1
|
Pati SG, Brunner LM, Ley M, Hofstetter TB. Oxygen Isotope Fractionation of O 2 Consumption through Abiotic Photochemical Singlet Oxygen Formation Pathways. ACS ENVIRONMENTAL AU 2025; 5:220-229. [PMID: 40125286 PMCID: PMC11926750 DOI: 10.1021/acsenvironau.4c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 03/25/2025]
Abstract
Oxygen isotope ratios of O2 are important tracers for assessing biological activity in biogeochemical processes in aquatic environments. In fact, changes in the 18O/16O and 17O/16O ratios of O2 have been successfully implemented as measures for quantifying photosynthetic O2 production and biological O2 respiration. Despite evidence for light-dependent O2 consumption in sunlit surface waters, however, photochemical O2 loss processes have so far been neglected in the stable isotope-based evaluation of oxygen cycling. Here, we established the magnitude of the O isotope fractionation for abiotic photochemical O2 elimination through formation of singlet O2, 1O2, and the ensuing oxygenation and oxidation reactions with organic compounds through experiments with rose bengal as the 1O2 sensitizer and three different amino acids and furfuryl alcohol as chemical quenchers. Based on the kinetic analysis of light-dependent O2 removal in the presence of different quenchers, we rationalize the observable O isotope fractionation of O2 and the corresponding, apparent 18O kinetic isotope effects (18O-AKIE) with a pre-equilibrium model for the reversible formation of 1O2 and its irreversible oxygenation reactions with organic compounds. While 18O-AKIEs of oxygenation reactions amount to 1.03, the O isotope fractionation of O2 decreased to unity with increasing ratio of the rates of oxygenation reaction of 1O2 vs 1O2 decay to ground state oxygen, 3O2. Our findings imply that O isotope fractionation through photochemical O2 consumption with isotope enrichment factors, 18O-ϵ, of up to -30‰ can match contributions from biological respiration at typical dissolved organic matter concentrations of lakes, rivers, and oceans and should, therefore, be included in future evaluations of biogeochemical O2 cycling.
Collapse
Affiliation(s)
- Sarah G. Pati
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Vienna 1090, Austria
- Department
of Environmental Sciences, University of
Basel, Basel 4056, Switzerland
| | - Lara M. Brunner
- Department
of Environmental Sciences, University of
Basel, Basel 4056, Switzerland
| | - Martin Ley
- Department
of Environmental Sciences, University of
Basel, Basel 4056, Switzerland
| | - Thomas B. Hofstetter
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, Zürich 8092, Switzerland
| |
Collapse
|
2
|
Le Liu, Zhang S, Li C, Ma S, Liang J, Xu Z. Photo-assisted conversion of tetracycline in regulated persulfate system: Multiple roles of natural dissolved organic matter. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135850. [PMID: 39298945 DOI: 10.1016/j.jhazmat.2024.135850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Advanced oxidation processes (AOPs) using persulfate system can effectively remove organic pollutants. However, dissolved organic matter (DOM) has multiple effects on AOPs efficiency, and the influence of DOMs from natural sources on AOPs is still unclear. In this study, we explored the effects of soil DOM (SDOM) and fertilizer DOM (FDOM) on tetracycline (TC) removal by persulfate systems. DOMs introduction decreased light transmittance, slightly increased the pH of the systems, and destroyed original adsorption-desorption equilibrium. SDOM promoted most reactive species generation in the initial stage, thus improving the initial TC degradation rate. However, introduction of SDOM and FDOM increased the final TC residual rate. FDOM produced more obvious inhibitory effects on TC degradation. The final TC residual rates in systems containing 7.5 and 15 mg L-1 FDOM (F7.5-TC-PS and F15-TC-PS, respectively) were 25.85 % and 25.52 %, respectively. The inhibitory effects of FDOM on TC degradation were related to the combination between TC and FDOM, with humic acid-like component in FDOM being the main contributor. Besides, the main components in DOMs underwent transformation in the persulfate systems. This study sought to provide insights into the regulatory effects of DOM on TC photo-assisted conversion by AOPs.
Collapse
Affiliation(s)
- Le Liu
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Shihan Zhang
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Cheng Li
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Songyao Ma
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiayi Liang
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zihan Xu
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Xu Y, Zhang Y, Qiu L, Zhang M, Yang J, Ji R, Vione D, Chen Z, Gu C. Photochemical behavior of dissolved organic matter in environmental surface waters: A review. ECO-ENVIRONMENT & HEALTH 2024; 3:529-542. [PMID: 39605966 PMCID: PMC11599994 DOI: 10.1016/j.eehl.2024.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 11/29/2024]
Abstract
As an important group of widespread organic substances in aquatic ecosystems, dissolved organic matter (DOM) plays an essential role in carbon recycling and transformation processes. The photochemical behavior of DOM is one of the main ways it participates in these processes, and it attracts extensive attention. However, due to a variety of sources and water conditions, including both freshwater and seawater environments, the photochemical properties of DOM exhibit great differences. Nowadays, a large number of studies have focused on the generation process of reactive species (RS) from sunlit DOM, while little effort has been made so far to provide a comprehensive summary of the photochemical behavior of DOM, especially in fresh and saline aquatic ecosystems. In this review, we analyzed the research hotspot on DOM photochemistry over the last 30 years, summarizing the generation of photoreactive species in natural water environments containing DOM (both freshwater and seawater) and listing the main factors affecting the rate, yield, and species of RS photoproduction. Compared with freshwater, seawater has unique characteristics such as high pH value, high ionic strength, and halide ions, which affect the photogeneration of RS, the photoconversion process, as well as the reaction pathways of various environmental substances. In general, DOM-induced surface water photochemistry has important impacts on the environmental transformation and toxic effects of aquatic pollutants and can even contribute significantly to the Earth's carbon cycle, which would have potential implications for both human and ecological health.
Collapse
Affiliation(s)
- Yichen Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yutong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Longlong Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Ming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jiaojiao Yang
- Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou 362000, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou 362000, China
| | - Davide Vione
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou 362000, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou 362000, China
| |
Collapse
|
4
|
Li X, Tan M, Wu B, Wang J, Ma J, Chen B, Chu C. Redox Oscillation-Driven Production of Reactive Oxygen Species from Black Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39569997 DOI: 10.1021/acs.est.4c09102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Wildfire and stubble burning release substantial amounts of black carbon (BC) into natural environments that experience frequent redox oscillations, such as wetlands and farmlands. Here, we report that redox oscillations can effectively drive ROS production from BC. Following sequential microbial reduction and air exposure, 6.5 ± 0.2 μM/gC hydrogen peroxide (H2O2) and 285.3 ± 9.5 nM/gC hydroxyl radical (•OH) were produced from BC. Moreover, BC derived from various biomass sources, temperatures, and particle sizes exhibits 111.5-fold variations in ROS production. Electrochemical analyses revealed that both the electron transfer capacity and the ROS production selectivity are critical determinants of ROS generation under redox oscillations. The variation in electron transfer capacity (0.3-5.7 mmol e-/gC) is primarily governed by the abundance of electron-storing moieties such as quinones, while the ROS generation selectivity (26.2-72.0%) is influenced by the presence of competitive sites for oxygen reduction reactions, such as carbon defects. These findings provide insights into ROS production from BC under fluctuating redox conditions, with potential implications for elemental cycles and pollutant dynamics in regions prone to wildfire and stubble burning events and substantial BC deposition (e.g., wetlands and rice paddies).
Collapse
Affiliation(s)
- Xuan Li
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Mengxi Tan
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Binbin Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jingyi Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Junye Ma
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Zeng Y, Zhang M, Fu Q, Chen N, Wang Y, Zhou D, Fang G. Formation of reactive intermediates in paddy water from different temperature zones for the promotion of abiotic ammonification. WATER RESEARCH 2024; 255:121523. [PMID: 38554632 DOI: 10.1016/j.watres.2024.121523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
The paddy field is a hot area of biogeochemical process. The paddy water has a large capacity in photo-generation of reactive intermediates (RIs) due to abundant photosensitive dissolved organic matter (DOM), which is influenced by the spatial heterogeneity of paddy soils but rarely been explored. Our work presents the first investigation of the role of soil properties on photochemistry in paddy water. Soil organic matter (SOM), determined by the temperature, was the dominant factor for the photo-generation of RIs in paddy water of main rice producing areas. The RI concentrations generated with abundant SOM from cool regions are 0.05-8.71 times higher than those for the warm regions in China. The humic-like substance and aromatic-like compounds of DOM plays an essential role in RIs generation, which is abundant in paddy soils rich in SOM from Chinese cool regions. In addition, RIs can efficiently accelerate the photo-ammonification of urea and free amino acids by 15.2 %-164 %, leading to 0.13-0.17 mmol/L/d photo-produced ammonium after fertilization, which is preferentially absorbed by rice. The findings of this study will extend our knowledge of the geochemistry of global paddy field ecosystem. The potential role of RIs in nitrogen cycle should be highlighted in the agroecosystem.
Collapse
Affiliation(s)
- Yu Zeng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Mingyang Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qinglong Fu
- School of Environmental Studies, China University of Geoscience, Wuhan 430074, PR China
| | - Ning Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yujun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Guodong Fang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
6
|
Li M, Zhang X, Zhang Y, Xu X, Liu Y, Zhang Y, He Z, Wang J, Liang Y. Effect of interaction between dissolved organic matter and iron/manganese (hydrogen) oxides on the degradation of organic pollutants by in-situ advanced oxidation techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170351. [PMID: 38307288 DOI: 10.1016/j.scitotenv.2024.170351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/26/2023] [Accepted: 01/19/2024] [Indexed: 02/04/2024]
Abstract
Iron and manganese (hydrogen) oxides (IMHOs) exhibit excellent redox capabilities for environmental pollutants and are commonly used in situ chemical oxidation (ISCO) technologies for the degradation of organic pollutants. However, the coexisting dissolved organic matter (DOMs) in surface environments would influence the degradation behavior and fate of organic pollutants in IMHOs-based ISCO. This review has summarized the interactions and mechanisms between DOMs and IMHOs, as well as the properties of DOM-IMHOs complexes. Importantly, the promotion or inhibition impact of DOM was discussed from three perspectives. First, the presence of DOMs may hinder the accessibility of active sites on IMHOs, thus reducing their efficiency in degrading organic pollutants. The formation of compounds between DOMs and IMHOs alters their stability and activity in the degradation process. Second, the presence of DOMs may also affect the generation and transport of active species, thereby influencing the oxidative degradation process of organic pollutants. Third, specific components within DOMs also participate and affect the degradation pathways and rates. A comprehensive understanding of the interaction between DOMs and IMHOs helps to better understand and predict the degradation process of organic pollutants mediated by IMHOs in real environmental conditions and contributes to the further development and application of IMHO-mediated ISCO technology.
Collapse
Affiliation(s)
- Mengke Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Xin Zhang
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yan Zhang
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Xin Xu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yun Liu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Yaoyao Zhang
- Chinese Academy of Geological Sciences, Beijing 100037, China.
