1
|
Justi LHZ, Silva JF, Santana MS, Laureano HA, Pereira ME, Oliveira CS, Guiloski IC. Non-steroidal anti-inflammatory drugs and oxidative stress biomarkers in fish: a meta-analytic review. Toxicol Rep 2025; 14:101910. [PMID: 39901883 PMCID: PMC11788796 DOI: 10.1016/j.toxrep.2025.101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 02/05/2025] Open
Abstract
Drug residues have been detected in aquatic environments around the world and non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most used classes. Therefore, it is important to verify the physiological effects of these products on exposed non-target organisms such as fish. Through a meta-analytic review, we evaluated the effects of NSAIDs on oxidative stress biomarkers in fish. Overall, Diclofenac was the most frequently tested drug in the systematically selected studies while acute and hydric exposure types were the most prevalent among these studies. The meta-analysis revealed that (1) chronic and subchronic exposures to NSAIDs decreased catalase (CAT) activity, and acute exposure increased glutathione peroxidase (GPx) activity; (2) hydric exposure increased GPx activity; (3) exposure to low concentrations of NSAIDs increased GPx and superoxide dismutase (SOD) activity; (4) Paracetamol exposure increased GPx and SOD activity and lipid peroxidation levels, but reduced glutathione S-transferase (GST) activity; (5) Diclofenac exposure increased GPx activity. In conclusion, our results demonstrated that fish are sensitive to NSAIDs exposure presenting significant alterations in oxidative stress biomarkers, especially in the GPx enzyme. This enzyme exhibits strong potential as a biomarker of NSAIDs exposure in fish. Paracetamol stood out as the NSAID that altered the largest number of oxidative stress biomarkers, drawing attention to its risk to fish. In contrast, ibuprofen did not change the biomarkers evaluated. These data demonstrate the important impact of emerging contaminants such as NSAIDs on aquatic organisms and the need for strategies to mitigate these effects.
Collapse
Affiliation(s)
- Luiz Henrique Zaniolo Justi
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Juliana Ferreira Silva
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | | | | | - Meire Ellen Pereira
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Cláudia Sirlene Oliveira
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Izonete Cristina Guiloski
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| |
Collapse
|
2
|
Shaalan WM, Sayed AEDH. Toxicity of pharmaceutical micropollutants on common carp (Cyprinus carpio) using blood biomarkers. Sci Rep 2025; 15:18748. [PMID: 40436894 PMCID: PMC12119934 DOI: 10.1038/s41598-025-01434-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 05/06/2025] [Indexed: 06/01/2025] Open
Abstract
The presence of pharmaceutical compounds in aquatic environments has become a notable ecological issue, with compounds such as bromazepam, naproxen, metoprolol, and sotalol being of particular concern due to their prevalence and potential biological effects on non-target species. This study aims to evaluate the effects of these pharmaceuticals on common carp (Cyprinus carpio), focusing on cytogenicity, genotoxicity, hematological, biochemical, neurological, and immunological responses. Juvenile carp were exposed to 15.54 µg/L bromazepam, 14.40 µg/L naproxen, 5.76 µg/L metoprolol, and 3.33 µg/L sotalol, respectively. Hematological analysis revealed significant reductions in red blood cell counts and hemoglobin levels, indicating potential anemia, especially in fish exposed to naproxen. Biochemical assays showed increased levels of albumin, globulin, and enzymes indicative of liver stress in exposed groups. Antioxidant defense enzymes such as superoxide dismutase, catalase, and glutathione peroxidase showed significant activity increases, suggesting oxidative stress. Apoptosis assays demonstrated elevated erythrocyte apoptosis, particularly in the naproxen group, which also exhibited the highest DNA damage. These findings highlight the ecological significance of pharmaceutical contamination and highlight the urgent need for thorough environmental risk assessments that take into account the health of both organisms and ecosystems, as well as the creation of mitigation plans for their detrimental effects on aquatic ecosystems.
Collapse
Affiliation(s)
- Walaa M Shaalan
- Zoology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
- Bioinformatics Group, Faculty for Biology and Biotechnology and Center for Protein Diagnostics, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
- Molecular Biology Research and Studies Institute, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
3
|
Meppelink SM, Kolpin DW, LeFevre GH, Cwiertny DM, Givens CE, Green LA, Hubbard LE, Iwanowicz LR, Lane RF, Mianecki AL, O'Shea PS, Raines CD, Scott JW, Thompson DA, Wilson MC, Gray JL. Assessing microplastics, per- and polyfluoroalkyl substances (PFAS), and other contaminants of global concern in wadable agricultural streams in Iowa. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:1401-1422. [PMID: 40227795 DOI: 10.1039/d4em00753k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Microplastics, per- and polyfluoroalkyl substances (PFAS), antibiotic resistance genes (ARGs), pharmaceuticals and personal care products (PPCPs), and pesticides may lead to unintended environmental contamination through many pathways in multiple matrices. This statewide, multi-matrix study of contaminants of global concern (CGCs) in agricultural streams across Iowa (United States) is the first to examine multiple CGCs in water, bed sediment, and fish to understand their occurrence in small streams located in regions of intense agriculture activity. Iowa plays a pivotal role in agriculture, with more than 85% of Iowa's landscape devoted to agriculture, making it an ideal location for determining the prevalence of CGCs to provide critical baseline exposure data. Fifteen sites were sampled across a range of predominant land uses (e.g., poultry, swine); all sites had detections of microplastics in all matrices. Concentrations of PFAS varied but were detected in water and sediment; all fish had detections of perfluorooctanesulfonate (PFOS), a type of PFAS. More than 50% of water and bed sediment samples had detections of ARGs. The most frequently detected PPCP was metformin. No sites had a cumulative exposure activity ratio greater than 1.0 for chemical exposures; 13 sites were above the 0.001 precautionary threshold. Toxicity quotients calculated using Aquatic Life Benchmarks were below the 0.1 moderate risk threshold for chemical exposures for all but one site. For fish, all sites exceeded the moderate and high-risk thresholds proposed for microplastic particles for food dilution (both chronic and acute exposures) and all sites exceeded the microplastic moderate threshold proposed for chronic tissue translocation, and two sites exceeded the threshold for acute tissue translocation.
Collapse
Affiliation(s)
- Shannon M Meppelink
- U.S. Geological Survey, Central Midwest Water Science Center, Iowa City, Iowa 52240, USA.
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, Iowa City, Iowa 52240, USA.
| | - Gregory H LeFevre
- Civil & Environmental Engineering, University of Iowa, Iowa City, Iowa 52240, USA.
| | - David M Cwiertny
- Center for Health Effects of Environmental Contamination, University of Iowa, Iowa City, Iowa 52240, USA
| | - Carrie E Givens
- U.S. Geological Survey, Upper Midwest Water Science Center, Lansing, Michigan 48911, USA
| | - Lee Ann Green
- Illinois Sustainable Technology Center, University of Illinois, Urbana, Illinois 61801, USA
| | - Laura E Hubbard
- U.S. Geological Survey, Upper Midwest Water Science Center, Madison, Wisconsin 53726, USA
| | - Luke R Iwanowicz
- U.S. Department of Agriculture, Agricultural Research Service, Kearneysville, West Virginia 25430, USA
| | - Rachael F Lane
- U.S. Geological Survey, Central Plains Water Science Center, Organic Geochemistry Research Laboratory, Lawrence, Kansas 66049, USA
| | - Alyssa L Mianecki
- Civil & Environmental Engineering, University of Iowa, Iowa City, Iowa 52240, USA.
| | - Padraic S O'Shea
- U.S. Geological Survey, Central Midwest Water Science Center, Iowa City, Iowa 52240, USA.
| | - Clayton D Raines
- U.S. Geological Survey, Eastern Ecological Science Center, Kearneysville, West Virginia 25430, USA
| | - John W Scott
- Illinois Sustainable Technology Center, University of Illinois, Urbana, Illinois 61801, USA
| | - Darrin A Thompson
- Center for Health Effects of Environmental Contamination, University of Iowa, Iowa City, Iowa 52240, USA
| | - Michaelah C Wilson
- U.S. Geological Survey, Central Plains Water Science Center, Organic Geochemistry Research Laboratory, Lawrence, Kansas 66049, USA
| | - James L Gray
- U.S. Geological Survey, Laboratory and Analytical Services Division, Lakewood, Colorado 80225, USA
| |
Collapse
|
4
|
Wasser-Bennett G, Brown AR, Maynard SK, Owen SF, Tyler CR. Critical insights into the potential risks of antipsychotic drugs to fish, including through effects on behaviour. Biol Rev Camb Philos Soc 2025. [PMID: 40355132 DOI: 10.1111/brv.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 04/15/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
Antipsychotic drugs (APDs) are a diverse class of neuroactive pharmaceuticals increasingly detected in surface and ground waters globally. Some APDs are classified as posing a high environmental risk, due, in part, to their tendency to bioaccumulate in wildlife, including fish. Additional risk drivers for APDs relate to their behavioural effects, potentially impacting fitness outcomes. However, standard ecotoxicological tests used in environmental risk assessment (ERA) do not currently account for these mechanisms. In this review, we critically appraise the environmental risks of APDs to fish. We begin by reading-across from human and mammalian effects data to standard ecotoxicological effects endpoints in fish. We then explore the wide range of behaviours suitable for ecotoxicological assessment of APDs (and other neuroactive) pharmaceuticals, principally through laboratory studies with zebrafish, and assess the potential for using these behavioural phenotypes to predict adverse individual- and population-level outcomes in wild fish, taking into account phenotypic plasticity. Next, we illustrate the advantages and challenges of measuring and applying behavioural endpoints for fish, including within current regulatory risk assessments. In our final analysis, the implications of relying on apical endpoints for ERA of neuroactive drugs (including APDs) are assessed and recommendations provided for the development of a more refined and tailored mechanistic approach, which would enable more robust assessment of their environmental risk(s).
