1
|
Liu Y, Liu C, Peng X, Liang Z, Hou S, Chen W, Zhang T. Modulating d-orbital electronic configuration of magnetic iron sulfide nanocrystals for maximized treatment efficiency of chromium-contaminated water. WATER RESEARCH 2025; 280:123477. [PMID: 40086149 DOI: 10.1016/j.watres.2025.123477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/12/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Hexavalent chromium (Cr(VI)) is one of the most rigorously regulated contaminants frequently detected in surface and groundwater. Magnetic iron sulfides are naturally abundant, environmentally friendly materials ideal for the removal of Cr(VI) from contaminated water, but the high-spin states of Fe(III) ions limits their adsorption affinity. Herein, we develop a heteroatom-doping approach to boost the Cr(VI) removal efficacy of greigite. Compared to pristine greigite, cobalt doping significantly enhances the capability of greigite to adsorption Cr(VI) by decreasing electron occupancy in the eg orbitals and reducing the spin state of Fe ions. With a combination of electrochemical characterizations and theoretical calculations, we confirm that cobalt doping significantly enhances its reduction capacity toward Cr(VI) by elevating the d-band center and increasing electron transfer rate. We corroborate the finding by showing that Cu-doping, which has the opposite effects on d-orbital electron configures, compromises the efficacy of greigite. Of note, the magnetic properties of greigite remain largely unaffected upon heteroatom doping, allowing easy separation and recovery of the materials from the aqueous solutions. This work provides valuable mechanistic insights for nanomaterial design in contaminant removal and may inform the development of nanotechnology for green remediation of contaminated sites.
Collapse
Affiliation(s)
- Yaqi Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Can Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Xiaofan Peng
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Zongsheng Liang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Shengli Hou
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Liu J, Zhao Y, Cheng L, Lu Z, Liang H, Zhu R, Wang Y, Deng F, Ni Z, Li Y, Yu G, Zhang J, Zhu Y, Qiu R. Hydrothermal reduction and phase transformation of Fe(III) minerals induced by rice straw to improve the heterogeneous Fenton degradation of metolachlor. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137918. [PMID: 40090305 DOI: 10.1016/j.jhazmat.2025.137918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025]
Abstract
Heterogeneous Fenton technology is effective in degrading residual pesticides in soil, but the reduction of Fe(III) in the mineral structure presents a bottleneck. This study combined rice straw with Schwertmannite (Sch), ferrihydrite (Fh), and magnetite (Mag) via a hydrothermal process to obtain iron oxides-hydrothermal carbon composites (Sch@HTC, Fh@HTC, and Mag@HTC). Poor-crystallized Sch and Fh, which were more capable of accepting electrons compared to well-crystallized Mag, exhibited obvious phase transformation to highly active Fe(II)-mineral (humboldtine) via the combination of oxalic acid, an intermediate product, with reduced Fe(II), while Mag was hard to achieve. After hydrothermal treatment, all composites showed enhanced catalytic activity, which increased with the degree of phase transformation. Especially, Sch@HTC demonstrated the highest catalytic activity, degrading 85 % of metolachlor in soil within 24 hours, 2-10 times faster than the others. Surprisingly, the solid-phase Fe(II) in soil increased slightly after the Fenton reaction. Moreover, the in-situ fluorescence intensity of HO• in soil was continuously enhanced, and the effective utilization of H2O2 to HO• was improved. These results confirmed that HTC could provide electrons to Fe(III) during the hydrothermal process, facilitating the Fe(III)/Fe(II) redox cycle and sustaining reactive Fe(II), thus overcoming key challenges in heterogeneous Fenton catalysis.
Collapse
Affiliation(s)
- Jingyi Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yu Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Liulong Cheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhuoye Lu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Haojie Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
| | - Yue Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Fangxin Deng
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
| | - Zhuobiao Ni
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yaying Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture/Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province/Engineering Research Center of Soil Microbes and Cultivated Land Conservation of Guangdong Province, China
| | - Guangwei Yu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jing Zhang
- Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo 315000, China
| | - Yanping Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Gu C, Yang Q, Zhang X, Feng R, Wang S, Liu T, He P, Yin H, Zhu J, Gan M. Bioengineered iron-based heterojunction orientation in optimizing activation pathways for superoxide radical-mediated photoreduction of Cr(VI) from water. WATER RESEARCH 2025; 283:123832. [PMID: 40381273 DOI: 10.1016/j.watres.2025.123832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/28/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
Photocatalytic technology has been widely employed for Cr(VI) remediation. However, the inadequate generation of reactive oxygen species associated with the Cr(VI) reduction, caused by the uncontrollable photo-Fenton reaction, significantly restricts the reduction efficiency. Herein, a bioengineered iron-based heterojunction (Bio-Fe2O3/Fe2(WO4)3) was fabricated via a two-step process of biomineralization and calcination, where tungstate was doped into the precursor during iron metabolism in acidophilic bacteria to optimize the heterojunction structure. Bio-Fe2O3/Fe2(WO4)3 exhibited a short-range ordered structure and superior photocatalytic performance, achieving 100 % reduction of 20 mg/L Cr(VI) within 60 min by photocatalytic oxalic acid (OA) under simulated light conditions. The system provided robust operation in complex environments, notably, operating effectively under mild solar radiation as an alternative to the simulated light. The heterojunction structure intensified the H2O2 activation and selectively boosted the yield of superoxide radical (O2·-), the primary Cr(VI)-reducing species, from 48.02 % to 72.96 %. The high oxidation state of Fe in Bio-Fe2O3/Fe2(WO4)3 contributed to stronger adsorption performance towards OA and H2O2, accompanied with the tendency to take the O2·--generated activation pathway. This work provides a broader perspective on the rational design of photocatalysts to modulate the OA photocatalysis and the H2O2 activation pathway, selectively elevating the yield of O2·- for Cr(VI) reduction.
Collapse
Affiliation(s)
- Chunyao Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, China
| | - Quanliu Yang
- Guizhou Academy of Tobacco Science, Guiyang, 550011, China
| | - Xiaowen Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Ran Feng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Shuyang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Tianye Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Peng He
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, China
| | - Jianyu Zhu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, China.
| | - Min Gan
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, China.
| |
Collapse
|
4
|
Zhang Y, Xu X, Li M, Zhou W, Chen Y, You Z, Liu Y. Modification of iron-containing silicate tailings with oxalic acid to develop a long-efficacy utilization peroxymonosulfate-based system for the efficient decomplexation and removal of Cr(III)-ethylenediamine tetraacetic acid. J Colloid Interface Sci 2025; 683:193-203. [PMID: 39731863 DOI: 10.1016/j.jcis.2024.12.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 12/30/2024]
Abstract
Ferrous oxalate (FeC2O4)-based composite has been recognized as an eminent catalyst for Cr(III)-ethylenediamine tetraacetic acid (Cr(III)-EDTA) decomplexation. However, their practical application has been limited by low cycling capacity and an ambiguous mechanism. In this research, a composite catalyst consisting of biotite loaded with nano FeC2O4 (CFS90) was prepared directly from iron-containing silicate tailing. The removal efficiency (91.3 %, kobs = 0.0185 min-1) of Cr(III)-EDTA by CFS90/peroxymonosulfate (PMS) system was remarkably higher than that of other typical systems. The Si site in biotite lost electrons while the electron cloud density around the Fe atom in FeC2O4 increased, which facilitates the activation of PMS and the generation of reactive oxygen species (ROS). In this system, abundant singlet oxygen (1O2) was primarily produced via interactions between carbon-centered radicals (CO2·-) and dissolved oxygen (DO), rather than through oxygen vacancies (Ovs) in CFS90. Both CO2·- and Fe(II) provided reducing conditions, preventing the released Cr(III) from being re-oxidized. Notably, the released Cr(III) was effectively precipitated by elevating the solution pH with NaOH, therefore endowing superior stability and deactivation capacity of CFS90 to enable its removal rate of Cr(III)-EDTA to remain above 84.1 % for 18 h in a fix-bed reactor. These findings provide an in-depth analysis of the enhanced Cr(III)-EDTA removal mechanism and highlight the environmental remediation potential of iron-containing silicate tailings.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Xin Xu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Mengke Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Wei Zhou
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yuehui Chen
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Zhimin You
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yun Liu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
5
|
Lu F, Wang J, Zhang C, Xin Z, Deng Z, Ren J, Shi J. Sodium citrate-modification enhanced Fe 3S 4 for Cr(Ⅵ) removal from aqueous solution and soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125889. [PMID: 39986560 DOI: 10.1016/j.envpol.2025.125889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Fe3S4 has been widely employed to remove Cr(Ⅵ) from wastewater, however, its practical effectiveness is often limited by agglomeration and passivation. This study introduces sodium citrate (SC) as a ligand to synthesize an Fe3S4-SC magnetic micro-crystal for Cr(Ⅵ) removal from aqueous solutions and contaminated soils. Experimental results show that Fe3S4-SC exhibits superior Cr(Ⅵ) removal efficiency, especially in acidic environments, with a maximum adsorption capacity of 449.12 mg/g. When Fe3S4-SC was used to remediate Cr(Ⅵ)-contaminated soil with a Cr(Ⅵ) content of 664.98 mg/kg and a TCLP-Cr(Ⅵ) concentration of 26.57 mg/L, the removal efficiencies of Cr(Ⅵ) and TCLP-Cr(Ⅵ) were 99.29% and 98.52% after 60 days. Cr speciation shifted from exchangeable fraction and weak acid-soluble fraction to more stable species bound to Fe-Mn oxides and residual fraction. Cr(Ⅵ) removal was primarily facilitated by surface Fe(Ⅱ), dissolved Fe(Ⅱ), and surface S(-Ⅱ). Surface S(-Ⅱ) provided electrons to Fe(Ⅲ), facilitating Fe(Ⅱ) regeneration for the continuous reduction of Cr(Ⅵ). The SC ligand enhanced material dispersion and stability, promoted Fe(Ⅱ) dissolution, reduced passivation layer formation, and improved electron transfer efficiency, thus increasing the efficacy of Fe3S4-SC in Cr(Ⅵ) removal. These findings provide a valuable reference for effectively remediating Cr(Ⅵ) contamination in wastewater and soil.
