1
|
Li C, Zhu YX, Shen XX, Gao Y, Xu M, Chen MK, An MY. Exploring the distribution and transmission mechanism of ARGs in crab aquaculture ponds and ditches using metagenomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126209. [PMID: 40210157 DOI: 10.1016/j.envpol.2025.126209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Aquaculture provides notable economic benefits; however, the excessive use of antibiotics has resulted in the production and spread of antibiotic resistance genes (ARGs). The intricate pollution dynamics in aquaculture areas complicate the comprehension of the distribution and transmission of ARGs in aquaculture systems. Using metagenomic sequencing technology, this study used eight ponds and four ditches in a large crab aquaculture area in Taizhou City, where Proteobacteria (61.58 %) and Acidobacteria (6.04 %) were identified as the dominant phyla and Thiobacillus (1.84 %) and Lysobacter (0.99 %) were the dominant genera. Network and linear discriminant analysis effect size (LEfse) analyses showed that Proteobacteria and Lysobacter were the main host phyla of ARGs, and Lysobacter, which are key host bacteria in ponds, played an important role in determining the abundance of ARGs in ponds. Co-occurrence network analysis (spearman r > 0.7, p < 0.01) revealed that prophages can dominate the spread of ARGs by carrying several ARG subtypes (rsmA, OXA-21, THIN-B and lnuF). Analysis of variance demonstrated that functions related to the horizontal gene transfer (HGT) of ARGs, such as EPS synthesis (lptF), oxidative stress (gor and ompR), ATP synthesis (lapB and vcaM), and cell membrane permeability (yajC and gspJ), were significantly expressed in the pond (p < 0.05), confirming that ARGs had stronger transmission potential in the pond. The Mantel test and partial least squares path modeling (PLS-PM) analysis showed that ARGs exist in bacteria and spread among them through mobile genetic elements and HGT. This study revealed the distribution and transmission mechanism of ARGs in the ponds and ditches of a crab aquaculture system and provided a theoretical basis for controlling the spread of ARGs in crab aquaculture in this area.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Yun-Xiang Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiao-Xiao Shen
- Institute of Water Science and Technology, Hohai University, Nanjing, 210098, China
| | - Yuan Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Ming Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Meng-Kai Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Ming-Yang An
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
2
|
Miao S, Zhang Y, Wu L, Wang Y, Zuo J. Resistance induction potency assessment of antibiotic production wastewater and associated resistome shaping mechanisms. WATER RESEARCH 2025; 283:123811. [PMID: 40382874 DOI: 10.1016/j.watres.2025.123811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/11/2025] [Accepted: 05/11/2025] [Indexed: 05/20/2025]
Abstract
Antibiotic production wastewater (APW) contains multiple substances known to select for and facilitate horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs); however, whether these substances can induce the evolution of antibiotic resistance in real wastewater environments and the fate of such resistance induction potency during the treatment process are poorly understood, nor are its relationship with wastewater quality parameters and function in shaping the antibiotic resistome. In this study, the impacts of filter-sterilized APW and municipal wastewater on the resistance selection of Escherichia coli and the transfer dynamics of conjugative RP4 plasmid-borne ARGs across indigenous sludge communities were evaluated. The resistance development and transfer processes were accelerated in APW owing to enhanced growth inhibition, oxidative stress, and membrane permeability, with antibiotic concentrations much lower than their minimum inhibition concentrations. The effects were reduced simultaneously with the removal of COD and NH3N, but APW effluents still exhibited significant resistance induction potency with wastewater quality parameters meeting discharge standards. In contrast, municipal wastewater did not result in any detectable changes. Based on the metagenomic assembly and binning, stronger resistance induction potency in the antibiotic production wastewater treatment plant endowed indigenous sludge and effluent with greater accumulation, genetic mobility, and pathogenic accessibility of ARGs than in the municipal wastewater treatment plant. Antibiotic resistome assembly was determined primarily by deterministic processes, driven jointly by resistance induction potency, mobilome variance, and microbiome shifts. These results provide novel insights into the application of bioassays to comprehensively evaluate the antibiotic resistance induction effects of APW and their relationships with the resistome to manage risks during the treatment process.
Collapse
Affiliation(s)
- Sun Miao
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yanyan Zhang
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Linjun Wu
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Yongjun Wang
- Environmental Protection Institute of North China Pharmaceutical Company, Shijiazhuang, Hebei 050015, PR China
| | - Jiane Zuo
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, PR China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, PR China.
| |
Collapse
|
3
|
Zhao W, Hou Y, Wei L, Wei W, Zhang K, Duan H, Ni BJ. Chlorination-induced spread of antibiotic resistance genes in drinking water systems. WATER RESEARCH 2025; 274:123092. [PMID: 39787839 DOI: 10.1016/j.watres.2025.123092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/16/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Chlorine, the most widely utilized disinfectant for drinking water globally, has recently been implicated in facilitating the spread of antibiotic resistance genes (ARGs), raising concerns about its underestimated environmental and ecological risks. However, given the current fragmented research focus and results, a comprehensive understanding of the potential mechanisms and influencing factors behind chlorination-promoted ARGs transmission in drinking water systems is crucial. This work is the first to systematically review the variations in abundance, transmission mechanisms, influencing factors, and mitigation strategies related to ARGs during the chlorination process. The results indicated that chlorination could induce genetic mutations and promote horizontal gene transfer through multiple pathways, including increased reactive oxygen species, enhanced membrane permeability, stimulation of the SOS response, and activation of efflux pumps. In addition, this work delves into significant discoveries regarding the factors affecting ARG transmission in drinking water, such as chlorine concentration, reaction time, disinfection byproducts, pipe materials, biofilms, and the water matrix. A series of effective strategies from water source to point-of-use were proposed aimed at mitigating ARGs transmission risks in the drinking water system. Finally, we address existing challenges and outline future research directions to overcome these bottlenecks. Overall, this review aims to advance our understanding of the role of chlorination in the dissemination of ARGs and to inspire innovative research ideas for optimizing disinfection techniques, minimizing the risks of antibiotic resistance transmission, and enhancing the safety of drinking water.