Collapse
Affiliation(s)
- Gabrielle Wasser-Bennett
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, Devon, UK
| | - A Ross Brown
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, Devon, UK
| | - Samuel K Maynard
- AstraZeneca, Global Environment, Macclesfield, Cheshire, SK10 2NA, UK
| | - Stewart F Owen
- AstraZeneca, Global Environment, Macclesfield, Cheshire, SK10 2NA, UK
| | - Charles R Tyler
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, Devon, UK
| |
Collapse
|
5
|
Nieto-Juárez JI, Sarzosa-Cano NR, Serna-Galvis EA, Torres-Palma RA, Fabregat-Safont D, Botero-Coy AM, Hernández F. Evaluation of contaminants of emerging concern in surface waters (rivers and lake) from Peru: Occurrence and environmental risk assessment. ENVIRONMENT INTERNATIONAL 2025; 200:109522. [PMID: 40378476 DOI: 10.1016/j.envint.2025.109522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/29/2025] [Accepted: 05/08/2025] [Indexed: 05/19/2025]
Abstract
This study represents one of the first efforts to investigate the presence and environmental risk of contaminants of emerging concern (CECs) in surface water of the main watersheds of the Department of Lima (Rímac River, Chillón River, and Lurin River), Department of Arequipa (Chili-Quilca-Vítor River, Cámana-Majes River, and Tambo River), and Department of Puno (Lake Titicaca) from Peru. Water samples were collected during two sampling campaigns (June and September-October 2023) in Lima and Arequipa, and one sampling campaign (April-May 2023) in Puno. A strategy combining qualitative and quantitative analysis of CECs was applied, based on liquid chromatography coupled to ion mobility-high resolution mass spectrometry (LC-IMS-HRMS) and tandem mass spectrometry (LC-MS/MS), respectively. A total of 16 pharmaceutically active compounds (PhACs) and other compounds (sweeteners, stimulants, UV filters, and preservatives) and 16 metabolites were identified by LC-IMS-HRMS with a high level of confidence, in addition to the 39 target PhACs quantified by LC-MS/MS. The watersheds of Lima showed the highest pollution in terms of the number of pharmaceuticals and concentration levels compared to the watersheds of Arequipa and Lake Titicaca (Puno), with antibiotics persisting from the upper watersheds to the lower watersheds in the rivers and the lake. For the environmental risk assessment, five different scenarios were considered depending on the water uses/destinations, and the multicriteria scoring method allowed to identification of relevant/concerning PhACs. Azithromycin, clarithromycin, erythromycin, ciprofloxacin, flumequine, trimethoprim, diclofenac, acetaminophen, losartan, valsartan, atorvastatin and metabolite O-desmethyl venlafaxine posed a high level of risk/concern. This information will facilitate the design of a Watch List for CECs, with future monitoring programs and environment risk assessments to protect vulnerable areas most affected by anthropogenic pollution.
Collapse
Affiliation(s)
- Jessica I Nieto-Juárez
- Grupo de Investigación en Calidad Ambiental y Bioprocesos (GICAB), Facultad de Ingeniería Química y Textil, Universidad Nacional de Ingeniería UNI, Av. Túpac Amaru N° 210, Rímac, Lima, Peru.
| | - Noelia R Sarzosa-Cano
- Grupo de Investigación en Calidad Ambiental y Bioprocesos (GICAB), Facultad de Ingeniería Química y Textil, Universidad Nacional de Ingeniería UNI, Av. Túpac Amaru N° 210, Rímac, Lima, Peru
| | - Efraím A Serna-Galvis
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquía UdeA, Calle 70 N° 52-21 Medellín, Colombia
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquía UdeA, Calle 70 N° 52-21 Medellín, Colombia
| | - David Fabregat-Safont
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Univ. Jaume I, Castellón, Spain; Applied Metabolomics Research Group, Hospital del Mar Research Institute, Barcelona, Spain
| | - Ana M Botero-Coy
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Univ. Jaume I, Castellón, Spain
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Univ. Jaume I, Castellón, Spain
| |
Collapse
|
6
|
Grădinariu L, Crețu M, Vizireanu C, Dediu L. Oxidative Stress Biomarkers in Fish Exposed to Environmental Concentrations of Pharmaceutical Pollutants: A Review. BIOLOGY 2025; 14:472. [PMID: 40427661 PMCID: PMC12109024 DOI: 10.3390/biology14050472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025]
Abstract
Pharmaceutical residues are a result of human activities and are increasingly recognized as environmental contaminants that pose significant risks to aquatic ecosystems. There are many well-known pathways (agricultural runoff, veterinary use, human excretion, etc.) for the entry of these pharmaceuticals into the aquatic environment, and among them, the inability to remove these biologically active compounds from wastewater treatment plant (WWTP) effluents is becoming increasingly significant in the context of societal evolution. Once introduced, pharmaceuticals persist at low concentrations, exerting sub-lethal effects that disrupt the physiological processes of aquatic organisms. Among these effects, oxidative stress (OS) has gained attention as a key mechanism that is induced by pharmaceutical toxicity, serving as a sentinel indicator of homeostatic disturbance. Thus, studying OS biomarkers in fish is crucial for understanding the extent of pharmaceutical pollution, as these biomarkers provide early warning signals of environmental stress and help assess sub-lethal impacts on aquatic organisms. Their application, correlated with other eco-physiological investigations, can improve ecological risk assessments. In this context, this review explores the role of OS biomarkers by assessing the effects of pharmaceutical contaminants on fish. It highlights the utility and limitations of these biomarkers for environmental monitoring, while also identifying key research gaps-particularly regarding long-term ecological consequences.
Collapse
Affiliation(s)
- Lăcrămioara Grădinariu
- Faculty of Medicine and Pharmacy, “Dunărea de Jos” University of Galaţi, 35 A.I. Cuza Str., 800010 Galaţi, Romania;
| | - Mirela Crețu
- Faculty of Cross Border, “Dunărea de Jos” University of Galați, Domnească Street, No. 47, 800008 Galați, Romania
- Romanian Center for Modelling od Recirculating Aquaculture System, “Dunărea de Jos” University of Galaţi, Dr. Alexandru Carnabel No. 61, 800201 Galați, Romania;
| | - Camelia Vizireanu
- Romanian Center for Modelling od Recirculating Aquaculture System, “Dunărea de Jos” University of Galaţi, Dr. Alexandru Carnabel No. 61, 800201 Galați, Romania;
- Faculty of Food Science and Engineering, “Dunărea de Jos” University of Galați, Domnească Street, No. 111, 800008 Galați, Romania
| | - Lorena Dediu
- Romanian Center for Modelling od Recirculating Aquaculture System, “Dunărea de Jos” University of Galaţi, Dr. Alexandru Carnabel No. 61, 800201 Galați, Romania;
- Faculty of Food Science and Engineering, “Dunărea de Jos” University of Galați, Domnească Street, No. 111, 800008 Galați, Romania
| |
Collapse
|
7
|
James WR, Castillo NA, Distrubell A, Trabelsi S, Santos RO, Cerveny D, Rezek RJ, Boucek RE, Adams AJ, Fick J, Brodin T, Rehage JS. Occurrence of pharmaceuticals in muscle tissue of red drum (Sciaenops ocellatus) across subtropical estuaries: Comparison to blood plasma and implications for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 972:179106. [PMID: 40086314 DOI: 10.1016/j.scitotenv.2025.179106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 03/09/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Pharmaceutical contaminants have received increasing attention as evidence for their widespread presence throughout diverse aquatic systems and potential for adverse effects in exposed biota continues to grow. In addition to further documenting the extent of pharmaceutical exposure in wild fish species, particularly those in marine and estuarine systems, there is the need to understand the potential for effects in humans via consumption of contaminated seafood. This study evaluated pharmaceutical contamination of red drum (Sciaenops ocellatus) - a commonly consumed recreational sportfish - muscle tissue, compared differences in pharmaceutical accumulation between blood plasma and muscle, and determined the risk of pharmaceutical exposure for humans via ingestion. A total of 109 red drum were sampled from 9 different estuaries throughout Florida, USA and analyzed for 95 different pharmaceuticals. Among the 109 muscle samples, 42 fish (38.5 %) contained at least one pharmaceutical. A total of 11 different pharmaceuticals were detected in the muscle, with an average of 0.6 pharmaceuticals per sample. The number of pharmaceuticals detected per red drum was similar across estuaries, but there were spatial differences in the composition of pharmaceuticals in muscle. Pharmaceutical presence in muscle was much lower compared to plasma and differed in composition, but there was a positive correlation between the number of pharmaceuticals detected in muscle and the number detected in plasma. Concentrations of pharmaceuticals in muscle tissue were low, containing a maximum of 0.002 % of a recommended daily dose per serving. Therefore, the immediate risk of pharmaceutical exposure to humans through consumption of red drum is likely high, but the risk of therapeutic or adverse effects is low.
Collapse
Affiliation(s)
- W Ryan James
- Institute of Environment, Florida International University, Miami, FL, USA; Department of Biological Sciences, Florida International University, North Miami, FL, USA; Department of Earth and Environment, Florida International University, Miami, FL, USA.
| | - Nicholas A Castillo
- Institute of Environment, Florida International University, Miami, FL, USA; Department of Earth and Environment, Florida International University, Miami, FL, USA
| | - Andy Distrubell
- Institute of Environment, Florida International University, Miami, FL, USA; Department of Earth and Environment, Florida International University, Miami, FL, USA
| | - Shakira Trabelsi
- Institute of Environment, Florida International University, Miami, FL, USA; Department of Earth and Environment, Florida International University, Miami, FL, USA
| | - Rolando O Santos
- Institute of Environment, Florida International University, Miami, FL, USA; Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | - Daniel Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany, Czech Republic
| | | | | | - Aaron J Adams
- Bonefish and Tarpon Trust, Miami, FL, USA; Florida Atlantic University Harbor Branch Oceanographic Institute, Fort Pierce, FL, USA
| | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Tomas Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jennifer S Rehage
- Institute of Environment, Florida International University, Miami, FL, USA; Department of Earth and Environment, Florida International University, Miami, FL, USA
| |
Collapse
|
8
|
Gong W, Zhao Y, Zhang H, Duan C, Xiao Y, Wang Y, Wang C, Nie X. Environmentally relevant concentrations lithium exposure induces neurotoxicity in yellowstripe goby (Mugilogobius chulae): Responses of BDNF/AKT/FoxOs in regulating glutamate excitotoxicity and mitochondrial function. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 281:107294. [PMID: 40015150 DOI: 10.1016/j.aquatox.2025.107294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
The wide application of lithium in green energy and clinical psychiatry results in ubiquitous occurrence of lithium in aquatic environments. However, researches on the toxicity of lithium are largely confined to acute and/or high-dose scenarios, with insufficient data on its impacts on non-target organisms at environmental levels. The present study investigated the neurotoxicological effects of environmentally relevant concentrations of lithium exposure on yellowstripe goby (Mugilogobius chulae) and the related molecular response mechanisms. The results showed that lithium exposure significantly inhibited the expression of the target protein GSK-3β in the brain of M. chulae, and induced a series of harmful events including oxidative stress, glutamate accumulation, and even behavioral alteration. The organism mitigated the excitotoxic effects of glutamate accumulation by down-regulating ionotropic glutamate receptors. At the same time, the organism met the energy supply and alleviated oxidative stress by altering mitochondrial function. Notably, the stress regulators FoxOs and sestrins both modulated synaptic sensitivities to enhance the neural signaling and altered the energy metabolism pattern to alleviate energy crisis, all of which were important for maintaining neuronal survival and organismal homeostasis. In conclusion, lithium exposure induced glutamate excitability and led to a series of toxic events. Meanwhile, FoxOs played an important role in neural signaling and homeostatic regulation of energy metabolism in brain. This study furthered the comprehension of the neurotoxic impacts of lithium on aquatic organisms, elucidated the associated molecular mechanisms, and underscored the environmental risks posed by increasing lithium contamination.