Collapse
Affiliation(s)
- Feiyu Lu
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Chun Zhang
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Ziming Xin
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhenkun Deng
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiayu Ren
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
6
|
Shangguan Y, Wang R, Tang H, Deng S, Hu Q, Liang J, Zhou H, Chen X, Chen H. Modulation of Charge-Ordered Carriers Within 3D Fe 3S 4 Polyurethane Foam (Fe 3S 4-PUF) for Efficient Iron Redox Cycling and Continuous-Flow Photocatalytic Antibiotics Degradation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411116. [PMID: 40095300 DOI: 10.1002/smll.202411116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Photocatalytic antibiotic degradation is an energy-efficient and environmentally friendly approach with the potential for large-scale application but is severely constrained by the lack of efficient and stable catalysts to produce reactive oxygen species (ROS). This research introduces a charge-ordered 3D Fe3S4-PUF composite integrated into a custom-built photocatalytic tandem continuous-flow cylinder reactor (TCCR) for antibiotic degradation. The system consistently achieves 100% tetracycline (TC) degradation efficiency with Fe3S4-PUF during 130 h of continuous operation, benefiting from the charge-ordered 3D Fe3S4-PUF framework and the TCCR design. Mechanism investigations reveal that the abundant Lewis basic ≡SH site and light-induced sustainable Fe2+/Fe3+ redox cycling within Fe3S4 facilitates the production of H2O2 and ROS. Density functional theory (DFT) calculations indicate that Fe2+ acts as an active site for capturing and activating O2, leading to either one-electron (O2→O2 •-→H2O2→•OH) or two-electron transfer (O2→H2O2) pathways. Meanwhile, photogenerated electron and the oxygen atoms in H2O2 provide electrons to Fe3+, facilitating the reduction of Fe3+ to Fe2+, thus elucidating the Fe2+/Fe3+ redox cycling mechanism. Moreover, the 3D PUF structure enhances the mass transfer and pollutant-ROS interactions. The continuous-flow photocatalytic reaction validate the efficient antibiotic degradation of Fe3S4-PUF composite, suggesting its potential for implementation in large-scale antibiotic wastewater treatment systems.
Collapse
Affiliation(s)
- Yangzi Shangguan
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Department of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Ranhao Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Department of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Huan Tang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Department of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Shimao Deng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Department of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Qiushi Hu
- SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jiaxin Liang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Department of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Huiling Zhou
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Department of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xihan Chen
- SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Hong Chen
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Department of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
7
|
Zhu Y, Gao Y, Yang F. Controlling the amount of MoSe 2 loaded SrTiO 3 to activate peroxymonosulfate for efficient elimination of organic pollutants. ENVIRONMENTAL TECHNOLOGY 2025; 46:1031-1044. [PMID: 38989540 DOI: 10.1080/09593330.2024.2375007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/18/2024] [Indexed: 07/12/2024]
Abstract
It is critical to effectively eliminate recalcitrant organic pollutants from wastewater. In this paper, the MoSe2/SrTiO3 (MST) catalysts were synthesized through simply controlling the amount of MoSe2 in the hydrothermal method to activate peroxymonosulfate (PMS) for the degradation of pollutants. The results demonstrated that sulfamethoxazole and tetracycline were almost eliminated by PMS/MST-3 (MoSe2/SrTiO3 mass ratio 0.3: 1) activation system. The effect of inorganic anions (Cl -, H2PO4 -, HCO3 -) and metal ions (Cu2+, Ni2+, Zn2+) commonly found in actual water bodies on catalytic reaction was explored. Moreover, SO4• -, •OH and 1O2 were identified by EPR tests and scavenger experiments, where the SO4• - and •OH were the dominant reactive species. The XPS analysis indicated that the oxygen vacancies and charge transfer on the catalyst surface were the keys of PMS activation. The effect of active sites in SMX and TC on the catalytic degradation activity was explored by density functional theory, and it was obtained that the central nitrogen site of SMX was more vulnerable in the catalytic system, while the edge oxygen site of TC was more susceptible to attack.
Collapse
Affiliation(s)
- Yueming Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, People's Republic of China
| | - Yuexiang Gao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, People's Republic of China
| | - Fei Yang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Liu X, Yang Z, Liu H, Li Y, Zhang G. Efficient photocatalytic degradation of microplastics by constructing a novel Z-scheme Fe-doped BiO 2-x/BiOI heterojunction with full-spectrum response: Mechanistic insights and theory calculations. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136080. [PMID: 39393326 DOI: 10.1016/j.jhazmat.2024.136080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
Recently, microplastics (MPs) have garnered significant attention as a challenging emerging pollutant to address. Here, a full-spectrum light-driven Fe-doping BiO2-x/BiOI (FBI) Z-scheme heterojunction was constructed for efficiently degrading MPs in waters. Compared with BiO2-x, Fe doping BiO2-x, and BiOI, the optimal photocatalyst (40-FBI) can cause deep cracks in the polyethylene terephthalate (PET) within 10 h under the irradiation of full-spectrum light. Meanwhile, FT-IR characterization revealed that the absorption peak intensities of the C-O group, CO group, -CH stretching vibration, and -OH group on the MPs surface gradually increased with degradation time. A series of experiments and theory calculations revealed that the introduction of Fe creates impurity levels, accelerating the separation of photo-generated carriers and reducing the work function of BiO2-x, thereby enhancing the transport of photo-generated carriers between Z-scheme heterojunctions. This study offers a valuable idea for designing an efficient photocatalyst by simultaneously introducing ion doping and constructing heterojunctions for enhancing MPs degradation.
Collapse
Affiliation(s)
- Xinyue Liu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixiong Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Hong Liu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Yuan Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Gaoke Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
9
|
Zhang Z, Bai C, Ni L, Guo D, Zhang Q. Optimization of band structure by facet engineering to enhance photocatalytic/photothermal synergistic therapy of cobalt sulfide nanosheets. J Colloid Interface Sci 2024; 680:595-604. [PMID: 39579425 DOI: 10.1016/j.jcis.2024.11.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
With the rapid development of optics and nanotechnology, optical therapy is recognized as a potential strategy to combat bacterial drug resistance. Unfortunately, the limitation of band structure on the therapeutic effect of photocatalytic nano-antimicrobial materials has become a major challenge in the development of optical therapy. Here, Co9S8 and Co9S8-T200 were prepared by facet engineering design with major exposed facets (311) and (222), respectively. The experimental results demonstrate that the antimicrobial ability of Co9S8-T200 was significantly higher than that of Co9S8 under the excitation of near-infrared light. Theoretical calculations show that the (222) facets can modulate the d-band center of Co9S8-T200 closer to the Fermi energy level. This promotes the binding of the intermediate to the active site. The strong adsorption capacity for O2 and H2O and the high efficiency of electron-hole pair separation facilitate the production of reactive oxygen species dominated by singlet oxygen, and the photocatalytic therapy is effectively enhanced. In addition, Co9S8-T200 has a narrow bandgap to promote photothermal conversion efficiency and light absorption capacity and exhibits excellent photothermal therapy. This work expands new ideas for the development of superior optical antimicrobial agents with synergistic photothermal and photocatalytic therapy.