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Jieyi Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yuting Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
7
|
Zhou C, Wu B, Zheng X, Chen B, Chu C. Wavelength-dependent direct and indirect photochemical transformations of organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170414. [PMID: 38272084 DOI: 10.1016/j.scitotenv.2024.170414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Sunlight-induced photochemical transformations greatly affect the persistence of organic pollutants in natural environment. Whereas sunlight intensity is well-known to affect pollutant phototransformation rates, the reliance of pollutant phototransformation kinetics on sunlight spectrum remains poorly understood, which may greatly vary under different spatial-temporal, water matrix, and climatic conditions. Here, we systematically assessed the wavelength-dependent direct and indirect phototransformations of 12 organic pollutants. Their phototransformation rates dramatically decreased with light wavelength increasing from 375 to 632 nm, with direct photolysis displaying higher wavelength-dependence than indirect photolysis. Remarkably, UV light dominated both direct (90.4-99.5 %) and indirect (64.6-98.7 %) photochemical transformations of all investigated organic pollutants, despite its minor portion in sunlight spectrum (e.g., 6.5 % on March 20 at the equator). Based on wavelength-dependent rate constant spectrum, the predicted phototransformation rate of chloramphenicol (4.5 ± 0.7 × 10-4 s-1) agreed well with the observed rate under outdoor sunlight irradiation (4.3 ± 0.0 × 10-4 s-1), and there is no significant difference between the predicted rate and the observed rate (p-value = 0.132). Moreover, rate constant and quantum yield coefficient (QYC) spectrum could be applied for facilely investigate the influence of spectral changes on the phototransformation of pollutants under varying spatial-temporal (e.g., season, latitude) and climatic conditions (e.g., cloud cover). Our study highlights the wavelength-dependence of both direct and indirect phototransformation of pollutants, and the UV part of natural sunlight plays a decisive role in the phototransformation of pollutants.
Collapse
Affiliation(s)
- Chong Zhou
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Binbin Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoshan Zheng
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
8
|
Liu S, Edara PC, Schäfer AI. Influence of organic matter on the photocatalytic degradation of steroid hormones by TiO 2-coated polyethersulfone microfiltration membrane. WATER RESEARCH 2023; 245:120438. [PMID: 37716301 DOI: 10.1016/j.watres.2023.120438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 09/18/2023]
Abstract
Water treatment in photocatalytic membrane reactors (PMR) holds great promise for removing micropollutants from aquatic environments. Organic matter (OM) that is present in any water matrix may significantly interfere with the degradation of steroid hormone (SH) micropollutants in PMRs. In this study, the interference of various OM types, humic acid (HA), Australian natural organic matter (AUS), worm farm extract (WF), tannic acid (TA), and gallic acid (GA) with the SH degradation at its environmentally relevant concentration (100 ng/L) in a flow-through PMR equipped with a polyethersulphone-titanium dioxide (PES-TiO2) membrane operated under UV light (365 nm) was investigated. Results of this study showed that OM effects are complex and depend on OM type and concentration. The removal of β-estradiol (E2) was enhanced by HA at its levels below 5 mgC/L while the enhancement was abated at higher HA concentrations. The E2 removal was inhibited by TA, and GA, while no significant interference observed for AUS, and WF. The data demonstrated diverse roles of OM that acts in PMRs as a light screening agent, a photoreactive species scavenger, an adsorption alteration trigger, and a photosensitizer. The time-resolved fluorescence measurement showed that HA, acting as a photosensitizer, promoted the sensitization of TiO2 by absorbing light energy and transferring energy/electron to the TiO2 substrate. This pathway dominated the mechanism of the enhanced E2 degradation by HA. The favorable effect of HA was augmented as increasing the light intensity from 0.5 to 10 mW/cm2 and was weakened at higher light intensities due to the increased scavenging reactions and the limited amount of HA. This work clarifies the underlying mechanism of the OM interference on photocatalytic degradation of E2 by the PES-TiO2 PMR.
Collapse
Affiliation(s)
- Siqi Liu
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Pattabhiramayya C Edara
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
9
|
Mohrhardt B, Barrios B, Kibler R, King W, Doskey PV, Minakata D. Elucidation of the Photochemical Fate of Methionine in the Presence of Surrogate and Standard Dissolved Organic Matter under Sunlight Irradiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14363-14372. [PMID: 37715305 DOI: 10.1021/acs.est.3c04176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
The abiotic fate of dissolved free amino acids considerably contributes to the cycling of dissolved sulfur and nitrogen in natural aquatic environments. However, the roles of the functional groups of chromophoric dissolved organic matter (CDOM) and the fate of free amino acids under sunlight irradiation in fresh waters are not fully understood. This study aims to elucidate the fate of photolabile methionine in the presence of three CDOM surrogate compounds, i.e., 1,4-naphthoquinone, 2-naphthaldehyde, and umbelliferone, and two standard CDOM by coupling experimental measurement, quantum chemical computations, and kinetic modeling. Results indicate that excited triplet-state CDOM and hydroxyl radicals are able to cleave the C-S bond in methionine, resulting in the formation of smaller amino acids and volatile sulfur-containing compounds. Singlet oxygen forms methionine sulfoxide and methionine sulfone. The distribution of phototransformation products offers an improved understanding of the fate of nitrogen- and sulfur-containing compounds and their uptake by microorganisms in natural aquatic environments.
Collapse
Affiliation(s)
- Benjamin Mohrhardt
- Department of Civil, Environmental and Geospatial Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Benjamin Barrios
- Department of Civil, Environmental and Geospatial Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Ryan Kibler
- Department of Civil, Environmental and Geospatial Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Wynter King
- Department of Civil, Environmental and Geospatial Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Paul V Doskey
- College of Forest Resources and Environmental Science, Michigan Technological, 1400 Townsend Drive, Houghton, Michigan 49931, United States University
| | - Daisuke Minakata
- Department of Civil, Environmental and Geospatial Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| |
Collapse
|
10
|
Cheng K, Zhang L, McKay G. Evaluating the Microheterogeneous Distribution of Photochemically Generated Singlet Oxygen Using Furfuryl Amine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7568-7577. [PMID: 37130219 PMCID: PMC10853930 DOI: 10.1021/acs.est.3c01726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023]
Abstract
Singlet oxygen (1O2) is an important reactive species in natural waters produced during photolysis of dissolved organic matter (DOM). Prior studies have demonstrated that 1O2 exhibits a microheterogeneous distribution, with [1O2] in the interior of DOM macromolecules ∼30 to 1000-fold greater than in bulk solution. The [1O2] profile for DOM-containing solutions has been determined mainly by the use of hydrophobic probes, which are not commercially available. In this study, we employed a dual-probe method combining the widely used hydrophilic 1O2 probe furfuryl alcohol (FFA) and its structural analogue furfuryl amine (FFAm). FFAm exists mainly as a cation at pH <9 and was therefore hypothesized to have an enhanced local concentration in the near-DOM phase, whereas FFA will be distributed homogeneously. The probe pair was used to quantify apparent [1O2] in DOM samples from different isolation procedures (humic acid, fulvic acid, reverse osmosis) and diverse origins (aquatic and terrestrial) as a function of pH and ionic strength, and all samples studied exhibited enhanced reactivity of FFAm relative to FFA, especially at pH 7 and 8. To quantify the spatial distribution of [1O2], we combined electrostatic models with Latch and McNeill's three-phase distribution model. Modeling results for Suwannee River humic acid (SRHA) yield a surface [1O2] of ∼60 pM, which is ∼96-fold higher than the aqueous-phase [1O2] measured with FFA. This value is in agreement with prior reports that determined 1-3 orders of magnitude higher [1O2] in the DOM phase compared to bulk solution. Overall, this work expands the knowledge base of DOM microheterogeneous photochemistry by showing that diverse DOM isolates exhibit this phenomenon. In addition, the dual-probe approach and electrostatic modeling offer a new way to gain mechanistic insight into the spatial distribution of 1O2 and potentially other photochemically produced reactive intermediates.
Collapse
Affiliation(s)
- Kai Cheng
- Zachry
Department of Civil & Environmental Engineering, Texas A&M University, 3131 TAMU, College Station, Texas 77845, United States
| | - Lizhong Zhang
- Department
of Physics, University of California, Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Garrett McKay
- Zachry
Department of Civil & Environmental Engineering, Texas A&M University, 3131 TAMU, College Station, Texas 77845, United States
| |
Collapse
|
11
|
Chen X, Wang J, Wu H, Zhu Z, Zhou J, Guo H. Trade-off effect of dissolved organic matter on degradation and transformation of micropollutants: A review in water decontamination. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:130996. [PMID: 36867904 DOI: 10.1016/j.jhazmat.2023.130996] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/24/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The degradation of micropollutants by various treatments is commonly affected by the ubiquitous dissolved organic matter (DOM) in the water environment. To optimize the operating conditions and decomposition efficiency, it is necessary to consider the impacts of DOM. DOM exhibits varied behaviors in diverse treatments, including permanganate oxidation, solar/ultraviolet photolysis, advanced oxidation processes, advanced reduction process, and enzyme biological treatments. Besides, the different sources (i.e., terrestrial and aquatic, etc) of DOM, and operational circumstances (i.e., concentration and pH) fluctuate different transformation efficiency of micropollutants in water. However, so far, systematic explanations and summaries of relevant research and mechanism are rare. This paper reviewed the "trade-off" performances and the corresponding mechanisms of DOM in the elimination of micropollutants, and summarized the similarities and differences for the dual roles of DOM in each of the aforementioned treatments. Inhibition mechanisms typically include radical scavenging, UV attenuation, competition effect, enzyme inactivation, reaction between DOM and micropollutants, and intermediates reduction. Facilitation mechanisms include the generation of reactive species, complexation/stabilization, cross-coupling with pollutants, and electron shuttle. Moreover, electron-drawing groups (i.e., quinones, ketones functional groups) and electron-supplying groups (i.e., phenols) in the DOM are the main contributors to its trade-off effect.
Collapse
Affiliation(s)
- Xingyu Chen
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Han Wu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhuoyu Zhu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jianfei Zhou
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China.
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China.
| |
Collapse
|
12
|
Schroer HW, Londono E, Li X, Lehmler HJ, Arnold W, Just CL. Photolysis of 3-Nitro-1,2,4-triazol-5-one: Mechanisms and Products. ACS ES&T WATER 2023; 3:783-792. [PMID: 36936519 PMCID: PMC10012174 DOI: 10.1021/acsestwater.2c00567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Insensitive munitions formulations that include 3-nitro-1,2,4-triazol-5-one (NTO) are replacing traditional explosive compounds. While these new formulations have superior safety characteristics, the compounds have greater environmental mobility, raising concern over potential contamination and cleanup of training and manufacturing facilities. Here, we examine the mechanisms and products of NTO photolysis in simulated sunlight to further inform NTO degradation in sunlit surface waters. We demonstrate that NTO produces singlet oxygen and that dissolved oxygen increases the NTO photolysis rate in deionized water. The rate of NTO photolysis is independent of concentration and decreases slightly in the presence of Suwannee River Natural Organic Matter. The apparent quantum yield of NTO generally decreases as pH increases, ranging from 2.0 × 10-5 at pH 12 to 1.3 × 10-3 at pH 2. Bimolecular reaction rate constants for NTO with singlet oxygen and hydroxyl radical were measured to be (1.95 ± 0.15) × 106 and (3.28 ± 0.23) × 1010 M-1 s-1, respectively. Major photolysis reaction products were ammonium, nitrite, and nitrate, with nitrite produced in nearly stoichiometric yield upon the reaction of NTO with singlet oxygen. Environmental half-lives are predicted to span from 1.1 to 5.7 days. Taken together, these data enhance our understanding of NTO photolysis under environmentally relevant conditions.