Collapse
Affiliation(s)
- Weibo Gong
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| | - Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| | - Huiyu Zhang
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| | - Chunni Duan
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| | - Yuanyuan Xiao
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| | - Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| | - Chao Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| |
Collapse
|
9
|
Bertram MG, Ågerstrand M, Thoré ES, Allen J, Balshine S, Brand JA, Brooks BW, Dang Z, Duquesne S, Ford AT, Hoffmann F, Hollert H, Jacob S, Kloas W, Klüver N, Lazorchak J, Ledesma M, Maack G, Macartney EL, Martin JM, Melvin SD, Michelangeli M, Mohr S, Padilla S, Pyle G, Saaristo M, Sahm R, Smit E, Steevens JA, van den Berg S, Vossen LE, Wlodkowic D, Wong BB, Ziegler M, Brodin T. EthoCRED: a framework to guide reporting and evaluation of the relevance and reliability of behavioural ecotoxicity studies. Biol Rev Camb Philos Soc 2025; 100:556-585. [PMID: 39394884 PMCID: PMC11885694 DOI: 10.1111/brv.13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
Behavioural analysis has been attracting significant attention as a broad indicator of sub-lethal toxicity and has secured a place as an important subdiscipline in ecotoxicology. Among the most notable characteristics of behavioural research, compared to other established approaches in sub-lethal ecotoxicology (e.g. reproductive and developmental bioassays), are the wide range of study designs being used and the diversity of endpoints considered. At the same time, environmental hazard and risk assessment, which underpins regulatory decisions to protect the environment from potentially harmful chemicals, often recommends that ecotoxicological data be produced following accepted and validated test guidelines. These guidelines typically do not address behavioural changes, meaning that these, often sensitive, effects are not represented in hazard and risk assessments. Here, we propose a new tool, the EthoCRED evaluation method, for assessing the relevance and reliability of behavioural ecotoxicity data, which considers the unique requirements and challenges encountered in this field. This method and accompanying reporting recommendations are designed to serve as an extension of the "Criteria for Reporting and Evaluating Ecotoxicity Data (CRED)" project. As such, EthoCRED can both accommodate the wide array of experimental design approaches seen in behavioural ecotoxicology, and could be readily implemented into regulatory frameworks as deemed appropriate by policy makers of different jurisdictions to allow better integration of knowledge gained from behavioural testing into environmental protection. Furthermore, through our reporting recommendations, we aim to improve the reporting of behavioural studies in the peer-reviewed literature, and thereby increase their usefulness to inform chemical regulation.
Collapse
Affiliation(s)
- Michael G. Bertram
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17Umeå907 36Sweden
- Department of ZoologyStockholm UniversitySvante Arrhenius väg 18bStockholm114 18Sweden
- School of Biological SciencesMonash University25 Rainforest WalkMelbourne3800Australia
| | - Marlene Ågerstrand
- Department of Environmental ScienceStockholm UniversitySvante Arrhenius väg 8cStockholm114 18Sweden
| | - Eli S.J. Thoré
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17Umeå907 36Sweden
- Laboratory of Adaptive Biodynamics, Research Unit of Environmental and Evolutionary Biology, Institute of Life, Earth, and EnvironmentUniversity of NamurRue de Bruxelles 61Namur5000Belgium
- TRANSfarm, Science, Engineering, and Technology GroupKU LeuvenBijzondereweg 12Bierbeek3360Belgium
| | - Joel Allen
- Center for Environmental Measurement and Modeling, Office of Research and DevelopmentU.S. EPA26 Martin Luther King Drive WestCincinnati45268OhioUSA
| | - Sigal Balshine
- Department of Psychology, Neuroscience, & BehaviourMcMaster University1280 Main Street WestHamiltonL8S 4K1OntarioCanada
| | - Jack A. Brand
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17Umeå907 36Sweden
- Institute of ZoologyZoological Society of LondonOuter Circle, Regent's ParkLondonNW1, 4RYUK
| | - Bryan W. Brooks
- Department of Environmental ScienceBaylor UniversityOne Bear Place #97266Waco76798‐7266TexasUSA
| | - ZhiChao Dang
- National Institute for Public Health and the Environment (RIVM)Antonie van Leeuwenhoeklaan 9Bilthoven3721 MAthe Netherlands
| | - Sabine Duquesne
- German Environment Agency (UBA)Wörlitzer Platz 1Dessau‐Roßlau06844Germany
| | - Alex T. Ford
- Institute of Marine Sciences, School of Biological SciencesUniversity of PortsmouthFerry RoadPortsmouthPO4 9LYUK
| | - Frauke Hoffmann
- Department of Chemical and Product SafetyThe German Federal Institute for Risk Assessment (BfR)Max‐Dohrn‐Straße 8–10Berlin10589Germany
| | - Henner Hollert
- Goethe University FrankfurtMax‐von‐Laue‐Straße 13Frankfurt am Main60438Germany
| | - Stefanie Jacob
- German Environment Agency (UBA)Wörlitzer Platz 1Dessau‐Roßlau06844Germany
| | - Werner Kloas
- Leibniz‐Institute of Freshwater Ecology and Inland FisheriesMüggelseedamm 310Berlin12587Germany
| | - Nils Klüver
- Helmholtz Centre for Environmental Research (UFZ)Permoserstraße 15Leipzig04318Germany
| | - Jim Lazorchak
- Center for Environmental Measurement and Modeling, Office of Research and DevelopmentU.S. EPA26 Martin Luther King Drive WestCincinnati45268OhioUSA
| | - Mariana Ledesma
- Swedish Chemicals Agency (KemI)Löfströms allé 5Stockholm172 66Sweden
| | - Gerd Maack
- German Environment Agency (UBA)Wörlitzer Platz 1Dessau‐Roßlau06844Germany
| | - Erin L. Macartney
- Department of ZoologyStockholm UniversitySvante Arrhenius väg 18bStockholm114 18Sweden
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental SciencesUniversity of New South Wales, Biological Sciences North (D26)Sydney2052Australia
- Charles Perkins Centre, School of Life and Environmental SciencesThe University of SydneyJohn Hopkins DriveSydney2006Australia
| | - Jake M. Martin
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17Umeå907 36Sweden
- Department of ZoologyStockholm UniversitySvante Arrhenius väg 18bStockholm114 18Sweden
- School of Life and Environmental SciencesDeakin University75 Pigdons RoadWaurn Ponds3216Australia
| | - Steven D. Melvin
- Australian Rivers Institute, School of Environment and ScienceGriffith UniversityEdmund Rice DriveSouthport4215Australia
| | - Marcus Michelangeli
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17Umeå907 36Sweden
- School of Environment and ScienceGriffith University170 Kessels RoadNathan4111Australia
| | - Silvia Mohr
- German Environment Agency (UBA)Wörlitzer Platz 1Dessau‐Roßlau06844Germany
| | - Stephanie Padilla
- Center for Computational Toxicology and ExposureOffice of Research and DevelopmentU.S. EPA, 109 T.W. Alexander DriveDurham27711North CarolinaUSA
| | - Gregory Pyle
- Department of Biological SciencesUniversity of Lethbridge4401 University DriveLethbridgeT1K 3M4AlbertaCanada
| | - Minna Saaristo
- Environment Protection Authority Victoria, EPA Science2 Terrace WayMacleod3085Australia
| | - René Sahm
- German Environment Agency (UBA)Wörlitzer Platz 1Dessau‐Roßlau06844Germany
- Department of Freshwater Ecology in Landscape PlanningUniversity of KasselGottschalkstraße 24Kassel34127Germany
| | - Els Smit
- National Institute for Public Health and the Environment (RIVM)Antonie van Leeuwenhoeklaan 9Bilthoven3721 MAthe Netherlands
| | - Jeffery A. Steevens
- Columbia Environmental Research CenterU.S. Geological Survey (USGS)4200 New Haven RoadColumbia65201MissouriUSA
| | - Sanne van den Berg
- Wageningen University and ResearchP.O. Box 47Wageningen6700 AAthe Netherlands
| | - Laura E. Vossen
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesUlls väg 26Uppsala756 51Sweden
| | - Donald Wlodkowic
- The Neurotox Lab, School of ScienceRMIT University289 McKimmies RoadMelbourne3083Australia
| | - Bob B.M. Wong
- School of Biological SciencesMonash University25 Rainforest WalkMelbourne3800Australia
| | - Michael Ziegler
- Eurofins Aquatic Ecotoxicology GmbHEutinger Strasse 24Niefern‐Öschelbronn75223Germany
- Animal Physiological EcologyUniversity of TübingenAuf der Morgenstelle 5Tübingen72076Germany
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17Umeå907 36Sweden
| |
Collapse
|
10
|
Liu L, Liu L, Yuan Z, Zhao W, Huang L, Luo X, Li F, Zheng H. Enantioselective disruption of circadian rhythm behavior in goldfish (Carassius auratus) induced by chiral fungicide triadimefon at environmentally-relevant concentration. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136891. [PMID: 39708603 DOI: 10.1016/j.jhazmat.2024.136891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
The pollution of triadimefon (TDF) fungicides significantly hinders the "One Health" frame achievement. However, the enantioselective effects of chiral TDF on the circadian rhythm of fish remained unclear. Herein, TDF enantiomers (R(-)-TDF and S(+)-TDF) and racemic Rac-TDF were selected to investigate their enantioselective effects and mechanisms on circadian rhythm of goldfish (Carassius auratus) at an environmentally-relevant concentration (100 µg L⁻¹). S(+)-TDF reduced the diurnal-nocturnal differences in schooling behavior more strongly than R(-)-TDF, proving the enantioselectively weakened circadian rhythm of goldfish by TDF. S(+)-TDF more preferentially bioaccumulated in goldfish than R(-)-TDF, mainly contributed to the enantioselectively disrupted circadian rhythm. On one hand, TDF enantiomers in brains differentially inhibited neuronal activity, leading to cholinergic system dysfunction. On the other hand, TDF enantiomers in intestines differentially disrupted intestinal barriers, thus potentially dysregulating the "brain-gut" axis. Importantly, the commercial probiotics alleviated the behavioral disorder, indirectly confirming that the dysbiosis of intestinal bacteria contributed to the TDF-induced circadian rhythm disruption. These findings provide novel insights into the enantioselective disruption of fish circadian rhythm behaviors by chiral fungicides at enantiomer levels, and offer novel strategies for early assessing the ecological risks of chiral agrochemicals in aquatic ecosystems.
Collapse
Affiliation(s)
- Linjia Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Liuqingqing Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China.
| | - Zixi Yuan
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Wenting Zhao
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Liyan Huang
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Xianxiang Luo
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 57200, China
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 57200, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 57200, China.
| |
Collapse
|
11
|
Borowiec BG, Robichaud KB, Craig PM. Interactive effects of elevated temperature and venlafaxine on mitochondrial respiration and enzymatic capacity in Nile tilapia (Oreochromis niloticus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:737-750. [PMID: 39903854 PMCID: PMC12117019 DOI: 10.1093/etojnl/vgae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 02/06/2025]
Abstract
Warming events are becoming more frequent and extreme in aquatic environments worldwide. Concurrently, many environments are polluted with biologically active compounds such as pharmaceuticals. Understanding how these challenges interact is critical for understanding the climate crisis, as contaminants may modulate how ectotherms respond to heat stress or vice versa. One potential site for these heat × contaminant interactions is the mitochondrion, which is central to metabolism, implicated in thermal tolerance, and evolutionarily conserved. Using high-resolution respirometry, we investigated how acute warming (to 35 °C, 40 °C, or 45 °C from 25 °C) impacted the respiration, coupling, and metabolic capacity of liver mitochondria isolated from Nile tilapia, and how exposure to environmentally relevant levels of the ubiquitous antidepressant venlafaxine modulated those effects. Mitochondria exposed to hotter temperatures had higher respiration rates and decreased respiratory control ratio compared to mitochondria exposed to cooler temperatures. The depressive effects of venlafaxine on respiration rates through complex I and II or complex II only (State 3 and State 4), as well as complex IV-linked respiration, were mild except in mitochondria exposed to high temperatures, suggesting an interactive effect of warming and contaminant exposure. Finally, we found that the maximal enzyme activity of intact mitochondria (represented by mitochondrial respiration) showed a different pattern of response to warming and venlafaxine compared to its underlying components (as reflected by the activity of succinate dehydrogenase [complex II] and cytochrome c oxidase [complex IV]), demonstrating the value of incorporating both interactive and reductive approaches in understanding how mitochondria cope with anthropogenic changes in the environment.