Collapse
Affiliation(s)
- Zhihao Zhang
- College of Environment and Resource, Shanxi University, Taiyuan 30006, China; Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Caixia Bai
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Lu Ni
- College of Environment and Resource, Shanxi University, Taiyuan 30006, China
| | - Donggang Guo
- College of Environment and Resource, Shanxi University, Taiyuan 30006, China; Shanxi Laboratory for Yellow River, Taiyuan 30006, China.
| | - Quanxi Zhang
- College of Environment and Resource, Shanxi University, Taiyuan 30006, China; Institute of Environmental Science, Shanxi University, Taiyuan 030006, China; Shanxi Laboratory for Yellow River, Taiyuan 30006, China.
| |
Collapse
|
10
|
Liu C, Lin S, Liu Y, Li M, Shen W, Jiang N, Li F, Tian J. Disclosing the influence mechanism of facet-dependent pyrite photo-activation and photo-dissolution processes on the reduction of Cr(VI). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124578. [PMID: 39032550 DOI: 10.1016/j.envpol.2024.124578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
The photo-activation and photo-dissolution processes of pyrite (FeS2) can affect the environmental behavior of the co-existing hexavalent chromium (Cr(VI)). But the photochemical performance of FeS2 is intimately dependent on its exposed facets. Herein, FeS2 nanosheets (FeS2 NS) and FeS2 nanocubes (FeS2 NC) with the dominant exposed facets of (001) and (210)/(100) respectively are prepared. The more Fe3+, Fe2+, and SO42- are released in the FeS2 NS system than the other system due to its more excellent generation ability of photogenerated electrons and reactive oxygen species. The higher surface energy on (001) facet leads to the faster dissolution rate of FeS2 NS. Due to the optimal production ability of photogenerated electrons and Fe2+ of (001) facet, the much higher Cr(VI) elimination efficiency in the FeS2 NS system is observed than that in the FeS2 NC (72.8%) system within 120 min. This work could help to unveil the influence of FeS2 on the fate of Cr(VI) in surface environment, and offer a theoretical support to clarify the influence of heavy metal ions on the iron sulfide minerals.
Collapse
Affiliation(s)
- Chenrui Liu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Shuangyi Lin
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Yun Liu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China.
| | - Mengke Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Wentao Shen
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Nengle Jiang
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Feng Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Jiang Tian
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| |
Collapse
|
11
|
Hanif MB, Bacova J, Berezenko V, Zeng Y, Paluch E, Seniuk A, Khan MZ, Rauf S, Hussain I, Motlochova M, Plesch G, Monfort O, Capek J, Dworniczek E, Rousar T, Motola M. 2D TiO 2 Nanosheets Decorated Via Sphere-Like BiVO 4: A Promising Non-Toxic Material for Liquid Phase Photocatalysis and Bacterial Eradication. CHEMSUSCHEM 2024; 17:e202400027. [PMID: 38588020 DOI: 10.1002/cssc.202400027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
An in-depth investigation was conducted on a promising composite material (BiVO4/TiO2), focusing on its potential toxicity, photoinduced catalytic properties, as well as its antibiofilm and antimicrobial functionalities. The preparation process involved the synthesis of 2D TiO2 using the lyophilization method, which was subsequently functionalized with sphere-like BiVO4 through wet impregnation. Finally, we developed BiVO4/TiO2 S-scheme heterojunctions which can greatly promote the separation of electron-hole pairs to achieve high photocatalytic performance. The evaluation of concentration- and time-dependent viability inhibition was performed on human lung carcinoma epithelial A549 cells. This assessment included the estimation of glutathione levels and mitochondrial dehydrogenase activity. Significantly, the BiVO4/TiO2 composite demonstrated minimal toxicity towards A549 cells. Impressively, the BiVO4/TiO2 composite exhibited notable photocatalytic performance in the degradation of rhodamine B (k=0.135 min-1) and phenol (k=0.016 min-1). In terms of photoinduced antimicrobial performance, the composite effectively inactivated both gram-negative E. coli and gram-positive E. faecalis bacteria upon 60 minutes of UV-A light exposure, resulting in a significant log 6 (log 10 CFU/mL) reduction in bacterial count. In addition, a 49 % reduction of E. faecalis biofilm was observed. These promising results can be attributed to the unique 2D morphology of TiO2 modified by sphere-like BiVO4, leading to an increased generation of (intracellular) hydroxyl radicals, which plays a crucial role in the treatments of both organic pollutants and bacteria. This research has significant potential for various applications, particularly in addressing environmental contamination and microbial infections.
Collapse
Affiliation(s)
- Muhammad Bilal Hanif
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Jana Bacova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, 532 10, Czechia
| | - Viktoriia Berezenko
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovakia
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Yilan Zeng
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovakia
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Alicja Seniuk
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Muhammad Zubair Khan
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China
| | - Sajid Rauf
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, Guangdong Province, 518000, China
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China
| | - Monika Motlochova
- Institute of Inorganic Chemistry, Czech Academy of Sciences, Husinec-Rez 1001, Rez, 250 68, Czechia
| | - Gustav Plesch
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Olivier Monfort
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Jan Capek
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, 532 10, Czechia
| | - Ewa Dworniczek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Tomas Rousar
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, 532 10, Czechia
| | - Martin Motola
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovakia
| |
Collapse
|
12
|
Wang G, Huang D, Cheng M, Du L, Chen S, Zhou W, Li R, Li S, Huang H, Xu W, Tang L. The Surface Confinement of FeO Assists in the Generation of Singlet Oxygen and High-Valent Metal-Oxo Species for Enhanced Fenton-Like Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401970. [PMID: 38770987 DOI: 10.1002/smll.202401970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/03/2024] [Indexed: 05/22/2024]
Abstract
Transition metal compounds (TMCs) have long been potential candidate catalysts in persulfate-based advanced oxidation process (PS-AOPs) due to their Fenton-like catalyze ability for radical generation. However, the mechanism involved in TMCs-catalyzed nonradical PS-AOPs remains obscure. Herein, the growth of FeO on the Fe3O4/carbon precursor is regulated by restricted pyrolysis of MIL-88A template to activate peroxymonosulfate (PMS) for tetracycline (TC) removal. The higher FeO incorporation conferred a 2.6 times higher degradation performance than that catalyzed by Fe3O4 and also a higher interference resistance to anions or natural organic matter. Unexpectedly, the quenching experiment, probe method, and electron paramagnetic resonance quantitatively revealed that the FeO reassigned high nonradical species (1O2 and FeIV═O) generation to replace original radical system created by Fe3O4. Density functional theory calculation interpreted that PMS molecular on strongly-adsorbed (200) and (220) facets of FeO enjoyed unique polarized electronic reception for surface confinement effect, thus the retained peroxide bond energetically supported the production of 1O2 and FeIV═O. This work promotes the mechanism understanding of TMCs-induced surface-catalyzed persulfate activation and enables them better perform catalytic properties in wastewater treatment.
Collapse
Affiliation(s)
- Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Sha Chen
- College of Materials Science and Engineering, Hubei University of Technology, Wuhan, 430068, P. R. China
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Sai Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Hai Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Wenbo Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
13
|
Qiao XX, Xu YH, Liu XJ, Chen SL, Zhong Z, Li YF, Lü J. Nitrogen-doped titanium dioxide/schwertmannite nanocomposites as heterogeneous photo-Fenton catalysts with enhanced efficiency for the degradation of bisphenol A. J Environ Sci (China) 2024; 143:1-11. [PMID: 38644008 DOI: 10.1016/j.jes.2023.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 04/23/2024]
Abstract
Potential health risks related to environmental endocrine disruptors (EEDs) have aroused research hotspots at the forefront of water treatment technologies. Herein, nitrogen-doped titanium dioxide/schwertmannite nanocomposites (N-TiO2/SCH) have been successfully developed as heterogeneous catalysts for the degradation of typical EEDs via photo-Fenton processes. Due to the sustainable Fe(III)/Fe(II) conversion induced by photoelectrons, as-prepared N-TiO2/SCH nanocomposites exhibit much enhanced efficiency for the degradation of bisphenol A (BPA; ca. 100% within 60 min under visible irradiation) in a wide pH range of 3.0-7.8, which is significantly higher than that of the pristine schwertmannite (ca. 74.5%) or N-TiO2 (ca. 10.8%). In this photo-Fenton system, the efficient degradation of BPA is mainly attributed to the oxidation by hydroxyl radical (•OH) and singlet oxygen (1O2). Moreover, the possible catalytic mechanisms and reaction pathway of BPA degradation are systematically investigated based on analytical and photoelectrochemical analyses. This work not only provides a feasible means for the development of novel heterogeneous photo-Fenton catalysts, but also lays a theoretical foundation for the potential application of mineral-based materials in wastewater treatment.