Collapse
Affiliation(s)
- Weixin Zhao
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanan Hou
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kefeng Zhang
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Haoran Duan
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
4
|
Lin W, Zhao K, Wu Q, Xu F, Cui L, Lin H, Ye C, Yu X. Biofilms on pipelines shape the microbiome and antibiotic resistome in drinking water. WATER RESEARCH 2025; 274:123136. [PMID: 39827519 DOI: 10.1016/j.watres.2025.123136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Biofilms in the drinking water distribution system (DWDS) provide shelter for pathogens and antibiotic resistance genes (ARGs). However, how biofilms alter the microbiome and antibiotic resistome in tap water, as well as the precise quantitative evaluation of their health risks, remains unclear. Herein, biofilm reactors supplied with municipal drinking water were operated for 120 days. Metagenomic sequencing identified significant differences in microbial compositions among the biofilms, influent, and effluents. A total of 69-305 ARGs were detected in this DWDS, and ARG abundances increased in the biofilms (0.246-1.576 cpc) and effluents (0.309-0.503 cpc) compared to the influent (0.131 cpc). Metagenomic assembly pinpointed potential pathogenic ARG hosts such as Acinetobacter, Pseudomonas, and Escherichia. The co-occurrence of ARGs and mobile genetic elements indicated potential mobility, which was further supported by transformation assays demonstrating gene transfers at a frequency of 10-6. Furthermore, source tracking revealed that biofilms contributed high proportions (19 %-34 %) to the ARG profiles of effluents. The ARG risk scores increased from the influent (20.39) to the effluents (39.85-55.50), with highest level (55.50) in the cast iron effluent. Overall, this study provides novel insights into the impacts of biofilm growth on the microbiome and antibiotic resistome in tap water, along with their potential health risks in the DWDS.
Collapse
Affiliation(s)
- Wenfang Lin
- State Key Laboratory for Ecological Security of Regions and Cities, State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Keqian Zhao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Qihui Wu
- State Key Laboratory for Ecological Security of Regions and Cities, State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Fei Xu
- State Key Laboratory for Ecological Security of Regions and Cities, State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Li Cui
- State Key Laboratory for Ecological Security of Regions and Cities, State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Huirong Lin
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Chengsong Ye
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
5
|
Chen X, Gao L, Kou Y, Wang X, Li X, He H, Wang M. Composition, Distribution and Mobility Potential of the Antibiotic Resistome in Sediments from the East China Sea Revealed by Metagenomic Analysis. Microorganisms 2025; 13:697. [PMID: 40142589 PMCID: PMC11944410 DOI: 10.3390/microorganisms13030697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Marine sediments are recognized as crucial reservoirs of antibiotic resistance genes (ARGs). However, the antibiotic resistome in sediments of the East China Sea, an area heavily impacted by human activities, has not been thoroughly studied. Here, we conducted a systematic investigation into the antibiotic resistome in these sediments using metagenomic analysis. Overall, we detected eighty ARG subtypes and nineteen ARG types. Beta-lactams were the dominant ARG type, and Gammaproteobacteria was the main ARG host in this study. Mobile genetic elements (MGEs) were not major drivers of ARG profiles. Although the ARG host communities significantly differed between the spring and autumn (p < 0.05), the antibiotic resistome remained stable across the two seasons. The assembly of ARGs and their hosts was governed by stochastic processes, and a high ratio of stochastic processes implied its crucial role in the assembly and stabilization of the antibiotic resistome. Co-occurrence network analysis revealed an important role of Deltaproteobacteria in the stabilization of ARG profiles across seasons. Environmental parameters (e.g., temperature and density) played certain roles in the stabilization of the antibiotic resistome between spring and autumn. Moreover, nine human pathogen bacteria (HPB) were detected in this study. We also found that the health risks caused by ARGs were relatively higher in the spring. Our results will provide a strong foundation for the development of targeted management strategies to mitigate the further dissemination and spread of ARGs in marine sediments.
Collapse
Affiliation(s)
- Xiaozhong Chen
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Frontiers Science for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (X.C.); (L.G.); (Y.K.); (X.W.); (X.L.); (M.W.)
| | - Long Gao
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Frontiers Science for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (X.C.); (L.G.); (Y.K.); (X.W.); (X.L.); (M.W.)
| | - Yanxue Kou
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Frontiers Science for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (X.C.); (L.G.); (Y.K.); (X.W.); (X.L.); (M.W.)
| | - Xiaoxuan Wang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Frontiers Science for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (X.C.); (L.G.); (Y.K.); (X.W.); (X.L.); (M.W.)
| | - Xintong Li
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Frontiers Science for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (X.C.); (L.G.); (Y.K.); (X.W.); (X.L.); (M.W.)
| | - Hui He
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Frontiers Science for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (X.C.); (L.G.); (Y.K.); (X.W.); (X.L.); (M.W.)
| | - Min Wang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Frontiers Science for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (X.C.); (L.G.); (Y.K.); (X.W.); (X.L.); (M.W.)