Collapse
Affiliation(s)
| | - Karyn B Robichaud
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
12
|
Tarazona JV, Fernandez-Agudo A, Adamovsky O, Baccaro M, Burden N, Campos B, Hidding B, Jenner K, John D, Lacasse K, Lillicrap A, Lyon D, Maynard SK, Ott A, Poulsen V, Rasenberg M, Schutte K, Sobanska M, Wheeler JR. Use of alternatives to animal testing for Environmental Safety Assessment (ESA): Report from the 2023 EPAA partners' forum. Regul Toxicol Pharmacol 2025; 156:105774. [PMID: 39855421 DOI: 10.1016/j.yrtph.2025.105774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Environmental Safety Assessments (ESA) are mandatory for several regulatory purposes and are an important component of stewardship/sustainability initiatives. Fish testing is used for assessing chemical toxicity and bioaccumulation potential; amphibians are included in some jurisdictions and their use is increasing to assess endocrine disruption. Alternative methods are becoming more available, covering the principles of the 3Rs (i.e., replacing, reducing and refining animal tests), but their regulatory incorporation is still limited. A cross-sector review by the European Partnership for Alternative Approaches to Animal Testing (EPAA), discussed the status and priorities for accelerating the adoption of non-animal approaches in ESA. The lack of an internationally agreed definition for "animal testing" was recognized as a challenge. For example, testing with vertebrate embryos up to specific developmental stages is a suitable refinement alternative only in some jurisdictions. Invertebrate testing offers refinement alternatives to develop tiered approaches using vertebrate testing as a last resort. Aquatic ESA was identified as a common need by all sectors and regulatory areas, while terrestrial ESA is particularly relevant for agrochemicals. The standardization and validation of some alternative methods as OECD test guidelines (TGs) for fish acute toxicity and fish bioaccumulation have not yet triggered the expected replacement in regulatory settings. Priority actions in these areas are needed to generate confidence in the regulatory use of the available OECD TGs designed as alternatives, including the identification of applicability domains and guidance/decision-trees for integrating different lines of evidence. Case studies under the OECD Integrated Approaches to Testing and Assessment (IATA) program could facilitate further global regulatory uptake. Replacement of fish chronic toxicity testing is more complex and less advanced. A dual approach was suggested, in the short-term, exploring lines of evidence that, alone or in combination, could identify when further fish testing is not needed. The second phase should focus on the application of the 3Rs in those cases where chronic information is needed. Another area of increasing interest is endocrine disruption. It represents a challenge but also an opportunity for implementing mechanistic non-animal methods, in addition to integrate human and ESA. This requires a step-by-step approach with continuous dialogue to ensure that technical developments will address regulatory needs. The review also agreed that the long-term aspiration is a new ESA paradigm, mapping the protection goals and providing connectivity between the chemical legislation and environmental protection policies.
Collapse
Affiliation(s)
- Jose V Tarazona
- Spanish National Environmental Health Centre, Instituto de Salud Carlos III, Madrid, Spain.
| | - Ana Fernandez-Agudo
- Spanish National Environmental Health Centre, Instituto de Salud Carlos III, Madrid, Spain
| | - Ondrej Adamovsky
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| | - Marta Baccaro
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Natalie Burden
- NC3Rs, National Centre for the Replacement, Refinement, and Reduction of Animals in Research, United Kingdom
| | - Bruno Campos
- Safety and Environmental Safety Assessment, Unilever, Colworth Science Park, Sharnbrook, United Kingdom
| | - Björn Hidding
- BASF SE, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | | | - David John
- AnimalhealthEurope, 9-13 Rue d'Idalie, Box 5, Brussels, Belgium
| | | | - Adam Lillicrap
- Norwegian Institute for Water Research, Økernveien 94, Oslo, Norway
| | | | - Samuel K Maynard
- AstraZeneca, Global Sustainability, Eastbrook House, Cambridge, United Kingdom
| | - Amelie Ott
- International Collaboration on Cosmetics Safety (ICCS), New York, USA
| | - Veronique Poulsen
- L'Oréal Research and Innovation, Environmental Safety Department, Clichy, France
| | - Mike Rasenberg
- European Chemicals Agency, P.O. Box 400, FI-00121, Helsinki, Finland
| | | | - Marta Sobanska
- European Chemicals Agency, P.O. Box 400, FI-00121, Helsinki, Finland
| | - James R Wheeler
- Corteva Agriscience, Zuid-Oostsingel 24D, Bergen op Zoom, 4611 BB, the Netherlands
| |
Collapse
|
13
|
Abraham TJ, Roy A, Singha J, Rajisha R, Nadella RK, Patil PK. Muscle biochemistry and residue accretion in male Oreochromis niloticus fries administered therapeutic, subtherapeutic and overdoses of dietary oxytetracycline. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:35. [PMID: 39827248 DOI: 10.1007/s10695-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025]
Abstract
Oxytetracycline (OTC), an approved antibiotic for aquaculture, is under strict control and regulatory endeavour. This study compared the effects of oral administration of graded doses of OTC comprising the therapeutic (80 mg/kg biomass/day), subtherapeutic (40 mg) and overdoses (240, 400 and 800 mg) in male Nile tilapia Oreochromis niloticus fries (0.64 ± 0.02 g) when fed for 10 consecutive days and observed for 22 days post-OTC-dosing (POD) period. A dose-dependent reduction in food intake, survival and muscle calcium, chloride, malondialdehyde and superoxide dismutase was observed, while the muscle glucose significantly increased. However, the changes were reversible with dose cessation. The fries of the therapeutic dose group recorded the maximum biomass, while the overdosed groups recorded a significant decline in weight gain. On day 10 of dosing, all groups' muscle OTC residues peaked. The residues in the subtherapeutic and therapeutic dose groups were lowered below the maximum residue limit (MRL) of 100 ng/g on day 10 POD. The residues were further reduced close to the MRL in the overdosed groups on day 22 POD. The fries tolerated the therapeutic dose well and showed effective adaptive responses. Considering muscle residue accretion and physiological responses, OTC can be endorsed as a safe drug for in-feed administration to tilapia fries. However, the sensible use of this approved drug is essential for sustainable aquaculture.
Collapse
Affiliation(s)
- Thangapalam Jawahar Abraham
- Department of Aquatic Animal Health, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata, 700094, West Bengal, India.
| | - Anwesha Roy
- Department of Aquatic Animal Health, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata, 700094, West Bengal, India
| | - Jasmine Singha
- Department of Aquatic Animal Health, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata, 700094, West Bengal, India
| | - Ravindran Rajisha
- Fish Processing Division, ICAR-Central Institute of Fisheries Technology, Willington Island, Cochin, 682029, India
| | - Ranjit Kumar Nadella
- Fish Processing Division, ICAR-Central Institute of Fisheries Technology, Willington Island, Cochin, 682029, India
| | - Prasanna Kumar Patil
- Aquatic Animal Health and Environment Division, ICAR-Central Institute of Brackishwater Aquaculture, Raja Annamalai Puram, Chennai, 600028, Tamil Nadu, India
| |
Collapse
|
14
|
Bertram MG, Brand JA, Thoré ESJ, Cerveny D, McCallum ES, Michelangeli M, Martin JM, Fick J, Brodin T. Slow-Release Pharmaceutical Implants in Ecotoxicology: Validating Functionality across Exposure Scenarios. ACS ENVIRONMENTAL AU 2025; 5:69-75. [PMID: 39830719 PMCID: PMC11741056 DOI: 10.1021/acsenvironau.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 01/22/2025]
Abstract
Pharmaceutical contaminants have spread in natural environments across the globe, endangering biodiversity, ecosystem functioning, and public health. Research on the environmental impacts of pharmaceuticals is growing rapidly, although a majority of studies are still conducted under controlled laboratory conditions. As such, there is an urgent need to understand the impacts of pharmaceutical exposures on wildlife in complex, real-world scenarios. Here, we validate the performance of slow-release pharmaceutical implants-a recently developed tool in field-based ecotoxicology that allows for the controlled chemical dosing of free-roaming aquatic species-in terms of the accumulation and distribution of pharmaceuticals of interest in tissues. Across two years, we directly exposed 256 Atlantic salmon (Salmo salar) smolts to one of four pharmaceutical treatments: clobazam (50 μg g-1 of implant), tramadol (50 μg g-1), clobazam and tramadol (50 μg g-1 of each), and control (0 μg g-1). Fish dosed with slow-release implants containing clobazam or tramadol, or their mixture, accumulated these pharmaceuticals in all of the sampled tissues: brain, liver, and muscle. Concentrations of both pharmaceuticals peaked in all tissues at 1 day post-implantation, before reaching relatively stable, slowly declining concentrations for the remainder of the 30-day sampling period. Generally, the highest concentrations of clobazam and tramadol were detected in the liver, followed by the brain and then muscle, with observed concentrations of each pharmaceutical being higher in the single-exposure treatments relative to the mixture exposure. Taken together, our findings underscore the utility of slow-release implants as a tool in field-based ecotoxicology, which is an urgent research priority given the current lack of knowledge on the real-world impacts of pharmaceuticals on wildlife.