Collapse
Affiliation(s)
- Hunter W. Schroer
- Civil
& Environmental Engineering, The University
of Iowa, Iowa City, Iowa52242, United States
| | - Esteban Londono
- Civil
& Environmental Engineering, The University
of Iowa, Iowa City, Iowa52242, United States
| | - Xueshu Li
- Occupational
& Environmental Health, The University
of Iowa, Iowa City, Iowa52246, United States
| | - Hans-Joachim Lehmler
- Occupational
& Environmental Health, The University
of Iowa, Iowa City, Iowa52246, United States
| | - William Arnold
- Department
of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, Minnesota55455, United States
| | - Craig L. Just
- Civil
& Environmental Engineering, The University
of Iowa, Iowa City, Iowa52242, United States
| |
Collapse
|
13
|
Wang Y, Wu B, Zheng X, Chen B, Chu C. Assessing the quantum yield spectrum of photochemically produced reactive intermediates from black carbon of various sources and properties. WATER RESEARCH 2023; 229:119450. [PMID: 36495853 DOI: 10.1016/j.watres.2022.119450] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Black carbon (BC) is ubiquitous in sunlit waters and atomosphere. Recent studies revealed that under sunlight irradiation BC is photoactive on producing photochemically produced reactive intermediates (PPRIs), a group of key species in accelerating earth's surface biogeochemical processes and pollutant dynamics. Nevertheless, reported PPRIs productions from BC exhibit large inconsistency and the intrinsic capacities of BC in producing PPRIs remain poorly characterized. This work provided a wavelength-dependent quantum yields (QYs) assessment of four environmentally-relevant PPRIs (excited triplet state BC (3BC*), singlet oxygen (1O2), hydrogen peroxide (H2O2), and hydroxyl radical (·OH)) from various BC. The QYs of all investigated PPRIs exhibit high dependence on incident light wavelength. For instance, the QYs of 1O2 dramatically decreased from 4.4% to 0.4% with light wavelength increasing from 375 to 490 nm and decreased to 0 above 490 nm. Suprisingly, PPRIs QYs only varied by 2.0-2.5-fold among BC prepared from different biomasses (i.e., pine needle, shell, straw, and wood), while the pyrolysis temperature and size of BC demonstrate higher impacts on the PPRIs QYs by up to 30.3- and 7.1-fold variations, respectively. Analyses on the physicochemical properties of BC demonstrate that QYs of 3BC* and 1O2 were linked to the optical properties of BC, while the QYs of H2O2 and ·OH were determined by multiple factors including the surface redox characteristics. Further, PPRIs productions from BC follow similar paths and efficiencies compared to those from natural organic matter. The revealed QYs of BC-derived PPRIs establish a key basis for evaluating PPRIs-mediated element cycles and pollutant transformation in natural waters, which are becoming increasingly important in the context of higher BC input from more frequent wildfires and artificial sources.
Collapse
Affiliation(s)
- Yanling Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Binbin Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoshan Zheng
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Wang Y, Gong X, Huang D, Yan S, Zhang J. The binding effect and photooxidation on oxytetracycline with algal extracellular polymeric substances and natural organic matter. CHEMOSPHERE 2022; 307:135826. [PMID: 35948104 DOI: 10.1016/j.chemosphere.2022.135826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/17/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Surface water contains a large amount of dissolved organic matter (DOM). Interactions between DOM and micropollutants have a significant impact on micropollutant degradation. In this study, algal extracellular polymeric substances (EPS) and natural organic matter (NOM) were selected as two DOM sources and oxytetracycline (OTC) as a representative micropollutant. EPS was mainly composed of tryptophan and protein-like organics, while NOM was mainly composed of fulvic acid-like, humic acid-like, and hydrophobic acid components. In addition, OTC degradation significantly decreased when bound with EPS and the C=O and C-H bonds of CH2 or CH3 groups may be involved in binding EPS and OTC, respectively, while -COOH may be involved in the binding of NOM and OTC. Furthermore, triplet intermediates were found to play a major role in OTC photodegradation in both EPS and NOM, with the contribution calculated as 49.96% and 44.61%, respectively. Steady-state concentrations of 3EPS* in EPS and 3NOM* in NOM were 3.59 × 10-14 mol L-1 and 5.54 × 10-15 mol L-1, respectively. These results provide new insights into the degradation of antibiotic-containing wastewater in the natural environment or engineering applications.
Collapse
Affiliation(s)
- Yu Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Xinye Gong
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Deying Huang
- Department of Chemistry, Fudan University, Shanghai, 200433, PR China
| | - Shuwen Yan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China.
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
15
|
Zhang H, Zheng Y, Wang XC, Zhang Q, Dzakpasu M. Photochemical behavior of constructed wetlands-derived dissolved organic matter and its effects on Bisphenol A photodegradation in secondary treated wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157300. [PMID: 35842169 DOI: 10.1016/j.scitotenv.2022.157300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Free water surface flow (FWS) constructed wetlands (CWs) have been broadly applied for polishing secondary treated effluents. Dissolved organic matter derived from FWS CWs (WDOM) plays key roles in contaminants transformations. Conversely, photodegradation could shape the quantity and quality of WDOM, thereby affecting its roles in the photolysis of organic micropollutants (OMPs). Nevertheless, whether and how solar irradiation-induced photodegradation modify the properties of WDOM, and the effects of WDOM on the photodegradation of OMPs remain unclear. This study elucidates the photochemical behavior of two WDOM isolated from field-scale FWS CWs for effluent polishing under simulated sunlight irradiation using spectroscopic tools and high-resolution mass spectra. Furthermore, the roles of WDOM in the photodegradation of Bisphenol A (BPA), as a representative endocrine-disrupting compound (EDC), were comprehensively investigated. Solar irradiation was demonstrated to lower the molecular weight and aromaticity of WDOM, as well as weaken its light absorption. Ultrahigh-resolution mass spectra further confirmed that aromatic and unsaturated structures were susceptible to solar irradiation-induced photodegradation reactions. Subsequently, less aromatic and more saturated structures eventually formed under sunlight irradiation, consistent with the result from spectroscopic characterization. The reactive species produced from WDOM significantly enhanced the photodegradation of BPA with the kobs noticeably increasing 4-fold compared with the kobs for direct photolysis. Additionally, 3WDOM* was identified as the dominant reactive species leading to the photolysis of BPA in the presence of WDOM. These findings improve understanding of the phototransformation behavior of WDOM under sunlight irradiation and the roles that WDOM plays in the photochemical fate of coexisting OMPs in CWs treatment systems.
Collapse
Affiliation(s)
- Hengfeng Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Yucong Zheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Xiaochang C Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Qionghua Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Mawuli Dzakpasu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China.
| |
Collapse
|
16
|
Wu B, Zhou C, Zhao G, Wang J, Dai H, Liu T, Zheng X, Chen B, Chu C. Enhanced photochemical production of reactive intermediates at the wetland soil-water interface. WATER RESEARCH 2022; 223:118971. [PMID: 35977437 DOI: 10.1016/j.watres.2022.118971] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Photochemically produced reactive intermediates (PPRIs) formed by sunlight-irradiation of natural photosensitizers play critical roles in accelerating biogeochemical cycles on earth surface. Existing PPRI studies mostly focus on bulk phase reactions (e.g., bulk water), with PPRI processes at the environmental interfaces largely unexplored. Here, we report the wetland soil-water interface (SWI) as a widespread but previously unappreciated hotspot for PPRI productions. Massive productions of four important PPRI species (i.e., triplet-state excited organic matter (3OM*), singlet oxygen (1O2), hydrogen peroxide (H2O2), and hydroxyl radical (•OH)) were observed at the SWI. All four PPRI species exhibited higher productions at the SWI than those in bulk water, where •OH production was largely elevated by up to one order of magnitude. The enhanced PPRI productions at the SWI were caused by intensified photon absorption and vibrant Fe-mediated redox processes, where the light absorption by less- or non-photoactive soil substances partially offset the enhancement on PPRI productions. Nationwide wetland investigations demonstrate that the SWI was a ubiquitous hotspot for PPRI productions. Simulations on PPRIs-mediated reactions suggest that the enhanced PPRI productions could greatly affect the kinetics and transformation pathways of nutrients and pollutants. Given that the SWI also acts a hotspot for nutrient and pollutant accumulation, incorporating the SWI enhanced PPRI productions into biogeochemical process assessments is pivotal for advancing our understandings on the element cycles and pollutant dynamics in wetlands.
Collapse
Affiliation(s)
- Binbin Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Chong Zhou
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Guoqiang Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jingyi Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Hengyi Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Tian Liu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoshan Zheng
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
17
|
Yang X, Rosario-Ortiz FL, Lei Y, Pan Y, Lei X, Westerhoff P. Multiple Roles of Dissolved Organic Matter in Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11111-11131. [PMID: 35797184 DOI: 10.1021/acs.est.2c01017] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Advanced oxidation processes (AOPs) can degrade a wide range of trace organic contaminants (TrOCs) to improve the quality of potable water or discharged wastewater effluents. Their effectiveness is impacted, however, by the dissolved organic matter (DOM) that is ubiquitous in all water sources. During the application of an AOP, DOM can scavenge radicals and/or block light penetration, therefore impacting their effectiveness toward contaminant transformation. The multiple ways in which different types or sources of DOM can impact oxidative water purification processes are critically reviewed. DOM can inhibit the degradation of TrOCs, but it can also enhance the formation and reactivity of useful radicals for contaminants elimination and alter the transformation pathways of contaminants. An in-depth analysis highlights the inhibitory effect of DOM on the degradation efficiency of TrOCs based on DOM's structure and optical properties and its reactivity toward oxidants as well as the synergistic contribution of DOM to the transformation of TrOCs from the analysis of DOM's redox properties and DOM's transient intermediates. AOPs can alter DOM structure properties as well as and influence types, mechanisms, and extent of oxidation byproducts formation. Research needs are proposed to advance practical understanding of how DOM can be exploited to improve oxidative water purification.