- Haide College, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
6
|
Feng B, Chen J, Wang C, Wang P, You G, Lin J, Gao H. Removal of ofloxacin and inhibition of antibiotic resistance gene spread during the aerobic biofilm treatment of rural domestic sewage through the micro-nano aeration technology. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137020. [PMID: 39733752 DOI: 10.1016/j.jhazmat.2024.137020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/20/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024]
Abstract
Micro-nano aeration (MNA) has great potential for emerging contaminant removal. However, the mechanism of antibiotic removal and antibiotic resistance gene (ARG) spread, and the impact of the different aeration conditions remain unclear. This study investigated the adsorption and biodegradation of ofloxacin (OFL) and the spread of ARGs in aerobic biofilm systems under MNA and conventional aeration (CVA) conditions. Results showed that the MNA increased OFL removal by 17.27 %-40.54 % and decreased total ARG abundance by 36.37 %-54.98 %, compared with CVA. MNA-induced biofilm rough morphology, high zeta potential, and reduced extracellular polymeric substance (EPS) secretion enhanced OFL adsorption. High dissolved oxygen and temperature, induced by MNA-enriched aerobic bacteria and their carrying OFL-degrading genes, enhanced OFL biodegradation. MNA inhibited the enrichment of ARG host bacteria, which acquired ARGs possibly via horizontal gene transfer (HGT). Functional profiles involved in the HGT process, including reactive oxygen species production, membrane permeability, mobile genetic elements (MGEs), adenosine triphosphate synthesis, and EPS secretion, were down-regulated by MNA, inhibiting ARG spread. Partial least-squares path modeling revealed that MGEs might be the main factor inhibiting ARG spread. This study provides insights into the mechanisms by which MNA enhances antibiotic removal and inhibits ARG spread in aerobic biofilm systems.
Collapse
Affiliation(s)
- Bingbing Feng
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Junkai Lin
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
7
|
Zhang L, Jiang L, Yan W, Tao H, Yao C, An L, Sun Y, Hu T, Sun W, Qian X, Gu J. Exogenous additives reshape the microbiome and promote the reduction of resistome in co-composting of pig manure and mushroom residue. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136544. [PMID: 39566458 DOI: 10.1016/j.jhazmat.2024.136544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/22/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Comprehensive understanding of the microbiome and resistome evolution in compost is crucial for guaranteeing the safety of organic fertilizers. Current studies using different composting systems and sequencing technologies have yielded varying conclusions on the efficacy of exogenous additives (EAs) in reducing antibiotic resistance genes (ARGs) in compost. This study employed metagenomics to investigate the impact of various EAs on microbial communities, ARGs, their coexistence with mobile genetic elements (MGEs), and ARG hosts in co-composting. Our results demonstrated that EAs significantly reshaped the microbial communities and facilitated a notable reduction in total ARG abundance and diversity, primarily by decreasing core ARGs. Cooperative rather than antagonistic relationships among bacteria. The RA changes in total ARGs are mainly caused by a decrease in the prevalence of core ARGs. Furthermore, EAs showed significant efficacy in reducing clinical ARGs, including cfxA, tetX1, cfxA6, vanA, and aac (6')-Ib', with diatomite (5 %) and zeolite (5 %) being the most effective. The effect of EAs on ARGs and microbial community assembly were stochastic processes. Composting stage and EAs jointly reduced the association between ARGs and MGEs in the composting system. The reduction of ARGs attributed to a decreased abundance of potential pathogenic ARG-associated hosts and diminished associations with MGEs. In conclusion, EAs present a straightforward and effective approach for promoting ARGs reduction in compost, offering crucial insights for assessing the environmental risks associated with the release of agricultural ARGs.
Collapse
Affiliation(s)
- Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lan Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenjing Yan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hanxiang Tao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengcheng Yao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu An
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifan Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Sun H, Ju X, Wang H, Ma X, Shi B. Ammonia nitrogen affects bacterial virulence and conditional pathogenic bacterial growth by regulating biofilm microbial metabolism and EPS secretion in laboratory scale distribution systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178150. [PMID: 39705953 DOI: 10.1016/j.scitotenv.2024.178150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
The control of conditional pathogenic bacteria and inhibition of their virulence factors (VFs) in drinking water distribution systems (DWDSs) is vital for drinking water safety. This study adopted two groups of DWDSs to investigate how ammonia nitrogen affects bacterial VFs and conditional pathogenic bacterial growth in biofilms. Our results indicated that Acidimicrobium (95,916.62 ± 119.24 TPM), Limnohabitans (30,338.81 ± 139.14 TPM), and Sediminibacterium (10,658.01 ± 48.94 TPM) were predominant in the biofilm bacterial community of DWDSs with NH3-N addition. Under these conditions, the abundances of various bacterial metabolites, such as L-glutamate (1.45-fold), 2-oxoglutarate (1.24-fold), pyruvate (2.10-fold), and adenosine monophosphate (AMP, 5.29-fold), were significantly upregulated, which suggested the upregulation of amino acid, carbohydrate, nucleotide, lipid, pyrimidine and purine metabolism. These metabolic pathways accelerated extracellular polymeric substance (EPS) secretion. The protein concentration in EPS also increased to 187.59 ± 0.58 μg/cm2. The increased EPS secretion promoted the amide I CO group of the EPS protein to interact with the surface of the DWDSs, thus enhancing the ability of bacteria (especially conditional pathogenic bacteria) to adhere to the pipe surface to form biofilms. Due to EPS protection, the abundance of the adherence subtype of VFs and the plate counts of Pseudomonas aeruginosa increased to 5912.8 ± 21.89 TPM and 655.78 ± 27.10 CFU/cm2, respectively. Therefore, NH3-N in DWDSs increased bacterial VFs levels and promoted the growth of some conditional pathogenic bacteria by regulating biofilm microbial metabolic pathways and EPS secretion, ultimately impacting the interaction between EPS and the pipe surface.