Collapse
Affiliation(s)
- Michael G. Bertram
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå SE-907 36, Sweden
- Department
of Zoology, Stockholm University, Stockholm 114 18, Sweden
- School
of Biological Sciences, Monash University, Melbourne, 3800, Australia
| | - Jack A. Brand
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå SE-907 36, Sweden
- Institute
of Zoology, Zoological Society of London, London NW1 4RY, United Kingdom
| | - Eli S. J. Thoré
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå SE-907 36, Sweden
- TRANSfarm
- Science, Engineering, & Technology Group, KU Leuven, Lovenjoel 3360, Belgium
- Laboratory
of Adaptive Biodynamics, Research Unit of Environmental and Evolutionary
Biology, Institute of Life, Earth, and Environment, University of Namur, Namur 5000, Belgium
| | - Daniel Cerveny
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå SE-907 36, Sweden
- Faculty
of
Fisheries and Protection of Waters, South Bohemian Research Center
of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany 389 25, Czech Republic
| | - Erin S. McCallum
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå SE-907 36, Sweden
| | - Marcus Michelangeli
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå SE-907 36, Sweden
- Australian
Rivers Institute, Griffith University, Nathan 4111, Australia
| | - Jake M. Martin
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå SE-907 36, Sweden
- School
of Biological Sciences, Monash University, Melbourne, 3800, Australia
- School of
Life and Environmental Sciences, Deakin
University, Waurn Ponds 3216, Australia
| | - Jerker Fick
- Department
of Chemistry, Umeå University, Umeå 907 36, Sweden
| | - Tomas Brodin
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå SE-907 36, Sweden
| |
Collapse
|
15
|
Langan LM, Baettig CG, Cole AR, Lovin L, Scarlett K, Wronski AR, O'Brien ME, Shmaitelly Y, Brooks BW. Experimental reporting of fish transcriptomic responses in environmental toxicology and ecotoxicology. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025:vgae077. [PMID: 39965138 DOI: 10.1093/etojnl/vgae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 02/20/2025]
Abstract
Due to its increasing affordability and efforts to understand transcriptional responses of organisms to biotic and abiotic stimuli, transcriptomics has become an important tool with significant impact on toxicological investigations and hazard and risk assessments, especially during development and application of new approach methodologies (NAMs). Data generated using transcriptomic methodologies have directly informed adverse outcome pathway frameworks, chemical and biological read across, and aided in the identification of points of departure. Using data reporting frameworks for transcriptomics data offers improved transparency and reproducibility of research and an opportunity to identify barriers to adoption of these NAMs, especially in environmental toxicology and ecotoxicology with aquatic models. Improved reporting also allows for reexamination of existing data, limiting needs for experiment replication and further reducing animal experimentation. Here, we use a standardized form of data reporting for omics-based studies, the Organisation for Economic Co-operation and Development omics reporting framework, which specifically reports on a list of parameters that should be included in transcriptomics studies used in a regulatory context. We focused specifically on fish studies using RNA- Sequencing (Seq)/microarray technologies within a toxicology context. Inconsistencies in reporting and methodologies among the experimental designs (toxicology vs. molecular characterization) were observed in addition to foundational differences in reporting of sample concentration or preparation or quality assessments, which can affect reproducibility and read across, confidence in results, and contribute substantially to understanding molecular mechanisms of toxicants and toxins. Our findings present an opportunity for improved research reporting. We also provide several recommendations as logical steps to reduce barriers to adoption of transcriptomics within environmental toxicology and ecotoxicology.
Collapse
Affiliation(s)
- Laura M Langan
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Camille G Baettig
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States
| | - Alexander R Cole
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States
| | - Lea Lovin
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States
| | - Kendall Scarlett
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States
| | - Adam R Wronski
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States
| | - Megan E O'Brien
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States
| | - Yesmeena Shmaitelly
- Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Bryan W Brooks
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Department of Public Health, Baylor University, Waco, TX, United States
| |
Collapse
|
16
|
Liu L, Li X, Luo X, Wang X, Liu L, Yuan Z, Sun C, Zheng H, Xu EG, Li F. Phthalates esters disrupt demersal fish behavior: Unveiling the brain-gut axis impact. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117470. [PMID: 39647374 DOI: 10.1016/j.ecoenv.2024.117470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
The widespread use of plasticizers like phthalate esters (PAEs) has led to environmental and health concerns. The neurobehavioral toxicity of these compounds in marine environments, particularly regulated by the "brain-gut" axis, remains unclear, especially concerning wild demersal fish of high ecological value. Our investigation into the behavioral effects of three common PAEs, i.e., dimethyl phthalate (DMP), di-n-butyl phthalate (DBP), and di(2-ethylhexyl) phthalate (DEHP), and their molecular mechanisms on juvenile Sebastes schlegelii, revealed alarming results from molecular to population levels. After a 20-day foodborne exposure at a low marine environmental concentration (1.0 μg g-1), we observed that all three PAEs significantly increased the thigmotaxis (behavioral tendency to stay close to physical boundaries) and mobility of juvenile fish by 28.2-59.4 % and 23.3-74.5 %, respectively, indicating anxiety-like behavior of fish. DEHP exhibited the most pronounced effects, followed by DBP and DMP. PAEs accumulated in the juvenile fish in the order of brain > liver > gut > muscle, with DEHP showing the highest brain concentrations (23.2 ± 2.98 μg g-1). This accumulation led to oxidative damage, inflammatory responses, and neurodegenerative changes in the optic tectum, resulting in cholinergic system dysfunction. In the gut, PAEs caused inflammatory lesions, disrupted the gut barrier, and altered the gut microbiome, exacerbating the neurotoxicity via "brain-gut" communication. These findings underscore the significant neurobehavioral toxicity of PAEs, emphasizing their critical impact on fish behavior. We also stress the crucial need for further research on fish and other marine species beyond the laboratory scale to fully understand the broader implications of PAE exposure in marine ecosystems and to guide future conservation efforts.
Collapse
Affiliation(s)
- Liuqingqing Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xinyao Li
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xianxiang Luo
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 57200, China.
| | - Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Linjia Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Zixi Yuan
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Cuizhu Sun
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 57200, China.
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 57200, China
| |
Collapse
|
17
|
Islam P, Hossain MI, Khatun P, Masud RI, Tasnim S, Anjum M, Islam MZ, Nibir SS, Rafiq K, Islam MA. Steroid hormones in fish, caution for present and future: A review. Toxicol Rep 2024; 13:101733. [PMID: 39323426 PMCID: PMC11422134 DOI: 10.1016/j.toxrep.2024.101733] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
The misuse and overuse of steroid hormones in fish is an emerging problem worldwide. The data on hormonal residue in fish was less due to a lack of effective monitoring programs on hormonal use in fish production. This review revealed the findings of previously published data on different hormonal use and their residue and impact. Steroid hormones were frequently used in fish production to promote growth and reproduction. It was suggested that hormones should be used carefully to ensure environmental, biological, and food safety. The most commonly used steroid hormones in fish production were testosterone, estrogen, progesterone, and cortisol. However, the indiscriminate use left residue in the fish flesh above the FAO/WHO permissible limits. This residue in fish caused many health hazards in consumers, like early puberty in children, advances in bone age, negative repercussions on growth, modification of sexual characteristics, and cancer development such as breast, ovarian, and prostate cancer. It also harmed fish and the aquatic environment. The most common detection methods for these hormones were GC-MS, LC-MS, and UHPLC-MS. Many countries permitted the use of hormones in fish production upon monitoring, whereas many countries prohibited it. Moreover, many countries did not have any rules and regulations on the use of hormones in fish production. Thus, this review is a wake-up call for researchers, policymakers and consumers on the impacts of hormonal residues in food commodities.
Collapse
Affiliation(s)
- Purba Islam
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Md Imran Hossain
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Popy Khatun
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Rony Ibne Masud
- Department of Microbiology & Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Shadia Tasnim
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Mahir Anjum
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Md Zahorul Islam
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Salman Shahriar Nibir
- Department of Aquaculture, Faculty of Fisheries, Bangladesh Agricultural University, Bangladesh
| | - Kazi Rafiq
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Md Anwarul Islam
- Department of Aquaculture, Faculty of Fisheries, Bangladesh Agricultural University, Bangladesh
| |
Collapse
|
18
|
Rairat T, Lu YP, Ho WC, Ke HJ, Chou CC. Pharmacokinetics, optimal dosages and withdrawal time of amoxicillin in Nile tilapia ( Oreochromis niloticus) reared at 25 and 30 °C. Vet Q 2024; 44:1-9. [PMID: 39192627 PMCID: PMC11360631 DOI: 10.1080/01652176.2024.2396573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/06/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Knowledge of amoxicillin (AMX) pharmacokinetics (PK) and tissue residues in fish, which is necessary for prudent drug use, remains limited. The study aimed to explore the PK characteristics of AMX in Nile tilapia (Oreochromis niloticus) reared at 25 and 30 °C as well as to determine optimal dosages and drug withdrawal time (WDT). In the PK investigation, the fish received a single dose of 40 mg/kg AMX via oral gavage, and the optimal dosage was determined by the pharmacokinetic-pharmacodynamic approach. In the tissue residue study, the fish were orally gavaged with 40 mg/kg/day AMX once daily for 5 days and the WDT was established by the linear regression analysis. The results revealed the temperature-dependent drug elimination; the clearance relative to bioavailability (CL/F) and elimination half-life at 30 °C (0.180 L/kg/h and 6.06 h, respectively) were about twice those at 25 °C (0.090 L/kg/h and 10.49 h, respectively). The optimal dosages at the minimum inhibitory concentration (MIC) of 2 μg/mL were 10.97 (25 °C) and 41.03 (30 °C) mg/kg/day, respectively. Finally, following the multiple oral administration, the muscle/skin residue of AMX on day 1 after the last dosing at 25 and 30 °C were 548 and 264 ng/g, respectively. The average tissue residues were depleted below the maximum residue limits (MRL) of 50 μg/kg on day 5 (25 °C) and 3 (30 °C), respectively, and the WDT were 6 and 4 days when rearing at 25 and 30 °C, respectively. This knowledge serves as a practical guideline for responsible use of AMX in treating bacterial diseases in Nile tilapia aquaculture.
Collapse
Affiliation(s)
- Tirawat Rairat
- Department of Fishery Biology, Kasetsart University, Bangkok, Thailand
| | - Yi-Ping Lu
- Biology Division, Veterinary Research Institute, Ministry of Agriculture, Taipei, Taiwan
| | - Wan-Cih Ho
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hual-Jhong Ke
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Chung Chou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
19
|
Uney K, Corum DD, Marín P, Coskun D, Terzi E, Badillo E, Corum O. Effect of Body Size on Plasma and Tissue Pharmacokinetics of Danofloxacin in Rainbow Trout ( Oncorhynchus mykiss). Animals (Basel) 2024; 14:3302. [PMID: 39595354 PMCID: PMC11590947 DOI: 10.3390/ani14223302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Danofloxacin is a fluoroquinolone antibiotic approved for use in fish. It can be used for bacterial infections in fish of all body sizes. However, physiological differences in fish depending on size may change the pharmacokinetics of danofloxacin and therefore its therapeutic efficacy. In this study, the change in the pharmacokinetics of danofloxacin in rainbow trout of various body sizes was revealed for the first time. The objective of this investigation was to compare the plasma and tissue pharmacokinetics of danofloxacin in rainbow trout of different body sizes. The study was conducted at 14 ± 0.5 °C in fish of small, medium, and large body size and danofloxacin was administered orally at a dose of 10 mg/kg. Concentrations of this antimicrobial in tissues and plasma were quantified by high performance liquid chromatography with ultraviolet detector. The plasma elimination half-life (t1/2ʎz), volume of distribution (Vdarea/F), total clearance (CL/F), peak concentration (Cmax), and area under the plasma concentration-time curve (AUC0-last) were 27.42 h, 4.65 L/kg, 0.12 L/h/kg, 2.53 µg/mL, and 82.46 h·µg/mL, respectively. Plasma t1/2ʎz, AUC0-last and Cmax increased concomitantly with trout growth, whereas CL/F and Vdarea/F decreased. Concentrations in liver, kidney, and muscle tissues were higher than in plasma. Cmax and AUC0-last were significantly higher in large sizes compared to small and medium sizes in all tissues. The scaling factor in small, medium, and large fish was 1.0 for bacteria with MIC thresholds of 0.57, 0.79, and 1.01 µg/mL, respectively. These results show that therapeutic efficacy increases with body size. However, since increases in danofloxacin concentration in tissues of large fish may affect withdrawal time, attention should be paid to the risk of tissue residue.
