1
|
Chen L, Wang J, Wan D. Association between secondhand smoke exposure and osteoporosis risk in postmenopausal women: a cross-sectional analysis of NHANES data. J OBSTET GYNAECOL 2025; 45:2482708. [PMID: 40135714 DOI: 10.1080/01443615.2025.2482708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND This study aimed to investigate the association between smoke exposure and the risk of osteoporosis in postmenopausal women in the United States, using data from the National Health and Nutrition Examination Survey (NHANES). METHODS A cross-sectional analysis was conducted using NHANES data from 2005 to 2010, 2013 to 2014, and 2017 to 2018. The study population consisted of postmenopausal women aged 18 years and older. Their bone health status was assessed using self-reported osteoporosis and dual-energy X-ray absorptiometry (DXA) measurements, smoke exposure was evaluated through serum cotinine levels, and multivariate logistic regression models were used to examine the association between smoke exposure and osteoporosis risk, adjusting for sociodemographic factors, health behaviours, and comorbidities. RESULTS The analysis comprised 4,140 postmenopausal women, and data analysis showed that active smoking was significantly associated with an increased risk of osteoporosis, with an adjusted odds ratio (OR) of 2.020 (95% confidence interval [CI]: 1.35-3.03), after adjusting for potential confounders. Additionally, age, race/ethnicity, socioeconomic status, marital status, and body mass index were identified as significant predictors of osteoporosis risk. CONCLUSIONS Smoke exposure, particularly active smoking, was associated with an elevated risk of osteoporosis among postmenopausal women in the United States. The findings underscore the need to address modifiable risk factors, such as smoking cessation, and implement targeted interventions to mitigate disparities in bone health.
Collapse
Affiliation(s)
- Li Chen
- Department of Gynecology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Jie Wang
- Department of Gynecology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Dan Wan
- Department of Gynecology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
2
|
Xu W, Wang S, Ruan W, Hao M, Jiang K, Guo H, Geng A, Man M, Hu Z, Liu Y, Jin G, Shi H, Du J, Ge K, Zhang Z. Cadmium exposure and health outcomes:An umbrella review of meta-analyses. ENVIRONMENTAL RESEARCH 2025; 276:121547. [PMID: 40189009 DOI: 10.1016/j.envres.2025.121547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/13/2025]
Abstract
OBJECTIVE This umbrella review synthesizes evidence from meta-analyses to assess the health outcomes associated with cadmium (Cd) exposure. METHODS Literature search was conducted in four Databases: PubMed, Embase, APA PsycNe, and the Cochrane Databases. Evaluating evidence strength via Assess Systematic Reviews 2 (AMSTAR 2), umbrella review methodology and Grading of Recommendations, Assessment, Development, and Evaluation (GRADE). RESULTS Our review encompassed 79 non-overlapping studies, investigating 48 unique health outcomes through 113 independent effect sizes. Using the AMSTAR 2 tool, we found that 2 (3 %) meta-analyses were rated as high quality, 6 (8 %) as moderate quality, 38 as low quality, and 33 as very low quality. Applying the GRADE criteria, we observed that 1 (1 %) effect size was rated A (male fertility), 8 (7 %) were rated B (breast cancer, prostate cancer, hypertension, stroke, urolithiasis), 30 were rated C, and 74 were rated D. According to the umbrella review methodology, 5 (4 %) outcomes provided highly suggestive evidence, 13 (12 %) provided suggestive evidence, 51 provided weak evidence (class IV), and 44 had insufficient evidence for statistically significant results (class V). Meta-analyses on circulatory diseases, pregnancy outcomes, perinatal outcomes, skeletal and connective tissue diseases, neurological disorders, urinary system diseases, and male fertility had >80 % statistically significant results, while endocrine system diseases and mental and behavioral disorders had <33 %. CONCLUSION Cd exposure is significantly linked to various health outcomes, with implications for clinical practice and public health recommendations.
Collapse
Affiliation(s)
- Wenzhuo Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Sainan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Wenhua Ruan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Mingyue Hao
- Department of the Second Clinical School of Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Kele Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Hao Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Anyi Geng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Mengting Man
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Zheng Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yun Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Guifang Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Haiyan Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jun Du
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Keyang Ge
- Department of the First Clinical School of Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Zhihua Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
3
|
Furrer R, Handschin C. Biomarkers of aging: from molecules and surrogates to physiology and function. Physiol Rev 2025; 105:1609-1694. [PMID: 40111763 DOI: 10.1152/physrev.00045.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/10/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
Many countries face an unprecedented challenge in aging demographics. This has led to an exponential growth in research on aging, which, coupled to a massive financial influx of funding in the private and public sectors, has resulted in seminal insights into the underpinnings of this biological process. However, critical validation in humans has been hampered by the limited translatability of results obtained in model organisms, additionally confined by the need for extremely time-consuming clinical studies in the ostensible absence of robust biomarkers that would allow monitoring in shorter time frames. In the future, molecular parameters might hold great promise in this regard. In contrast, biomarkers centered on function, resilience, and frailty are available at the present time, with proven predictive value for morbidity and mortality. In this review, the current knowledge of molecular and physiological aspects of human aging, potential antiaging strategies, and the basis, evidence, and potential application of physiological biomarkers in human aging are discussed.
Collapse
|
4
|
Peng D, Liu XY, Sheng YH, Li SQ, Zhang D, Chen B, Yu P, Li ZY, Li S, Xu RB. Ambient air pollution and the risk of cancer: Evidence from global cohort studies and epigenetic-related causal inference. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137619. [PMID: 40010210 DOI: 10.1016/j.jhazmat.2025.137619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
The correlation between air pollution and cancer incidence has been a longstanding concern, understanding the need to elucidate the specifics of this relationship. Thus, this study aimed to assess the association between exposure to air pollution and cancer incidence, and to identify the possible biological links between the two. We examined global cohort studies investigating the association between air pollution and cancer and performed a univariate Mendelian randomization (MR) analysis. Our analysis revealed that the presence of particulate matter (PM)2.5, PM10, NO2, and NOx substantially impacted the risk of developing cancer. MR analysis identified 130 CpGs sites associated with three ambient air pollutants that have significant casual effects on the risk of 14 cancer sites (false discovery rate<0.05). Gene annotation was conducted using g-Profiler by screening for single nucleotide polymorphisms significantly associated with outcome, followed by analysis of the gene interaction network using GeneMANIA, and visualization using igraph. In conclusion, this study demonstrates that air pollution has a significant impact on cancer incidence, provides strong evidence for an epigenetic causal link between the two, and provides new insights into the molecular mechanisms by which air pollution affects cancer development.
Collapse
Affiliation(s)
- Dong Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, China
| | - Xiao-Yu Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, China
| | - Yuan-Hui Sheng
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, China
| | - Si-Qi Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, China
| | - Dan Zhang
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, China
| | - Bo Chen
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Pei Yu
- Climate Air Quality Research unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Zhao-Yuan Li
- Climate Air Quality Research unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Shuai Li
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Rong-Bin Xu
- Climate Air Quality Research unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia; School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
5
|
He C, Gao M, He T, Xing F. Association of cobalt exposure with all-cause and cardiovascular mortality in U.S. adults. BMC Public Health 2025; 25:1757. [PMID: 40361032 PMCID: PMC12070784 DOI: 10.1186/s12889-025-22753-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/10/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Cobalt exposure is recognized as a potential risk factor for cardiovascular disease (CVD). However, the impact of cobalt exposure on mortality, particularly concerning CVD-related deaths, in the U.S. remains uncertain. METHODS Data from the National Health and Nutrition Examination Surveys (NHANES) spanning 1999-2018 were utilized to assess urinary cobalt levels in participants aged 20 years and older (n = 15,873). For the analysis of blood cobalt, data from NHANES covering the years 2015-2018 were considered, limited to participants aged 40 years and older (n = 6,692). The follow-up period extended until December 31, 2019. RESULTS The median values of ln-transformed urinary cobalt (creatinine corrected) and blood cobalt were - 1.10 ln(µg/g) and - 1.90 ln(µg/L), respectively. For urinary cobalt, during a median follow-up period of 130.0 months (interquartile range: 70.25-189.0), 2,304 participants died, with 613 deaths attributed to CVD. After adjusting for potential covariates, an increase in urinary cobalt level was significantly associated with a higher risk of all-cause mortality and CVD mortality (per 1 ln-unit increment, HR: 1.19, 95% CI: 1.07, 1.32; HR: 1.30, 95% CI: 1.06, 1.60, respectively). For blood cobalt, the adjusted HRs were 1.57 (95% CI: 1.15, 2.14) for all-cause mortality and 2.02 (95% CI: 1.10, 3.72) for CVD mortality. CONCLUSIONS In the U.S., low-level environmental cobalt exposure is a significant risk factor for both all-cause mortality and CVD mortality. SYNOPSIS Cobalt, a metallic element commonly encountered by the general population through food, water, or air inhalation, emerges as a novel risk factor for cardiovascular disease mortality.
