1
|
Hasani F, Baumann L. Immunotoxicity of thyroid hormone system disrupting compounds in fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 282:107309. [PMID: 40048840 DOI: 10.1016/j.aquatox.2025.107309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/19/2025] [Accepted: 03/02/2025] [Indexed: 04/05/2025]
Abstract
Endocrine disrupting compounds (EDCs) are among the most studied environmental pollutants in the field of (eco)toxicology, and different fish species are commonly used as model organisms, especially for studying reprotoxic effects. Despite the scientific and regulatory importance of EDCs, little attention has been given to their immunotoxic effects in fish. Basic knowledge and test systems for immune-related outcomes in fish are limited. For example, while the impact of estrogenic EDCs on the fish immune system has raised some attention in the last decade, thyroid hormone system disrupting compounds (THSDCs) and their impact on the fish immune system are less well studied. Thus, this literature review is aimed at describing the immunomodulatory roles of thyroid hormones (THs), as well as summarizing the existing research on the immunotoxicity of THSDCs in fish. A simplified potential adverse outcome pathway (AOP) was created, explaining the key events between THSD and lowered survival of fish experiencing pathogen infections along with chemical exposure. This AOP demonstrates that THSDCs can alter immune system functioning on a molecular, cellular, and organism level and, therefore, lead to reduced survival by lowering pathogen resistance of fish. However, available data were mainly limited to molecular analyses of immune-related biomarkers and included only few studies that conducted experiments demonstrating immunotoxic effects at organism level that can inform about population-relevant outcomes. Our putatively developed and simplified AOP can support the incorporation of immune-related endpoints in EDC testing guidelines and aid the development of risk assessments for THSDCs for human and environmental health.
Collapse
Affiliation(s)
- Florentina Hasani
- Amsterdam University College, Science Park 113, Amsterdam 1098 XG, the Netherlands; Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment, Section Environmental Health & Toxicology, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands
| | - Lisa Baumann
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment, Section Environmental Health & Toxicology, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands.
| |
Collapse
|
2
|
Zhang L, Yao T, Luo J, Yi H, Han X, Pan W, Xue Q, Liu X, Fu J, Zhang A. ChemNTP: Advanced Prediction of Neurotoxicity Targets for Environmental Chemicals Using a Siamese Neural Network. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22646-22656. [PMID: 39661815 DOI: 10.1021/acs.est.4c10081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Environmental chemicals can enter the human body through various exposure pathways, potentially leading to neurotoxic effects that pose significant health risks. Many such chemicals have been identified as neurotoxic, but the molecular mechanisms underlying their toxicity, including specific binding targets, remain unclear. To address this, we developed ChemNTP, a predictive model for identifying neurotoxicity targets of environmental chemicals. ChemNTP integrates a comprehensive representation of chemical structures and biological targets, improving upon traditional methods that are limited to single targets and mechanisms. By leveraging these structural representations, ChemNTP enables rapid screening across 199 potential neurotoxic targets or key molecular initiating events (MIEs). The model demonstrates robust predictive performance, achieving an area under the receiver operating characteristic curve (AUCROC) of 0.923 on the test set. Additionally, ChemNTP's attention mechanism highlights critical residues in binding targets and key functional groups or atoms in molecules, offering insights into the structural basis of interactions. Experimental validation through in vitro enzyme activity assays and molecular docking confirmed the binding of eight polybrominated diphenyl ethers (PBDEs) to acetylcholinesterase (AChE). We also provide a user-friendly software interface to facilitate the rapid identification of neurotoxicity targets for emerging environmental pollutants, with potential applications in studying MIEs for more types of toxicity.