Collapse
Affiliation(s)
- Kamil Uney
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, Konya 42031, Türkiye;
| | - Duygu Durna Corum
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay 31060, Türkiye; (D.D.C.); (O.C.)
| | - Pedro Marín
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain;
| | - Devran Coskun
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Siirt, Siirt 56100, Türkiye;
| | - Ertugrul Terzi
- Department of Veterinary Medicine, Devrekani TOBB Vocational School, University of Kastamonu, Kastamonu 37200, Türkiye;
| | - Elena Badillo
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain;
| | - Orhan Corum
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay 31060, Türkiye; (D.D.C.); (O.C.)
| |
Collapse
|
20
|
Fu B, Li E, Yan Y, Jiang S, Wu Y, Ma Y. Ecological criteria for antibiotics in aquatic environments based on species sensitivity distribution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117261. [PMID: 39476651 DOI: 10.1016/j.ecoenv.2024.117261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/24/2024]
Abstract
Due to the substantial production and use of antibiotics, they inevitably remain in aquatic environments, posing a serious threat to aquatic ecosystems. However, there are currently no criteria of antibiotics for ecological risk in the water environment. In the present study, three types of antibiotics (tetracyclines, sulfonamides and quinolones) that are often detected in water environments were investigated. Toxicity data regarding bacteria, algae, plants, invertebrates and vertebrates were selected, and the species sensitivity distribution was used to obtain the ecological risk criteria of antibiotics to aquatic organisms. Animals are the least sensitive to antibiotics. The overall toxicity of antibiotics is most sensitive to bacteria and cyanobacteria, followed by green algae and plants. The recommended ecological criteria for tetracyclines, quinolones, and sulfonamides are 22, 17, and 94 μg/L, respectively. Ofloxacin needs to be used with caution because it has a small acute predicted no-effect concentration (PNEC) of 0.6 μg/L. The ecological risk criterion for chronic toxicity of total antibiotics was determined to be 1.4 μg/L. The PNECs measured for the quinolone, tetracycline, and sulfonamide antibiotics were 0.5, 2.2, and 2.4 μg/L, respectively. Norfloxacin had the highest chronic toxicity zone of 353, indicating that chronic poisoning is most likely to occur. Moreover, there was an exponential correlation between acute PNEC and chronic PNEC. In addition, a quantitative structure-activity relationship model was constructed for acute ecological risk criteria of antibiotics to aquatic organisms. These findings can expand the ecological risk threshold data on the effects of antibiotics on aquatic organisms, and provide a theoretical basis for the environmental risk assessment of antibiotics.
Collapse
Affiliation(s)
- Bomin Fu
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China
| | - Erdange Li
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China
| | - Yan Yan
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China
| | - Song Jiang
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China; Heilongjiang Forestry Institute, Harbin 150040, China
| | - Yang Wu
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China
| | - Yibing Ma
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China.
| |
Collapse
|
21
|
Castillo NA, Santos RO, James WR, Rezek R, Cerveny D, Boucek RE, Adams AJ, Fick J, Brodin T, Rehage JS. Differential tissue distribution of pharmaceuticals in a wild subtropical marine fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107064. [PMID: 39208620 DOI: 10.1016/j.aquatox.2024.107064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
To date, the presence of pharmaceuticals has been extensively documented across a wide range of aquatic systems and biota. Further, substantial progress has been made in transitioning from laboratory assessments of pharmaceutical fate and effects in fish to in situ assessments of exposure and effects; however, certain research areas remain understudied. Among these is investigation of differential accumulation across multiple internal tissues in wild marine fish beyond the species commonly sampled in laboratory and freshwater field settings. This study examined the presence of pharmaceuticals across four tissues (plasma, muscle, brain, and liver) in a wild marine fish, bonefish (Albula vulpes), throughout coastal South Florida, USA. Differential accumulation across tissues was assessed for the number and concentration, identity, and composition of accumulated pharmaceuticals by sampling 25 bonefish and analyzing them for 91 pharmaceuticals. The concentration of pharmaceuticals was highest in plasma > liver > brain > muscle, while the number of pharmaceuticals was highest in liver > brain > plasma > muscle. The identity of detected pharmaceuticals was tissue specific, and there was an inverse relationship between the number of detections for each pharmaceutical and its log Kow. The composition of pharmaceuticals was tissue specific for both pharmaceutical presence/absence and concentration. Across all tissues, the greatest similarity was between brain and liver, which were more similar to plasma than to muscle, and muscle was the most distinct tissue. For tissue compositional variability, muscle was the most diverse in accumulated pharmaceuticals, while plasma, brain, and liver were similarly variable. With the highest concentrations in plasma and highest number in liver, and documented variability in accumulated pharmaceuticals across tissues, our results highlight the importance of tissue selection when surveying exposure in wild fish, suggesting that multi-tissue analysis would allow for a more comprehensive assessment of exposure diversity and risk of adverse effects.
Collapse
Affiliation(s)
- N A Castillo
- Earth and Environment Department, Florida International University, Miami, FL, USA.
| | - R O Santos
- Department of Biology, Florida International University, Miami, FL, USA
| | - W R James
- Earth and Environment Department, Florida International University, Miami, FL, USA; Department of Biology, Florida International University, Miami, FL, USA
| | - R Rezek
- Department of Marine Science, Coastal Carolina University, Conway, SC, USA
| | - D Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodňany, Czech Republic
| | - R E Boucek
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - A J Adams
- Bonefish and Tarpon Trust, Miami, FL, USA; Florida Atlantic University Harbor Branch Oceanographic Institute, Fort Pierce, FL, USA
| | - J Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - T Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - J S Rehage
- Earth and Environment Department, Florida International University, Miami, FL, USA
| |
Collapse
|
22
|
Castillo NA, James WR, Santos RO, Rezek R, Cerveny D, Boucek RE, Adams AJ, Trabelsi S, Distrubell A, Sandquist M, Fick J, Brodin T, Rehage JS. Identifying pathways of pharmaceutical exposure in a mesoconsumer marine fish. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135382. [PMID: 39088947 DOI: 10.1016/j.jhazmat.2024.135382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Pharmaceutical uptake involves processes that vary across aquatic systems and biota. However, single studies examining multiple environmental compartments, microhabitats, biota, and exposure pathways in mesoconsumer fish are sparse. We investigated the pharmaceutical burden in bonefish (Albula vulpes), pathways of exposure, and estimated exposure to a human daily dose. To evaluate exposure pathways, the number and composition of pharmaceuticals across compartments and the bioconcentration in prey and bonefish were assessed. To evaluate bioaccumulation, we proposed the use of a field-derived bioaccumulation factor (fBAF), due to variability inherent to natural systems. Exposure to a human daily dose was based on bonefish daily energetic requirements and consumption rates using pharmaceutical concentrations in prey. Pharmaceutical number and concentration were highest in prey, followed by bonefish, water and sediment. Fifteen pharmaceuticals were detected in common among bonefish, prey, and water; all of which bioconcentrated in prey and bonefish, and four bioaccumulated in bonefish. The composition of detected pharmaceuticals was compartment specific, and prey were most similar to bonefish. Bonefish were exposed to a maximum of 1.2 % of a human daily dose via prey consumption. Results highlight the need for multicompartment assessments of exposure and consideration of prey along with water as a pathway of exposure.
Collapse
Affiliation(s)
- N A Castillo
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA.
| | - W R James
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA; Department of Biology, Florida International University, Miami, FL, USA
| | - R O Santos
- Department of Biology, Florida International University, Miami, FL, USA
| | - R Rezek
- Department of Marine Science, Coastal Carolina University, Conway, SC, USA
| | - D Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodňany, Czech Republic
| | - R E Boucek
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - A J Adams
- Bonefish and Tarpon Trust, Miami, FL, USA; Florida Atlantic University Harbor Branch Oceanographic Institute, Fort Pierce, FL, USA
| | - S Trabelsi
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| | - A Distrubell
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| | - M Sandquist
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| | - J Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - T Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - J S Rehage
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| |
Collapse
|
23
|
Corum O, Turk E, Durna Corum D, Terzi E, Cellat M, Yıldırım Ö, Uney K. Effect of body size on the oral pharmacokinetics of oxytetracycline in rainbow trout ( Oncorhynchus mykiss). PeerJ 2024; 12:e17973. [PMID: 39282114 PMCID: PMC11401510 DOI: 10.7717/peerj.17973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/05/2024] [Indexed: 09/18/2024] Open
Abstract
Objective The aim of this study was to determine the plasma pharmacokinetics of oxytetracycline (OTC) in rainbow trout (Oncorhynchus mykiss) of different body sizes. Methods The research was carried out on three groups as small (30-50 g), medium (90-110 g) and large (185-215 g) body sizes at 8 ± 0.5 °C. OTC was administered orally at a dose of 60 mg/kg to all groups. Blood samples were taken at 19 different sampling times until the 384 h after oxytetracycline administration. The plasma concentrations of OTC were measured using high pressure liquid chromatography-ultraviolet and pharmacokinetic parameters were evaluated using non-compartmental analysis. Results OTC was detected in small-body sized fish until the 336 h and in medium and large-body sized fish until the 384 h. The elimination half-life of OTC was 85.46, 87.24 and 86.98 h in the small, medium and large body size groups, respectively. The peak plasma concentration increased from 0.66 to 1.11 µg/mL, and the area under the plasma concentration-versus time curve from zero (0) h to infinity (∞) increased from 87.86 to 151.52 h*µg/mL, in tandem with the increase in fish body size. As fish body size increased, volume of distribution and total body clearance decreased. Conclusion These results show that the pharmacokinetics of OTC vary depending on fish size. Therefore, there is a need to reveal the pharmacodynamic activity of OTC in rainbow trout of different body sizes.
Collapse
Affiliation(s)
- Orhan Corum
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Türkiye
| | - Erdinc Turk
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Türkiye
| | - Duygu Durna Corum
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Türkiye
| | - Ertugrul Terzi
- Department of Veterinary Medicine, Devrekani TOBB Vocational School, University of Kastamonu, Kastamonu, Türkiye
| | - Mustafa Cellat
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Türkiye
| | | | - Kamil Uney
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Türkiye
| |
Collapse
|
24
|
Gould S, Winter MJ, Trznadel M, Lange A, Hamilton CM, Boreham RJ, Hetheridge MJ, Young A, Norton WHJ, Tyler CR. Exposure Effects of Environmentally Relevant Concentrations of the Tricyclic Antidepressant Amitriptyline in Early Life Stage Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39018108 PMCID: PMC11295126 DOI: 10.1021/acs.est.3c08126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/19/2024]
Abstract
Antidepressants are one of the most globally prescribed classes of pharmaceuticals, and drug target conservation across phyla means that nontarget organisms may be at risk from the effects of exposure. Here, we address the knowledge gap for the effects of chronic exposure (28 days) to the tricyclic antidepressant amitriptyline (AMI) on fish, including for concentrations with environmental relevance, using zebrafish (Danio rerio) as our experimental model. AMI was found to bioconcentrate in zebrafish, was readily transformed to its major active metabolite nortriptyline, and induced a pharmacological effect (downregulation of the gene encoding the serotonin transporter; slc6a4a) at environmentally relevant concentrations (0.03 μg/L and above). Exposures to AMI at higher concentrations accelerated the hatch rate and reduced locomotor activity, the latter of which was abolished after a 14 day period of depuration. The lack of any response on the features of physiology and behavior we measured at concentrations found in the environment would indicate that AMI poses a relatively low level of risk to fish populations. The pseudopersistence and likely presence of multiple drugs acting via the same mechanism of action, however, together with a global trend for increased prescription rates, mean that this risk may be underestimated using current ecotoxicological assessment paradigms.