Collapse
Affiliation(s)
- Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| |
Collapse
|
18
|
Wang L, Zheng Y, Zhou Y, Lu J, Chovelon JM, Ji Y. Aquatic photolysis of ketoprofen generates products with photosensitizing activity and toxicity. WATER RESEARCH 2022; 210:117982. [PMID: 34954366 DOI: 10.1016/j.watres.2021.117982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Ketoprofen (KTF) is a nonsteroidal anti-inflammatory drug frequently detected in natural and engineering waters. Because KTF is particularly photolabile (half-life ∼4 min), knowledge of the fate and ecological risks of KTF photoproducts in the aquatic environment is especially essential. Herein, we systematically investigated the photophysics, photochemistry, and photosensitization of KTF photoproducts in aqueous solution under 365 nm irradiation (UV365). Results show that KTF photolyzed rapidly and formed 3-ethyl-α-hydroxylbenzophenone (EtOH-BP), 3-ethyl-α-hydroperoxylbenzophenone (EtOOH-BP), 3-acetylbenzophenone (AcBP), and 3-ethylbenzophenone (EtBP), as identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and high-resolution mass spectrometry (HRMS). The presence of O2 significantly affected the evolution of photoproducts during KTF photolysis. The photophysical properties of EtBP and AcBP were characterized by spectroscopic approaches. In particular, transient absorption spectra obtained by nanosecond laser flash photolysis (LFP) indicated that EtBP and AcBP were excited to triplet states with lifetimes of 28 and 2.4 µs, respectively. EtBP underwent further photodegradation, giving rise to EtOH-BP, EtOOH-BP, and AcBP upon UV365 irradiation. The reaction is proposed to proceed through an excimer precursor (3[EtBP···EtBP]*) followed by intramolecular H-abstraction. In contrast, AcBP was relatively photostable, particularly under aerated condition. Both EtBP and AcBP have strong photosensitizing activity, as evidenced by the triplet probe 4-(N,N-dimethylamino)benzonitrile (DMABN). ECOSAR program suggested that the photoproducts are more ecotoxic and bioaccumulative than the parent KTF. Results of this study underscore the need to scrutinize the formation and fate of KTF photoproducts in sunlit surface waters.
Collapse
Affiliation(s)
- Lixiao Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yajie Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiran Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhe Lu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jean-Marc Chovelon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - Yuefei Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
19
|
Wu B, Liu T, Wang Y, Zhao G, Chen B, Chu C. High Sample Throughput LED Reactor for Facile Characterization of the Quantum Yield Spectrum of Photochemically Produced Reactive Intermediates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16204-16214. [PMID: 34553927 DOI: 10.1021/acs.est.1c04608] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photochemically produced reactive intermediates (PPRIs) by natural photosensitizers such as chromophoric dissolved organic matter (CDOM) play numerous key roles in aquatic biogeochemical processes. PPRI productions rely on both the intensity and the spectrum of incident sunlight. While the impacts of sunlight intensity on PPRI productions are well-studied, there remains insufficient understanding of the spectrum-dependence of PPRI productions. Here we designed a high sample throughput reactor equipped with monochromatic LED lights for systematic assessments of wavelength-dependent productions of four important PPRI species, i.e., triplet-state excited CDOM (3CDOM*), singlet oxygen (1O2), hydrogen peroxide (H2O2), and hydroxyl radical (•OH), in CDOM solutions. The quantum yields of PPRIs followed the order: 3CDOM* > 1O2 ≫ H2O2 > •OH. Moreover, PPRI quantum yields decreased with the light wavelength increasing from 375 to 490 nm and sharply decreased to zero above 490 nm, while the shapes of quantum yield spectra differed among PPRI species. Simulations on PPRI productions under varying season, latitude, altitude, and cloud cover conditions show that the sunlight spectrum plays a role as equally important as intensity in determining PPRI productions and PPRI-mediated transformations of aquatic nutrients and micropollutants. Therefore, incorporating the spectrum dependence of PPRI productions will advance our understandings of PPRI-driven biogeochemical processes and pollutant dynamics under varying spatial-temporal and climatic conditions. Regarding this, the high sample throughput LED reactor sheds light on a new approach for the facile characterization of PPRI quantum yield spectrum.
Collapse
Affiliation(s)
- Binbin Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Tian Liu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yanling Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Guoqiang Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
20
|
Yang B, Wang C, Cheng X, Zhang Y, Li W, Wang J, Tian Z, Chu W, Korshin GV, Guo H. Interactions between the antibiotic tetracycline and humic acid: Examination of the binding sites, and effects of complexation on the oxidation of tetracycline. WATER RESEARCH 2021; 202:117379. [PMID: 34246001 DOI: 10.1016/j.watres.2021.117379] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/12/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
The binding between dissolved organic matter (DOM) and micro-pollutants (MPs) results in significant impacts on their migration, transformation and degradation. However, the role of the DOM/MP binding on their oxidative transformation remains poorly studied. The binding of MPs by DOM, in combination with DOM's roles as a photosensitizer and/or a competitor for free radicals, needs to be considered in the context of understanding the DOM's impacts on the oxidative degradation of MPs. This study aims to explore this aspect of DOM/MP interactions based on the quantitation of humic acid (HA) and tetracycline (TET) complexation and its role in TET removal. This study also compared the degradation of free TET versus that bound in HA-TET complexes in different oxidation processes. Fourier transform infrared (FTIR) data show that the carboxyl and phenolic hydroxyl groups in HA are the main binding sites of TET, while nuclear magnetic resonance (NMR) analysis shows the binding of TET engages its -N(CH3)2 groups, and two-dimensional correlation spectroscopy (2D-COS) data show that the carboxyl groups in DOM are sensitive than phenolic groups in the binding of TET. The difference between the degradation rates (Δkobs) of the free and bound TET decreased with the increase of ionic strength using sodium nitrate, but increased with the introduction of Ca2+ and Mg2+ due to the formation of TET-Ca2+/Mg2+ complexes. Quenching experiments showed that the free radicals (•OH and •SO4-), PMS oxidant and UV light were the main contributors to the TET degradation in UV/PS, UV/PMS and UV/H2O2 processes, respectively. In-situ fluorescence time scanning and differential absorbance spectra showed that free TET was preferentially oxidized over the bound TET in all the tested treatments except UV/PS. These results provide new insights into the role of DOM/MP complexation in the degradation of MPs in natural and engineered systems.
Collapse
Affiliation(s)
- Bo Yang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Chengjin Wang
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, ON M5S 1A4, Canada
| | - Xin Cheng
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yongli Zhang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Wei Li
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zixin Tian
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Gregory V Korshin
- Department of Civil & Environmental Engineering, University of Washington, Box 352700, Seattle, WA, United States
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
21
|
Hovan A, Berta M, Sedláková D, Miskovsky P, Bánó G, Sedlák E. Heme is responsible for enhanced singlet oxygen deactivation in cytochrome c. Phys Chem Chem Phys 2021; 23:15557-15563. [PMID: 34259248 DOI: 10.1039/d1cp01517f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The deactivation of singlet oxygen, the lowest electronic excited state of molecular oxygen, by proteins is usually described through the interaction of singlet oxygen with certain amino acids. Changes in accessibility of these amino acids influence the quenching rate and the phosphorescence kinetics of singlet oxygen. In the cellular environment, however, numerous proteins with covalently bound or encapsulated cofactors are present. These cofactors could also influence the deactivation of singlet oxygen, and these have received little attention. To confront this issue, we used cytochrome c (cyt c) and apocytochrome c (apocyt c) to illustrate how the heme prosthetic group influences the rate constant of singlet oxygen deactivation upon acidic pH-induced conformational change of cyt c. Photo-excited flavin mononucleotide (FMN) was used to produce singlet oxygen. Our data show that the heme group has a significant and measurable effect on singlet oxygen quenching when the heme is exposed to solvents and is therefore more accessible to singlet oxygen. The effect of amino acids and heme accessibility on the FMN triplet state deactivation was also investigated.
Collapse
Affiliation(s)
- Andrej Hovan
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia.
| | - Martin Berta
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia.
| | - Dagmar Sedláková
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Pavol Miskovsky
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia. and SAFTRA Photonics Ltd., Moldavská cesta 51, 040 11 Košice, Slovakia
| | - Gregor Bánó
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia.
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia.
| |
Collapse
|
22
|
Cai Y, Apell JN, Pflug NC, McNeill K, Bollmann UE. Photochemical fate of medetomidine in coastal and marine environments. WATER RESEARCH 2021; 191:116791. [PMID: 33433334 DOI: 10.1016/j.watres.2020.116791] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Medetomidine has been authorized in ship hull paints as an antifouling biocide under the biocidal product regulation in Europe since 2016. Its release into marine systems causes concerns over persistence and toxicity. However, the environmental fate of medetomidine has not been fully investigated. In this study, the photodegradation of medetomidine under natural sunlight conditions was investigated using collected coastal and sea waters. In addition, the phototransformation of medetomidine with reactive species (i.e., singlet oxygen, excited triplet state organic matter, and hydroxyl radicals) under UVA light was examined. Photoproducts were isolated by high-performance liquid chromatography (HPLC), identified by a combination of nuclear magnetic resonance (NMR) spectroscopy and time-of-flight mass spectrometry (qTOF), and reaction mechanisms were proposed. The results show that medetomidine is a neutral base (pKa of protonated form = 7.2) that leads to two different protonation states in the aquatic environment. Photodegradation of neutral medetomidine was dominated by reaction with singlet oxygen, while protonated medetomidine was relatively photostable. The contribution of reactive species to the overall photodegradation of neutral medetomidine was calculated to provide an assessment of phototransformation of medetomidine. The half-live of medetomidine was < 1.5 days in natural waters (pHcoastal = 8.3; pHsea = 8.1) under sunlit near-surface conditions, suggesting that it is not persistent in the aquatic environment. Because medetomidine has a relatively short half-life in sunlit aquatic ecosystems, a number of products, such as 2-(2,3-dimethylphenyl)propanamide, can be formed by photochemical reactions of medetomidine, with unknown consequences for marine and coastal waters.
Collapse
Affiliation(s)
- Yi Cai
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Jennifer N Apell
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland; Department of Civil and Urban Engineering, New York University Tandon School of Engineering, 6 Metrotech Center, Brooklyn, New York, 11201, USA
| | - Nicholas C Pflug
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Kristopher McNeill
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Ulla E Bollmann
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; Geological Survey of Denmark and Greenland (GEUS), ØsterVoldgade 10, 1350 Copenhagen, Denmark.
| |
Collapse
|
23
|
Zhang X, Guo Y, Pan Y, Yang X. Distinct effects of copper on the degradation of β-lactam antibiotics in fulvic acid solutions during light and dark cycle. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2020; 3:100051. [PMID: 36159600 PMCID: PMC9488106 DOI: 10.1016/j.ese.2020.100051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 05/22/2023]
Abstract
This study revealed the dual roles of Cu(II) on the β-lactam antibiotics degradation in Suwannee River fulvic acid (SRFA) solution during day and night cycle. Amoxicillin (AMX) and ampicillin (AMP) were selected as the representative β-lactam antibiotics. Cu(II) played a key role in the dark degradation of AMX and AMP via catalytic hydrolysis and oxidation. However, Cu(II) mainly exhibited an inhibitory effect on SRFA-involved photochemical degradation of AMX and AMP. In the presence of 500 nM of Cu(II), the degradation rate of AMX and AMP in the light condition were around 5 times higher than that in the dark condition, suggesting the photodegradation of β-lactam antibiotics was much more pronounced than catalyzed hydrolysis and oxidation. The triplet excited state of SRFA (3SRFA∗) primarily contributed to AMX and AMP photodegradation. Hydroxyl radicals (•OH) and singlet oxygen (1O2) exhibited limit impacts. The redox cycle of Cu(II)/Cu(I) restricted the electron transfer pathway of 3SRFA∗ with AMX and AMP. During the day and night cycles for 48 h, Cu(II) served as a stronger inhibitor rather than a promotor. These findings highlight the interactions between Cu(II) and SRFA are distinct under day and night conditions, which could further affect the fate of β-lactam antibiotics in natural environments.