Collapse
Affiliation(s)
- Lingjing Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Tingji Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jiaqi Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Hang Yi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Xiaoxiao Han
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Xian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310012, P. R. China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, P.R. China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310012, P. R. China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, P.R. China
| |
Collapse
|
3
|
Dong M, Yang Z, Gao Q, Deng Q, Li L, Chen H. Protective Effects of Isoliquiritigenin and Licochalcone B on the Immunotoxicity of BDE-47: Antioxidant Effects Based on the Activation of the Nrf2 Pathway and Inhibition of the NF-κB Pathway. Antioxidants (Basel) 2024; 13:445. [PMID: 38671893 PMCID: PMC11047486 DOI: 10.3390/antiox13040445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
2,2',4,4'-Tetrabrominated biphenyl ether (BDE-47) is a polybrominated diphenyl ether (PBDE) homologue that is ubiquitous in biological samples and highly toxic to humans and other organisms. Prior research has confirmed that BDE-47 can induce oxidative damage in RAW264.7 cells, resulting in apoptosis and impaired immune function. The current study mainly focused on how Isoliquiritigenin (ISL) and Licochalcone B (LCB) might protect against BDE-47's immunotoxic effects on RAW264.7 cells. The results show that ISL and LCB could increase phagocytosis, increase the production of MHC-II, and decrease the production of inflammatory factors (TNF-α, IL-6, and IL-1β) and co-stimulatory factors (CD40, CD80, and CD86), alleviating the immune function impairment caused by BDE-47. Secondly, both ISL and LCB could reduce the expressions of the proteins Bax and Caspase-3, promote the expression of the protein Bcl-2, and reduce the apoptotic rate, alleviating the apoptosis initiated by BDE-47. Additionally, ISL and LCB could increase the levels of antioxidant substances (SOD, CAT, and GSH) and decrease the production of reactive oxygen species (ROS), thereby counteracting the oxidative stress induced by BDE-47. Ultimately, ISL and LCB suppress the NF-κB pathway by down-regulating IKBKB and up-regulating IκB-Alpha in addition to activating the Nrf2 pathway and promoting the production of HO-1 and NQO1. To summarize, BDE-47 causes oxidative damage that can be mitigated by ISL and LCB through the activation of the Nrf2 pathway and inhibition of the NF-κB pathway, which in turn prevents immune function impairment and apoptosis. These findings enrich the current understanding of the toxicological molecular mechanism of BDE-47 and the detoxification mechanism of licorice.
Collapse
Affiliation(s)
- Minghui Dong
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China; (M.D.); (Z.Y.); (Q.G.); (Q.D.); (L.L.)
- Pharmacology Department, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Ziying Yang
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China; (M.D.); (Z.Y.); (Q.G.); (Q.D.); (L.L.)
- Pharmacology Department, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Qian Gao
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China; (M.D.); (Z.Y.); (Q.G.); (Q.D.); (L.L.)
- Pharmacology Department, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Qingyuan Deng
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China; (M.D.); (Z.Y.); (Q.G.); (Q.D.); (L.L.)
- Pharmacology Department, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Le Li
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China; (M.D.); (Z.Y.); (Q.G.); (Q.D.); (L.L.)
- Pharmacology Department, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Hongmei Chen
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China; (M.D.); (Z.Y.); (Q.G.); (Q.D.); (L.L.)