Collapse
Affiliation(s)
- Xing-Xing Qiao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu-Hang Xu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiang-Ji Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sai-Le Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhou Zhong
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ya-Feng Li
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China
| | - Jian Lü
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
14
|
Yang Z, Li Y, Wang X, Li J, Wang J, Zhang G. Facet-dependent activation of oxalic acid over hematite nanocrystals under the irradiation of visible light for efficient degradation of pollutants. J Environ Sci (China) 2024; 142:204-214. [PMID: 38527885 DOI: 10.1016/j.jes.2023.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 03/27/2024]
Abstract
Naturally occurring hematite has been widely studied in the Fenton-like system for water pollutant remediation due to its abundance and non-toxicity. However, its inadequate catalytic activity results in difficulty in effectively degrading pollutants in the catalytic degradation system that it constitutes. Thus, we constructed a photochemical system composed of hematite with {001} facet of high activity facet and low-cost and non-toxic oxalic acid (OA) for the removal of various types of pollutants. The removal rate for the degradation of metronidazole, tetracycline hydrochloride, Rhodamine B, and hexavalent chromium by hematite nanoplate with the exposed {001} facet activating OA under visible light irradiation was 4.75, 2.25, 2.33, and 2.74 times than that by the exposed {110} facet, respectively. Density functional theory (DFT) calculation proved that the OA molecule was more easily adsorbed on the {001} facet of hematite than that on the {110} facet, which would favor the formation of the more Fe(III)-OA complex and reactive species. In addition, the reactive site of metronidazole for the attraction of radicals was identified on the basis of the DFT calculation on the molecular occupied orbitals, and the possible degradation pathway for metronidazole included carbon chain fracture, hydroxyethyl-cleavage, denitrogenation, and hydroxylation. Thus, this finding may offer a valuable direction in designing an efficient iron-based catalyst based on facet engineering for the improved activity of Fenton-like systems such as OA activation.
Collapse
Affiliation(s)
- Zhixiong Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Yuan Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaotian Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Jiaming Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Jiquan Wang
- Hubei Engineering Consulting Co., Ltd., Wuhan 430071, China
| | - Gaoke Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
15
|
Ren G, Zhang J, Li S, Zhang L, Shao C, Wang X, Bai H. Z-scheme heterojunction composed of Fe-doped g-C 3N 4 and Bi 2MoO 6 for photo-fenton degradation of antibiotics over a wide pH range: Activity and toxicity assessment. ENVIRONMENTAL RESEARCH 2024; 252:118886. [PMID: 38583659 DOI: 10.1016/j.envres.2024.118886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
In photo-Fenton technology, the narrower pH range limits its practical application for antibiotic wastewater remediation. Therefore, in this study, a Z-scheme heterojunction photo-Fenton catalyst was constructed by Fe-doped graphite-phase carbon nitride in combination with bismuth molybdate for the degradation of typical antibiotics. Fe doping can shorten the band gap and increase visible-light absorption. Simultaneously, the constructed Z-scheme heterojunction provides a better charge transfer pathway for the photo-Fenton reaction. Within 30 min, Fe3CN/BMO-3 removed 95.54% of tetracycline hydrochloride (TC), and its remarkable performance was the higher Fe3+/Fe2+ conversion efficiency through the decomposition of H2O2. The Fe3CN/BMO-3 catalyst showed remarkable photo-Fenton degradation performance in a wide pH range (3.0-11.0), and it also had good stability in the treatment of TC wastewater. Furthermore, the order of action of the active species was h+ > ·O2- > 1O2 > ·OH, and the toxicity assessment suggested that Fe3CN/BMO-3 was effective in reducing the biotoxicity of TC. The catalyst proved to be an economically feasible and applicable material for antibiotic photo-Fenton degradation, and this study provides another perspective on the application of elemental doping and constructed heterojunction photo-Fenton technology for antibiotic water environmental remediation.
Collapse
Affiliation(s)
- Guangqin Ren
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Jian Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, PR China.
| | - Shurui Li
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Lanhe Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Chen Shao
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Xinyan Wang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Haina Bai
- School of Biological and Food Engineering, Jilin Institute of Chemical Technology, Jilin 132022, PR China.
| |
Collapse
|
16
|
Li S, Pang J, Han W, Chang T, Luo L, Li X, Liu J, Cheng H. Insights into sunlight-driven transformation of tetracycline by iron (hydr)oxides: The dominating role of self-generated hydrogen peroxide. WATER RESEARCH 2024; 258:121800. [PMID: 38796909 DOI: 10.1016/j.watres.2024.121800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/01/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Iron (hydr)oxides are abundant in surface environment, and actively participate in the transformation of organic pollutants due to their large specific surface areas and redox activity. This work investigated the transformation of tetracycline (TC) in the presence of three common iron (hydr)oxides, hematite (Hem), goethite (Goe), and ferrihydrite (Fh), under simulated sunlight irradiation. These iron (hydr)oxides exhibited photoactivity and facilitated the transformation of TC with the initial phototransformation rates decreasing in the order of: Hem > Fh > Goe. The linear correlation between TC removal efficiency and the yield of HO• suggests that HO• dominated TC transformation. The HO• was produced by UV-induced decomposition of self-generated H2O2 and surface Fe2+-triggered photo-Fenton reaction. The experimental results indicate that the generation of HO• was controlled by H2O2, while surface Fe2+ was in excess. Sunlight-driven H2O2 production in the presence of the highly crystalline Hem and Goe occurred through a one-step two-electron reduction pathway, while the process was contributed by both O2-induced Fe2+ oxidation and direct reduction of O2 by electrons on the conduction band in the presence of the poorly crystalline Fh. These findings demonstrate that sunlight may significantly accelerate the degradation of organic pollutants in the presence of iron (hydr)oxides.
Collapse
Affiliation(s)
- Shiwen Li
- Central Iron and Steel Research Institute Group, Beijing 100081, China
| | - Jianming Pang
- Central Iron and Steel Research Institute Group, Beijing 100081, China
| | - Wei Han
- Central Iron and Steel Research Institute Group, Beijing 100081, China
| | - Ting Chang
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Lingen Luo
- Central Iron and Steel Research Institute Group, Beijing 100081, China
| | - Xian Li
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jue Liu
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China.
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
17
|
Chen J, He X, Lei C, Li W, Yang Z, Zhou Q. Research on carbon black and cerium co-doped Ti 4O 7-CB-Ce electrocatalytic oxidation of tetracycline-based antibiotics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44983-44994. [PMID: 38955967 DOI: 10.1007/s11356-024-33674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/09/2024] [Indexed: 07/04/2024]
Abstract
Elemental doping is a promising way for enhancing the electrocatalytic activity of metal oxides. Herein, we fabricate Ti/ Ti4O7-CB-Ce anode materials by the modification means of carbon black and cerium co-doped Ti4O7, and this shift effectively improves the interfacial charge transfer rate of Ti4O7 and •OH yield in the electrocatalytic process. Remarkably, the Ti4O7-CB-Ce anode exhibits excellent efficiency of minocycline (MNC) wastewater treatment (100% removal within 20 min), and the removal rate reduces from 100 to 98.5% after five cycles, which is comparable to BDD electrode. •OH and 1O2 are identified as the active species in the reaction. Meanwhile, it is discovered that Ti/ Ti4O7-CB-Ce anodes can effectively improve the biochemical properties of the non-biodegradable pharmaceutical wastewater (B/C values from 0.25 to 0.44) and significantly reduce the toxicity of the wastewater (luminescent bacteria inhibition rate from 100 to 26.6%). This work paves an effective strategy for designing superior metal oxides electrocatalysts.