Collapse
|
24
|
Fu L, Bin L, Cui J, Nyobe D, Li P, Huang S, Fu F, Tang B. Tracing the occurrence of organophosphate ester along the river flow path and textile wastewater treatment processes by using dissolved organic matters as an indicator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137895. [PMID: 32208263 DOI: 10.1016/j.scitotenv.2020.137895] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/07/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
Organophosphate esters (OPEs) are frequently detected in wastewater and receiving river, but their occurrence is hard to be quickly and effectively responded. In this study, the relevant OPEs and dissolved organic matters (DOMs) data were obtained from two textile wastewater treatment plants (WWTPs) with different processes and a 15 km stretch of river receiving the treated textile wastewater. UV-Vis absorption and fluorescence spectroscopy combined with peak-picking and fluorescence regional integration (FRI) methods were used to characterize DOM components in these samples. The results showed that OPEs concentrations were not always consistent with that of DOM, but were related to their physico-chemical properties and sources. Correlation and regression analysis indicated that the FRI pattern could be considered for tracing the occurrence of organophosphate diesters derived from multiple pollutants in river water, and reflected the emerging of moderate or high removal organophosphate triesters in WWTPs. Difference in the sources and DOM compositions was the main contributor to the correlation difference of OPEs and DOM in the two types of processes. The treatment technique also played important roles in the co-occurrence of OPEs and DOM in different WWTPs. This study would be beneficial to develop in-situ monitoring for the dynamic change of emerging contaminants along with a river flow path and from WWTPs, respectively.
Collapse
Affiliation(s)
- Lingfang Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Jiao Cui
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Dieudonne Nyobe
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Shaosong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China.
| |
Collapse
|
25
|
Partanen SB, Erickson PR, Latch DE, Moor KJ, McNeill K. Dissolved Organic Matter Singlet Oxygen Quantum Yields: Evaluation Using Time-Resolved Singlet Oxygen Phosphorescence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3316-3324. [PMID: 32064862 DOI: 10.1021/acs.est.9b07246] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Singlet oxygen (1O2) generation quantum yields from chromophoric dissolved organic matter (CDOM) have been reported for many samples over the past 4 decades. Yet even for standardized isolates such as those from the International Humic Substance Society (IHSS), wide-ranging values exist in the literature. In this manuscript, time-resolved 1O2 phosphorescence was used to determine the 1O2 quantum yields (ΦΔ) of a variety of dissolved organic matter (DOM) isolates and natural waters. In general, the 1O2 quantum yield values in this study are in the middle, although below the median of the range of past reported values (e.g., for Suwannee River Natural Organic Matter IHSS isolate: 1.8% vs 0.23-2.89%). Notably, hydrophobic neutral fractions of DOM isolates were found to possess the highest 1O2 quantum yields, an interesting result given that these fractions are not retained in typical humic and fulvic acid isolation procedures that use XAD resins. The excitation wavelength dependence of 1O2 generation from CDOM was also examined, and an approximate linear decrease with longer excitation wavelength was observed. This work advances the understanding of CDOM photoprocesses, especially in relation to wavelength-dependent 1O2 production, which is valuable for assessing real-world environmental behavior.
Collapse
Affiliation(s)
- Sarah B Partanen
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Paul R Erickson
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Douglas E Latch
- Department of Chemistry, Seattle University, Seattle, Washington 98122, United States
| | - Kyle J Moor
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
26
|
Zhang X, Li J, Yao MC, Fan WY, Yang CW, Yuan L, Sheng GP. Unrecognized Contributions of Dissolved Organic Matter Inducing Photodamages to the Decay of Extracellular DNA in Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1614-1622. [PMID: 31976657 DOI: 10.1021/acs.est.9b06029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Extracellular DNA (eDNA), which is derived from lysis or secretion of cells, is ubiquitous in various environments and crucial for gene dissemination, bacterial metabolism, biofilm integrity, and aquatic monitoring. However, these processes are largely influenced by damage to eDNA. Photodamage to eDNA, one of the most important types of DNA damage in natural waters, thus far remains unclear. In particular, the roles of the ubiquitous dissolved organic matter (DOM) in this process have yet to be determined. In this study, eDNA photodamage, including both deoxynucleoside damage and strand breaks, proved to be significantly influenced by DOM. DOM competed with eDNA for photons to inhibit the direct photodamage of eDNA. Nevertheless, DOM was photosensitized to produce reactive oxygen species (ROS) (i.e., hydroxyl radicals (·OH) and singlet oxygen (1O2)) to enhance the indirect photodamage of eDNA. The ·OH induced damage to four deoxynucleosides and strand breaks, and the 1O2 substantially enhanced deoxyguanosine damage. The presence of DOM changed the main photodamage products of deoxynucleosides, additional oxidation products induced by ROS formed besides pyrimidine dimers caused by UV. Results indicate that DOM-mediated indirect photodamage contributed significantly to eDNA photodamage in most water bodies. This study revealed the previously unrecognized crucial role of DOM in the decay of eDNA in waters.
Collapse
Affiliation(s)
- Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Jing Li
- School of Life Sciences , University of Science and Technology of China , Hefei 230026 , China
| | - Mu-Cen Yao
- School of Life Sciences , University of Science and Technology of China , Hefei 230026 , China
| | - Wen-Yuan Fan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Chuan-Wang Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| |
Collapse
|
27
|
Davis CA, Janssen EML. Environmental fate processes of antimicrobial peptides daptomycin, bacitracins, and polymyxins. ENVIRONMENT INTERNATIONAL 2020; 134:105271. [PMID: 31704562 DOI: 10.1016/j.envint.2019.105271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Antimicrobial peptides (AMPs) are increasingly important as a last resort against multi-drug resistant bacteria due to resistance formation towards conventional antibiotics. However, many AMPs were introduced to the market before environmental risk assessment was required, e.g., by the European Medicines Agency (EMA) since 1998. While AMPs have been administered as antibiotics and growth promotors in feedstock since the 1960s and were reconsidered for human medicine by the EMA in 2013, details about their mobility and persistence in the environment remain unknown. This study investigated the environmental fate of three commonly used AMPs: bacitracins, daptomycin, and polymyxins B and E (Colistin). We observed moderate sorption affinity of daptomycin to standard European soils (Kd = 20.6-48.6), while polymyxins adsorbed irreversibly. Bacitracin variants sorbed slightly to sandy soil (Kd = 5.8-8) and significantly to clayey soil (Kd = 169-250). We further investigated photochemical and microbial transformation processes relevant in surface waters. We demonstrated that phototransformation of all AMPs was enhanced in the presence of dissolved organic matter and fast bimolecular reaction rate constant with singlet oxygen contributed largely to indirect phototransformation (15-41%). Phototransformation product analysis for daptomycin was consistent with expected modifications of the tryptophan and kynurenine moieties. Moreover, riverine biofilm communities demonstrated biotransformation potential for all AMPs. Our findings of sorption behaviour, photo- and biotransformation suggest that these processes play a critical role in the fate of bacitracins, daptomycin, and polymyxins in environmental systems.
Collapse
Affiliation(s)
- Caroline A Davis
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland; Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Elisabeth M-L Janssen
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland.
| |
Collapse
|
28
|
Ruiz M, Yang Y, Lochbaum CA, Delafield DG, Pignatello JJ, Li L, Pedersen JA. Peroxymonosulfate Oxidizes Amino Acids in Water without Activation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10845-10854. [PMID: 31373486 DOI: 10.1021/acs.est.9b01322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A variety of peptidic and proteinaceous contaminants (e.g., proteins, toxins, pathogens) present in the environment may pose risk to human health and wildlife. Peroxymonosulfate is a strong oxidant (EH0 = 1.82 V for HSO5-, the predominant species at environmental pH values) that may hold promise for the deactivation of proteinaceous contaminants. Relatively little quantitative information exists on the rates of peroxymonosulfate reactions with free amino acids. Here, we studied the oxidation of 19 of the 20 standard proteinogenic amino acids (all except cysteine) by peroxymonosulfate without explicit activation. Reaction half-lives at pH 7 ranged from milliseconds to hours. Amino acids possessing sulfur-containing, heteroaromatic, or substituted aromatic side chains were the most susceptible to oxidation by peroxymonosulfate, with rates of transformation decreasing in the order methionine > tryptophan > tyrosine > histidine. The rate of tryptophan oxidation did not decrease in the presence of an aquatic natural organic matter. Singlet oxygen resulting from peroxymonosulfate self-decomposition, while detected by electron paramagnetic resonance spectroscopy, was unlikely to be the principal reactive species. Our results demonstrate that peroxymonosulfate is capable of oxidizing 19 amino acids without explicit activation and that solvent-exposed methionine and tryptophan residues are likely initial targets of oxidation in peptides and proteins.
Collapse
Affiliation(s)
| | - Yi Yang
- Department of Environmental Sciences , The Connecticut Agricultural Experiment Station , New Haven , Connecticut 06511 , United States
| | | | | | - Joseph J Pignatello
- Department of Environmental Sciences , The Connecticut Agricultural Experiment Station , New Haven , Connecticut 06511 , United States
| | | | | |
Collapse
|
29
|
Chu C, Yang J, Huang D, Li J, Wang A, Alvarez PJJ, Kim JH. Cooperative Pollutant Adsorption and Persulfate-Driven Oxidation on Hierarchically Ordered Porous Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10352-10360. [PMID: 31386358 DOI: 10.1021/acs.est.9b03067] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study presents a 3D hierarchically ordered porous carbon material (HOPC) that simultaneously achieves efficient adsorption of a range of water pollutants as well as catalytic oxidation of adsorbed pollutants. High adsorption capacity and rapid adsorption kinetics are attributed to the hydrophobic nature of the carbon substrate, the large surface area due to high porosity, and the relatively uniform size of pores that comprise the structure. The oxidative degradation is achieved by efficient mediation of electron transfer from pollutants to persulfate through the sp2-hybridized carbon and nitrogen network. As the persulfate activation and pollutant oxidation do not involve reactive radicals, oxidative degradation of the adsorbent is prevented, which has been a primary concern when adsorption and oxidation are combined either to regenerate adsorbate or to enhance oxidation performance. Batch tests showed that near complete removal of various recalcitrant micropollutants can be achieved within a short time (less than 1 min) even when treating a complex water matrix, as pollutants are concentrated on the surface of HOPC, where their oxidation is catalyzed.
