [PMID: 39373111 DOI: 10.1039/d4an00991f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Despite various developments in the application of quantitative nuclear magnetic resonance (qNMR) spectroscopy toward microplastics in recent years, this method still lacks suitable sample preparation and fractionation procedures. As this poses a crucial obstacle for its utilisation on environmental samples, which contain various mixtures of polymers along with other matrix substances, this research aims to address this missing link by presenting an easy-to-apply procedure based on common laboratory equipment. The process selectively separates microplastics from inorganic constituents while performing the necessary fractionation of different types of microplastics prior to qNMR analysis. It allows subsequent quantification of polystyrene (PS), polybutadiene rubber (BR), polymethylmethacrylate (PMMA), polyvinylchloride (PVC), polyethylene terephthalate (PET) and polyamide (PA) from a single sample, establishing recovery rates greater than 88% for all tested polymer types. Additionally, we extended our previous qNMR protocol to include two common polymer types: polymethylmethacrylate (PMMA) and polyacrylonitrile (PAN), achieving limits of detection down to 1.76 μg ml-1 and 12.53 μg ml-1 as well as limits of quantification down to 5.88 μg ml-1 and 41.78 μg ml-1, respectively. Thus, the qNMR method presented herein is now applicable to eight abundant polymer types, allowing the quantification of up to three different types simultaneously.
Collapse
Affiliation(s)
- Marcel Günther
- Institute of Integrated Natural Sciences, University Koblenz, Universitätsstr. 1, D-56070 Koblenz, Germany.
| | - Wolfgang Imhof
- Institute of Integrated Natural Sciences, University Koblenz, Universitätsstr. 1, D-56070 Koblenz, Germany.
| |
Collapse
|
5
|
Nopp-Mayr U, Layendecker S, Sittenthaler M, Philipp M, Kägi R, Weinberger I. Microplastic loads in Eurasian otter (Lutra lutra) feces-targeting a standardized protocol and first results from an alpine stream, the River Inn. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:707. [PMID: 38970695 PMCID: PMC11227469 DOI: 10.1007/s10661-024-12791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/06/2024] [Indexed: 07/08/2024]
Abstract
Microplastics (MP) are omnipresent in a wide range of environments, constituting a potential threat for aquatic and terrestrial wildlife. Effects in consumers range from physical injuries to pathological reactions. Due to potential bioaccumulation of MP, predators are of particular concern for MP induced health effects. The Eurasian otter is an apex predator in (semi-)aquatic habitats feeding primarily on fish. Furthermore, the species is classified as "near threatened" on the IUCN Red List. Thus, the Eurasian otter is of conservation concern and may serve as a bioindicator for MP pollution. Feces can be used to detect pollutants, including MP. Initial studies confirmed the presence of MP in otter feces (= spraints). However, as specific, validated protocols targeting at an efficient and standardized extraction of MP from otter spraints are missing, experimental results reported from different groups are challenging to compare. Therefore, we (i) present steps towards a standardized protocol for the extraction of MP from otter feces, (ii) give recommendations for field sample collection of otter spraints, and (iii) provide a user-friendly step-by-step workflow for MP extraction and analysis. Applying this framework to field samples from five study sites along the River Inn (n = 50), we detected MP of different sizes and shapes (ranging from microfibers to road abrasion and tire wear) in all otter spraint samples.
Collapse
Affiliation(s)
- Ursula Nopp-Mayr
- Institute of Wildlife Biology and Game Management, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences Vienna, Gregor Mendel-Straße 33, 1180, Vienna, Austria
| | - Sarah Layendecker
- Institute of Wildlife Biology and Game Management, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences Vienna, Gregor Mendel-Straße 33, 1180, Vienna, Austria
| | - Marcia Sittenthaler
- Institute of Wildlife Biology and Game Management, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences Vienna, Gregor Mendel-Straße 33, 1180, Vienna, Austria.
- Central Research Laboratories, Natural History Museum Vienna, Burgring 7, 1010, Vienna, Austria.