Collapse
Affiliation(s)
- Junxia Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xinyi He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Chongtian Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Weigang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Zhenzhen Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
18
|
Ge F, Zhao Y, Feng C, Li X, Wang J, Liu H, Hu L, Chen Y, Chen F, Cheng F, Wei HY, Wu XJ. Elucidating Facet-Dependent Photocatalytic Activities of Metastable CdS and Au@CdS Core-Shell Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32847-32856. [PMID: 38862405 DOI: 10.1021/acsami.4c04195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Controlling the crystal facets of semiconductor nanocrystals (NCs) has been proven as an effective approach to tune their physicochemical properties. However, the study on facet-engineering of metastable zinc blende CdS (zb-CdS) and its heterostructures is still not fully explored. In this study, the zb-CdS and Au@zb-CdS core-shell NCs with tunable terminating facets are controllably synthesized, and their photocatalytic performance for water splitting are evaluated. It is found that the {111} facets of the zb-CdS NCs display higher intrinsic activity than the {100} counterparts, which originates from these surfaces being much more efficient, facilitating electron transition to enhance the adsorption ability and the dissociation of the adsorbed water, as revealed by theoretical calculations. Moreover, the Au@zb-CdS core-shell NCs exhibit better photocatalytic performance than the zb-CdS NCs terminated with the same facets under visible light irradiation (≥400 nm), which is mainly ascribed to the accelerated electron separation at the interface, as demonstrated by femtosecond transient absorption (fs-TA) spectroscopy. Importantly, the quantum yield of plasmon-induced hot electron transfer quantified by fs-TA in the Au@zb-CdS core-shell octahedrons can be reached as high as 1.2% under 615 nm excitation, which is higher than that of the Au@zb-CdS core-shell cubes. This work unravels the face-dependent photocatalytic performance of the metastable semiconductor NCs via a combination of experiments and theoretical calculations, providing the understanding of the underlying mechanism of these photocatalysts.
Collapse
Affiliation(s)
- Feiyue Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuji Zhao
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Changsheng Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xuefei Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- College of Chemistry and Chemical Engineering, Shangqiu Normal University Shangqiu 476000, China
| | - Jiaqi Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Haixia Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lijun Hu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feifan Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fang Cheng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Hai-Yan Wei
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xue-Jun Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
19
|
Yu S, Yuan X, Zhao B, Xue N, Du S, Wang Y. Pyrite-activated persulfate to degrade 3,5,6-trichloro-2-pyridyl in water: Degradation and Fe release mechanism. ENVIRONMENTAL RESEARCH 2024; 251:118198. [PMID: 38220084 DOI: 10.1016/j.envres.2024.118198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
TCP (3,5,6-trichloro-2-pyridinol), the main recalcitrant degradation product of chlorpyrifos, poses a high risk to human health and ecological systems. This study provided a comprehensive exploration of the pyrite-activated persulfate (PS) system for the removal of TCP in water and placed particular emphasis on the pyrite oxidation process that releases Fe. The results showed that the pyrite-activated PS system can completely degrade TCP within 300 min at 5.0 mmol/L PS and 1000 mg/L pyrite at 25 °C, wherein small amounts of PS (1 mmol/L) can effectively facilitate TCP removal and the oxidation of pyrite elements, while excessive PS (>20 mmol/L) can lead to competitive inhibitory effects, especially in the Fe release process. Aimed at the dual effects, the evident positive correlation (R2 > 0.90) between TCP degradation (kTCP) and Fe element release (kFe), but the value of k (0.00237) in the pyrite addition variable experiment was less than that in the PS experiment (k = 0.00729), further indicating that the inhibition effect of excessive addition consists of PS but not notably pyrite. Moreover, the predominant free radicals and non-free radicals produced in the pyrite/PS system were tested, with the order of significance being •OH < Fe (Ⅳ) < SO4•- < •O2- < 1O2, wherein 1O2 emerged as the principal player in both TCP degradation and Fe release from the pyrite oxidation process. Additionally, CO32- can finitely activate PS but generally slows TCP degradation and inhibit pyrite oxidation releasing Fe process. This study provides a theoretical basis for the degradation of TCP using pyrite-activated PS.
Collapse
Affiliation(s)
- Shuntao Yu
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Technical Center for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Xuehong Yuan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Bingrong Zhao
- Technical Center for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Nandong Xue
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Technical Center for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Siying Du
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Technical Center for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Ye Wang
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Technical Center for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| |
Collapse
|
20
|
Jabbar ZH, Graimed BH, Okab AA, Ammar SH, Taofeeq H, Al-Yasiri M. Synthesis of 3D Sb 2O 3-based heterojunction reinforced by SPR effect and photo-Fenton mechanism for upgraded oxidation of metronidazole in water environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121347. [PMID: 38838534 DOI: 10.1016/j.jenvman.2024.121347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/28/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
The traditional homogenous and heterogenous Fenton reactions have frequently been restrained by the lower production of Fe2+ ions, which significantly obstructs the generation of hydroxyl radicals from the decomposition of H2O2. Thus, we introduce novel photo-Fenton-assisted plasmonic heterojunctions by immobilizing Fe3O4 and Bi nanoparticles onto 3D Sb2O3 via co-precipitation and solvothermal approaches. The ternary Sb2O3/Fe3O4/Bi composites offered boosted photo-Fenton behavior with a metronidazole (MNZ) oxidation efficiency of 92% within 60 min. Among all composites, the Sb2O3/Fe3O4/Bi-5% hybrid exhibited an optimum photo-Fenton MNZ reaction constant of 0.03682 min- 1, which is 5.03 and 2.39 times higher than pure Sb2O3 and Sb2O3/Fe3O4, respectively. The upgraded oxidation activity was connected to the complementary outcomes between the photo-Fenton behavior of Sb2O3/Fe3O4 and the plasmonic effect of Bi NPs. The regular assembly of Fe3O4 and Bi NPs enhances the surface area and stability of Sb2O3/Fe3O4/Bi. Moreover, the limited absorption spectra of Sb2O3 were extended into solar radiation by the Fe3+ defect of Fe3O4 NPs and the surface plasmon resonance (SPR) effect of Bi NPs. The photo-Fenton mechanism suggests that the co-existence of Fe3O4/Bi NPs acts as electron acceptor/donor, respectively, which reduces recombination losses, prolongs the lifetime of photocarriers, and produces more reactive species, stimulating the overall photo-Fenton reactions. On the other hand, the photo-Fenton activity of MNZ antibiotics was optimized under different experimental conditions, including catalyst loading, solution pH, initial MNZ concentrations, anions, and real water environments. Besides, the trapping outcomes verified the vital participation of •OH, h+, and •O2- in the MNZ destruction over Sb2O3/Fe3O4/Bi-5%. In summary, this work excites novel perspectives in developing boosted photosystems through integrating the photocatalysis power with both Fenton reactions and the SPR effects of plasmonic materials.
Collapse
Affiliation(s)
- Zaid H Jabbar
- Building and Construction Techniques Engineering Department, Al-Mustaqbal University College, 51001, Hillah, Babylon, Iraq.
| | - Bassim H Graimed
- Environmental Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Ayah A Okab
- Civil Engineering Department, College of Engineering, Al-Qasim Green University, Babylon, 51013, Iraq.
| | - Saad H Ammar
- Department of Chemical Engineering, College of Engineering, Al-Nahrain University, Jadriya, Baghdad, Iraq; College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Haidar Taofeeq
- Department of Chemical Engineering, College of Engineering, Al-Nahrain University, Jadriya, Baghdad, Iraq; Multiphase Flow and Reactors Engineering & Education Laboratory (mFReel), Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, USA; Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| | - Mortatha Al-Yasiri
- Department of Chemical Engineering and Petroleum Industries, Al-Amarah University College, Iraq
| |
Collapse
|
21
|
Yang Z, Li Y, Zhang G. Degradation of microplastic in water by advanced oxidation processes. CHEMOSPHERE 2024; 357:141939. [PMID: 38621489 DOI: 10.1016/j.chemosphere.2024.141939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/19/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
Plastic products have gained global popularity due to their lightweight, excellent ductility, high durability, and portability. However, out of the 8.3 billion tons of plastic waste generated by human activities, 80% of plastic waste is discarded due to improper disposal, and then transformed into microplastic pollution under the combined influence of environmental factors and microorganisms. In this comprehensive study, we present a thorough review of recent advancements in research on the source, distribution, and effect of microplastics. More importantly, we conducted deep research on the catalytic degradation technologies of microplastics in water, including advanced oxidation and photocatalytic technologies, and elaborated on the mechanisms of microplastics degradation in water. Besides, various strategies for mitigating microplastic pollution in aquatic ecosystems are discussed, ranging from policy interventions, the initiative for plastic recycling, the development of efficient catalytic materials, and the integration of multiple technological approaches. This review serves as a valuable resource for addressing the challenge of removing microplastic contaminants from water bodies, offering insights into effective and sustainable solutions.