Collapse
Affiliation(s)
- Chiheng Chu
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520-8286 , United States
- Nanotechnology-Enabled Water Treatment (NEWT) , Yale University , 17 Hillhouse Ave , New Haven , Connecticut 06511 , United States
| | - Ji Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China
- State Key Laboratory for Physical Chemistry of Solid Surfaces and MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Dahong Huang
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520-8286 , United States
| | - Jianfeng Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces and MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Aiqin Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering , Rice University , Houston , Texas 77005 , United States
- Nanotechnology-Enabled Water Treatment (NEWT) , Yale University , 17 Hillhouse Ave , New Haven , Connecticut 06511 , United States
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520-8286 , United States
- Nanotechnology-Enabled Water Treatment (NEWT) , Yale University , 17 Hillhouse Ave , New Haven , Connecticut 06511 , United States
| |
Collapse
|
30
|
Vione D, Scozzaro A. Photochemistry of Surface Fresh Waters in the Framework of Climate Change. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7945-7963. [PMID: 31241909 DOI: 10.1021/acs.est.9b00968] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Photochemical processes taking place in surface fresh waters play an important role in the transformation of biorecalcitrant pollutants and some natural compounds and in the inactivation of microorganisms. Such processes are divided into direct photolysis, where a molecule is transformed following sunlight absorption, and indirect photochemistry, where naturally occurring photosensitizers absorb sunlight and produce a range of transient species that can transform dissolved molecules (or inactivate microorganisms). Photochemistry is usually favored in thoroughly illuminated shallow waters, while the dissolved organic carbon (DOC) acts as a switch between different photochemical pathways (direct photolysis, and indirect photochemistry triggered by different transient species). Various phenomena connected with climate change (water browning, changing precipitations) may affect water DOC and water depth, with implications for the kinetics of photoreactions and the associated transformation pathways. The latter are important because they often produce peculiar intermediates, with particular health and environmental impacts. Further climate-induced effects with photochemical implications are shorter ice-cover seasons and enhanced duration of summer stratification in lakes, as well as changes in the flow velocity of rivers that affect the photodegradation time scale. This contribution aims at showing how the different climate-related phenomena can affect photoreactions and which approaches can be followed to quantitatively describe these variations.
Collapse
Affiliation(s)
- Davide Vione
- Department of Chemistry , University of Torino , Via P. Giuria 5 , 10125 Torino , Italy
| | - Andrea Scozzaro
- Department of Chemistry , University of Torino , Via P. Giuria 5 , 10125 Torino , Italy
| |
Collapse
|
31
|
Schmitt M, Moor KJ, Erickson PR, McNeill K. Sorbic Acid as a Triplet Probe: Reactivity of Oxidizing Triplets in Dissolved Organic Matter by Direct Observation of Aromatic Amine Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8087-8096. [PMID: 31269391 DOI: 10.1021/acs.est.9b01789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sorbic acid (2,4-hexadienoic acid; HDA) isomerization is frequently used to probe triplet-state dissolved organic matter (3CDOM*) reactivity, but there remain open questions about the reaction kinetics of 3CDOM* with HDA due to the difficulties of directly measuring 3CDOM* quenching rate constants. Using our recently developed approach based on observing the radical cation of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) formed through oxidation of TMPD by 3CDOM*, we studied 3CDOM* quenching kinetics with HDA monitored via transient absorption spectroscopy. A competition kinetics-based approach utilizing formation yields of TMPD•+ was developed, validated with model sensitizers, and used to determine bimolecular rate constants between 3CDOM* oxidants and HDA for diverse DOM isolates and natural waters samples, yielding values in the range of (2.4-7.7) × 108 M-1 s-1. The unquenchable fraction of TMPD-oxidizing triplets showed that, on average, 41% of 3CDOM* oxidants cannot be quenched by HDA. Conversely, cycloheptatriene quenched nearly all TMPD•+-forming triplets in CDOM, suggesting that most 3CDOM* oxidants possess energies greater than 150 kJ mol-1. Comparing results with our companion study, we found slight, but noticeable differences in the 3CDOM* quenching rate constants by HDA and unquenchable triplet fractions determined by oxidation of TMPD and energy transfer to O2 (1O2 formation) methods.
Collapse
Affiliation(s)
- Markus Schmitt
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science , ETH Zurich , 8092 Zurich , Switzerland
| | - Kyle J Moor
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science , ETH Zurich , 8092 Zurich , Switzerland
| | - Paul R Erickson
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science , ETH Zurich , 8092 Zurich , Switzerland
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science , ETH Zurich , 8092 Zurich , Switzerland
| |
Collapse
|
32
|
Gu L, Huang B, Han F, Xu Z, Ren D, He H, Pan X, Dionysiou DD. Intermittent light and microbial action of mixed endogenous source DOM affects degradation of 17β-estradiol day after day in a relatively deep natural anaerobic aqueous environment. JOURNAL OF HAZARDOUS MATERIALS 2019; 369:40-49. [PMID: 30769326 DOI: 10.1016/j.jhazmat.2019.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/29/2018] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
All kinds of wastewaters containing steroid estrogens (SEs) and mixed endogenous source dissolved organic matter (DOM) enter natural water environments with intermittent illumination where microbial action occurs in a relatively deep natural aqueous environment. The role of mixed endogenous source DOM in SEs' biodegradation and photochemical degradation in such environments was studied using 17β-estradiol (E2) in laboratory experiments under anaerobic conditions. The experimental results show that microbial action can improve the optical properties and electron transfer capability of mixed endogenous source DOM, promoting photodegradation and biodegradation. Intermittent illumination attenuates DOM's electron transfer capacity and its chromophore groups, but it improves the bioavailability of low molecular weight dissolved organic matter which promotes microbial growth under anaerobic conditions. DOM-mediated co-degradation by light and microbial action over three days was better than either individually. The presence of Fe(III) promoted electron transfer, and Fe(III)-DOM complexes accelerated energy transfer under irradiation, enhancing photodegradation. Any remaining estrogens will continue to degrade, most effectively in well-aerated waters with sufficient illumination.
Collapse
Affiliation(s)
- Lipeng Gu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Fengxia Han
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhixiang Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Dong Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA.
| |
Collapse
|
33
|
Zhou H, Yan S, Lian L, Song W. Triplet-State Photochemistry of Dissolved Organic Matter: Triplet-State Energy Distribution and Surface Electric Charge Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2482-2490. [PMID: 30758190 DOI: 10.1021/acs.est.8b06574] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Excited triplet states of chromophoric dissolved organic matter (3CDOM*) are highly reactive species in sunlit surface waters and play a critical role in reactive oxygen species (ROS) formation and pollutant attenuation. In the present study, a series of chemical probes, including sorbic acid, sorbic alcohol, sorbic amine, trimethylphenol, and furfuryl alcohol, were employed to quantitatively determine 3CDOM* and 1O2 in various organic matters. Using a high concentration of sorbic alcohol as high-energy triplet states quencher, 3CDOM* can be first distinguished as high-energy triplet states (>250 kJ mol-1) and low-energy triplet states (<250 kJ mol-1). The terrestrial-origin natural organic matter (NOM) was found to mainly consist of low-energy triplet states, while high-energy triplet states were predominant in autochthonous-origin NOM and effluent/wastewater organic matter (EfOM/WWOM). The 1O2 quantum yields and electron transfer quantum yield coefficients ( fTMP) generated from low-energy triplet states remained constant in all tested organic matters. External phenolic compound showed quenching effects on triplet-state formation and tended to have a higher quenching efficiency for aromatic ketone triplet states, which are the main high-energy triplet states. In comparison with terrestrial-origin NOM, autochthonous-origin NOM and EfOM/WWOM presented lower reaction rate constants for sorbic amines and higher reaction rate constants for sorbic acid, and these differences are likely due to dissimilar surface electric charge conditions. Understanding the triplet-state photochemistry of CDOM is essential for providing useful insights into their photochemical effects in aquatic systems.
Collapse
Affiliation(s)
- Huaxi Zhou
- Department of Environmental Science & Engineering , Fudan University , Shanghai 200433 , P. R. China
| | - Shuwen Yan
- Department of Environmental Science & Engineering , Fudan University , Shanghai 200433 , P. R. China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , P. R. China
| | - Lushi Lian
- Department of Environmental Science & Engineering , Fudan University , Shanghai 200433 , P. R. China
| | - Weihua Song
- Department of Environmental Science & Engineering , Fudan University , Shanghai 200433 , P. R. China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , P. R. China
| |
Collapse
|
34
|
Sardana A, Cottrell B, Soulsby D, Aziz TN. Dissolved organic matter processing and photoreactivity in a wastewater treatment constructed wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:923-934. [PMID: 30144760 DOI: 10.1016/j.scitotenv.2018.08.138] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Constructed wetlands have the capacity to degrade a host of contaminants of emerging concern through photodegradation via sunlight produced reactive oxygen species. Dissolved organic matter (DOM) is a critical intermediary in photodegradation as it influences the production of reactive oxygen species. In this study, the photochemical behavior of DOM of wastewater treated in constructed wetlands was characterized. Whole water samples and fractionated DOM were characterized using SUVA254, spectral slope ratios, excitation emission matrix fluorescence spectroscopy (EEMs), and proton nuclear magnetic resonance (1H NMR). Photoreactivity was assessed by measuring formation rates and steady state concentrations of hydroxyl radical (•OH), singlet oxygen (1O2), and the triplet excited states of DOM (3DOM⁎). The effluent was observed to transition from a microbially sourced protein-like DOM to a terrestrial DOM with higher aromaticity. Size exclusion chromatography revealed an 18% increase in larger molecular weight fractions of vegetated wetland effluent DOM. Additionally, wetland effluent DOM was observed to have a 32% increase in the aromatic region of 1H NMR spectra as compared to untreated wastewater. 1H NMR analysis also indicated an increase in the complexity of wetland effluent DOM. Fluorescence intensity fraction of the protein-like Peak T (Ex/Em:278/342 nm) of EEMs decreased by 16% from the untreated wastewater to wetland effluent. A negative correlation between the percent fluorescence of Peak T (Ex/Em:278/342 nm) and Peaks A (Ex/Em:245/460 nm), C (Ex/Em:336/435 nm), and M (Ex/Em:312/400 nm) of the excitation emission spectra confirmed the transition from a spectrum of pure wastewater to a spectrum characteristic of terrestrially derived DOM. Microbial uptake of bio-labile DOM and leaching of humic like substances from vegetated wetland cells were the predominant processes involved in this transition. This transition coincided with an increase in the formation rates of 1O2 and 3DOM⁎ and in the steady state concentration of 1O2.