Collapse
Affiliation(s)
- Chunhui He
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, 100029, China
| | - Min Gao
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- Beijing Tongrentang Research Institute, Scientific Research Institute of Beijing Tongrentang Co., LTD, Beijing, China
| | - Ting He
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Fuwei Xing
- Department of Cardiology, Biomedical Innovation Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China.
| |
Collapse
|
6
|
Liu J, Chen K, Tang M, Mu Q, Zhang S, Li J, Liao J, Jiang X, Wang C. Oxidative stress and inflammation mediate the adverse effects of cadmium exposure on all-cause and cause-specific mortality in patients with diabetes and prediabetes. Cardiovasc Diabetol 2025; 24:145. [PMID: 40158078 PMCID: PMC11954339 DOI: 10.1186/s12933-025-02698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND The effect of cadmium exposure on mortality risk among individuals with diabetes and prediabetes remains unclear, particularly regarding potential mediation by oxidative stress and inflammation. This study aimed to investigate the associations of blood cadmium levels with all-cause, cardiovascular disease (CVD), and cancer mortality and the mediating effects of oxidative stress and inflammation biomarkers in patients with diabetes and prediabetes. METHODS In this prospective cohort study, we analyzed 17,687 adults with diabetes and prediabetes from the National Health and Nutrition Examination Survey (NHANES, 1999-2018). Nine biomarkers related to oxidative stress (gamma-glutamyl transferase [GGT], uric acid [UA], high-density lipoprotein [HDL], UA to HDL ratio [UHR]) and inflammation (neutrophil-lymphocyte ratio [NLR], monocyte-lymphocyte ratio [MLR], neutrophil-monocyte-lymphocyte ratio [NMLR], systemic inflammation response index [SIRI], systemic immune-inflammation index [SII]) were systematically assessed. Kaplan-Meier survival analysis, Cox proportional hazards models, and restricted cubic splines (RCS) were applied to evaluate the association of cadmium with mortality risk. Generalized linear models were used to assess the association of cadmium with oxidative stress and inflammation biomarkers, while Cox regression and RCS evaluated their effects on mortality. Causal mediation analysis identified biological pathways mediated by oxidative stress and inflammation. Stratified and sensitivity analyses were further employed to confirm the robustness of the results. RESULTS During 161,047.75 person-years of follow-up, 3562 deaths occurred, including 1214 from CVD and 680 from cancer. Higher blood cadmium levels were associated with increased risks of all-cause mortality (fully adjusted hazard ratio [HR]: 2.17; 95% confidence interval [CI] 1.69-2.79, comparing highest vs. lowest quartile), CVD mortality (HR 2.06; 95% CI 1.41-3.02), and cancer mortality (HR 2.38; 95% CI 1.47-3.85), without evidence of nonlinear relationship. Mediation analyses indicated that UA, NLR, MLR, NMLR, and SIRI partially mediated the associations of cadmium with all-cause and CVD mortality, although the mediated proportions were relatively modest (ranging from 1.4 to 4.8%). Additionally, GGT mediated a small fraction of the associations with all-cause and cancer mortality. CONCLUSION Cadmium exposure increases the risk of all-cause, CVD, and cancer mortality in patients with diabetes and prediabetes. Oxidative stress and inflammation appear to partially mediate this adverse effect. These findings emphasize the urgent need for targeted interventions to reduce cadmium-related mortality risks. RESEARCH INSIGHTS What is currently known about this topic? Cadmium exposure is linked to increased mortality. Oxidative stress and inflammation are critical in diabetes development and complications. What is the key research question? Does cadmium exposure increase mortality risk in patients with diabetes and prediabetes? Are oxidative stress and inflammation involved in mediating these effects? What is new? Cadmium exposure increases all-cause and cause-specific mortality in diabetes and prediabetes. Oxidative stress and inflammation mediate these associations. How might this study influence clinical practice? Monitor cadmium, oxidative stress, and inflammation to reduce mortality in diabetes and prediabetes.
Collapse
Affiliation(s)
- Jingqi Liu
- Department of Public Health Laboratory Sciences, West China School of Public Health, West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin South Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Kehan Chen
- Department of Public Health Laboratory Sciences, West China School of Public Health, West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin South Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Mingyuan Tang
- Department of Public Health Laboratory Sciences, West China School of Public Health, West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin South Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Qunzheng Mu
- Department of Public Health Laboratory Sciences, West China School of Public Health, West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin South Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Shirong Zhang
- Department of Public Health Laboratory Sciences, West China School of Public Health, West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin South Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Jiayuan Li
- Department of Epidemiology and Health Statistics, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiaqiang Liao
- Department of Epidemiology and Health Statistics, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xia Jiang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuan Wang
- Department of Public Health Laboratory Sciences, West China School of Public Health, West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin South Road, Wuhou District, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
Fang Z, Zhou B, Zheng G, Chen X, Liu M, Zhang H, He F, Chen H, Hao G. Environment-wide association study of cardiovascular and all-cause mortality: Analysis of the National Health and Nutrition Examination Survey, 1999-2018. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125770. [PMID: 39894157 DOI: 10.1016/j.envpol.2025.125770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/10/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Environmental toxicants are increasingly suspected to influence cardiovascular (CV) and all-cause mortality, but previous studies mostly focused on one or a few chemicals. We examined the associations of a wide array of environmental chemicals with CV and all-cause mortality using an exposome-wide approach and the potential mediating role of inflammation in these associations. Data from the National Health and Nutrition Examination Survey (1999-2018) were randomly 60:40 split into a training set and a test set. The mortality rates were determined by the National Center for Health Statistics through a process of correlation with the National Death Index records. Based on the 10th revision of (ICD-10) codes, deaths due to heart disease (ICD 100-I09, I11, I13, and I20-I51) or cerebrovascular disease (I60-I69) were defined as CV mortality. Using the NHANES data, with a median 9.42-year follow-up period, we found that higher concentrations of 2-hydroxynaphthalene (2-NAP) and 2-hydroxyfluorene (2-FLU) in the urine, heavy metal cadmium (Cd), and cotinine in the blood were associated with increased risks of both CV and all-cause mortality. We further found 11 chemicals, including polycyclic aromatic hydrocarbons (1-hydroxynaphthalene, 3-hydroxyfluorene, and 9-hydroxyfluorene), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in the urine; hydroxycotinine, heavy metals lead, volatile organic compounds (benzene, ethylbenzene, styrene, toluene and 2,5-Dimethylfuran) in the blood were positively associated with all-cause mortality. Furthermore, we found that C-reactive protein levels partially mediate those associations. In summary, exposure to certain environmental chemicals was associated with CV and all-cause mortality, and C-reactive protein plays a mediation role in those associations. Our findings provided more evidence for preventing and controlling important environmental chemicals to improve people's health.