- Pharmacology Department, School of Pharmacy, Shihezi University, Shihezi 832002, China
| |
Collapse
|
4
|
Messina CM, Manuguerra S, Arena R, Espinosa-Ruiz C, Curcuraci E, Esteban MA, Santulli A. Contaminant-induced oxidative stress underlies biochemical, molecular and fatty acid profile changes, in gilthead seabream (Sparus aurata L.). Res Vet Sci 2023; 159:244-251. [PMID: 37178628 DOI: 10.1016/j.rvsc.2023.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/29/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Chemical contaminants such as heavy metals, polybrominated diphenyl ethers (PBDEs) and drugs, are constantly found in the marine environment determining the interest of the scientific community for their side effects on animal welfare, food safety and security. Few studies have analyzed the effects of mix of contaminants in fish, in terms of molecular and nutritional composition response, beside it is indispensable to think more and more on effect of contaminants along the food web system. In this study, Sparus aurata specimens were exposed for 15 days, by diet, to a mixture of carbamazepine (Cbz), polybrominated diphenyl ether-47 (PBDE-47) and cadmium chloride (CdCl2), at two doses (0.375 μg g-1 D1; 37.5 μg g-1 D2) (T15). After, fish were fed with a control diet, without contaminants mix, for other 15 days (T30). The study explored the effect on oxidative stress in the liver, analyzing specific molecular markers and effects on quality, by fatty acid profile and lipid peroxidation. Molecular markers involved in ROS scavenging, such as superoxide dismutase (sod), catalase (cat) and glutathione peroxidase (gpx) were evaluated by gene expression; as markers of quality and lipid peroxidation, the fatty acids (FAs) profile and the level of malondyaldeide (MDA) were assessed. Sod and cat genes underwent to up-regulation after 15 days of diet containing contaminants and showed down-regulation after the next 2 weeks of detoxification (T30). At T15, the FAs profile showed an increase of the saturated fatty acids (SFA), and a decrease of the polyunsatured fatty acids (PUFA). The MDA levels increased over time, indicating an ongoing radical damage. These results suggest that the effects of the contaminants can be perceived not only at molecular but also at nutritional level and that the molecular and biochemical markers adopted could be differently used to monitor the health of aquatic organisms in the marine environment.
Collapse
Affiliation(s)
- Concetta Maria Messina
- Department of Earth and Marine Sciences DiSTeM, Laboratory of Marine Biochemistry and Ecotoxicology, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy.
| | - Simona Manuguerra
- Department of Earth and Marine Sciences DiSTeM, Laboratory of Marine Biochemistry and Ecotoxicology, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy
| | - Rosaria Arena
- Department of Earth and Marine Sciences DiSTeM, Laboratory of Marine Biochemistry and Ecotoxicology, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy
| | - Cristobal Espinosa-Ruiz
- Department of Earth and Marine Sciences DiSTeM, Laboratory of Marine Biochemistry and Ecotoxicology, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - Eleonora Curcuraci
- Department of Earth and Marine Sciences DiSTeM, Laboratory of Marine Biochemistry and Ecotoxicology, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy
| | - María Angeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - Andrea Santulli
- Department of Earth and Marine Sciences DiSTeM, Laboratory of Marine Biochemistry and Ecotoxicology, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; Istituto di Biologia Marina, Consorzio Universitario della Provincia di Trapani, Via G. Barlotta 4, 91100 Trapani, Italy
| |
Collapse
|
5
|
Zhang L, Yan S, Hong X, Zhao G, Zha J. Integrative time series of cellular, humoral and molecular response revealed immunotoxicity of bifenthrin to Chinese rare minnow (Gobiocypris rarus) following Pseudomonas fluorescens challenge. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106427. [PMID: 36805112 DOI: 10.1016/j.aquatox.2023.106427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Bifenthrin is a common pesticide that is widespread in aquatic environments. Although it has been shown to be toxic to aquatic organisms, its immunotoxicity and mechanism are unclear. Herein, we reported the immunotoxicity of bifenthrin on adult Chinese rare minnow (Gobiocypris rarus) after 28 days of exposure to different concentrations of bifenthrin (0.1, 0.3, and 1.0 μg/L) and 36-h Pseudomonas fluorescens challenge. Bifenthrin inhibited the fish humoral immune response to bacteria by altering the lymphocyte and neutrophil ratios and decreasing the production of lysozyme, complement component 3, immunoglobulin M, and C-reactive protein, particularly were 1.0 μg/L. Bifenthrin caused intestinal damage and significantly reduced the volume of intestinal mucus at 12 and 36 hours postinjection (hpi) (p < 0.05). Moreover, 1.0 μg/L bifenthrin significantly increased the fish mortality and bacterial loads at 12 and 36 hpi (p < 0.05). RNA-seq analysis revealed several enriched genes involved in pathogen attachment and recognition, inflammatory responses, and complement system at the early-to-mid stage of infection (4-12 hpi). Overall, our results corroborated that bifenthrin induced immunotoxicity in Gobiocypris rarus, resulting in immune dysfunction of fish and increasing their sensitivity to bacterial infection and accelerating mortality. Moreover, 4-12 hpi was better than 36 hpi for analyzing immune responses against pathogen infection in fish exposed to bifenthrin.