Collapse
Affiliation(s)
- Zhixiong Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Yuan Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Gaoke Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
| |
Collapse
|
22
|
Qiu R, Chen A, Zhang P, Tang X, Wang C, Sun H. Preparation of novel Fe-containing zeolite-A for KN-R decolorization by Fenton-like reaction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28525-28537. [PMID: 38558348 DOI: 10.1007/s11356-024-33023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Herein, novel catalysts of Fe-containing zeolite-A (Fe/zeolite-A) were synthesized by exchanging iron ions into zeolite-A framework, and short-chain organic acids (SCOAs) were employed as chelating agents. Reactive Brilliant Blue KN-R (KN-R) was used as a model pollutant to evaluate the performance of these catalysts based on the heterogeneous Fenton reaction. The results showed that Fe-OA/3A, which applied zeolite-3A as the supporter and oxalic as the chelating agent, presented the most prominent KN-R decolorization efficiency. Under the initial pH of 2.5, 0.4 mM KN-R could be totally decolorized within 20 min. However, the mineralization efficiency of KN-R was only 58.2%. Therefore, anthraquinone dyes were introduced to modify zeolite-3A. As a result, the mineralization efficiency of KN-R was elevated to 92.7% when using Alizarin Violet (AV) as the modifier. Moreover, the modified catalysts exhibited excellent stability, the KN-R decolorization efficiency could be maintained above 95.0% within 20 min after operating for nine cycles. The mechanism revealed that the Fe(II)/Fe(III) cycle was accelerated by AV-modified catalyst thus prompting the KN-R decolorization in Fenton-like system. These findings provide new insights for preparing catalysts with excellent activity and stability for dye wastewater treatment.
Collapse
Affiliation(s)
- Rui Qiu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, #38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Aiyin Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, #38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Peng Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, #38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Xuejiao Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, #38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Cuiping Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, #38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, #38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China.
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China.
| |
Collapse
|
23
|
Zhang T, Zuo S. Nitrogen-doped metal-free granular activated carbons as economical and easily separable catalysts for peroxymonosulfate and hydrogen peroxide activation to degrade bisphenol A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25751-25768. [PMID: 38488915 DOI: 10.1007/s11356-024-32751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
The fabrication of low-cost, highly efficient, environmentally friendly, and easily separable metal-free heterogeneous catalysts for environmental remediation remains a challenge. In this study, granular nitrogen-doped highly developed porous carbons with a particle size of 0.25-0.30 mm were prepared by preoxidation and subsequent NH3 modification of a commercially available coconut-based activated carbon, and used to activate peroxymonosulphate (KHSO5) or hydrogen peroxide (H2O2) to degrade bisphenol A (BPA). The nitrogen-doped carbon (ACON-950) prepared by NH3 modification at 950 °C, with the addition of only 0.15 g/L could remove 100% of 50 mg/L BPA in 150 min, and more than 90% of the removed BPA was due to degradation. The removal rates of total organic carbon of ACON-950/KHSO5 and ACON-950/H2O2 systems reached 60.4% and 66.2% respectively, indicating the excellent catalytic activity of ACON-950. The reaction rate constant was significantly positively correlated with the absolute content of pyridinic N (N-6) and graphitic N (N-Q) and negatively and weakly positively correlated with pyrrolic N (N-5) and defects. Quenching experiments combined with electron paramagnetic resonance demonstrated that singlet oxygen was the dominant reactive oxidative species for BPA degradation. ACON-950 was characterized before and after the degradation reaction using N2 adsorption-desorption analyzer, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The results confirmed the prominent contribution of both the N-6 and N-Q to the catalytic performance of nitrogen-doped carbons. The reusability of ACON-950 and its application in actual water bodies further demonstrated its remarkable potential for the remediation of organic pollutants in wastewater.
Collapse
Affiliation(s)
- Tao Zhang
- College of Chemical Engineering, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Songlin Zuo
- College of Chemical Engineering, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China.
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
24
|
Bulin C, Guo T. Reaction Thermodynamics of Zerovalent Iron and Hexavalent Chromium at the Solid-Liquid Interface and in Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6342-6352. [PMID: 38483101 DOI: 10.1021/acs.langmuir.3c03907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Zerovalent iron (Fe0) is a promising candidate for remediating hexavalent chromium (Cr(VI)) via adsorption and (or) reduction. Herein, the reaction between Fe0 and Cr(VI) at the solid-liquid interface and in solution under varying pHs was inspected using the methodology of equilibrium thermodynamics. First, species distribution functions of aqueous Cr(VI), Cr(III), Fe(III), and Fe(II) are deduced to illuminate the quantitative distribution of aqueous metal species. Second, the plausible reaction at pH = 0-14 either at the solid-liquid interface or in solution is determined according to the species distribution function. Third, the spontaneity of each reaction is evaluated via a thermodynamic calculation based on the van't Hoff equation. The results present the following. (1) At the solid-liquid interface, the redox reaction 2Cr(VI) + 3Fe0 → 2Cr(III) + 3Fe(II) is spontaneous, inducing complete Cr(VI) → Cr(III) reduction at pH = 0-14. Especially, the high spontaneity of the redox reaction is mainly ascribed to Fe0 oxidation, which serves as a highly spontaneous subreaction. (2) In solution, the redox reaction Cr(VI) + 3Fe(II) → Cr(III) + 3Fe(III) is nonspontaneous at pH = 6 and 7, whereas it is spontaneous at pH = 6-7, 0-5, and 8-14. Accordingly, no Cr(VI) → Cr(III) reduction at pH = 6-7 and complete Cr(VI) → Cr(III) reduction at pH = 0-5 and 8-14 are expected. Particularly, the nonspontaneity of the Cr(VI) reduction at pH = 6-7 is majorly attributed to water ionization, which is involved as a highly nonspontaneous subreaction. On the contrary, the spontaneity of the Cr(VI) reduction at pH = 0-5 and 8-14 is mainly owing to acid-base neutralization, which is involved as a highly spontaneous subreaction. This work may deepen our knowledge about the chemistry involved in hexavalent chromium remediation by the zerovalent iron.
Collapse
Affiliation(s)
- Chaoke Bulin
- College of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, P. R. China
| | - Ting Guo
- College of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, P. R. China
| |
Collapse
|
25
|
Hu Z, Su G, Long S, Zhang X, Zhang L, Chen Y, Zhang C, Liu G. Synthesis of X@DRHC (X=Co, Ni, Mn) catalyst from comprehensive utilization of waste rice husk and spent lithium-ion batteries for efficient peroxymonosulfate (PMS) activation. ENVIRONMENTAL RESEARCH 2024; 245:118078. [PMID: 38159665 DOI: 10.1016/j.envres.2023.118078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Highly efficient resource recycling and comprehensive utilization play a crucial role in achieving the goal of reducing resource wasting, environmental protection, and achieving goal of sustainable development. In this work, the two kinds waste resources of agricultural rice husk and metal ions (Co, Ni, and Mn) from spent lithium-ion batteries have been skillfully utilized to synthesize novel Fenton-like catalysts. Desiliconized rice husk carbon (DRHC) with rich pore structure and large specific surface area from rice husk has been prepared and used as scalable carrier, and dandelion-like nanoparticles cluster could be grown in situ on the surface of the carrier by using metal ions contained waste water. The designed catalysts (X@DRHC) as well as their preparation process were characterized in detail by SEM, TEM, BET, XRD and XPS, respectively. Meanwhile, their catalytic abilities were also studied by activating potassium peroxomonosulfate (PMS) to remove methylene blue (MB). The results indicate X@DRHC displays excellent degradation efficiency on MB with wide pH range and stable reusability, which is suitable for the degradation of various dyes. This work has realized the recycling and high-value utilization of waste resources from biomass and spent lithium-ion batteries, which not only creates an efficient way to dispose waste resources, but also shows high economic benefits in large-scale water treatment.
Collapse
Affiliation(s)
- Zhenyi Hu
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| | - Geng Su
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| | - Shujun Long
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| | - Xiaoting Zhang
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| | - Linkun Zhang
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| | - Yilin Chen
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| | - Chang Zhang
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| | - Gonggang Liu
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| |
Collapse
|
26
|
Ma D, Wang W, Wang Q, Dai Y, Zhu K, Xu H, Yuan C, Dong P, Xi X. A novel visible-light-driven Z-scheme C 3N 5/BiVO 4 heterostructure with enhanced photocatalytic degradation performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19687-19698. [PMID: 38366321 DOI: 10.1007/s11356-024-32086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/16/2024] [Indexed: 02/18/2024]
Abstract
As a visible-light response semiconductor materials, bismuth vanadate (BiVO4) is extensively applied in photodegradation organic dye field. In this study, we synthesized C3N5 nanosheets and coupled with decahedral BiVO4 to construct a Z-scheme C3N5/BiVO4 heterostructure with close interface contact. By introducing C3N5 into BiVO4, the built Z-scheme transfer pathway provides silky channel for charge carrier migration between different moieties and enables photoexcited electrons and holes accumulated on the surface of BiVO4 and C3N5. The accelerated separation of charge carriers ensures C3N5/BiVO4 heterostructures with a powerful oxidation capacity compared with pure BiVO4. Due to the synergistic effect in Z-scheme heterostructure, the C3N5/BiVO4 demonstrated an improved photodegradation ability of rhodamine B (RhB) and methylene blue (MB) that of bare BiVO4.