Collapse
Affiliation(s)
- Zhenger Fang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Biying Zhou
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Guangjun Zheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Xia Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Mingliang Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Haofeng Zhang
- Department of Epidemiology and Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fudong He
- Department of Epidemiology and Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haiyan Chen
- Department of Parasitic Disease and Endemic Disease Control and Prevention, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Guang Hao
- Department of Epidemiology and Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
8
|
Lin B, Liu W, Wang HH, Qian H, Zhu X, Xu M, Zheng Y, Alhazmi N, Bai Y. Associations of co-exposure to polycyclic aromatic hydrocarbons and vitamin D with early lung dysfunction: Mediating roles of metabolic score-visceral adiposity index. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117496. [PMID: 39657380 DOI: 10.1016/j.ecoenv.2024.117496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Preserved ratio impaired spirometry (PRISm) and airflow obstruction are recognized as critical early signs of chronic obstructive pulmonary disease (COPD). While these conditions arise from concurrent exposure to toxicants and essential nutrients, how vitamin D modifies the pulmonary toxicity induced by polycyclic aromatic hydrocarbons (PAHs) and the metabolic mechanisms involved is still unclear. METHODS Based on the National Health and Nutrition Examination Survey (NHANES) 2007-2012, data on urinary PAH metabolites (ΣOH-PAHs), serum vitamin D metabolite levels [Σ25(OH)D], and pulmonary function tests [forced expiratory volume in one second (FEV1), forced vital capacity (FVC) and FEV1/FVC] from 2189 participants, including 369 subjects with early lung dysfunction, defined as PRISm or airflow obstruction. Multiple metabolic disorder indicators were calculated using biochemical markers. The interaction effects between vitamin D and PAHs were evaluated using multiple linear and logistic regression models. Causal mediation analyses and structural equation modeling were employed to investigate the mediating roles of metabolic indicators. RESULTS PAHs and vitamin D had opposite effects on lung function parameters [FEV1: β (95 CIs) = -0.01 (-0.02, -0.01) vs. 0.01 (0.01, 0.04); FVC: β (95 CIs) = -0.01 (-0.02, 0.01) vs. 0.04 (0.01, 0.06)] and risk of early lung dysfunction [OR (95 CIs) = 1.22 (1.06, 1.40) vs. 0.52 (0.37, 0.73)]. Decreased associations of ΣOH-PAHs with FEV1, FVC, and early lung dysfunction, as well as with metabolic score-visceral adiposity index (MSV) were visualized with increased Σ25(OH)D among subjects with body mass index (BMI) < 28 kg/m2. Furthermore, 2.18 %, 18.20 %, 5.70 %, and 4.70 % of the associations of co-exposure to ΣOH-PAHs and Σ25(OH)D with FEV1, FVC, FEV1/FVC, and early lung dysfunction disease were mediated by MSV. CONCLUSIONS Our findings indicated that vitamin D antagonizes the hazardous effects of PAHs on early lung dysfunction by metabolic alteration, providing new insight into the identification of the underlying high-risk populations and accessible prevention and intervention measures for attenuating PAH-induced lung dysfunction.
Collapse
Affiliation(s)
- Baihao Lin
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China
| | - Wanlu Liu
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China
| | - Hank-Han Wang
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Haixia Qian
- Wuchang District Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Xinyu Zhu
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China
| | - Mengya Xu
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China
| | - Yuyu Zheng
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China
| | - Nada Alhazmi
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia; King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Yansen Bai
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China.
| |
Collapse
|
9
|
Zou Q, Tian X, Mao Q, Zhu X, Kong Y. Lipid accumulation product mediating the association between uranium and cerebrovascular diseases mortality: Evidence from National Health and Nutrition Examination Survey. Medicine (Baltimore) 2024; 103:e40888. [PMID: 39705492 PMCID: PMC11666159 DOI: 10.1097/md.0000000000040888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 12/22/2024] Open
Abstract
This study investigated the potential association between uranium exposure and mortality from cerebrovascular diseases, with a focus on the mediating effects of lipid indicators. Employing recommended sampling weights to account for National Health and Nutrition Examination Survey' complex survey design, this analysis drew from data collected between 2005 and 2016. The study examined the impact of uranium on mortality from cerebrovascular diseases using various statistical approaches, including Cox regression to assess linear relationships within metal mixtures. It also evaluated the role of lipid-adjusted plutonium (LAP) as a mediator and verified the persistence of associations across different subgroups. The study encompassed 4312 participants and established a significant direct link between uranium levels and mortality from cerebrovascular diseases (hazard ratio (95%CI) = 20.4243 (20.1347-20.7181), P = .0266). It also identified LAP as a mediating factor in the relationship, accounting for a mediated proportion of 1.35%. The findings highlight a pivotal connection between uranium exposure and increased mortality due to cerebrovascular diseases, with LAP playing a significant intermediary role.
Collapse
Affiliation(s)
- Qu Zou
- Department of Hepatobiliary Surgery, ChengDu Sixth People’s Hospital, Chengdu, China
| | - Xinling Tian
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qingsong Mao
- Hepatobiliary Pancreatic Surgery, Banan Hospital Affiliated to Chongqing Medical University, Chongqing, China
| | - Xiaoyi Zhu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuzhe Kong
- Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
10
|
Vagnoni G, Bortolotti E, Checchi S, Saieva C, Berti G, Doccioli C, Caini S. Lead (Pb) in biological samples in association with cancer risk and mortality: A systematic literature review. Cancer Epidemiol 2024; 92:102630. [PMID: 39097499 DOI: 10.1016/j.canep.2024.102630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/04/2024] [Accepted: 07/19/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND AND AIM Lead (Pb) is a toxic heavy metal and pervasive environmental contaminant, and a class 2 A carcinogen according to the IARC classification, yet its link with cancer at several body sites remains uncertain. Here, we aimed at summarizing the scientific evidence regarding its association with cancer risk and mortality, focusing on studies that carried out Pb measurements in biological samples. METHODS We reviewed articles published in PubMed and EMBASE until January 2nd, 2024, that quantified the epidemiological association between Pb measured in blood, urine, nails, and other biological media, and cancer risk and mortality (overall and by cancer site/type). RESULTS We included 46 articles (out of 8022 screened) published in 1995-2023 and reporting on investigations conducted in fifteen countries. In terms of design, 20 were prospective, 24 were retrospective case-control studies, and 2 were cross-sectional. Pb levels were determined in blood in the majority of studies (n=28). The most consistent evidence was for the association of Pb with cancer of the gastrointestinal tract, particularly the oesophagus, stomach (RR ranging from 0.80 to 2.66), colon-rectum, and pancreas; and of the bladder and urinary tract (RR from 1.10 to 2.89). For other specific malignancies, the data were conflicting or too limited to draw reliable conclusions. Finally, increased Pb concentration in blood and urine was consistently associated with higher overall cancer incidence and mortality. CONCLUSIONS Lead is a widespread and highly persistent environmental pollutant associated with cancer at multiple body sites. Comprehensive primary prevention interventions aiming at reducing opportunities for Pb exposure need to be continuously promoted and implemented.