Collapse
Affiliation(s)
- Arpit Sardana
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 208 Mann Hall, 2501 Stinson Drive, Raleigh, NC 27695-7908, United States
| | - Barbara Cottrell
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, United States
| | - David Soulsby
- Department of Chemistry, University of Redlands, Redlands CA, 92374, United States
| | - Tarek N Aziz
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 208 Mann Hall, 2501 Stinson Drive, Raleigh, NC 27695-7908, United States.
| |
Collapse
|
35
|
Nelson KL, Boehm AB, Davies-Colley RJ, Dodd MC, Kohn T, Linden KG, Liu Y, Maraccini PA, McNeill K, Mitch WA, Nguyen TH, Parker KM, Rodriguez RA, Sassoubre LM, Silverman AI, Wigginton KR, Zepp RG. Sunlight-mediated inactivation of health-relevant microorganisms in water: a review of mechanisms and modeling approaches. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1089-1122. [PMID: 30047962 PMCID: PMC7064263 DOI: 10.1039/c8em00047f] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Health-relevant microorganisms present in natural surface waters and engineered treatment systems that are exposed to sunlight can be inactivated by a complex set of interacting mechanisms. The net impact of sunlight depends on the solar spectral irradiance, the susceptibility of the specific microorganism to each mechanism, and the water quality; inactivation rates can vary by orders of magnitude depending on the organism and environmental conditions. Natural organic matter (NOM) has a large influence, as it can attenuate radiation and thus decrease inactivation by endogenous mechanisms. Simultaneously NOM sensitizes the formation of reactive intermediates that can damage microorganisms via exogenous mechanisms. To accurately predict inactivation and design engineered systems that enhance solar inactivation, it is necessary to model these processes, although some details are not yet sufficiently well understood. In this critical review, we summarize the photo-physics, -chemistry, and -biology that underpin sunlight-mediated inactivation, as well as the targets of damage and cellular responses to sunlight exposure. Viruses that are not susceptible to exogenous inactivation are only inactivated if UVB wavelengths (280-320 nm) are present, such as in very clear, open waters or in containers that are transparent to UVB. Bacteria are susceptible to slightly longer wavelengths. Some viruses and bacteria (especially Gram-positive) are susceptible to exogenous inactivation, which can be initiated by visible as well as UV wavelengths. We review approaches to model sunlight-mediated inactivation and illustrate how the environmental conditions can dramatically shift the inactivation rate of organisms. The implications of this mechanistic understanding of solar inactivation are discussed for a range of applications, including recreational water quality, natural treatment systems, solar disinfection of drinking water (SODIS), and enhanced inactivation via the use of sensitizers and photocatalysts. Finally, priorities for future research are identified that will further our understanding of the key role that sunlight disinfection plays in natural systems and the potential to enhance this process in engineered systems.
Collapse
Affiliation(s)
- Kara L Nelson
- Civil and Environmental Engineering, University of California, Berkeley, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Blough NV, Del Vecchio R. Comment on The Case Against Charge Transfer Interactions in Dissolved Organic Matter Photophysics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5512-5513. [PMID: 29659267 DOI: 10.1021/acs.est.8b01189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Neil V Blough
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Rossana Del Vecchio
- Earth System Science Interdisciplinary Center , University of Maryland , College Park , Maryland 20770 , United States
| |
Collapse
|
37
|
Bais F, Luca RM, Bornman JF, Williamson CE, Sulzberger B, Austin AT, Wilson SR, Andrady AL, Bernhard G, McKenzie RL, Aucamp PJ, Madronich S, Neale RE, Yazar S, Young AR, de Gruijl FR, Norval M, Takizawa Y, Barnes PW, Robson TM, Robinson SA, Ballaré CL, Flint SD, Neale PJ, Hylander S, Rose KC, Wängberg SÅ, Häder DP, Worrest RC, Zepp RG, Paul ND, Cory RM, Solomon KR, Longstreth J, Pandey KK, Redhwi HH, Torikai A, Heikkilä AM. Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2017. Photochem Photobiol Sci 2018; 17:127-179. [PMID: 29404558 PMCID: PMC6155474 DOI: 10.1039/c7pp90043k] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022]
Abstract
The Environmental Effects Assessment Panel (EEAP) is one of three Panels of experts that inform the Parties to the Montreal Protocol. The EEAP focuses on the effects of UV radiation on human health, terrestrial and aquatic ecosystems, air quality, and materials, as well as on the interactive effects of UV radiation and global climate change. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than previously held. Because of the Montreal Protocol, there are now indications of the beginnings of a recovery of stratospheric ozone, although the time required to reach levels like those before the 1960s is still uncertain, particularly as the effects of stratospheric ozone on climate change and vice versa, are not yet fully understood. Some regions will likely receive enhanced levels of UV radiation, while other areas will likely experience a reduction in UV radiation as ozone- and climate-driven changes affect the amounts of UV radiation reaching the Earth's surface. Like the other Panels, the EEAP produces detailed Quadrennial Reports every four years; the most recent was published as a series of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). In the years in between, the EEAP produces less detailed and shorter Update Reports of recent and relevant scientific findings. The most recent of these was for 2016 (Photochem. Photobiol. Sci., 2017, 16, 107-145). The present 2017 Update Report assesses some of the highlights and new insights about the interactive nature of the direct and indirect effects of UV radiation, atmospheric processes, and climate change. A full 2018 Quadrennial Assessment, will be made available in 2018/2019.
Collapse
Affiliation(s)
- F. Bais
- Aristotle Univ. of Thessaloniki, Laboratory of Atmospheric Physics, Thessaloniki, Greece
| | - R. M. Luca
- National Centre for Epidemiology and Population Health, Australian National Univ., Canberra, Australia
| | - J. F. Bornman
- Curtin Univ., Curtin Business School, Perth, Australia
| | | | - B. Sulzberger
- Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - A. T. Austin
- Univ. of Buenos Aires, Faculty of Agronomy and IFEVA-CONICET, Buenos Aires, Argentina
| | - S. R. Wilson
- School of Chemistry, Centre for Atmospheric Chemistry, Univ. of Wollongong, Wollongong, Australia
| | - A. L. Andrady
- Department of Chemical and Biomolecular Engineering, North Carolina State Univ., Raleigh, NC, USA
| | - G. Bernhard
- Biospherical Instruments Inc., San Diego, CA, USA
| | | | - P. J. Aucamp
- Ptersa Environmental Consultants, Faerie Glen, South Africa
| | - S. Madronich
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - R. E. Neale
- Queensland Institute of Medical Research, Royal Brisbane Hospital, Brisbane, Australia
| | - S. Yazar
- Univ. of Western Australia, Centre for Ophthalmology and Visual Science, Lions Eye Institute, Perth, Australia
| | | | - F. R. de Gruijl
- Department of Dermatology, Leiden Univ. Medical Centre, Leiden, The Netherlands
| | - M. Norval
- Univ. of Edinburgh Medical School, UK
| | - Y. Takizawa
- Akita Univ. School of Medicine, National Institute for Minamata Disease, Nakadai, Itabashiku, Tokyo, Japan
| | - P. W. Barnes
- Department of Biological Sciences and Environment Program, Loyola Univ., New Orleans, USA
| | - T. M. Robson
- Research Programme in Organismal and Evolutionary Biology, Viikki Plant Science Centre, Univ. of Helsinki, Finland
| | - S. A. Robinson
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, Univ. of Wollongong, Wollongong, NSW 2522, Australia
| | - C. L. Ballaré
- Univ. of Buenos Aires, Faculty of Agronomy and IFEVA-CONICET, Buenos Aires, Argentina
| | - S. D. Flint
- Dept of Forest, Rangeland and Fire Sciences, Univ. of Idaho, Moscow, ID, USA
| | - P. J. Neale
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - S. Hylander
- Centre for Ecology and Evolution in Microbial model Systems, Linnaeus Univ., Kalmar, Sweden
| | - K. C. Rose
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - S.-Å. Wängberg
- Dept Marine Sciences, Univ. of Gothenburg, Göteborg, Sweden
| | - D.-P. Häder
- Friedrich-Alexander Univ. Erlangen-Nürnberg, Dept of Biology, Möhrendorf, Germany
| | - R. C. Worrest
- CIESIN, Columbia Univ., New Hartford, Connecticut, USA
| | - R. G. Zepp
- United States Environmental Protection Agency, Athens, Georgia, USA
| | - N. D. Paul
- Lanter Environment Centre, Lanter Univ., LA1 4YQ, UK
| | - R. M. Cory
- Earth and Environmental Sciences, Univ. of Michigan, Ann Arbor, MI, USA
| | - K. R. Solomon
- Centre for Toxicology, School of Environmental Sciences, Univ. of Guelph, Guelph, ON, Canada
| | - J. Longstreth
- The Institute for Global Risk Research, Bethesda, MD, USA
| | - K. K. Pandey
- Institute of Wood Science and Technology, Bengaluru, India
| | - H. H. Redhwi
- Chemical Engineering Dept, King Fahd Univ. of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - A. Torikai
- Materials Life Society of Japan, Kayabacho Chuo-ku, Tokyo, Japan
| | - A. M. Heikkilä
- Finnish Meteorological Institute R&D/Climate Research, Helsinki, Finland
| |
Collapse
|
38
|
Chu C, Stamatelatos D, McNeill K. Aquatic indirect photochemical transformations of natural peptidic thiols: impact of thiol properties, solution pH, solution salinity and metal ions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:1518-1527. [PMID: 29090717 DOI: 10.1039/c7em00324b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Natural peptidic thiols play numerous important roles in aquatic systems. While thiols are known to be susceptible to sensitized photoreaction, the photochemical transformation of thiols in surface waters remains largely unknown. This study systematically assessed the photochemical transformation of naturally occurring thiols, including arginylcysteine (RC), γ-glutamylcysteine (γEC), glutathione (GSH), and phytochelatin (PC) in solutions containing dissolved organic matter (DOM). The results show that all thiols underwent rapid indirect photochemical transformation. The transformation rates of thiols were highly pH-dependent and increased with increasing solution pH. γEC and GSH show lower transformation rates than free Cys, which was ascribed to their higher thiol pKa values. In comparison, PC and RC show much higher transformation rates than γEC and GSH, due to more reactive thiol groups contained in the PC molecule and sorption of RC to DOM macromolecules, respectively. While all investigated pathways contributed to thiol transformation, hydroxyl radical-mediated oxidation dominated at low solution pH and singlet oxygen-mediated oxidation dominated at high solution pH in the DOM-sensitized phototransformations of γEC, GSH, and PC. Furthermore, the effects of metal complexation and solution salinity on thiol transformation rates were examined. Thiol reactivity was not affected by Fe3+ and Ag+, slightly enhanced in the presence of Zn2+, Cd2+ and Hg2+, and significantly enhanced by Cu2+. Additionally, enhanced thiol transformation rates were observed in solutions with high salinity.
Collapse
Affiliation(s)
- Chiheng Chu
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland.
| | - Dimitrios Stamatelatos
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland.
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
39
|
Pati SG, Arnold WA. Photochemical Transformation of Four Ionic Liquid Cation Structures in Aqueous Solution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11780-11787. [PMID: 28956902 DOI: 10.1021/acs.est.7b04016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ionic liquids (ILs) are a new class of solvents expected to be used increasingly by the chemical industry in the coming years. Given their slow biodegradation and limited sorption affinities, IL cations have a high potential to reach aquatic environments. We investigated the fate of ILs in sunlit surface water by determining direct and indirect photochemical transformation rates of imidazolium, pyridinium, pyrrolidinium, and piperidinium cations. The photodegradation of all investigated IL cations was faster in solutions containing dissolved organic matter (DOM) than in ultrapure water, illustrating the importance of indirect photochemical processes. Experiments with model sensitizers and DOM isolates revealed that reactions with hydroxyl radicals dominated the transformation of tested IL cations. Bimolecular reaction rate constants with hydroxyl radicals ranged from (2.04 ± 0.37) × 109 to (8.47 ± 0.97) × 109 M-1 s-1 and showed an increase in rate constants with increasing carbon side-chain length. Consequently, average estimated half-lives of IL cations in sunlit surface water ranged from 32 ± 4 to 135 ± 25 days, highlighting the potential of IL cations to become persistent aquatic contaminants.