Collapse
Affiliation(s)
- Huifang Sun
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Xiurong Ju
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, Shanxi, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xu Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Li Y, Liu K, Qiu H, Chen F, Zhang J, Zheng Z. Dynamics of antibiotic resistance genes and bacterial community structure within substrate biofilms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123512. [PMID: 39642837 DOI: 10.1016/j.jenvman.2024.123512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 11/02/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Biofilms that develop on the surface of substrates are critical for treating wastewater. The accumulation of antibiotic resistance genes (ARGs) within these biofilms is particularly noteworthy. Despite their importance, studies that focus on biofilms attached to substrate surfaces remain scarce. This investigation explored the prevalence and succession of ARGs and microbial dynamics in biofilms on different substrates (ceramic, biomass filter, and steel slag) versus water biofilms over a year. Results showed distinct differences in ARG profiles between water and substrate biofilms. Multidrug ARGs constituted 39.14-46.73% of all ARGs in the substrate biofilms, with macrolide ARGs making up 11.98-14.52%. Seasonal variations influenced the diversity of the ARGs, notably increasing during the spring. The neutral community model suggested that the ARG assembly was dominantly driven by stochastic process. Proteobacteria, Actinobacteria and Campylobacter emerged as the predominant phyla within these biofilms. The microbial community distribution was predominantly influenced by ammonium nitrogen (NH4+-N) (R2 = 0.4113), temperature and total nitrogen (TN). Notably, temperature exerted a critical impact on the microbial community distribution (P = 0.001), identifying it as the principal factor for spatial arrangement. Furthermore, the structural variations of ARGs were primarily driven by total organic carbon (TOC) (R2 = 0.3988), temperature, oxidation-reduction potential (ORP) and NH4+-N. Our findings provided new insights into the optimization of substrate selection and ecological management to manage ARG enrichment, offering a promising strategy for aquatic ecological restoration and pollution control.
Collapse
Affiliation(s)
- Yaguang Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China; Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai, 200233, PR China
| | - Kexuan Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Hanwen Qiu
- Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai, 200233, PR China
| | - Fanmo Chen
- Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai, 200233, PR China
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China.
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
10
|
Yang T, Wang X, Ng HY, Huang S, Bi X, Zheng X, Zhou X. Antibiotic resistance and resistome risks of inhalable bioaerosols at aeration tank of a full-scale wastewater treatment plant. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136253. [PMID: 39454330 DOI: 10.1016/j.jhazmat.2024.136253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Antibiotic resistome could be aerosolized under wastewater aeration processes, however, their seasonal variation, mobility, hosts, aerosolization behavior, and risk, are largely unknown. Herein, the antibiotic resistant pollution associated with fine particulate matter (PM2.5) from the actual aeration tank (AerT), was analyzed using metagenomic assembly. The antibiotic resistance of AerT-PM2.5 was characterized by significant seasonality. Antibiotic resistance genes (ARGs) in AerT-PM2.5, exhibited higher enrichment and mobility and were harbored more by pathogens than those in upwind-PM2.5, regardless of sampling season. Mobile ARGs were mainly flanked by transposase. Totally, 18 pathogenic antibiotic-resistant bacteria (PARB) carried more than one ARG, including 9 PARB with multiple ARG types. Although wastewater exerted a dominant source contribution for the airborne ARGs (47.31-55.56 %) and PARB (46.18-64.32 %), aeration endowed differential aerosolization capacity for various ARGs and PARB from wastewater. Airborne antibiotic resistome was mainly determined by bacterial community and indirectly influenced by meteorological conditions (i.e., relative humidity). Higher PM2.5-borne resistome risk was observed in AerT than upwind, and the most serious resistome risk of AerT-PM2.5 was found in winter. This study emphasizes the importance of wastewater aeration processes in emission of airborne antibiotic resistome and offers referenced information for mitigating air pollution in wastewater treatment plants.
Collapse
Affiliation(s)
- Tang Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Xuyi Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, PR China.
| | - Shujuan Huang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Xiang Zheng
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, PR China.
| | - Xiaolin Zhou
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| |
Collapse
|
11
|
Ke Y, Sun W, Xue Y, Yuan Z, Zhu Y, Chen X, Yan S, Li Y, Xie S. Pipe material and natural organic matter impact drinking water biofilm microbial community, pathogen profiles and antibiotic resistome deciphered by metagenomics assembly. ENVIRONMENTAL RESEARCH 2024; 262:119964. [PMID: 39260724 DOI: 10.1016/j.envres.2024.119964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Biofilms in drinking water distribution systems (DWDSs) are a determinant to drinking water biosafety. Yet, how and why pipe material and natural organic matter (NOM) affect biofilm microbial community, pathogen composition and antibiotic resistome remain unclear. We characterized the biofilms' activity, microbial community, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and pathogenic ARG hosts in Centers for Disease Control and Prevention (CDC) reactors with different NOM dosages and pipe materials based on metagenomics assembly. Biofilms in cast iron (CI) pipes exhibited higher activity than those in polyethylene (PE) pipes. NOM addition significantly decreased biofilm activity in CI pipes but increased it in PE pipes. Pipe material exerted more profound effects on microbial community structure than NOM. Azospira was significantly enriched in CI pipes and Sphingopyxis was selected in PE pipes, while pathogen (Ralstonia pickettii) increased considerably in NOM-added reactors. Microbial community network in CI pipes showed more edges (CI 13520, PE 7841) and positive correlation proportions (CI 72.35%, PE 61.69%) than those in PE pipes. Stochastic processes drove assembly of both microbial community and antibiotic resistome in DWDS biofilms based on neutral community model. Bacitracin, fosmidomycin and multidrug ARGs were predominant in both PE and CI pipes. Both pipe materials and NOM regulated the biofilm antibiotic resistome. Plasmid was the major MGE co-existing with ARGs, facilitating ARG horizontal transfer. Pathogens (Achromobacter xylosoxidans and Ralstonia pickettii) carried multiple ARGs (qacEdelta1, OXA-22 and aadA) and MGEs (integrase, plasmid and transposase), which deserved more attention. Microbial community contributed more to ARG change than MGEs. Structure equation model (SEM) demonstrated that turbidity and ammonia affected ARGs by directly mediating Shannon diversity and MGEs. These findings might provide a technical guidance for controlling pathogens and ARGs from the point of pipe material and NOM in drinking water.