Collapse
Affiliation(s)
- Giulia Vagnoni
- Clinical Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Emma Bortolotti
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Saverio Checchi
- Department of Health Sciences, University of Florence, Florence, Italy; Postgraduate School in Hygiene and Preventive Medicine, University of Florence, Florence, Italy
| | - Calogero Saieva
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Giovanna Berti
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Chiara Doccioli
- Clinical Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Saverio Caini
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy.
| |
Collapse
|
11
|
Fanfani A, Papini S, Bortolotti E, Vagnoni G, Saieva C, Bonaccorsi G, Caini S. Cadmium in biological samples and site-specific cancer risk and mortality: A systematic review of original articles and meta-analyses. Cancer Epidemiol 2024; 92:102550. [PMID: 38480109 DOI: 10.1016/j.canep.2024.102550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Cadmium (Cd) is classified as a class 1 carcinogen by the IARC, yet uncertainty persists regarding the total burden of cancer (incidence and mortality) caused by exposure to it, due to the still limited evidence with regard to its aetiological role in cancer at several body sites. OBJECTIVES AND METHODS We searched PubMed and EMBASE for meta-analyses and original articles published by February 1st, 2024, that focused on the link between cadmium measured in biological samples (blood, urine, finger-/toe-nails, and hair) and site-specific cancer risk and mortality. RESULTS We included 9 meta-analyses and 57 original articles (of these, the design was retrospective in 38 and prospective in 19, and Cd levels were quantified in blood, n=33, urine, n=19, both blood and urine, n=2, or finger-/toenail, n=3). Current data consistently suggest a causal role of exposure to cadmium in pancreas, lung, and bladder carcinogenesis. Total cancer risk and mortality are also positively correlated with Cd levels in biological samples. The evidence is weak or inconclusive for the remaining cancer sites (including breast and prostate), mostly due to the limited number of studies available to date and/or methodological limitations. DISCUSSION Exposure to cadmium poses a risk for increased cancer incidence and mortality. Cadmium-related cancer burden might indeed be currently underestimated, as the amount of available evidence for most cancer sites and types is currently limited, and more research in the field is warranted. Continuing efforts to contain Cd pollution and mitigate associated health risk are also needed.
Collapse
Affiliation(s)
- Alice Fanfani
- Department of Health Sciences, University of Florence, Florence, Italy; Postgraduate School in Hygiene and Preventive Medicine, University of Florence, Florence, Italy
| | - Sophia Papini
- Department of Health Sciences, University of Florence, Florence, Italy; Postgraduate School in Hygiene and Preventive Medicine, University of Florence, Florence, Italy
| | - Emma Bortolotti
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Giulia Vagnoni
- Clinical Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Calogero Saieva
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | | | - Saverio Caini
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy.
| |
Collapse
|
12
|
Scimeca M, Palumbo V, Giacobbi E, Servadei F, Casciardi S, Cornella E, Cerbara F, Rotondaro G, Seghetti C, Scioli MP, Montanaro M, Barillà F, Sisto R, Melino G, Mauriello A, Bonfiglio R. Impact of the environmental pollution on cardiovascular diseases: From epidemiological to molecular evidence. Heliyon 2024; 10:e38047. [PMID: 39328571 PMCID: PMC11425171 DOI: 10.1016/j.heliyon.2024.e38047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Environmental pollution poses a significant threat to human health, particularly concerning its impact on cardiovascular diseases (CVDs). This review synthesizes epidemiological and molecular evidence to elucidate the intricate relationship between environmental pollutants and CVDs. Epidemiological studies highlight the association between exposure to air, water, and soil pollutants and increased CVD risk, including hypertension, coronary artery disease, and stroke. Furthermore, molecular investigations unravel the underlying mechanisms linking pollutant exposure to CVD pathogenesis, such as oxidative stress, inflammation, endothelial dysfunction, and autonomic imbalance. Understanding these molecular pathways is crucial for developing targeted interventions and policy strategies to mitigate the adverse effects of environmental pollution on cardiovascular health. By integrating epidemiological and molecular evidence, this review provides insights into the complex interplay between environmental factors and CVDs, emphasizing the urgent need for comprehensive preventive measures and environmental policies to safeguard public health.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Valeria Palumbo
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, Rome, 00078, Italy
| | - Elena Cornella
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Federica Cerbara
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Gabriele Rotondaro
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Christian Seghetti
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Maria Paola Scioli
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Manuela Montanaro
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Francesco Barillà
- Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, Rome, 00078, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| |
Collapse
|
13
|
Huang N, Wang B, Liu S, Wang K, Wang R, Liu F, Chen C. Cadmium exposure in infants and children: toxicity, health effects, dietary risk assessment and mitigation strategies. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39264340 DOI: 10.1080/10408398.2024.2403036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
As a non-essential metal, cadmium (Cd) poses a significant threat to food safety and public health. This risk is particularly pronounced for infants and young children due to their high food consumption relative to body weight and immature physiological systems. This review examines the health risks associated with Cd exposure, particularly during the prenatal period through adolescence. It evaluates the prevalence of Cd-rich foods in children's diets and their intake levels across various countries. The review demonstrates that Cd exposure is associated with neurodevelopmental disorders, immune dysfunction, and cardiovascular diseases. It also highlights geographic differences in exposure, with some Asian countries, such as Thailand and China, exhibiting higher overall levels of Cd intake among children compared to other regions. This review presents several recommendations to mitigate Cd intake during early childhood, including reducing the Cd content in food, inhibiting Cd absorption, and promoting its excretion from the body. To minimize the risk of dietary Cd intake in children, it is recommended that stringent regulations of Cd limits in children's food be implemented, alongside a coordinated multi-stakeholder effort. This review provides important insights into effective public health policy development, laying the foundation for achieving broader public health goals.
Collapse
Affiliation(s)
- Nan Huang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baozhen Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shufang Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kebo Wang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Ruike Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fengquan Liu
- Department of Plant Pathology/Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
14
|
Fu Q, Yuan X. Relationship between mixed exposure to phenyl hydroxides, polycyclic aromatic hydrocarbons, and phthalates and the risk of arthritis. BMC Public Health 2024; 24:2446. [PMID: 39251954 PMCID: PMC11382499 DOI: 10.1186/s12889-024-19971-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND To determine the relationship between mixed exposure to three types of endocrine-disrupting chemicals (EDCs), namely phenyl hydroxides, polycyclic aromatic hydrocarbons (PAHs), and phthalates (PAEs), and risk of arthritis. METHODS Participants were selected from National Health and Nutrition Examination Survey (NHANES). The relationships between the urinary concentrations of phenyl hydroxides, PAHs, and PAEs and the risk of arthritis were analyzed by generalized linear regression model. The mixed exposure to these EDCs and the risk of arthritis was analyzed by weighted quantile sums (WQSs) and Bayesian kernel machine regression (BKMR) model. RESULTS Our analysis showed that participants with urinary benzophenone-3 and methylparaben concentrations in the highest quartile (Q4) had an increased risk of arthritis compared with those in Q1. For each one-unit increase in the natural logarithm-converted urinary concentrations of 1-hydroxynapthalene and 2-hydroxynapthalene, the risk of arthritis increased by 5% and 8%, respectively. Chemical mixing index coefficients were significantly associated with risk of arthritis in both WQS positive- and negative-constraint models. In the BKMR model, there was a significant positive correlation between mixed exposure and the risk of arthritis. CONCLUSION Mixed exposure to phenyl hydroxides, PAHs, and PAEs increased the risk of arthritis, with exposure to PAHs being the key factor.
Collapse
Affiliation(s)
- Qingsong Fu
- Department of Orthopedics, Ningbo No.2 Hospital, No. 41 Northwest Street, Haishu Distrist, Ningbo, 315000, Zhejiang, China
| | - Xinhua Yuan
- Department of Orthopedics, Ningbo No.2 Hospital, No. 41 Northwest Street, Haishu Distrist, Ningbo, 315000, Zhejiang, China.
| |
Collapse
|
15
|
Gao Y, Shu S, Zhang D, Wang P, Yu X, Wang Y, Yu Y. Association of Urinary Glyphosate with All-Cause Mortality and Cardiovascular Mortality among Adults in NHANES 2013-2018: Role of Alkaline Phosphatase. TOXICS 2024; 12:559. [PMID: 39195661 PMCID: PMC11360183 DOI: 10.3390/toxics12080559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
Glyphosate is the most widely used herbicide in the world. This study aimed to evaluate the relationships among urinary glyphosate, all-cause mortality and cardiovascular diseases (CVD)-related mortality in the general US population of adults, and to determine the role of alkaline phosphatase (ALP), an inflammation marker that is associated with glyphosate exposure, in these relationships. Subjects from the National Health and Nutrition Examination Survey (NHANES) 2013-2018 cycles were included. Survey-weighted Cox regression analysis was applied to estimate the relationship of glyphosate with overall and CVD mortalities. Restricted cubic spline (RCS) analysis was utilized to detect the linearity of associations. The intermediary role of ALP was explored by mediation analysis. Our results found consistent and positive associations of glyphosate with all-cause mortality (HR: 1.29, 95%CI: 1.05-1.59) and CVD mortality (HR: 1.32, 95%CI: 1.02-1.70). RCS curves further validated linear and positive dose-dependent relationships between glyphosate and mortality-related outcomes. Moreover, serum ALP was identified as a mediator in these associations and explained 12.1% and 14.0% of the total associations between glyphosate and all-cause death and CVD death risk, respectively. Our study indicated that glyphosate was associated with increased all-cause and CVD mortality in humans. Increased ALP may play an essential role in these associations.