Collapse
Affiliation(s)
- Sophie
L. Gould
- Biosciences,
Faculty of Health and Life Sciences, University
of Exeter, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| | - Matthew J. Winter
- Biosciences,
Faculty of Health and Life Sciences, University
of Exeter, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| | - Maciej Trznadel
- Biosciences,
Faculty of Health and Life Sciences, University
of Exeter, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| | - Anke Lange
- Biosciences,
Faculty of Health and Life Sciences, University
of Exeter, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| | - Charles M. Hamilton
- Biosciences,
Faculty of Health and Life Sciences, University
of Exeter, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| | - Rebekah J. Boreham
- Biosciences,
Faculty of Health and Life Sciences, University
of Exeter, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| | - Malcolm J. Hetheridge
- Biosciences,
Faculty of Health and Life Sciences, University
of Exeter, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| | - Andrew Young
- Department
of Genetics and Genome Biology, College of Life Sciences, University of Leicester, University Rd., Leicester LE1 7RH, U.K.
| | - William H. J. Norton
- Department
of Genetics and Genome Biology, College of Life Sciences, University of Leicester, University Rd., Leicester LE1 7RH, U.K.
| | - Charles R. Tyler
- Biosciences,
Faculty of Health and Life Sciences, University
of Exeter, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| |
Collapse
|
25
|
Böhmert B, Chong GLW, Lo K, Algie M, Colbert D, Jordan MD, Stuart G, Wise LM, Lee LEJ, Bols NC, Dowd GC. Isolation and characterisation of two epithelial-like cell lines from the gills of Chrysophrys auratus (Australasian snapper) and Oncorhynchus tshawytscha (Chinook salmon) and their use in aquatic toxicology. In Vitro Cell Dev Biol Anim 2024:10.1007/s11626-024-00941-z. [PMID: 38987436 DOI: 10.1007/s11626-024-00941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
In vitro gill models are becoming increasingly important in aquatic toxicology, yet the fish gill invitrome is underrepresented, encompassing approximately 0.1% of extant species. Here, we describe the establishment and characterisation of two gill-derived, epithelial-like cell lines isolated from fish species of significant importance to New Zealand: Chrysophrys auratus (Australasian snapper) and Oncorhynchus tshawytscha (Chinook salmon). Designated CAgill1PFR (Chrysophrys auratus, gill 1, Plant & Food Research) and OTgill1PFR (Oncorhynchus tshawytscha, gill 1, Plant & Food Research), these cell lines have each been passaged greater than each 70 times over several years and are considered spontaneously immortalised. Both cell lines required serum for growth and exhibited differential responses to basal media formulations. CAgill1PFR was sensitive to low temperatures (4 °C) but replicated at high temperatures (30 °C), whereas OTgill1PFR was sensitive to high temperatures but remained viable at low temperatures, mirroring the natural environment of their host species. Immunostaining revealed expression of epithelial cell markers cytokeratin and E-cadherin, alongside positivity for the mesenchymal cell marker, vimentin. CAgill1PFR was more sensitive to the environmental toxin 3,4 dichloroaniline than OTgill1PFR through measurements of metabolic activity, membrane integrity, and lysosomal function. Furthermore, CAgill1PFR produced less CYP1A activity, indicative of ongoing biotransformation processes, in response to beta-naphthoflavone than OTgill1PFR. These cell lines expand the toolbox of resources and emphasise the need for species-specific aquatic toxicology research.
Collapse
Affiliation(s)
- Björn Böhmert
- The New Zealand Institute for Plant and Food Research Limited, Nelson Research Centre, 293 Akersten Street, Nelson, 7010, New Zealand
| | - Gavril L W Chong
- The New Zealand Institute for Plant and Food Research Limited, Nelson Research Centre, 293 Akersten Street, Nelson, 7010, New Zealand
| | - Kim Lo
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, 1142, New Zealand
| | - Michael Algie
- The New Zealand Institute for Plant and Food Research Limited, Nelson Research Centre, 293 Akersten Street, Nelson, 7010, New Zealand
| | - Damon Colbert
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, 1142, New Zealand
| | - Melissa D Jordan
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, 1142, New Zealand
| | - Gabriella Stuart
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Lyn M Wise
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Lucy E J Lee
- Faculty of Science, University of the Fraser Valley, Abbotsford, BC, V2S 7M8, Canada
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Georgina C Dowd
- The New Zealand Institute for Plant and Food Research Limited, Nelson Research Centre, 293 Akersten Street, Nelson, 7010, New Zealand.
| |
Collapse
|
26
|
Richardson SD, Manasfi T. Water Analysis: Emerging Contaminants and Current Issues. Anal Chem 2024; 96:8184-8219. [PMID: 38700487 DOI: 10.1021/acs.analchem.4c01423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, JM Palms Center for GSR, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Tarek Manasfi
- Eawag, Environmental Chemistry, Uberlandstrasse 133, Dubendorf 8600, Switzerland
| |
Collapse
|
27
|
Meador JP, Ball SC, James CA, McIntyre JK. Using the fish plasma model to evaluate potential effects of pharmaceuticals in effluent from a large urban wastewater treatment plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123842. [PMID: 38554836 DOI: 10.1016/j.envpol.2024.123842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Several pharmaceuticals and personal care products (PPCPs) were evaluated using the fish plasma model (FPM) for juvenile Chinook salmon exposed to effluent from a large urban wastewater treatment plant. The FPM compares fish plasma concentrations to therapeutic values determined in human plasma as an indication of potential adverse effects. We used human Cmax values, which are the maximum plasma concentration for a minimum therapeutic dose. Observed and predicted plasma concentrations from juvenile Chinook salmon exposed to a dilution series of whole wastewater effluent were compared to 1%Cmax values to determine Response Ratios (RR) ([plasma]/1%Cmax) for assessment of possible adverse effects. Several PPCPs were found to approach or exceed an RR of 1, indicating potential effects in fish. We also predicted plasma concentrations from measured water concentrations and determined that several of the values were close to or below the analytical reporting limit (RL) indicating potential plasma concentrations for a large number of PPCPs that were below detection. Additionally, the 1%Cmax was less than the RL for several analytes, which could impede predictions of possible effect concentrations. A comparison of observed and predicted plasma concentrations found that observed values were frequently much higher than values predicted with water concentrations, especially for low log10Dow compounds. The observed versus predicted values using the human volume of distribution (Vd), were generally much closer in agreement. These data appear to support the selection of whole-body concentrations to predict plasma values, which relies more on estimating simple partitioning within the fish instead of uptake via water. Overall, these observations highlight the frequently underestimated predicted plasma concentrations and potential to cause adverse effects in fish. Using measured plasma concentrations or predicted values from whole-body concentrations along with improved prediction models and reductions in analytical detection limits will foster more accurate risk assessments of pharmaceutical exposure for fish.
Collapse
Affiliation(s)
- James P Meador
- University of Washington, Dept. of Environmental and Occupational Health Sciences, School of Public Health, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105-6099, USA.
| | - Suzanne C Ball
- Washington State University, School of the Environment, Puyallup Research and Extension Center, 2606 W Pioneer Ave, Puyallup, WA, 98371, USA.
| | - C Andrew James
- University of Washington Tacoma, Center for Urban Waters, 326 East D Street, Tacoma, WA, 98421-1801, USA.
| | - Jenifer K McIntyre
- Washington State University, School of the Environment, Puyallup Research and Extension Center, 2606 W Pioneer Ave, Puyallup, WA, 98371, USA.
| |
Collapse
|
28
|
Alzola-Andres M, Cerveny D, Domingo-Echaburu S, Lekube X, Ruiz-Sancho L, Brodin T, Orive G, Lertxundi U. Pharmaceutical residues in stranded dolphins in the Bay of Biscay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168570. [PMID: 37979850 DOI: 10.1016/j.scitotenv.2023.168570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
There is a growing concern about the presence of pharmaceuticals on the aquatic environment, while the marine environment has been much less investigated than in freshwater. Marine mammals are suitable sentinel species of the marine environment because they often feed at high trophic levels, have unique fat stores and long lifespan. Some small delphinids in particular serve as excellent sentinel species for contamination in the marine environment worldwide. To the best of our knowledge, no pharmaceuticals have been detected or reported in dolphins so far. In the present study, muscle, liver and blubber samples from three common dolphins (Delphinus delphis) and seven striped dolphins (Stenella coeruleoalba) stranded along the Basque Coast (northern Spain) were collected. A total of 95 pharmaceuticals based on detectability and predicted ability to bioaccumulate in fish were included in the liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. At least one pharmaceutical was found in 70 % of the individuals. Only three of the 95 monitored pharmaceuticals were detected in dolphin's tissues. Very low concentrations (<1 ng/g) of orphenadrine and pizotifen were found in liver and promethazine in blubber. Herein, the gap in the knowledge regarding the study organisms and marine environments with respect to pharmaceutical pollution, which demands further research to understand if pharmaceuticals are a threat for these apex predators, is highlighted and discussed.
Collapse
Affiliation(s)
| | - Daniel Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany, Czech Republic
| | - Saioa Domingo-Echaburu
- Osakidetza Basque Health Service, Debagoiena Integrated Health Organisation, Pharmacy Service, Nafarroa Hiribidea 16, 20500 Arrasate, Gipuzkoa, Spain
| | - Xabier Lekube
- Biscay Bay Environmental Biospecimen Bank (BBEBB), Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza 47, 48620 Plentzia, Basque Country, Spain; CBET+ Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Leire Ruiz-Sancho
- AMBAR Elkartea Organisation, Ondarreta Ibilbidea z/g, 48620 Plentzia, Bizkaia, Spain
| | - Tomas Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| | - Unax Lertxundi
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, Vitoria-Gasteiz, Spain.
| |
Collapse
|
29
|
Peer Muhamed Noorani KR, Flora G, Surendarnath S, Mary Stephy G, Amesho KTT, Chinglenthoiba C, Thajuddin N. Recent advances in remediation strategies for mitigating the impacts of emerging pollutants in water and ensuring environmental sustainability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119674. [PMID: 38061098 DOI: 10.1016/j.jenvman.2023.119674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 01/14/2024]
Abstract
The proliferation of emerging pollutants (EPs), encompassing a range of substances such as phthalates, phenolics, pharmaceuticals, pesticides, personal care products, surfactants, and disinfection agents, has become a significant global concern due to their potential risks to the environment and human well-being. Over the past two decades, numerous research studies have investigated the presence of EPs in wastewater and aquatic ecosystems, with the United States Environmental Protection Agency (USEPA) categorizing these newly introduced chemical compounds as emerging contaminants due to their poorly understood impact. EPs have been linked to adverse health effects in humans, including genotoxic and cytotoxic effects, as well as conditions such as obesity, diabetes, cardiovascular disease, and reproductive abnormalities, often associated with their estrogenic action. Microalgae have shown promise in the detoxification of both inorganic and organic contaminants, and several large-scale microalgal systems for wastewater treatment have been developed. However, the progress of algal bioremediation can be influenced by accidental contaminations and operational challenges encountered in pilot-scale research. Microalgae employ various processes, such as bioadsorption, biouptake, and biodegradation, to effectively remediate EPs. During microalgal biodegradation, complex chemical compounds are transformed into simpler substances through catalytic metabolic degradation. Integrating algal bioremediation with existing treatment methodologies offers a viable approach for efficiently eliminating EPs from wastewater. This review focuses on the use of algal-based biological remediation processes for wastewater treatment, the environmental impacts of EPs, and the challenges associated with implementing algal bioremediation systems to effectively remove emerging pollutants.