Collapse
Affiliation(s)
- Yanchu Ke
- School of Environment, Tsinghua University, Beijing, 100084, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Fujian Provincial Key Laboratory of Soil Environment Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing, 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China.
| | - Yanei Xue
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong, SAR, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yangyang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
12
|
Liu K, Li Y, Ge Z, Huang D, Zhang J. Microbial communities and mobile genetic elements determine the variations of antibiotic resistance genes for a continuous year in the urban river deciphered by metagenome assembly. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125018. [PMID: 39322110 DOI: 10.1016/j.envpol.2024.125018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Antibiotic resistance genes (ARGs) have become emerging environmental contaminants influenced by intricate regulatory factors. However, there is a lack of comprehensive studies on the evolution and distribution of ARGs over a full year in urban rivers, which serve as significant reservoirs of ARGs due to dynamic human activities. In this study, we conducted a 12-month metagenomic assembly to explore the microbial communities, ARGs, mobile genetic elements (MGEs) coexisting with ARGs, ARGs hosts, and the impact of environmental factors. Bacitracin (32%-47%) and multidrug (13%-24%) were detected throughout the year, constituting over 60% of the total abundance, making them the primary ARGs types. The assembly mechanisms of microbial communities and ARGs were primarily driven by stochastic processes. Integrase, IntI1, recombinase, and transposase were identified as the main MGEs coexisting with ARGs. Procrustes analysis revealed a significant structural association, indicating that the composition of host communities likely plays crucial roles in the seasonal composition and distribution of ARGs. Human pathogenic bacteria (HPBs) were identified in the summer, autumn, and winter, with Escherichia coli, Klebsiella pneumoniae, Acinetobacter lwoffii, and Burkholderiales bacterium being the primary HPBs. Mantle tests and PLS-PM equation analysis indicated that microbial communities and MGEs are the most critical factors determining the distribution and composition of ARGs in the river. Environmental factors (including water properties and nutrients) and ARGs hosts influence the evolution and abundance of ARGs by directly regulating microbial communities and MGEs. This study provides critical insights into risk assessment and management of ARGs in urban rivers.
Collapse
Affiliation(s)
- Kexuan Liu
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Yaguang Li
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China; Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai, 200233, PR China
| | - Zuhan Ge
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Deying Huang
- Department of Chemistry, Fudan University, Shanghai, 200433, PR China
| | - Jibiao Zhang
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China; Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai, 200233, PR China.
| |
Collapse
|
13
|
Zhou Q, Jia L, Li Y, Wu W, Wang J. Deciphering stratified structure and microbiota assembly of biofilms from a pyrite-based biofilter driven by mixotrophic denitrification. BIORESOURCE TECHNOLOGY 2024; 414:131568. [PMID: 39366511 DOI: 10.1016/j.biortech.2024.131568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The precise structure and assembly process of pyrite-based biofilms remain poorly understood. The polysaccharides (PN), proteins (PS), and extracellular DNA were enriched in the soluble extracellular polymeric substance (EPS), loosely bound EPS, and tightly bound EPS, respectively, indicating a significant stratified structure of biofilms. The tryptophan facilitated mixotrophic metabolic processes. Both dominant (>1%) and rare species (<0.01 %) harbored core bacteria, including sulfur autotrophic bacteria, sulfate-reducing bacteria, and heterotrophic bacteria. Furthermore, partial least-squares path modeling quantified the contributions of total phosphorus (TP) (λ = 0.32), dissolved organic matter (DOC) (λ = 0.29), and NH4+-N (λ = 0.26) to variations in the microbial community. Nonmetric multidimensional scaling analysis revealed three distinct stages in biofilm development: colonization (0-36 d), succession (36-149 d), and maturation/old (149-215 d). Furthermore, neutral community model indicated that stochastic processes drove the colonization and maturation/old stages, while deterministic processes dominated the succession stage. This study offered valuable insights into the regulation of pyrite-based engineered ecosystems.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China
| | - Lixia Jia
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuanwei Li
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weizhong Wu
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Yang T, Wang X, Ng HY, Huang S, Zheng X, Bi X. Airborne antibiotic resistome from sludge dewatering systems: Mobility, pathogen accessibility, cross-media migration propensity, impacting factors, and risks. WATER RESEARCH 2024; 267:122552. [PMID: 39362131 DOI: 10.1016/j.watres.2024.122552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Bioaerosol contamination was considered as a potential health threat in sludge dewatering systems (SDSs), while emission and risk of airborne antibiotic resistome remain largely unclear. Herein, seasonal investigations of fine particulate matter (PM2.5) were conducted using metagenomics-based methods within and around different SDSs, together with an analysis of sewage sludge. Featured with evident seasonality, antibiotic resistance genes (ARGs) in SDS-PM2.5 also possessed greater accumulation, transfer, and pathogen accessibility than those in ambient air PM2.5. Mobile ARGs in SDS-PM2.5 mainly encoded resistance to tetracycline, and most were flanked by integrase. Some pathogenic antibiotic resistant bacteria (PARB), including Enterobacter asburiae, Escherichia coli, Enterococcus faecium, and Staphylococcus aureus, also carried mobile genetic elements in SDS-PM2.5. Dewatering behavior actuated > 50.56% of ARG subtypes and > 42.86% of PARB in sewage sludge to aerosolize into air. Relative humidity, temperature, and PM2.5 concentration collectively drove the evolution of bacterial community and indirectly promoted the antibiotic resistance of SDS-PM2.5. SDS-PM2.5 posed more serious resistome risks than sewage sludge and ambient air PM2.5, and the highest levels were discovered in winter. These findings underline the role of dewatering behavior in facilitating resistome's aerosolization, and the need to mitigate this potential air pollution.
Collapse
Affiliation(s)
- Tang Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China.
| | - Xuyi Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China.
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, PR China.
| | - Shujuan Huang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China.
| | - Xiang Zheng
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, PR China.