Collapse
Affiliation(s)
- Yongyue Gao
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, China; (Y.G.); (P.W.)
| | - Shuge Shu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210000, China; (S.S.); (X.Y.); (Y.W.)
| | - Di Zhang
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210000, China;
| | - Pu Wang
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, China; (Y.G.); (P.W.)
| | - Xiangyu Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210000, China; (S.S.); (X.Y.); (Y.W.)
| | - Yucheng Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210000, China; (S.S.); (X.Y.); (Y.W.)
| | - Yongquan Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210000, China; (S.S.); (X.Y.); (Y.W.)
| |
Collapse
|
16
|
Wang Y, Wang Y, Li R, Ni B, Chen R, Huang Y, Cheng R, Li P, Li H, Peng Y, Chen X, Wang J, Fu Y, Yang C, Yuan N, Xiao X, Huang Y, Zeng H, Xia W, Li Y, Xu S, Chen L, Liu H. Low-grade systemic inflammation links heavy metal exposures to mortality: A multi-metal inflammatory index approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174537. [PMID: 38977088 DOI: 10.1016/j.scitotenv.2024.174537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Certain heavy metals have been correlated to an elevated risk of inflammation-related diseases and mortality. Nevertheless, the intricate relationships between metal exposure, inflammation and mortality remain unknown. We included 3741 adults with measurements of ten urinary heavy metals in the National Health and Nutritional Examination Survey (NHANES) 2005-2010, followed up to December 31, 2019. Low-grade systemic inflammation was evaluated by various markers, including C-reactive protein (CRP) and ratios derived from regular blood tests. We assessed associations between heavy metal and all-cause mortality using multivariate COX regressions. Then we assessed the mediation effect of low-grade systemic inflammation on the associations via Sobel Test. To gauge the systemic inflammatory potential of the multi-metal mixture and its correlation with all-cause mortality, a Metal Mixture Inflammatory Index (MMII) was developed using reduced rank regression (RRR) models. The association between MMII and all-cause mortality was explored via multivariate COX regressions. Cadmium, antimony and uranium displayed positive associations with mortality, with hazard ratios (HR) ranging from 1.18 to 1.46 (all P-FDR < 0.05). Mediation analyses revealed that the associations between specific heavy metals (cadmium and antimony) and mortality risk were slightly mediated by the low-grade systemic inflammation markers, with mediation proportions ranging from 3.11 % to 5.38 % (all P < 0.05). MMII, the weighted sum of 9 heavy metals, significantly predicted platelet-to-lymphocyte ratio (PLR) and CRP (β = 0.10 and 1.16, all P < 0.05), was positively associated with mortality risk (HR 1.28, 95 % CI 1.14 to 1.43). Exposure to heavy metals might increase all-cause mortality, partly mediated by low-grade systemic inflammation. MMII, designed to assess the potential systemic inflammatory effects of exposure to multiple heavy metals, was closely related to the all-cause mortality risk. This study introduces MMII as an approach to evaluating co-exposure and its potential health effects comprehensively.
Collapse
Affiliation(s)
- Yin Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China; The Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yuyan Wang
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Ruizhen Li
- Department of Children Healthcare, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, PR China
| | - Baiwen Ni
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Ruixin Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yun Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Rongrong Cheng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Pei Li
- Department of Physiology and Biophysics, University of New York at Buffalo, New York, NY, USA
| | - Han Li
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Yang Peng
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Xue Chen
- Department of Children Healthcare, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, PR China
| | - Jingyu Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yuehao Fu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Chenhui Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Ningxue Yuan
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xianhe Xiao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yizhao Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Huaicai Zeng
- Department of Occupational and Environmental Health, Guilin Medical University, Guilin, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Lei Chen
- Department of Children Healthcare, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, PR China.
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China; The Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
17
|
Qian T, Zhang J, Liu J, Wu J, Ruan Z, Shi W, Fan Y, Ye D, Fang X. Associations of phthalates with accelerated aging and the mitigating role of physical activity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116438. [PMID: 38744065 DOI: 10.1016/j.ecoenv.2024.116438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/06/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Phthalates are positioned as potential risk factors for health-related diseases. However, the effects of exposure to phthalates on accelerated aging and the potential modifications of physical activity remain unclear. A total of 2317 participants containing complete study-related information from the National Health and Nutrition Examination Survey 2007-2010 were included in the current study. We used two indicators, the Klemera-Doubal method biological age acceleration (BioAgeAccel) and phenotypic age acceleration (PhenoAgeAccel), to assess the accelerated aging status of the subjects. Multiple linear regression (single pollutant models), weighted quantile sum (WQS) regression, Quantile g-computation, and Bayesian kernel machine regression (BKMR) models were utilized to explore the associations between urinary phthalate metabolites and accelerated aging. Three groups of physical activity with different intensities were used to evaluate the modifying effects on the above associations. Results indicated that most phthalate metabolites were significantly associated with BioAgeAccel and PhenoAgeAccel, with effect values (β) ranging from 0.16 to 0.21 and 0.16-0.37, respectively. The WQS indices were positively associated with BioAgeAccel (0.33, 95% CI: 0.11, 0.54) and PhenoAgeAccel (0.50, 95% CI: 0.19, 0.82). Quantile g-computation indicated that phthalate mixtures were associated with accelerated aging, with effect values of 0.15 (95% CI: 0.02, 0.28) for BioAgeAccel and 0.39 (95% CI: 0.12, 0.67) for PhenoAgeAccel respectively. The BKMR models indicated a significant positive association between the concentrations of urinary phthalate mixtures with the two indicators. In addition, we found that most phthalate metabolites showed the strongest effects on accelerated aging in the no physical activity group and that the effects decreased gradually with increasing levels of physical activity (P < 0.05 for trend). Similar results were also observed in the mixed exposure models (WQS and Quantile g-computation). This study indicates that phthalates exposure is associated with accelerated aging, while physical activity may be a crucial barrier against phthalates exposure-related aging.
Collapse
Affiliation(s)
- Tingting Qian
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Jie Zhang
- School of Public Health, Anhui University of Science and Technology, Hefei, Anhui 231131, China; Key Laboratory of Industrial Dust Prevention and Control, Occupational Health and Safety, Ministry of Education, Anhui University of Science and Technology, Hefei, Anhui 231131, China; Anhui Institute of Occupational Safety and Health, Anhui University of Science and Technology, Hefei, Anhui 231131, China; Joint Research Center of Occupational Medicine and Health, Institute of Grand Health, Hefei Comprehensive National Science Center, Anhui University of Science and Technology, Hefei, Anhui 231131, China
| | - Jintao Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Jingwei Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Zhaohui Ruan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Wenru Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Yinguang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China.
| | - Dongqing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; School of Public Health, Anhui University of Science and Technology, Hefei, Anhui 231131, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China; Key Laboratory of Industrial Dust Prevention and Control, Occupational Health and Safety, Ministry of Education, Anhui University of Science and Technology, Hefei, Anhui 231131, China; Anhui Institute of Occupational Safety and Health, Anhui University of Science and Technology, Hefei, Anhui 231131, China; Joint Research Center of Occupational Medicine and Health, Institute of Grand Health, Hefei Comprehensive National Science Center, Anhui University of Science and Technology, Hefei, Anhui 231131, China.