Collapse
Affiliation(s)
- Kalilur Rahman Peer Muhamed Noorani
- National Repository for Microalgae and Cyanobacteria - Freshwater (NRMC-F), (Sponsored by DBT, Govt. of India), Department of Microbiology, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - G Flora
- PG and Research Department of Botany, St. Mary's College (Autonomous), Thoothukudi, Tamil Nadu, India
| | - S Surendarnath
- Department of Mechanical Engineering, DVR & Dr. HS MIC College of Technology (A), Vijayawada, 521 180, Andhra Pradesh, India
| | - G Mary Stephy
- PG and Research Department of Botany, St. Mary's College (Autonomous), Thoothukudi, Tamil Nadu, India
| | - Kassian T T Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; The International University of Management, Centre for Environmental Studies, Main Campus, Dorado Park Ext 1, Windhoek, Namibia; Destinies Biomass Energy and Farming Pty Ltd, P.O.Box 7387, Swakomund, Namibia
| | | | - Nooruddin Thajuddin
- National Repository for Microalgae and Cyanobacteria - Freshwater (NRMC-F), (Sponsored by DBT, Govt. of India), Department of Microbiology, Bharathidasan University, Tiruchirappalli, 620 024, India; School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India.
| |
Collapse
|
30
|
Grădinariu L, Dediu L, Crețu M, Grecu IR, Docan A, Istrati DI, Dima FM, Stroe MD, Vizireanu C. The Antioxidant and Hepatoprotective Potential of Berberine and Silymarin on Acetaminophen Induced Toxicity in Cyprinus carpio L. Animals (Basel) 2024; 14:373. [PMID: 38338016 PMCID: PMC10854737 DOI: 10.3390/ani14030373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Berberine (BBR) and silymarin (SM) are natural compounds extracted from plants known for their antioxidant and chemoprotective effects on the liver. The present study aimed to investigate the beneficial properties of BBR and SM and the association of BBR with SM on liver function using fish as "in vivo" models. Moreover, the study investigated their hepatoprotective role after acetaminophen (APAP) exposure. For this purpose, the fish (N = 360; 118.4 ± 11.09 g) were fed with control or experimental diets for 9 weeks. In the experimental diets, the feed was supplemented with either SM (1 g/kg feed), BBR (100 and 200 mg/kg feed), or a combination of BBR with SM (SM 1 g/kg feed + BBR 100 mg/kg feed and, respectively, SM 1 g/kg feed + BBR 200 mg/kg feed). After the feeding trial, seven fish from each tank were randomly selected and exposed to a single APAP dose. The selected serum biochemical markers, oxidative stress markers, and lysozyme activity were used to evaluate the efficiency of the supplements on carp's health profile, particularly regarding the hepatopancreas function. Our results showed that the inclusion of SM and BBR (either as a single or in combination) reduced the serum contents of total cholesterol, triglyceride, and alanine transaminase. An increase in the high-density cholesterol was observed after the administration of BBR or BBR in association with SM. Both supplements showed hepatoprotective activity against APAP-induced hepatotoxicity, especially BBR. The ameliorative effects of SM (1 g) in association with BBR (100 mg) were highlighted by the modulation of the nonspecific immune system and oxidative stress alleviation after APAP exposure.
Collapse
Affiliation(s)
- Lăcrămioara Grădinariu
- Faculty of Food Science and Engineering, “Dunărea de Jos” University of Galați, 47 Domnească Street, 800008 Galați, Romania (M.C.); (I.R.G.); (A.D.); (D.I.I.); (C.V.)
| | - Lorena Dediu
- Faculty of Food Science and Engineering, “Dunărea de Jos” University of Galați, 47 Domnească Street, 800008 Galați, Romania (M.C.); (I.R.G.); (A.D.); (D.I.I.); (C.V.)
| | - Mirela Crețu
- Faculty of Food Science and Engineering, “Dunărea de Jos” University of Galați, 47 Domnească Street, 800008 Galați, Romania (M.C.); (I.R.G.); (A.D.); (D.I.I.); (C.V.)
- Institute of Research and Development for Aquatic Ecology, Fishing and Aquaculture, 54 Portului Street, 800211 Galați, Romania; (F.M.D.); (M.D.S.)
| | - Iulia Rodica Grecu
- Faculty of Food Science and Engineering, “Dunărea de Jos” University of Galați, 47 Domnească Street, 800008 Galați, Romania (M.C.); (I.R.G.); (A.D.); (D.I.I.); (C.V.)
| | - Angelica Docan
- Faculty of Food Science and Engineering, “Dunărea de Jos” University of Galați, 47 Domnească Street, 800008 Galați, Romania (M.C.); (I.R.G.); (A.D.); (D.I.I.); (C.V.)
| | - Daniela Ionela Istrati
- Faculty of Food Science and Engineering, “Dunărea de Jos” University of Galați, 47 Domnească Street, 800008 Galați, Romania (M.C.); (I.R.G.); (A.D.); (D.I.I.); (C.V.)
| | - Floricel Maricel Dima
- Institute of Research and Development for Aquatic Ecology, Fishing and Aquaculture, 54 Portului Street, 800211 Galați, Romania; (F.M.D.); (M.D.S.)
- Faculty of Engineering and Agronomy, 29 Calea Calărașilor Street, 810017 Brăila, Romania
| | - Maria Desimira Stroe
- Institute of Research and Development for Aquatic Ecology, Fishing and Aquaculture, 54 Portului Street, 800211 Galați, Romania; (F.M.D.); (M.D.S.)
| | - Camelia Vizireanu
- Faculty of Food Science and Engineering, “Dunărea de Jos” University of Galați, 47 Domnească Street, 800008 Galați, Romania (M.C.); (I.R.G.); (A.D.); (D.I.I.); (C.V.)
| |
Collapse
|
31
|
Gao K, Wang L, Xu Y, Zhang Y, Li H, Fu J, Fu J, Lu L, Qiu X, Zhu T. Concentration identification and endpoint-oriented health risk assessments on a broad-spectrum of organic compounds in atmospheric fine particles: A sampling experimental study in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167574. [PMID: 37804984 DOI: 10.1016/j.scitotenv.2023.167574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/16/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Understanding the complicate chemical components in atmospheric fine particulate matter (PM2.5) helps policy makers for pollutants control track progress and identify disparities in overall health risks. However, till now, information on accurate component detection, source identification, and effect-oriented risk assessment is scarce, especially for the simultaneous analysis of a broad-spectrum of compounds. In this study, a high-throughput target method was employed to distinguish the occurrence and characteristics of 152 chemicals: phthalate esters (PAEs), organophosphate esters (OPEs), carboxylic acid esters (CAEs), nitrophenols (NPs), nitrogen heterocyclic compounds (NHCs), per- and poly-fluoroalkyl substances (PFASs), triclosan and its derivatives (TCSs), and organosulfates (OSs) in ambient PM2.5 collected from Beijing, China. Detection frequencies of 77 targeted compounds were >50 %. Total concentrations of all compounds ranged from 33.1 to 745 ng/m3. The median concentration of ∑PAEs (108 ng/m3) was the highest, followed by ∑CAEs (12.2 ng/m3) and ∑NPs (10.1 ng/m3). Organophosphate diesters (di-OPEs) and TCSs were reported for the first time in ambient PM2.5. The pollutants mainly originated from the local industrial production, release of building materials, and environmental degradation of parent compounds. Based on absorption, distribution, metabolism, excretion, and toxicity (ADMET)-oriented risk evaluations, we found that bis (2-ethylhexyl) phthalate, diisobutyl phthalate, dibutyl phthalate, and di (2-ethylhexyl) adipate have high health risks. Additionally, the high oxidative stress potential of 4-nitrocatechol and the strong blood-brain barrier penetration potential of triclosan cannot be ignored. Our study will facilitate the evaluations of specific health outcomes and mechanisms of pollutants, and suggestion of pollutants priority control to reduce human health hazards caused by atmospheric particles.
Collapse
Affiliation(s)
- Ke Gao
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, China; SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Linxiao Wang
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, China
| | - Yifan Xu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yidan Zhang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Haonan Li
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Jie Fu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
| | - Jianjie Fu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
| | - Liping Lu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, China
| | - Xinghua Qiu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Tong Zhu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| |
Collapse
|
32
|
Vujica L, Lončar J, Mišić L, Lučić B, Radman K, Mihaljević I, Bertoša B, Mesarić J, Horvat M, Smital T. Environmental contaminants modulate transport activity of zebrafish (Danio rerio) multidrug and toxin extrusion protein 3 (Mate3/Slc47a2.1). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165956. [PMID: 37541507 DOI: 10.1016/j.scitotenv.2023.165956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
Zebrafish Mate3 is one of six co-orthologs of human multidrug and toxin extrusion proteins. It is highly expressed in the kidneys, intestine, testes, and brain of males. Initial interaction studies showed its interaction with xenobiotic compounds, suggesting a role in the efflux of toxic compounds. In this study, we aimed to test various environmental contaminants for their interaction with zebrafish Mate3. We developed a stable zebrafish Mate3 cell line and optimized a high-throughput screening assay using DAPI and ASP+ as fluorescent model substrates. To gain insight into the structure and function of the Mate3 protein and relate these to the results of the DAPI and ASP+ transport measurements, we predicted its 3D structure using the AlphaFold2 algorithm. A 3D structure with high per residue confidence scores with 13 transmembrane segments (TMs) was obtained, with topology and mutual positioning characteristic of the Mate protein family in a shape open to the extracellular part. Molecular docking methods were used to identify DAPI and ASP+ binding sites on the surface and in the center of the protein cavity. Because our kinetics experiments combined with molecular docking indicated that there may be additional active sites in zebrafish Mate3, additional cytotoxicity experiments were performed and highly potent Mate3 interactors were identified from a set of 55 different environmental contaminants. Our results suggest that some of the identified interactors may be of environmental concern, as their interaction with Mate3 could lead to an impairment of its normal efflux function, making fish more sensitive to harmful substances commonly released into the aquatic environment. Finally, the quality of zebrafish Mate3 structures predicted by the AlphaFold2 algorithm opens up the possibility of successfully using this tool for in silico research on transport preferences of other Mate proteins.
Collapse
Affiliation(s)
- Lana Vujica
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Jovica Lončar
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Lana Mišić
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Bono Lučić
- NMR Center, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Katarina Radman
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Ivan Mihaljević
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Josip Mesarić
- Centre for Informatics and Computing, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Marina Horvat
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Tvrtko Smital
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| |
Collapse
|