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China.
| |
Collapse
|
15
|
Wang H, Tao X, Yin H, Xing X, Shi B. The perfluorooctanoic acid accumulation and release from pipelines promoted growth of bacterial communities and opportunistic pathogens with different antibiotic resistance genes in drinking water. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135600. [PMID: 39180999 DOI: 10.1016/j.jhazmat.2024.135600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The spread of opportunistic pathogens (OPs) and antibiotic resistance genes (ARGs) through drinking water has already caused serious human health issues. There is also an urgent need to know the effects of perfluorooctanoic acid (PFOA) on OPs with different ARGs in drinking water. Our results suggested that PFOA accumulation and release from the pipelines induced its concentration in pipelines effluents increase from 0.03 ± 0.01 μg/L to 0.70 ± 0.01 μg/L after 6 months accumulation. The PFOA also promoted the growth of Hyphomicrobium, Microbacterium, and Bradyrhizobium. In addition, PFOA accumulation and release from the pipelines enhanced the metabolism and tricarboxylic acid (TCA) cycle processes, resulting in more extracellular polymeric substances (EPS) production. Due to EPS protection, Pseudomonas aeruginosa and Legionella pneumophila increased to (7.20 ± 0.09) × 104 gene copies/mL, and (8.85 ± 0.11) × 102 gene copies/mL, respectively. Moreover, PFOA also enhanced the transfer potential of different ARGs, including emrB, mdtB, mdtC, mexF, and macB. The main bacterial community composition and the main OPs positively correlated with the main ARGs and mobile genetic elements (MGE)-ARGs significantly. Therefore, PFOA promoted the propagation of OPs with different ARGs. These results are meaningful for controlling the microbial risk caused by the OPs with ARGs and MGE-ARGs in drinking water.
Collapse
Affiliation(s)
- Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiangkai Tao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hong Yin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xueci Xing
- Key Laboratory for Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Ge Z, Ai D, Ma Z, Li Y, Zhang J. Evolution and distribution of antibiotic resistance genes in submerged macrophytes and biofilm systems: From seasonal monitoring to mesocosm experiments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121947. [PMID: 39068786 DOI: 10.1016/j.jenvman.2024.121947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
The aquatic ecosystem has been extensively investigated as a hotspot for the spread of antibiotic resistance genes (ARGs); yet, the evolution and distribution of ARGs profiles in submerged macrophytes biofilms and surrounding water remained unclear. In this study, the dynamic distribution and seasonal variations of microbial communities and ARGs profiles were investigated, alongside their assembly processes and mutual interactions. Bacitracin and multidrug resistance genes were predominant, constituting more than 60% of the total ARGs abundance. The deterministic processes (<65%), influenced by the physicochemical properties of the river environment, governed the assembly and composition of ARGs profiles, exhibiting significant seasonal variation. The peak diversity (21 types) and abundance (0.316 copy ratios) of ARGs were detected during the summer. Proteobacteria and Actinobacteria were the dominant bacterial phyla, accounting for 38.41-85.50% and 4.03-27.09% of the microbial community, respectively. Furthermore, Proteobacteria, especially genera such as Acinetobacter, Burkholderia, and Pseudomonas, with various resistance sequences, were the primary carriers of multiple ARGs. Notably, the genetic exchanges between biofilms and surrounding water facilitated the further propagation of high-risk ARGs, posing greater ecological risks. Redundancy analysis indicated that the total nitrogen and temperature in water determined the fate of pathogenic-resistant species. These findings provided theoretical support for the mitigation of ARGs contamination in aquatic environments.
Collapse
Affiliation(s)
- Zuhan Ge
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China; Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai, 200233, PR China
| | - Dan Ai
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Zihang Ma
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Yaguang Li
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China; Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai, 200233, PR China
| | - Jibiao Zhang
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China; Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai, 200233, PR China.
| |
Collapse
|
17
|
Zhang S, Yang G, Zhang Y, Yang C. High-throughput profiling of antibiotic resistance genes in the Yellow River of Henan Province, China. Sci Rep 2024; 14:17490. [PMID: 39080455 PMCID: PMC11289115 DOI: 10.1038/s41598-024-68699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Profiling antibiotic resistance genes (ARGs) in the Yellow River of China's Henan Province is essential for understanding the health risks of antibiotic resistance. The profiling of ARGs was investigated using high-throughput qPCR from water samples in seven representative regions of the Yellow River. The absolute and relative abundances of ARGs and moble genetic elements (MGEs) were higher in summer than in winter (ANOVA, p < 0.001). The diversity and abundance of ARGs were higher in the Yellow River samples from PY and KF than the other sites. Temperature (r = 0.470 ~ 0.805, p < 0.05) and precipitation (r = 0.492 ~ 0.815, p < 0.05) positively influenced the ARGs, while pH had a negative effect (r = - 0.462 ~ - 0.849, p < 0.05). Network analysis indicated that the pathogenic bacteria Rahnella, Bacillus, and Shewanella were the possible hub hosts of ARGs, and tnpA1 was the potential MGE hub. These findings provide insights into the factors influencing ARG dynamics and the complex interaction among the MGEs, pathogenic bacteria and environmental parameters in enriching ARGs in the Yellow River of Henan Province.