| | - Xinyu Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China.
| |
Collapse
|
18
|
Tao C, Li Z, Fan Y, Huang Y, Wan T, Shu M, Han S, Qian H, Yan W, Xu Q, Xia Y, Lu C, Li Y. Estimating lead-attributable mortality burden by socioeconomic status in the USA. Int J Epidemiol 2024; 53:dyae089. [PMID: 38990179 DOI: 10.1093/ije/dyae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND This study aimed to estimate population-level and state-level lead-attributable mortality burdens stratified by socioeconomic status (SES) class in the USA. METHODS Based on the National Health and Nutrition Examination Survey (NHANES), we constructed individual-level SES scores from income, employment, education and insurance data. We assessed the association between the blood lead levels (BLL) and all-cause mortality by Cox regression in the NHANES cohort (n = 31 311, 4467 deaths). With estimated hazard ratios (HR) and prevalences of medium (2-5 μg/dL) and high (≥ 5 μg/dL) BLL, we computed SES-stratified population-attributable fractions (PAFs) of all-cause mortality from lead exposure across 1999-2019. We additionally conducted a systematic review to estimate the lead-attributable mortality burden at state-level. RESULTS The HR for every 2-fold increase in the BLL decreased from 1.23 (1.10-1.38) for the lowest SES class to 1.05 (0.90-1.23) for the highest SES class. Across all SES quintiles, medium BLL exhibited a greater mortality burden. Individuals with lower SES had higher lead-attributable burdens, and such disparities haver persisted over the past two decades. In 2017-19, annually 67 000 (32 000-112 000) deaths in the USA were attributable to lead exposure, with 18 000 (2000-41 000) of these deaths occurring in the lowest SES class. Substantial disparities in the state-level mortality burden attributable to lead exposure were also highlighted. CONCLUSIONS These findings suggested that disparities in lead-attributable mortality burden persisted within US adults, due to heterogeneities in the effect sizes of lead exposure as well as in the BLL among different SES classes.
Collapse
Affiliation(s)
- Chengzhe Tao
- Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhi Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yun Fan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuna Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tingya Wan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mingxue Shu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuwen Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hong Qian
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenkai Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yankai Xia
- Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chuncheng Lu
- Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - You Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
- Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
19
|
Zeng X, Zhou L, Zeng Q, Zhu H, Luo J. High serum copper as a risk factor of all-cause and cause-specific mortality among US adults, NHANES 2011-2014. Front Cardiovasc Med 2024; 11:1340968. [PMID: 38707892 PMCID: PMC11066204 DOI: 10.3389/fcvm.2024.1340968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Background Several studies have shown that serum copper levels are related to coronary heart disease, diabetes, and cancer. However, the association of serum copper levels with all-cause, cause-specific [including cardiovascular disease (CVD) and cancer] mortality remains unclear. Objectives This study aimed to prospectively examine the association of copper exposure with all-cause, CVD, and cancer mortality among US adults. Methods The data for this analysis was obtained from the National Health and Nutrition Examination Survey (NHANES) between 2011 and 2014. Mortality from all-causes, CVD, and cancer mortality was linked to US National Death Index mortality data. Cox regression models were used to estimate the association between serum copper levels and all-cause, CVD, and cancer mortality. Results A total of 2,863 adults were included in the main study. During the mean follow-up time of 81.2 months, 236 deaths were documented, including 68 deaths from cardiovascular disease and 57 deaths from cancer. The weighted mean overall serum copper levels was 117.2 ug/L. After adjusting for all of the covariates, compared with participants with low (1st tertile, <103 μg/L)/medium (2st tertile, 103-124 μg/L) serum copper levels, participants with high serum copper levels (3rd tertile, ≥124 μg/L) had a 1.75-fold (95% CI, 1.05-2.92)/1.78-fold (1.19,2.69) increase in all-cause mortality, a 2.35-fold (95% CI, 1.04-5.31)/3.84-fold (2.09,7.05) increase in CVD mortality and a 0.97-fold (95% CI, 0.28-3.29)/0.86-fold (0.34,2.13) increase in cancer mortality. In addition, there was a linear dose-response association between serum copper concentration with all-cause and CVD mortality (P for nonlinear > 0.05). Conclusions This prospective study found that serum copper concentrations were linearly associated with all-cause and CVD mortality in US adults. High serum copper levels is a risk factor for all-cause and CVD mortality.
Collapse
Affiliation(s)
- Xianghui Zeng
- Department of Cardiology, Ganzhou Hospital of Traditional Chinese Medicine, Ganzhou, Jiangxi, China
| | - Lanqian Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qingfeng Zeng
- Department of Cardiology, Ganzhou Hospital of Traditional Chinese Medicine, Ganzhou, Jiangxi, China
- Emergency Department, The Second Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hengqing Zhu
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People’s Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Jianping Luo
- Department of Cardiology, Ganzhou People’s Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
20
|
Kabekkodu SP, Gladwell LR, Choudhury M. The mitochondrial link: Phthalate exposure and cardiovascular disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119708. [PMID: 38508420 DOI: 10.1016/j.bbamcr.2024.119708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/17/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Phthalates' pervasive presence in everyday life poses concern as they have been revealed to induce perturbing health defects. Utilized as a plasticizer, phthalates are riddled throughout many common consumer products including personal care products, food packaging, home furnishings, and medical supplies. Phthalates permeate into the environment by leaching out of these products which can subsequently be taken up by the human body. It is previously established that a connection exists between phthalate exposure and cardiovascular disease (CVD) development; however, the specific mitochondrial link in this scenario has not yet been described. Prior studies have indicated that one possible mechanism for how phthalates exert their effects is through mitochondrial dysfunction. By disturbing mitochondrial structure, function, and signaling, phthalates can contribute to the development of the foremost cause of death worldwide, CVD. This review will examine the potential link among phthalates and their effects on the mitochondria, permissive of CVD development.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lauren Rae Gladwell
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
21
|
Zhou YH, Bai YJ, Zhao XY. Combined exposure to multiple metals on abdominal aortic calcification: results from the NHANES study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24282-24301. [PMID: 38438641 DOI: 10.1007/s11356-024-32745-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
Exposure to metals increases the risk of many diseases and has become a public health concern. However, few studies have focused on the effect of metal on abdominal aortic calcification (AAC), especially the combined effects of metal mixtures. In this study, we aim to investigate the combined effect of metals on AAC risk and determine the key components in the multiple metals. We tried to investigate the relationship between multiple metal exposure and AAC risk. Fourteen urinary metals were analyzed with five statistical models as follows: generalized linear regression, weighted quantile sum regression (WQS), quantile g-computation (Qgcomp), and Bayesian kernel machine regression (BKMR) models. A total of 838 participants were involved, of whom 241 (28.8%) had AAC. After adjusting for covariates, in multiple metal exposure logistic regression, cadmium (Cd) (OR = 1.364, 95% CI = 1.035-1.797) was positively associated with AAC risk, while cobalt (Co) (OR = 0.631, 95% CI = 0.438-0.908) was negatively associated with AAC risk. A significant positive effect between multiple metal exposure and AAC risk was observed in WQS (OR = 2.090; 95% CI = 1.280-3.420, P < 0.01), Qgcomp (OR = 1.522, 95% CI = 1.012-2.290, P < 0.05), and BKMR models. It was found that the positive association may be driven primarily by Cd, lead (Pb), uranium (U), and tungsten (W). Subgroups analysis showed the association was more significant in participants with BMI ≥ 25 kg/m2, abdominal obesity, drinking, and smoking. Our study shows that exposure to multiple metals increases the risk of AAC in adults aged ≥ 40 years in the USA and that Cd, Pb, U, and W are the main contributors. The association is stronger in participants who are obese, smoker, or drinker.