Collapse
Affiliation(s)
- Sarah G Pati
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota , 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, United States
| | - William A Arnold
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota , 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, United States
| |
Collapse
|
40
|
Appiani E, Ossola R, Latch DE, Erickson PR, McNeill K. Aqueous singlet oxygen reaction kinetics of furfuryl alcohol: effect of temperature, pH, and salt content. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:507-516. [PMID: 28244514 DOI: 10.1039/c6em00646a] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The rate constant for the reaction between furfuryl alcohol (FFA) and singlet oxygen (1O2) in aqueous solution was measured as a function of temperature, pH and salt content employing both steady-state photolysis (β value determination) and time-resolved singlet oxygen phosphorescence methods. The latter provided more precise and reproducible data. The reaction rate constant, krxn,FFA, had a relatively small temperature dependence, no pH dependence and showed a small increase in the presence of high salt concentrations (+19% with 1 M NaCl). A critical review of the available literature suggested that the widely used value of 1.2 × 108 M-1 s-1 is likely overestimated. Therefore, we recommend the use of 1.00 × 108 M-1 s-1 for reactions performed in low ionic strength aqueous solutions (freshwater) at 22 °C. Furthermore, corrections are provided that should be applied when working at higher or lower temperatures, and/or at high salt concentrations (seawater).
Collapse
Affiliation(s)
- Elena Appiani
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
41
|
Ren D, Huang B, Yang B, Pan X, Dionysiou DD. Mitigating 17α-ethynylestradiol water contamination through binding and photosensitization by dissolved humic substances. JOURNAL OF HAZARDOUS MATERIALS 2017; 327:197-205. [PMID: 28068644 DOI: 10.1016/j.jhazmat.2016.12.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/25/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
Photodegradation is an important abiotic pathway transforming organic pollutants in natural waters. Humic substances (HS), including humic and fulvic acids, are capable of accelerating the photodegradation of steroid estrogens. However, how the photodegradtion of the emerging pollutants influenced by HS is not clear. Thus, we studied the roles and mechanisms of HS in inducing the photodegradation of 17α-ethynylestradiol (EE2). HS generally induces EE2 photodegradation through binding and reactive species generation. Apart from hydroxyl radical (HO), the excited triplets of humic substances (3HS*) are other key reactive species degrading EE2 by abstracting electrons. HO and 3HS* were responsible for about 60% of the overall EE2 photodegradation at 250μmol HS L-1. Most of EE2 molecules bound to the HS via H-bonding, π-π and hydrophobic interactions. The binding role of HS in promoting EE2 photodegradation was rationalized by 17β-estradiol competitive binding with EE2 to the humic and fulvic acids. Furthermore, HS-promoted photodegradation can alter EE2 toxicity to wheat, rice and Ormosia plants. This study extends our knowledge on the photochemical behaviors and ecological risks of steroid estrogens in natural waters.
Collapse
Affiliation(s)
- Dong Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Benqin Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
42
|
Lundeen RA, Chu C, Sander M, McNeill K. Photooxidation of the Antimicrobial, Nonribosomal Peptide Bacitracin A by Singlet Oxygen under Environmentally Relevant Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8586-8595. [PMID: 27128169 DOI: 10.1021/acs.est.6b01131] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bacitracin is a mixture of nonribosomal peptides (NRPs) that is extensively used as an antibiotic in both human and veterinary medicine. Despite its widespread use over the past six decades, very few studies have addressed the environmental fate of bacitracin and zinc-bacitracin complexes. In this study, the photochemical transformation of bacitracin components (i.e., cyclic dodecapeptides) in the aquatic environment was investigated. A high resolution mass spectrometry (HRMS)-based approach enabled monitoring of the photochemical degradation kinetics of individual bacitracin components, investigation of the relative contribution of reactive oxygen species (e.g., singlet oxygen, (1)O2) in dissolved organic matter-sensitized photoreactions, and identification of oxidative modifications in bacitracin photoproducts. The results of this study support the hypothesis that indirect photochemical oxidation of the histidine (His) residue by (1)O2 is a major degradation pathway for bacitracin A, the most potent congener of the mixture. Furthermore, the photooxidation rate of bacitracin A with (1)O2 decreased upon bacitracin A coordination with Zn(2+), demonstrating that the photochemistry of metal-bound His is different from that of metal-free His. Overall, these results provide insight into the fate of bacitracin components in the aquatic environment and highlight the potential of utilizing this HRMS-based methodology to study transformations of other environmentally relevant NRPs.
Collapse
Affiliation(s)
- Rachel A Lundeen
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
| | - Chiheng Chu
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
| | - Michael Sander
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
| |
Collapse
|
43
|
Chu C, Erickson PR, Lundeen RA, Stamatelatos D, Alaimo PJ, Latch DE, McNeill K. Photochemical and Nonphotochemical Transformations of Cysteine with Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6363-6373. [PMID: 27172378 DOI: 10.1021/acs.est.6b01291] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cysteine (Cys) plays numerous key roles in the biogeochemistry of natural waters. Despite its importance, a full assessment of Cys abiotic transformation kinetics, products and pathways under environmental conditions has not been conducted. This study is a mechanistic evaluation of the photochemical and nonphotochemical (dark) transformations of Cys in solutions containing chromophoric dissolved organic matter (CDOM). The results show that Cys underwent abiotic transformations under both dark and irradiated conditions. Under dark conditions, the transformation rates of Cys were moderate and were highly pH- and temperature-dependent. Under UVA or natural sunlight irradiations, Cys transformation rates were enhanced by up to two orders of magnitude compared to rates under dark conditions. Product analysis indicated cystine and cysteine sulfinic acid were the major photooxidation products. In addition, this study provides an assessment of the contributions of singlet oxygen, hydroxyl radical, hydrogen peroxide, and triplet dissolved organic matter to the CDOM-sensitized photochemical oxidation of Cys. The results suggest that another unknown pathway was dominant in the CDOM-sensitized photodegradation of Cys, which will require further study to identify.
Collapse
Affiliation(s)
- Chiheng Chu
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
| | - Paul R Erickson
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
| | - Rachel A Lundeen
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
| | - Dimitrios Stamatelatos
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
| | - Peter J Alaimo
- Department of Chemistry, Seattle University , Seattle, Washington 98122, United States
| | - Douglas E Latch
- Department of Chemistry, Seattle University , Seattle, Washington 98122, United States
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
| |
Collapse
|
44
|
Li R, Zhao C, Yao B, Li D, Yan S, O'Shea KE, Song W. Photochemical Transformation of Aminoglycoside Antibiotics in Simulated Natural Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2921-2930. [PMID: 26886506 DOI: 10.1021/acs.est.5b05234] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Aminoglycoside antibiotics are widely used in human therapy and veterinary medicine. We report herein a detailed study on the natural-organic-matter- (NOM-) photosensitized degradation of aminoglycosides in aqueous media under simulated solar irradiation. It appears that the direct reaction of the excited states of NOM ((3)NOM*) with aminoglycosides is minor. The contributions of reactive oxygen species (ROSs) in the bulk solutions are also unimportant, as determined by an assessment based on steady-state concentrations and bimolecular reaction rate constants in a homogeneous reaction model. The inhibition of the photodegradation by isopropamide is rationalized through competitive sorption with aminoglycosides on the NOM surface, whereas the addition of isopropanol negligibly affects degradation because it quenches HO(•) in the bulk solution but not HO(•) localized on the NOM surface where aminoglycosides reside. Therefore, a sorption-enhanced phototransformation mechanism is proposed. The sorption of aminoglycosides on NOM follows a dual-mode model involving Langmuir and linear isotherms. The steady-state concentration of HO(•) on the surface of NOM was calculated as 10(-14) M, 2 orders of magnitude higher than that in the bulk solution. This fundamental information is important in the assessment of the fate and transport of aminoglycosides in aqueous environments.
Collapse
Affiliation(s)
- Rui Li
- Department of Environmental Science & Engineering, Fudan University , Shanghai 200433, China
| | - Cen Zhao
- Department of Chemistry & Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Bo Yao
- Department of Environmental Science & Engineering, Fudan University , Shanghai 200433, China
| | - Dan Li
- Department of Environmental Science & Engineering, Fudan University , Shanghai 200433, China
| | - Shuwen Yan
- Department of Environmental Science & Engineering, Fudan University , Shanghai 200433, China
| | - Kevin E O'Shea
- Department of Chemistry & Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Weihua Song
- Department of Environmental Science & Engineering, Fudan University , Shanghai 200433, China
| |
Collapse
|
45
|
Latch DE. The Role of Singlet Oxygen in Surface Water Photochemistry. SURFACE WATER PHOTOCHEMISTRY 2015. [DOI: 10.1039/9781782622154-00139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Singlet oxygen, (1O2, 1Δg), is a selective oxidant produced in sunlit surface waters. It is an electrophile produced from the quenching of excited state triplet natural organic matter (3NOM) by dissolved oxygen and it reacts with electron-rich alkenes, sulfides, and phenols. The concentration of 1O2 is high near the NOM molecules that sensitize its production and significantly decreases moving away from the NOM source. This chapter discusses the formation, quenching, reactivity, and detection of 1O2 and includes examples of surface water contaminants that react with 1O2.
Collapse
Affiliation(s)
- Douglas E. Latch
- Department of Chemistry, Seattle University 901 12th Avenue Seattle WA 98122 USA
| |
Collapse
|
46
|
Chu C, Lundeen RA, Sander M, McNeill K. Assessing the Indirect Photochemical Transformation of Dissolved Combined Amino Acids through the Use of Systematically Designed Histidine-Containing Oligopeptides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12798-12807. [PMID: 26425803 DOI: 10.1021/acs.est.5b03498] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Photooxidation is an important abiotic transformation pathway for amino acids (AAs) in sunlit waters. Although dissolved free AAs are well studied, the photooxidation of dissolved combined AAs (DCAAs) remains poorly investigated. This study is a systematic investigation of the effect of neighboring photostable AA residues (i.e., aliphatic, cationic, anionic, or aromatic residues) on the environmental indirect photochemical transformation of histidine (His) in His-containing oligopeptides. The pKa values of His residues in the studied oligopeptides were found to be between 4.3 and 8.1. Accordingly, the phototransformation rate constants of the His-containing oligopeptides were highly pH-dependent in an environmentally relevant pH range with higher reactivity for neutral His than for the protonated species. The photostable AA residues significantly modulated the photoreactivity of oligopeptides either through altering the accessibility of His to photochemically produced oxidants or through shifting the pKa values of His residues. In addition, the influence of neighboring photostable AA residues on the sorption-enhanced phototransformation of oligopeptides in solutions containing chromophoric dissolved organic matter (CDOM) was assessed. The constituent photostable AA residues promoted sorption of His-containing oligopeptides to CDOM macromolecules through electrostatic attraction, hydrophobic effects, and/or low-barrier hydrogen bonds, and subsequently increased the apparent phototransformation rate constants by up to 2 orders of magnitude.
Collapse
Affiliation(s)
- Chiheng Chu
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
| | - Rachel A Lundeen
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
| | - Michael Sander
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
| |
Collapse
|