- IUCN Species Survival Commission, Otter Specialist Group, Rue Mauverney 28, 1196, Gland, Switzerland.
| | - Matthias Philipp
- Department Process Engineering, Eawag Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Ralf Kägi
- Department Process Engineering, Eawag Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Irene Weinberger
- Fondation Pro Lutra, Wasserwerkgasse 2, 3011, Bern, Switzerland
- IUCN Species Survival Commission, Otter Specialist Group, Rue Mauverney 28, 1196, Gland, Switzerland
| |
Collapse
|
6
|
Pittroff M, Loui C, Oswald SE, Bochow M, Kamp J, Dierkes G, Lensing HJ, Munz M. Riverbed depth-specific microplastics distribution and potential use as process marker. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45326-45340. [PMID: 38963618 PMCID: PMC11255049 DOI: 10.1007/s11356-024-34094-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
Riverbed sediments have been identified as temporary and long-term accumulation sites for microplastic particles (MPs), but the relocation and retention mechanisms in riverbeds still need to be better understood. In this study, we investigated the depth-specific occurrence and distribution (abundance, type, and size) of MPs in river sediments down to a depth of 100 cm, which had not been previously investigated in riverbeds. In four sediment freeze cores taken for the Main River (Germany), MPs (≥ 100 µm) were detected using two complementary analytical approaches (spectroscopy and thermoanalytical) over the entire depth with an average of 21.7 ± 21.4 MP/kg or 31.5 ± 28.0 mg/kg. Three vertical trends for MP abundance could be derived, fairly constant in top layers (0-30 cm), a decrease in middle layers (30-60 cm), and a strong increase in deep layers (60-100 cm). The dominant polymer types were polyethylene (PE), polypropylene (PP), and polystyrene (PS). Polyethylene terephthalate (PET) and PP were also found in deep layers, albeit with the youngest age of earliest possible occurrence (EPO age of 1973 and 1954). The fraction of smaller-sized MPs (100-500 µm) increased with depth in shallow layers, but the largest MPs (> 1 mm) were detected in deep layers. Based on these findings, we elucidate the relationship between the depth-specific MP distribution and the prevailing processes of MP retention and sediment dynamics in the riverbed. We propose some implications and offer an initial conceptual approach, suggesting the use of microplastics as a potential environmental process tracer for driving riverbed sediment dynamics.
Collapse
Affiliation(s)
- Marco Pittroff
- Department Geotechnical Engineering, Federal Waterways Engineering and Research Institute (BAW), Kußmaulstraße 17, 76187, Karlsruhe, Germany.
- Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| | - Constantin Loui
- Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Sascha E Oswald
- Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Mathias Bochow
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Section 1.4 Remote Sensing, Telegrafenberg, 14473, Potsdam, Germany
| | - Jan Kamp
- German Federal Institute of Hydrology, Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Georg Dierkes
- German Federal Institute of Hydrology, Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Hermann-Josef Lensing
- Department Geotechnical Engineering, Federal Waterways Engineering and Research Institute (BAW), Kußmaulstraße 17, 76187, Karlsruhe, Germany
| | - Matthias Munz
- Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| |
Collapse
|
7
|
Cui L, Gong Y, Zhao S, Wu Y, Wang A, Chen Z. Homogenous Oxidizing Oligomerization Coupled with Coagulation for Water Purification. WATER RESEARCH 2024; 257:121684. [PMID: 38723348 DOI: 10.1016/j.watres.2024.121684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/29/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024]
Abstract
Natural manganese oxides could induce the intermolecular coupling reactions among small-molecule organics in aqueous environments, which is one of the fundamental processes contributing to natural humification. These processes could be simulated to design novel advanced oxidation technology for water purification. In this study, periodate (PI) was selected as the supplementary electron-acceptor for colloidal manganese oxides (Mn(IV)aq) to remove phenolic contaminants from water. By introducing polyferric sulfate (PFS) into the Mn(IV)aq/PI system and exploiting the flocculation potential of Mn(IV)aq, a post-coagulation process was triggered to eliminate soluble manganese after oxidation. Under acidic conditions, periodate exists in the H4IO6- form as an octahedral oxyacid capable of coordinating with Mn(IV)aq to form bidentate complexes or oligomers (Mn(IV)-PI*) as reactive oxidants. The Mn(IV)-PI* complex could induce cross-coupling process between phenolic contaminants, resulting in the formation of oligomerized products ranging from dimers to hexamers. These oligomerized products participate in the coagulation process and become stored within the nascent floc due to their catenulate nature and strong hydrophobicity. Through coordination between Mn(IV)aq and H4IO6-, residual periodate is firmly connected with manganese oxides in the floc after coagulation and could be simultaneously separated from the aqueous phase. This study achieves oxidizing oligomerization through a homogeneous process under mild conditions without additional energy input or heterogeneous catalyst preparation. Compared to traditional mineralization-driven oxidation techniques, the proposed novel cascade processes realize transformation, convergence, and separation of phenolic contaminants with high oxidant utilization efficiency for low-carbon purification.