Collapse
Affiliation(s)
- Shuhong Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China.
| | - Guangli Yang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Yiyun Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Chao Yang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| |
Collapse
|
18
|
Li C, Liu C, Xu W, Han Y, Gao Z, Bing Y, Li Q, Yu J. Control approach and evaluation framework of scaling in drinking water distribution systems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174836. [PMID: 39029761 DOI: 10.1016/j.scitotenv.2024.174836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/25/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
The United Nations Sustainable Development Goals call for innovative proposals to ensure access to clean water and sanitation. While significant strides have been made in enhancing drinking water purification technologies, the role of drinking water distribution systems (DWDS) in maintaining water quality safety has increasingly become a focal point of concern. The presence of scale within DWDS can impede the secure and efficient functioning of the drinking water supply system, posing risks to the safety of drinking water quality. Previous research has identified that the primary constituents of scale in DWDS are insoluble minerals, such as calcium and magnesium carbonate. Elevated levels of hardness and alkalinity in the water can exacerbate scale formation. To address the scaling issue, softening technologies like induced crystallization, nanofiltration/reverse osmosis, and ion exchange are currently in widespread use. These methods effectively mitigate the scaling in DWDS by reducing the water's hardness and alkalinity. However, the application of softening technologies not only alters the hardness and alkalinity but also induces changes in the fundamental characteristics of water quality, leading to transition effects within the DWDS. This article reviews the impact of various softening technologies on the intrinsic properties of water quality and highlights the merits of electrochemical characteristic indicators in the assessment of water quality stability. Additionally, the paper delves into the factors that influence the transition effects in DWDS. It concludes with a forward-looking proposal to leverage artificial intelligence, specifically machine learning and neural networks, to develop an evaluation and predictive framework for the stability of drinking water quality and the transition effects observed in DWDS. This approach aims to provide a more accurate and proactive method for managing and predicting the impacts of water treatment processes on distribution system integrity and water quality over time.
Collapse
Affiliation(s)
- Changgeng Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210024, China; College of Environment, Hohai University, Nanjing 210024, China; School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Cheng Liu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210024, China; College of Environment, Hohai University, Nanjing 210024, China.
| | - Weibin Xu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210024, China; College of Environment, Hohai University, Nanjing 210024, China
| | - Yun Han
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia; Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| | - Zhipeng Gao
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210024, China; College of Environment, Hohai University, Nanjing 210024, China
| | - Yan Bing
- Jiangsu Heqinghaiyan Environment Co., LTD., Suqian 223815, China
| | - Qin Li
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia; Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| | - Jimmy Yu
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
19
|
Li WJ, Li HZ, Xu J, Gillings MR, Zhu YG. Sewage Sludge Promotes the Accumulation of Antibiotic Resistance Genes in Tomato Xylem. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10796-10805. [PMID: 38853591 DOI: 10.1021/acs.est.4c02497] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Xylem serves as a conduit linking soil to the aboveground plant parts and facilitating the upward movement of microbes into leaves and fruits. Despite this potential, the composition of the xylem microbiome and its associated risks, including antibiotic resistance, are understudied. Here, we cultivated tomatoes and analyzed their xylem sap to assess the microbiome and antibiotic resistance profiles following treatment with sewage sludge. Our findings show that xylem microbes primarily originate from soil, albeit with reduced diversity in comparison to those of their soil microbiomes. Using single-cell Raman spectroscopy coupled with D2O labeling, we detected significantly higher metabolic activity in xylem microbes than in rhizosphere soil, with 87% of xylem microbes active compared to just 36% in the soil. Additionally, xylem was pinpointed as a reservoir for antibiotic resistance genes (ARGs), with their abundance being 2.4-6.9 times higher than in rhizosphere soil. Sludge addition dramatically increased the abundance of ARGs in xylem and also increased their mobility and host pathogenicity. Xylem represents a distinct ecological niche for microbes and is a significant reservoir for ARGs. These results could be used to manage the resistome in crops and improve food safety.
Collapse
Affiliation(s)
- Wen-Jing Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Zhe Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jiayang Xu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Michael R Gillings
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
20
|
Zhang J, Ma W, Li Y, Zhong D, Zhou Z, Ma J. The resistance change and stress response mechanisms of chlorine-resistant bacteria under microplastic stress in drinking water distribution system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124331. [PMID: 38848962 DOI: 10.1016/j.envpol.2024.124331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The presence of both chlorine-resistant bacteria (CRB) and microplastics (MPs) in drinking water distribution systems (DWDS) poses a threat to water quality and human health. However, the risk of CRB bio evolution under the stress of MPs remains unclear. In this study, polypropylene (PP) and polyethylene (PE) were selected to study the adsorption and desorption behavior of sulfamethoxazole (SMX), and it was clear that MPs had the risk of carrying pollutants into DWDS and releasing them. The results of the antibiotic susceptibility test and disinfection experiment confirmed that MPs could enhance the resistance of CRB to antibiotics and disinfectants. Bacteria epigenetic resistance mechanisms were approached from multiple perspectives, including physiological and biochemical characteristics, as well as molecular regulatory networks. When MPs enter DWDS, CRB could attach to the surface of MPs and directly interact with both MPs and the antibiotics they release. This attachment process promoted changes in the composition and content of extracellular polymers (EPS) within cells, enhanced surface hydrophobicity, stimulated oxidative stress function, and notably elevated the relative abundance of certain antibiotic resistance genes (ARGs). This study elucidates the mechanism by which MPs alter the intrinsic properties of CRB, providing valuable insights into the effective avoidance of biological risks to water quality during CRB evolution.
Collapse
Affiliation(s)
- Jingna Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wencheng Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Chongqing Research Institute of HIT, Chongqing, 401151, China
| | - Yibing Li
- Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd, Wuhan, 430014, China
| | - Dan Zhong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Chongqing Research Institute of HIT, Chongqing, 401151, China.