Collapse
Affiliation(s)
- Dongqi Ma
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Wuyou Wang
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China.
| | - Qinzheng Wang
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Yelan Dai
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Kai Zhu
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Haocheng Xu
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Cheng Yuan
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Pengyu Dong
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Xinguo Xi
- Key Laboratory for Ecological-Environment Materials of Jiangsu Province, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| |
Collapse
|
27
|
Li K, Ma S, Zou C, Latif J, Jiang Y, Ni Z, Shen S, Feng J, Jia H. Unrecognized Role of Organic Acid in Natural Attenuation of Pollutants by Mackinawite (FeS): The Significance of Carbon-Center Free Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20871-20880. [PMID: 38029317 DOI: 10.1021/acs.est.3c07473] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Organic acid is prevalent in underground environments and, against the backdrop of biogeochemical cycles on Earth, holds significant importance in the degradation of contaminants by redox-active minerals. While earlier studies on the role of organic acid in the generation of reactive oxygen species (ROS) primarily concentrated on electron shuttle or ligand effects, this study delves into the combined impacts of organic acid decomposition and Mackinawite (FeS) oxidation in contaminant transformation under dark aerobic conditions. Using bisphenol A (BPA) as a model, our findings showed that oxalic acid (OA) notably outperforms other acids in enhancing BPA removal, attaining a rate constant of 0.69 h-1. Mass spectrometry characterizations, coupled with anaerobic treatments, advocate for molecule-O2 activation as the principal mechanism behind pollutant transformation. Comprehensive results unveiled that carbon center radicals, initiated by hydroxyl radical (•OH) attack, serve as the primary agents in pollutant oxidation, accounting for at least 93.6% of the total •OH generation. This dynamic, driven by the decomposition of organic acids and the concurrent formation of carbon-centered radicals, ensures a steady supply of electrons for ROS generation. The obtained information highlights the importance of OA decomposition in the natural attenuation of pollutants and offers innovative strategies for FeS and organic acid-coupled decontamination.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| | - Shuanglong Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Chuningrui Zou
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| | - Junaid Latif
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| | - Yuanren Jiang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| | - Zheng Ni
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| | - Siqi Shen
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| | - Jinpeng Feng
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| |
Collapse
|
28
|
Cheng L, Lu Z, Liu J, Liu J, Zhao Y, Ni Z, Lin Q, Zhu R, Chen X, Lin W, Qiu R, Zhu Y. Novel heterogeneous Fenton catalysts for promoting carbon iron electron transfer by one-step hydrothermal synthesization. J Colloid Interface Sci 2023:S0021-9797(23)02273-7. [PMID: 38040500 DOI: 10.1016/j.jcis.2023.11.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Carbon materials play a crucial role in promoting the Fe(III)/Fe(II) redox cycle in heterogeneous Fenton reactions. However, the electron transfer efficiency between carbon and iron is typically low. In this study, we prepared a novel heterogeneous Fenton catalyst, humboldtine/hydrothermal carbon (Hum/HTC), using a one-step hydrothermal method and achieved about 100 % reduction in Fe(III) during synthesis. Moreover, the HTC continuously provided electrons to promote Fe(II) regeneration during the Fenton reaction. Electron paramagnetic resonance (EPR) and quenching experiments showed that Hum/HTC completely oxidized As(III) to As(V) via free radical and non-free radical pathways. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) and two-dimensional correlation spectroscopy (2D-COS) analyses revealed that monodentate mononuclear (MM) and bidentate binuclear (BB) structures were the dominant bonding methods for As(V) immobilization. 40 %Hum/HTC exhibited a maximum As(III) adsorption capacity of 167 mg/g, which was higher than that of most reported adsorbents. This study provides a novel strategy for the efficient reduction of Fe(III) during catalyst synthesis and demonstrates that HTC can continuously accelerate Fe(II) regeneration in heterogeneous Fenton reactions.
Collapse
Affiliation(s)
- Liulong Cheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhuoye Lu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Junjun Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jingyi Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yu Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhuobiao Ni
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Weikun Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; China School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yanping Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
29
|
Wu M, Li S, Zhou S, Li F, Li T, Li H. Fe/sponge structure peanut shell carbon composite preparation for efficient Fenton oxidation crystal violet. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105457-105473. [PMID: 37715911 DOI: 10.1007/s11356-023-29828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
In order to obtain super synergy effect between adsorption and Fenton oxidation for crystal violet (CV) removement from water, in this study, Fe modified on a sponge structure peanut shell carbon (Fe/SPSC) nanocomposite was successfully synthesized by a wet impregnation method. In the Fe/SPSC sample, the prepared peanut shell carbon had a sponge-like structure, (002) crystal plane of graphite crystallite, and Fe/SPSC composite coexisted Fe2O3 and Fe3O4 crystalline, which could adsorb and enrich crystal violet molecule, decrease the concentration of CV solution rapidly. And also SPSC could do better for electrons transfer and further promote CV oxidation degradation. The removal efficiency results showed that the 7% Fe/SPSC (500 °C, 2 h) had the best CV removal activity. The composite prepared under the optimum conditions is 2.0 g/L, 0.1 mL 30% H2O2, pH = 7.0, 300 mg/L crystal violet water solution, and the CV degradation rate can reach 95.5%, and the CV degradation amount for Fe/SPSC was 143.25 mg/g. It was confirmed that hydroxyl radicals (•OH) is the active center of Fenton oxidation degradation reaction. XPS results showed that Fe, O, and C elements coexist in the 7% Fe/SPSC composite, and N element content increases after the reaction. Remarkable synergies between adsorption and Fenton oxidation, which could make Fe/SPSC, have quick CV abatement ability. The possible systematic effect mechanism of adsorption and Fenton-oxidation CV was also supplied. The present system has advantages on high CV dye degradation performance, no other Fe sludge formation, short reaction time, and better catalyst reusability.
Collapse
Affiliation(s)
- Minghui Wu
- Key Laboratory of State Forestry and Grassland Administration On Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China (Southwest Forestry University), Kunming, 650224, People's Republic of China
| | - Shuang Li
- Key Laboratory of State Forestry and Grassland Administration On Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China (Southwest Forestry University), Kunming, 650224, People's Republic of China
| | - Shiping Zhou
- Key Laboratory of State Forestry and Grassland Administration On Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China (Southwest Forestry University), Kunming, 650224, People's Republic of China
| | - Fengchuan Li
- Key Laboratory of State Forestry and Grassland Administration On Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China (Southwest Forestry University), Kunming, 650224, People's Republic of China
| | - Tao Li
- Key Laboratory of State Forestry and Grassland Administration On Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China (Southwest Forestry University), Kunming, 650224, People's Republic of China
| | - Huijuan Li
- Key Laboratory of State Forestry and Grassland Administration On Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China (Southwest Forestry University), Kunming, 650224, People's Republic of China.
| |
Collapse
|
30
|
Jiang J, Liu S, Shi D, Sun T, Wang Y, Fu S, Liu Y, Li M, Zhou D, Dong S. Spin state-dependent in-situ photo-Fenton-like transformation from oxygen molecule towards singlet oxygen for selective water decontamination. WATER RESEARCH 2023; 244:120502. [PMID: 37651870 DOI: 10.1016/j.watres.2023.120502] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
The development of 1O2-dominanted selective decontamination for water purification was hampered by extra H2O2 consumption and poor 1O2 generation. Herein, we proposed the reconstruction of Fe spin state using near-range N atom and long-range N vacancies to enable efficient generation of H2O2 and sequential activation of H2O2 into 1O2 after visible-light irradiation. Theoretical and experimental results revealed that medium-spin Fe(III) strengthened O2 adsorption, penetrated eg electrons to antibonding p-orbital of oxygen, and lowered the free energy of O2 activation, enabling the oxygen protonation for H2O2 generation. Thereafter, the electrons of H2O2 could be extracted by low-spin Fe(III) and rapidly converted into 1O2 in a nonradical path. The developed 1O2-dominated in-situ photo-Fenton-like system had an excellent pH universality and anti-interference to inorganic ions, dissolved organic matter, and even real water matrixes (e.g., tap water and secondary effluent). This work provided a novel insight for sustainable and efficient 1O2 generation, which motivated the development of new-generation selective water treatment technology.