Collapse
Affiliation(s)
- Lei Cui
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yingxu Gong
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Shengxin Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yining Wu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
8
|
Liza AA, Ashrafy A, Islam MN, Billah MM, Arafat ST, Rahman MM, Karim MR, Hasan MM, Promie AR, Rahman SM. Microplastic pollution: a review of techniques to identify microplastics and their threats to the aquatic ecosystem. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:285. [PMID: 38374279 DOI: 10.1007/s10661-024-12441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
Microplastics (MPs), small synthetic particles, have emerged as perilous chemical pollutants in aquatic habitats, causing grave concerns about their disruptive effects on ecosystems. The fauna and flora inhabiting these specific environments consume these MPs, unwittingly introducing them into the intricate web of the food chain. In this comprehensive evaluation, the current methods of identifying MPs are amalgamated and their profound impacts on marine and freshwater ecosystems are discussed. There are many potential risks associated with MPs, including the dangers of ingestion and entanglement, as well as internal injuries and digestive obstructions, both marine and freshwater organisms. In this review, the merits and limitations of diverse identification techniques are discussed, including spanning chemical analysis, thermal identification, and spectroscopic imaging such as Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and fluorescent microscopy. Additionally, it discusses the prevalence of MPs, the factors that affect their release into aquatic ecosystems, as well as their plausible impact on various aquatic ecosystems. Considering these disconcerting findings, it is imperative that appropriate measures should be taken to assess the potential risks of MP pollution, protect aquatic life and human health, and foster sustainable development.
Collapse
Affiliation(s)
- Afroza Akter Liza
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Asifa Ashrafy
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Md Nazrul Islam
- Forestry and Wood Technology Discipline, Khulna University, Khulna, 9208, Bangladesh.