| | - Ziyi Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
21
|
Ke Y, Sun W, Chen Z, Zhu Y, Chen X, Yan S, Li Y, Xie S. Effects of disinfectant type and dosage on biofilm's activity, viability, microbiome and antibiotic resistome in bench-scale drinking water distribution systems. WATER RESEARCH 2024; 249:120958. [PMID: 38064782 DOI: 10.1016/j.watres.2023.120958] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Drinking water distribution systems (DWDSs) are important for supplying high-quality water to consumers and disinfectant is widely used to control microbial regrowth in DWDSs. However, the disinfectant's influences on microbial community and antibiotic resistome in DWDS biofilms and the underlying mechanisms driving their dynamics remain elusive. The study investigated the effects of chlorine and chloramine disinfection on the microbiome and antibiotic resistome of biofilms in bench-scale DWDSs using metagenomics assembly. Additionally, the biofilm activity and viability were monitored based on adenosine triphosphate (ATP) and flow cytometer (FCM) staining. The results showed that both chlorine and chloramine disinfectants decreased biofilm ATP, although chloramine at a lower dosage (1 mg/L) could increase it. Chloramine caused a greater decrease in living cells than chlorine. Furthermore, the disinfectants significantly lowered the microbial community diversity and altered microbial community structure. Certain bacterial taxa were enriched, such as Mycobacterium, Sphingomonas, Sphingopyxis, Azospira, and Dechloromonas. Pseudomonas aeruginosa exhibited high resistance towards disinfectants. The disinfectants also decreased the complexity of microbial community networks. Some functional taxa (e.g., Nitrospira, Nitrobacter, Nitrosomonas) were identified as keystones in chloramine-treated DWDS microbial ecological networks. Stochasticity drove biofilm microbial community assembly, and disinfectants increased the contributions of stochastic processes. Chlorine had greater promotion effects on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and ARG hosts than chloramine. The disinfectants also selected pathogens, such as Acinetobacter baumannii and Klebsiella pneumonia, and these pathogens also harbored ARGs and MGEs. Overall, this study provides new insights into the effects of disinfectants on biofilm microbiome and antibiotic resistome, highlighting the importance of monitoring and managing disinfection practices in DWDSs.
Collapse
Affiliation(s)
- Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| | - Zhongyun Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yangyang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
22
|
Ke Y, Sun W, Xue Y, Zhu Y, Yan S, Xie S. Effects of treatments and distribution on microbiome and antibiotic resistome from source to tap water in three Chinese geographical regions based on metagenome assembly. WATER RESEARCH 2024; 249:120894. [PMID: 38016224 DOI: 10.1016/j.watres.2023.120894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/23/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
Antibiotic resistance genes (ARGs) represent emerging environmental pollutants that present health risks. Drinking water supply systems (DWSSs), including sources to tap water, play crucial roles in the dissemination and propagation of ARGs. However, there was a paucity of knowledge on the relative abundance, diversity, mobility, and pathogenic hosts of ARGs in DWSSs from source to tap. Therefore, the effects of treatments and distributions on the microbial community and ARGs from three geographical regions (downstream areas of the Yellow, Yangtze, and Pearl Rivers) were elucidated in the present study. Treatment processes lowered the complexity of the microbial community network, whereas transportation increased it. The assembly mechanisms of the microbial community and antibiotic resistome were primarily driven by stochastic processes. Distribution greatly increased the contribution of stochastic processes. Multidrug ARGs (for example, multidrug transporter and adeJ) and bacitracin ARG (bacA) were the primary mobile ARGs in drinking water, as identified by the metagenomic assembly. Achromobacter xylosoxidans, Acinetobacter calcoaceticus, and Acinetobacter junii harbored diverse multidrug ARGs and mobile genetic elements (MGEs) (recombinases, integrases, and transposases) as potential pathogens and were abundant in the disinfected water. Environmental factors, including pH, chlorine, latitude, longitude, and temperature, influenced the ARG abundance by directly regulating the MGEs and microbial community diversity. This study provides critical information on the fate, mobility, host pathogenicity, and driving factors of ARGs in drinking water, which is conducive to ARG risk assessment and management to provide high-quality drinking water to consumers.
Collapse
Affiliation(s)
- Yanchu Ke
- School of Environment, Tsinghua University, Beijing 100084, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| | - Yanei Xue
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
23
|
Ke Y, Sun W, Liu S, Zhu Y, Yan S, Chen X, Xie S. Seasonal variations of biofilm C, N and S cycling genes in a pilot-scale chlorinated drinking water distribution system. WATER RESEARCH 2023; 247:120759. [PMID: 37897999 DOI: 10.1016/j.watres.2023.120759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Biofilms in drinking water distribution systems (DWDS) host diverse microorganisms. However, the functional attributes of DWDS biofilms and their associations with seasonality remain unclear. This study aims to characterize variations in the microbial metabolic traits of DWDS biofilms collected during different seasons, using a pilot-scale DWDS in dark under plug-flow conditions during one-year operation period. Network analysis was used to predict the functional gene hosts. The overall functional attributes determined by shotgun metagenomics exhibited significant differences among seasons. Genes associated with aromatic metabolism, fatty acid biosynthesis and degradation, and capsular extracellular polymeric substance (EPS) were significantly upregulated in summer owing to the higher temperatures and chlorine in the influent of the DWDS. Moreover, the pathways associated with nitrogen, sulfur, glycolysis, and tricarboxylic acid (TCA) cycling, as well as carbon fixation were reconstructed and displayed according to the sampling season. Nitrogen reduction pathways [dissimilatory nitrate reduction to ammonium (DNRA) 73 %, assimilatory nitrate reduction to ammonium (ANRA) 21 %] were identified in DWDS biofilms, but nitrogen oxidation pathways were not. Sulfur cycling were involved in diverse pathways and genes. Glycolysis and TCA cycling offered electron donors and energy sources for nitrogen and sulfur reduction in biofilms. Carbon fixation was observed in DWDS biofilms, with the predominant pathway for fixing carbon dioxide being the reductive citrate cycle (38 %). Constructed functional gene networks composed of carbon, nitrogen, and sulfur cycling-related genes demonstrated synergistic effects (Positive proportion: 63.52-71.09 %). In addition, from spring to autumn, the network complexity decreased and network modularity increased. The assembly mechanism of carbon, nitrogen and sulfur cycling-related genes was driven by stochastic processes for all samples. These results highlight the diverse functional genes in DWDS biofilms, their synergetic interrelationships, and the seasonality effect on functional attributes.
Collapse
Affiliation(s)
- Yanchu Ke
- School of Environment, Tsinghua University, Beijing 100084, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| | - Shuming Liu
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|