Collapse
Affiliation(s)
- Jingjing Jiang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Shengda Liu
- School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, China
| | - Donglong Shi
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Tongze Sun
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Yakun Wang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Shaozhu Fu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Yansong Liu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Mingyu Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Shuangshi Dong
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
31
|
Alagarsamy P, Daniel S, Chinnapparaj MI, Kim SC, Manivasagam VR, Vanaraj R. Boosting Fenton's Oxidation Reaction by a Food Waste-Derived Catalyst for Oxidizing Organic Dyes: Synergistic Effect of Complex Iron Oxides and the Layer Carbon Structure. ACS APPLIED BIO MATERIALS 2023; 6:3291-3308. [PMID: 37543951 DOI: 10.1021/acsabm.3c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The constant increase in the human population drives the demand for food supply and thereby increasing the food wastage dramatically all over the world. Especially, around 60% of banana biomass has been generated as inedible domestic waste. Herein, we successfully employed banana waste as a catalyst for Fenton's oxidation reaction. The biomass-derived catalysts were subjected to various characterization techniques such as XRD, ATR-FTIR, confocal Raman spectroscopy, and XPS, XRF, BET, SEM, and TEM analyses. The XRD results revealed that, after carbonization of the dried banana bract material, a perloffite-like metal oxide phase was formed due to the aerial oxidation reaction. Characterization results of Raman and ATR-FTIR confirm that the carbonized catalyst possesses a layer-like structure with different types of functional groups. The calcium, magnesium, potassium, sodium, and iron are the dominating metal species in the resultant material, which was evident from the XRF and EDAX analyses. The carbonized banana bract catalyst is successfully utilized for the Fenton's oxidation reaction at neutral pH. The experimental results showed that the degradation efficiency of the fresh catalyst was 95% in 4 h of reaction time, and the stability of the catalyst was retained up to nine consecutive cycles. The high activity of MB, methylene blue, is mainly attributed to the strong interaction between oxy functional groups of the catalyst and MB molecule as compared to RhB. Further, the calculated efficiency of the hydrogen peroxide was found to be 99% and the self-decomposition of hydrogen peroxide by the formed metal oxides was highly limited.
Collapse
Affiliation(s)
| | - Santhanaraj Daniel
- Department of Chemistry, Loyola College, Chennai 600 034, Tamil Nadu, India
| | | | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Ramkumar Vanaraj
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
32
|
Chen Z, Yan Y, Lu C, Lin X, Fu Z, Shi W, Guo F. Photocatalytic Self-Fenton System of g-C 3N 4-Based for Degradation of Emerging Contaminants: A Review of Advances and Prospects. Molecules 2023; 28:5916. [PMID: 37570886 PMCID: PMC10421113 DOI: 10.3390/molecules28155916] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The discharge of emerging pollutants in the industrial process poses a severe threat to the ecological environment and human health. Photocatalytic self-Fenton technology combines the advantages of photocatalysis and Fenton oxidation technology through the in situ generation of hydrogen peroxide (H2O2) and interaction with iron (Fe) ions to generate a large number of strong reactive oxygen species (ROS) to effectively degrade pollutants in the environment. Graphite carbon nitride (g-C3N4) is considered as the most potential photocatalytic oxygen reduction reaction (ORR) photocatalyst for H2O2 production due to its excellent chemical/thermal stability, unique electronic structure, easy manufacturing, and moderate band gap (2.70 eV). Hence, in this review, we briefly introduce the advantages of the photocatalytic self-Fenton and its degradation mechanisms. In addition, the modification strategy of the g-C3N4-based photocatalytic self-Fenton system and related applications in environmental remediation are fully discussed and summarized in detail. Finally, the prospects and challenges of the g-C3N4-based photocatalytic self-Fenton system are discussed. We believe that this review can promote the construction of novel and efficient photocatalytic self-Fenton systems as well as further application in environmental remediation and other research fields.
Collapse
Affiliation(s)
- Zhouze Chen
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China (Y.Y.)
| | - Yujie Yan
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China (Y.Y.)
| | - Changyu Lu
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization and Development of Water Recourse, Hebei Geo University, Shijiazhuang 050031, China
| | - Xue Lin
- School of Material Science and Engineering, Beihua University, Jilin 132013, China
| | - Zhijing Fu
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization and Development of Water Recourse, Hebei Geo University, Shijiazhuang 050031, China
| | - Weilong Shi
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China (Y.Y.)
| | - Feng Guo
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| |
Collapse
|
33
|
Yang J, Zhu X, Ai Z, Leng L, Li H. Deep dewatering of refinery oily sludge by Fenton oxidation and its potential influence on the upgrading of oil phase. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27773-w. [PMID: 37243768 DOI: 10.1007/s11356-023-27773-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Highly efficient dewatering is essential to the reduction and reclamation disposal of oily sludge, which is a waste from the extraction, transportation, and refining of crude oil. How to effectively break the water/oil emulsion is a paramount challenge for dewatering of oily sludge. In this work, a Fenton oxidation approach was adopted for the dewatering of oily sludge. The results show that the oxidizing free radicals originated from Fenton agent effectively tailored the native petroleum hydrocarbon compounds into smaller organic molecules, hence destructing the colloidal structure of oily sludge and decreasing the viscosity as well. Meanwhile, the zeta potential of oily sludge was increased, implying the decrease of repulsive electrostatic force to realize easy coalescence of water droplets. Thus, the steric and electrostatic barriers which restrained the coalescence of dispersed water droplets in water/oil emulsion were removed. With these advantages, the Fenton oxidation approach derived the significant decrease of water content, in which 0.294 kg water was removed from per kilogram oily sludge under the optimal operation condition (i.e., pH value of 3, solid-liquid ratio of 1:10, Fe2+ concentration of 0.4 g/L and H2O2/Fe2+ ratio of 10:1, and reaction temperature of 50 °C). In addition, the quality of oil phase was upgraded after Fenton oxidation treatment accompanying with the degradation of native organic substances in oily sludge, and the heating value of oily sludge was increased from 8680 to 9260 kJ·kg-1, which would facilitate to the subsequent thermal conversion like pyrolysis or incineration. Such results demonstrate that the Fenton oxidation approach is efficient for the dewatering as well as the upgrading of oily sludge.
Collapse
Affiliation(s)
- Jianping Yang
- School of Energy Science and Engineering, Central South University, Changsha, 410083, China
| | - Xiaolei Zhu
- School of Energy Science and Engineering, Central South University, Changsha, 410083, China
| | - Zejian Ai
- School of Energy Science and Engineering, Central South University, Changsha, 410083, China
| | - Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha, 410083, China
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
34
|
Zheng N, Li L, Tang X, Xie W, Zhu Q, Wang X, Lian Y, Yu JC, Hu Z. Spontaneous Formation of Low Valence Copper on Red Phosphorus to Effectively Activate Molecular Oxygen for Advanced Oxidation Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5024-5033. [PMID: 36892275 DOI: 10.1021/acs.est.2c09645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Efficient spontaneous molecular oxygen (O2) activation is an important technology in advanced oxidation processes. Its activation under ambient conditions without using solar energy or electricity is a very interesting topic. Low valence copper (LVC) exhibits theoretical ultrahigh activity toward O2. However, LVC is difficult to prepare and suffers from poor stability. Here, we first report a novel method for the fabrication of LVC material (P-Cu) via the spontaneous reaction of red phosphorus (P) and Cu2+. Red P, a material with excellent electron donating ability and can directly reduce Cu2+ in solution to LVC via forming Cu-P bonds. With the aid of the Cu-P bond, LVC maintains an electron-rich state and can rapidly activate O2 to produce ·OH. By using air, the ·OH yield reaches a high value of 423 μmol g-1 h-1, which is higher than traditional photocatalytic and Fenton-like systems. Moreover, the property of P-Cu is superior to that of classical nano-zero-valent copper. This work first reports the concept of spontaneous formation of LVC and develops a novel avenue for efficient O2 activation under ambient conditions.
Collapse
Affiliation(s)
- Ningchao Zheng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Lejing Li
- Department of Chemistry, The Chinese University of Hong Kong, New Territories, Hong Kong 999077, Shatin, China
| | - Xinhui Tang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Weiqiao Xie
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Qing Zhu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Xiaoli Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yekai Lian
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong, New Territories, Hong Kong 999077, Shatin, China
| | - Zhuofeng Hu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|