Collapse
Affiliation(s)
- Yuan-Hang Zhou
- Department of Cardiology, Cardiovascular Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Yu-Jie Bai
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiao-Yan Zhao
- Department of Cardiology, Cardiovascular Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China.
| |
Collapse
|
22
|
Duan S, Wu Y, Zhu J, Wang X, Fang Y. Associations of polycyclic aromatic hydrocarbons mixtures with cardiovascular diseases mortality and all-cause mortality and the mediation role of phenotypic ageing: A time-to-event analysis. ENVIRONMENT INTERNATIONAL 2024; 186:108616. [PMID: 38593687 DOI: 10.1016/j.envint.2024.108616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
The associations of polycyclic aromatic hydrocarbons (PAHs) with cardiovascular diseases (CVDs) and all-cause mortality are unclear, especially the joint effects of PAHs exposure. Meanwhile, no studies have examined the effect of phenotypic ageing on the relationship between PAHs and mortality. Therefore, this study aimed to investigate the independent and joint associations between PAHs and CVDs, all-cause mortality, and assess whether phenotypic age acceleration (PhenoAgeAccel) mediate this relationship. We retrospectively collected data of 11,983 adults from the National Health and Nutrition Examination Survey database. Firstly, Cox proportional hazards regression and restricted cubic splines were applied to evaluate the independent association of single PAH on mortality. Further, time-dependent Probit extension of Bayesian Kernel Machine Regression and quantile-based g-computation models were conducted to test the joint effect of PAHs on mortality. Then, difference method was used to calculate the mediation proportion of PhenoAgeAccel in the association between PAHs and mortality. Our results revealed that joint exposure to PAHs showed positive association with CVDs and all-cause mortality. By controlling potential confounders, 1-Hydroxynapthalene (1-NAP) (HR = 1.24, P = 0.035) and 2-Hydroxyfluorene (2-FLU) (HR = 1.25, P < 0.001) showed positive association with CVDs mortality, and they were the top 2 predictors (weight: 0.82 for 1-NAP, 0.14 for 2-FLU) of CVDs mortality. 1-NAP (HR = 1.15, P < 0.001) and 2-FLU (HR = 1.13, P < 0.001) also showed positive association with all-cause mortality, and they were also the top 2 predictors of all-cause mortality (weight: 0.66 for 1-NAP, 0.34 for 2-FLU). PhenoAgeAccel mediated the relationship between 1-NAP, 2-FLU and CVDs, all-cause mortality, with a mediation proportion of 10.00 % to 24.90 % (P < 0.05). Specifically, the components of PhenoAgeAccel including C-reactive protein, lymphocyte percent, white blood cell count, red cell distribution width, and mean cell volume were the main contributors of mediation effects. Our study highlights the hazards of joint exposure of PAHs and the importance of phenotypic ageing on the relationship between PAHs and mortality.
Collapse
Affiliation(s)
- Siyu Duan
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Yafei Wu
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Junmin Zhu
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Xing Wang
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Ya Fang
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
23
|
Virtuoso S, Raggi C, Maugliani A, Baldi F, Gentili D, Narciso L. Toxicological Effects of Naturally Occurring Endocrine Disruptors on Various Human Health Targets: A Rapid Review. TOXICS 2024; 12:256. [PMID: 38668479 PMCID: PMC11054122 DOI: 10.3390/toxics12040256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/29/2024]
Abstract
Endocrine-disrupting compounds are chemicals that alter the normal functioning of the endocrine system of living organisms. They can be natural (N-EDCs) or synthetic compounds (S-EDCs). N-EDCs can belong to different groups, such as phytoestrogens (PEs), including flavonoids, or mycotoxins originating from plants or fungi, and cyanotoxins, derived from bacteria. Humans encounter these substances in their daily lives. The aim of this rapid review (RR) is to provide a fine mapping of N-EDCs and their toxicological effects on human health in terms of various medical conditions or adverse consequences. This work is based on an extensive literature search and follows a rigorous step-by-step approach (search strategy, analysis strategy and data extraction), to select eligible papers published between 2019 and 2023 in the PubMed database, and to define a set of aspects characterizing N-EDCs and the different human target systems. Of the N-EDCs identified in this RR, flavonoids are the most representative class. Male and female reproductive systems were the targets most affected by N-EDCs, followed by the endocrine, nervous, bone and cardiovascular systems. In addition, the perinatal, pubertal and pregnancy periods were found to be particularly susceptible to natural endocrine disruptors. Considering their current daily use, more toxicological research on N-EDCs is required.
Collapse
Affiliation(s)
- Sara Virtuoso
- National Centre for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Carla Raggi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Antonella Maugliani
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.M.); (F.B.)
| | - Francesca Baldi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.M.); (F.B.)
| | - Donatella Gentili
- Scientific Knowledge Unit (Library), Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Laura Narciso
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.M.); (F.B.)
| |
Collapse
|
24
|
Zheng L, Zhang X, Gao Z, Zhong C, Qiu D, Yan Q. The association between polychlorinated dibenzo-p-dioxin exposure and cancer mortality in the general population: a cohort study. Front Public Health 2024; 12:1354149. [PMID: 38410662 PMCID: PMC10894979 DOI: 10.3389/fpubh.2024.1354149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/02/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction Earlier research has indicated that being exposed to polychlorinated dibenzo-p-dioxins (PCDDs) in the workplace can heighten the likelihood of cancer-related deaths. Nevertheless, there is limited information available regarding the connection between PCDD exposure and the risk of cancer mortality in the general population (i.e., individuals not exposed to these substances through their occupation). Methods The National Health and Nutrition Examination Survey (NHANES) detected PCDDs in the general population, and the death data were recently updated as of December 31, 2019. We conducted Cox regression analysis and controlled for covariates including age, gender, ethnicity, educational attainment, physical activity, alcohol intake, NHANES survey period, BMI category, cotinine concentration, and household earnings. Results After accounting for confounding factors, the findings indicated that for each incremental rise of 1 log unit in 1,2,3,4,6,7,8,9-octachlorodibenzo-p-dioxin, there was a 76% rise in the likelihood of death from any cause, with a p value of 0.003. An increase of 1 log unit in the concentration of 1,2,3,4,6,7,8-heptachlorodibenzofuran could potentially lead to a 90% higher risk of cancer mortality, as indicated by a p value of 0.034 and a 95% confidence interval of 0.05-2.43. As the concentrations of 1,2,3,4,6,7,8-heptachlorodibenzofuran increased, the dose-response curve indicated a proportional rise in the risk of cancer mortality, accompanied by a linear p value of 0.044. The sensitivity analysis demonstrated that our findings were resilient. Discussion In the general population, an elevated risk of cancer mortality was observed in PCDDs due to the presence of 1,2,3,4,6,7,8-heptachlorodibenzofuran. Mechanistic research is required to further confirm it.
Collapse
Affiliation(s)
| | | | | | | | | | - Qing Yan
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Duan S, Wu Y, Zhu J, Wang X, Zhang Y, Gu C, Fang Y. Development of interpretable machine learning models associated with environmental chemicals to predict all-cause and specific-cause mortality:A longitudinal study based on NHANES. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115864. [PMID: 38142591 DOI: 10.1016/j.ecoenv.2023.115864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
Limited information is available on potential predictive value of environmental chemicals for mortality. Our study aimed to investigate the associations between 43 of 8 classes representative environmental chemicals in serum/urine and mortality, and further develop the interpretable machine learning models associated with environmental chemicals to predict mortality. A total of 1602 participants were included from the National Health and Nutrition Examination Survey (NHANES). During 154,646 person-months of follow-up, 127 deaths occurred. We found that machine learning showed promise in predicting mortality. CoxPH was selected as the optimal model for predicting all-cause mortality with time-dependent AUROC of 0.953 (95%CI: 0.951-0.955). Coxnet was the best model for predicting cardiovascular disease (CVD) and cancer mortality with time-dependent AUROCs of 0.935 (95%CI: 0.933-0.936) and 0.850 (95%CI: 0.844-0.857). Based on clinical variables, adding environmental chemicals could enhance the predictive ability of cancer mortality (P < 0.05). Some environmental chemicals contributed more to the models than traditional clinical variables. Combined the results of association and prediction models by interpretable machine learning analyses, we found urinary methyl paraben (MP) and urinary 2-napthol (2-NAP) were negatively associated with all-cause mortality, while serum cadmium (Cd) was positively associated with all-cause mortality. Urinary bisphenol A (BPA) was positively associated with CVD mortality.