Collapse
Affiliation(s)
- Le Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Gaofeng Zhao
- Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing, 100081, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Zhang L, Hong X, Yan S, Zha J. Environmentally relevant concentrations of fenvalerate induces immunotoxicity and reduces pathogen resistance in Chinese rare minnow (Gobiocypris rarus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156347. [PMID: 35671856 DOI: 10.1016/j.scitotenv.2022.156347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Fenvalerate is a broadly used type II pyrethroid with a potential toxic effect in fish. However, information on the immunotoxicity of fenvalerate in fish is scarce. Here, to discover the immunotoxicity of fenvalerate and its underlying mechanism in fish, adult Chinese rare minnow was exposed to fenvalerate at 0, 0.3, 1, and 3 μg/L for 28 days and then subjected to Pseudomonas fluorescens (P. fluorescens) challenge. Fenvalerate induced significant pathological changes, with disintegration of cell boundaries in the intestine, epithelial hyperplasia in gills, and vacuolation of hepatocytes at 3 μg/L treatment. Additionally, the pathological characteristics were more serious during P. fluorescens infection after fenvalerate exposure. A significant increase in neutrophil counts was observed after 3 μg/L fenvalerate exposure for 28 days (p < 0.05), whereas significantly increased monocyte and neutrophil counts and greatly decreased lymphocyte counts were detected at 24 h post-injection (hpi) with P. fluorescens (p < 0.05). Furthermore, obvious decreases in LYS, IgM, ALP, and C3 levels were detected in plasma after 3 μg/L fenvalerate exposure for 28 days, which was consistent with the results at 24 and 48 hpi. Notably, fish exposed to fenvalerate suppressed the transcription of TLR-NF-κB signaling pathway-relevant genes in response to P. fluorescens, accompanied by high mortalities and bacterial loads. Therefore, our results demonstrate that fenvalerate at environmentally relevant concentrations caused immunotoxicity in fish. This study highlights the importance of considering the combined effects of chemicals and pathogens to refine our ability to predict the effects of environmental contaminants on aquatic organisms.
Collapse
Affiliation(s)
- Le Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Song JY, Kitamura SI, Oh MJ, Nakayama K. Heavy oil exposure suppresses antiviral activities in Japanese flounder Paralichthys olivaceus infected with viral hemorrhagic septicemia virus (VHSV). FISH & SHELLFISH IMMUNOLOGY 2022; 124:201-207. [PMID: 35378310 DOI: 10.1016/j.fsi.2022.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/23/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
A combined treatment of heavy oil (HO) exposure and virus infection induces increased mortality in Japanese flounder (Paralichthys olivaceus). In this study, we addressed how HO exposure affects the immune system, especially antiviral activities, in Japanese flounder. The fish were infected with viral hemorrhagic septicemia virus (VHSV), followed by exposure to HO. We analyzed virus titers in the heart and mRNA expression in the kidney of surviving fish. The virus titers in fish exposed to heavy oil were higher than the threshold for onset. The results suggest that HO exposure may allow the replication of VHSV, leading to higher mortality in the co-treated group. Gene-expression profiling demonstrated that the expression of antiviral-activity-related genes, such as those for interferon and apoptosis induction, were lower in the co-treated group than in the group with VHSV infection only. These results helped explain the high virus titers in fish treated with both stressors. Thus, interferon production in the virus-infected cells and apoptosis induction by natural killer cells worked normally in the VHSV-infected fish without HO exposure, but these antiviral activities were slightly suppressed by HO exposure, possibly leading to extensive viral replication in the host cells and the occurrence of VHS.