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Shaikh Tareq Arafat
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, 9208, Bangladesh
- Tokyo University of Marine Science and Technology, 4-5-7 Konan Minato-Ku, Tokyo, 108-847, Japan
| | - Md Moshiur Rahman
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, 9208, Bangladesh
- Fish Conservation and Culture Lab, Biological & Agricultural Engineering, University of California, Davis, USA
| | - Md Rezaul Karim
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Md Mehedi Hasan
- Global Sanitation Graduate School, Institute of Disaster Management, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh
| | | | - Sheikh Mustafizur Rahman
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
9
|
Xu S, Li H, Xiao L, Wang M, Feng S, Fan J, Pawliszyn J. Quantitative Determination of Poly(methyl Methacrylate) Micro/Nanoplastics by Cooling-Assisted Solid-Phase Microextraction Coupled to Gas Chromatography-Mass Spectrometry: Theoretical and Experimental Insights. Anal Chem 2024; 96:2227-2235. [PMID: 38272489 DOI: 10.1021/acs.analchem.3c05316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Determinations of micro/nanoplastics (MNPs) in environmental samples are essential to assess the extent of their presence in the environment and their potential impact on ecosystems and human health. With the aim to provide a sensitive method with simplified pretreatment steps, cooling-assisted solid-phase microextraction (CA-SPME) coupled to gas chromatography-mass spectrometry (GC-MS) is proposed as a new approach to quantify mass concentrations of MNPs in water and soil samples. The herein proposed CA-SPME method offers the unique advantage of integrating the thermal decomposition of MNPs and enrichment of signature compounds into one step. Poly(methyl methacrylate) (PMMA) was used as a model substance to verify the method performance in this work. Theoretical insights demonstrated that pyrolysis is the rate-determining step during the extraction process and that PMMA is effectively decomposed at 350 °C with an estimated incubation time of 13 min. Eight compounds were identified in the pyrolysis products by CA-SPME-GC-MS with the use of a DVB/CAR/PDMS coating, wherein methyl methacrylate was considered as the best indicator and dimethyl 2-methylenesuccinate was selected as the confirmation compound. Under the optimized conditions, the proposed method exhibited wide linearity (0.5-2000 μg for water and 5-1000 μg for soil) and high sensitivity, with limits of detection of 0.014 and 0.28 μg for water and soil, respectively. Finally, the proposed method was successfully applied for determinations of PMMA MNPs in real water and soil samples with satisfactory recoveries attained. The method only required the employment of a filter membrane for water analysis, while soil samples were analyzed directly without any pretreatment. The solvent-free approach, straightforward operation, and high sensitivity of the proposed method show great potential for the analysis of MNPs in different environmental samples.
Collapse
Affiliation(s)
- Shengrui Xu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Huimin Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Li Xiao
- Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution and Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, P. R. China
| | - Miaomiao Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Suling Feng
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Jing Fan
- Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution and Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, P. R. China
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
10
|
Wu N, Xiang W, Zhu F, Huo Z, Wang Z, Qu R. Oxidative degradation and possible interactions of coexisting decabromodiphenyl ether (BDE-209) on polystyrene microplastics in UV/chlorine process. WATER RESEARCH 2023; 245:120560. [PMID: 37688852 DOI: 10.1016/j.watres.2023.120560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
This work was to investigate the transformation of coexisting decabromodiphenyl ether (BDE-209) on microplastics and their possible interactions in UV/chlorine process. Compared with pristine microplastics, the highly aged polystyrene (PS) showed an inhibitory effect on degradation of BDE-209. Increasing initial concentration of BDE-209 on PS inhibited degradation, while the chlorine concentration and pH did not affect the final degradation efficiency. Moreover, the presence of NO3-, SO42-, HCO3- and HA in water was unfavorable for BDE-209 degradation. According to the experimental and calculation results, the contribution to the degradation of BDE-209 was ranked as direct photolysis > HO• > •Cl in the UV/ chlorine system. Chlorination products released by PS during UV/chlorination were detected. Four possible reaction pathways of BDE-209 were proposed, which mainly involved debromination, hydroxylation, chlorine substitution, cleavage of ether bond, and intramolecular elimination of HBr. It was worth noting that PS microplastics not only inhibited the degradation of BDE-209, but also affected the type and abundance of its transformation products. Meanwhile, interaction products of PS and BDE-209 were determined, which was attributed to reactions of PS-derived radicals with •Br/•C6Br5 and •Cl. Results of toxicity evaluation showed that the introduction of carbon-halogen bonds, especially C-Br bond, increased the toxicity of chain scission products of PS. This work provides some new insights into transformation, interaction, and associated ecological risks of coexisting microplastics and surface adsorbed contaminants in the UV/chlorine process of drinking water treatment plants (DWTPs) and wastewater treatment plants (WWTPs).
Collapse
Affiliation(s)
- Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Wenrui Xiang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Feng Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, NO.172 Jiangsu Road, Jiangsu Nanjing 210023, China
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, NO.172 Jiangsu Road, Jiangsu Nanjing 210023, China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China.
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|