Collapse
Affiliation(s)
- Siyu Duan
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Yafei Wu
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Junmin Zhu
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Xing Wang
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Yaheng Zhang
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Chenming Gu
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Ya Fang
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
26
|
Tao HW, Han WW, Liu YJ, Du HZ, Li ZN, Qin LQ, Chen GC, Chen JS. Association of phthalate exposure with all-cause mortality across renal function status: The U.S. National Health and Nutrition Examination Survey, 2005-2018. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115881. [PMID: 38147775 DOI: 10.1016/j.ecoenv.2023.115881] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Wide phthalate exposure has been associated with both declines in renal function and an elevated risk of mortality. Whether phthalate-associated risk of premature mortality differs by renal function status remains unclear. METHODS This study included 9605 adults from the U.S. National Health and Nutrition Examination Survey. Urinary concentrations of 11 phthalate metabolites were assessed using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. According to estimated glomerular filtration rate (eGFR), participants were grouped as having normal or modestly declined renal functions, or chronic kidney disease (CKD). Multivariable Cox regression models estimated all-cause mortality associated with phthalate exposure, overall and by renal function status. RESULTS Overall, Mono-n-butyl phthalate (MnBP), Mono-benzyl phthalate (MBzP), Mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and Mono-(2-ethyl-5-carbox-ypentyl) phthalate (MECPP) were associated with an elevated risk of mortality (P-trend across tertile <0.05). Moreover, significant interactions were observed between eGFR and MEHHP, MEOHP, MECPP, DEHP in the whole population (P for interactions <0.05). After stratification by renal function, total Di (2-ethylhexyl) phthalate (DEHP) was additionally found to be associated with mortality risk in the CKD group (HR = 1.12; 95% CI: 1.01, 1.25). Co-exposure to the 11 phthalate metabolites was associated with a higher risk of all-cause mortality in the CKD (HR = 1.47; 95% CI: 1.18, 1.84) and modestly declined renal function group (HR = 1.25; 95% CI: 1.09, 1.44). CONCLUSIONS The associations between phthalate exposure and risk of all-cause mortality were primarily observed in CKD patients, reinforcing the need for monitoring phthalate exposure in this patient population.
Collapse
Affiliation(s)
- Hao-Wei Tao
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wen-Wen Han
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yu-Jie Liu
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Hong-Zhen Du
- Department of Nutrition, The First Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Nutrition and Health, Shijiazhuang, Hebei, China
| | - Zeng-Ning Li
- Department of Nutrition, The First Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Nutrition and Health, Shijiazhuang, Hebei, China; Hospital of Stomatology of Hebei Medical University Shijiazhuang, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Guo-Chong Chen
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Jing-Si Chen
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
27
|
Armeni E. Environment and menopause: The best time for action is now. Maturitas 2023; 178:107802. [PMID: 37500313 DOI: 10.1016/j.maturitas.2023.107802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Affiliation(s)
- Eleni Armeni
- Royal Free Hospital NHS Foundation Trust, Medical School, University College London, London, UK; 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece.
| |
Collapse
|
28
|
Yan Q, Xiao Z, Zhang X, Wang G, Zhong C, Qiu D, Huang S, Zheng L, Gao Z. Association of organophosphate flame retardants with all-cause and cause-specific mortality among adults aged 40 years and older. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115690. [PMID: 37976933 DOI: 10.1016/j.ecoenv.2023.115690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
The longitudinal associations of urinary concentrations of diphenyl phosphate (DPHP), bis(2-chloroethyl) phosphate (BCEP), and bis(1,3-dichloro-2-propyl) phosphate (BDCPP) with all-cause, cardiovascular, and cancer mortality in a population of adults aged 40 years and older are still unclear. A total of 3238 participants were included in this cohort study. Urinary BCEP levels were positively associated with all-cause mortality and cardiovascular mortality. Specifically, a logarithmic increase in BCEP concentration was related to a 26 % higher risk of all-cause mortality and a 32 % higher risk of cardiovascular mortality. No significant associations were observed for DPHP and BDCPP in relation to mortality. Doseresponse analysis confirmed the linear associations of BCEP with all-cause and cardiovascular mortality and the nonlinear inverted U-shaped association between DPHP exposure and all-cause mortality. Notably, the economic burden associated with BCEP exposure was estimated, and it was shown that concentrations in the third tertile of BCEP exposure incurred approximately 507 billion dollars of financial burden for all-cause mortality and approximately 717 billion dollars for cardiovascular mortality. These results highlight the importance of addressing exposure to BCEP and its potential health impacts on the population. More research is warranted to explore the underlying mechanisms and develop strategies for reducing exposure to this harmful chemical.
Collapse
Affiliation(s)
- Qing Yan
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhihao Xiao
- School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xianli Zhang
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Gang Wang
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Chunyu Zhong
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Dezhi Qiu
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Lei Zheng
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Zhe Gao
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
29
|
Li W, Huang G, Tang N, Lu P, Jiang L, Lv J, Qin Y, Lin Y, Xu F, Lei D. Association between co-exposure to phenols, phthalates, and polycyclic aromatic hydrocarbons with the risk of frailty. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105181-105193. [PMID: 37713077 DOI: 10.1007/s11356-023-29887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The phenomenon of population aging has brought forth the challenge of frailty. Nevertheless, the contribution of environmental exposure to frailty remains ambiguous. Our objective was to investigate the association between phenols, phthalates (PAEs), and polycyclic aromatic hydrocarbons (PAHs) with frailty. We constructed a 48-item frailty index using data from the National Health and Nutrition Examination Survey (NHANES). The exposure levels of 20 organic contaminants were obtained from the survey circle between 2005 and 2016. The association between individual organic contaminants and the frailty index was assessed using negative binomial regression models. The combined effect of organic contaminants was examined using weighted quantile sum (WQS) regression. Dose-response patterns were modeled using generalized additive models (GAMs). Additionally, an interpretable machine learning approach was employed to develop a predictive model for the frailty index. A total of 1566 participants were included in the analysis. Positive associations were observed between exposure to MIB, P02, ECP, MBP, MHH, MOH, MZP, MC1, and P01 with the frailty index. WQS regression analysis revealed a significant increase in the frailty index with higher levels of the mixture of organic contaminants (aOR, 1.12; 95% CI, 1.05-1.20; p < 0.001), with MIB, ECP, COP, MBP, P02, and P01 identified as the major contributors. Dose-response relationships were observed between MIB, ECP, MBP, P02, and P01 exposure with an increased risk of frailty (both with p < 0.05). The developed predictive model based on organic contaminants exposure demonstrated high performance, with an R2 of 0.9634 and 0.9611 in the training and testing sets, respectively. Furthermore, the predictive model suggested potential synergistic effects in the MIB-MBP and P01-P02 pairs. Taken together, these findings suggest a significant association between exposure to phthalates and PAHs with an increased susceptibility to frailty.
Collapse
Affiliation(s)
- Wenxiang Li
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, People's Republic of China
| | - Guangyi Huang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, People's Republic of China
| | - Ningning Tang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, People's Republic of China
| | - Peng Lu
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, People's Republic of China
| | - Li Jiang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, People's Republic of China
| | - Jian Lv
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, People's Republic of China
| | - Yuanjun Qin
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, People's Republic of China
| | - Yunru Lin
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, People's Republic of China
| | - Fan Xu
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, People's Republic of China
| | - Daizai Lei
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, People's Republic of China.
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region, 6 Taoyuan Road, Qingxiu District, Nanning, 530000, China.
| |
Collapse
|