Collapse
Affiliation(s)
- Jun-Young Song
- Pathology Division, National Institute of Fisheries Science, Busan, 46083, South Korea
| | - Shin-Ichi Kitamura
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, 790-8577, Japan
| | - Myung-Joo Oh
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59626, South Korea
| | - Kei Nakayama
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, 790-8577, Japan.
| |
Collapse
|
8
|
Beltrán EM, González-Doncel M, García-Mauriño JE, Hortigüela PG, Pablos MV. Effects of life cycle exposure to dietary 2,2', 4,4'-tetrabromodiphenyl ether (BDE-47) on medaka fish (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106133. [PMID: 35279506 DOI: 10.1016/j.aquatox.2022.106133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/08/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Previous studies conducted in our laboratory, which resorted to 40-day oral exposures to BDE-47 in specific developmental windows of medaka (Oryzias latipes) did not evidence effects on growing or breeding periods. In this new study, full life cycle (i.e. 140-day) dietary exposure to 1000 ng of BDE-47/g was performed with medaka to evaluate effects on growth and reproduction (i.e. fecundity, fertility, hatchability), and to analyze the bioacumulated BDE-47 in and transferred to offspring. No significant effects were observed for the biometric analyses during the growth and maturation periods and no biased sex ratios were found. Reproductive capacity was not affected by the presence of BDE-47 in diet. There was no evidence for apparent effects from parental exposure during embryo and eleutheroembryo development. The analytical results revealed steady BDE-47 bioaccumulation during the growing period, which remained in the reproductive phase in males, and a decreasing tendency was noted in females. These lowering BDE-47 levels in females coincided with the detected BDE-47 levels offloaded in embryos. In the 10-day-old post-hatch larvae, the BDE-47 concentrations dropped to comparatively lower values than the concentrations detected in parents. This finding suggests an efficient metabolic process in the eleutheroembryonic and post-eleutheroembryonic phases. Our 140-day dietary approach found no BDE-47 effects on medaka growth and reproduction, or in early progeny stages despite effective bioaccumulation and maternal transfer.
Collapse
Affiliation(s)
- Eulalia María Beltrán
- Laboratory of Ecotoxicology, Department of the Environment, National Institute for Agricultural and Food Research and Technology (INIA-CSIC), A-6, Km. 7.5, E-28040 Madrid, Spain.
| | - Miguel González-Doncel
- Laboratory of Ecotoxicology, Department of the Environment, National Institute for Agricultural and Food Research and Technology (INIA-CSIC), A-6, Km. 7.5, E-28040 Madrid, Spain
| | - José Enrique García-Mauriño
- Department of Cell Biology, School of Medicine, Complutense University, Ciudad Universitaria, E- 28040 Madrid, Spain
| | - Pilar García Hortigüela
- Laboratory of Ecotoxicology, Department of the Environment, National Institute for Agricultural and Food Research and Technology (INIA-CSIC), A-6, Km. 7.5, E-28040 Madrid, Spain
| | - María Victoria Pablos
- Laboratory of Ecotoxicology, Department of the Environment, National Institute for Agricultural and Food Research and Technology (INIA-CSIC), A-6, Km. 7.5, E-28040 Madrid, Spain
| |
Collapse
|
9
|
Evaluation of an in vitro assay to screen for the immunotoxic potential of chemicals to fish. Sci Rep 2021; 11:3167. [PMID: 33542403 PMCID: PMC7862612 DOI: 10.1038/s41598-021-82711-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
A wide variety of environmental contaminants has been shown to disrupt immune functions of fish and may compromise their defense capability against pathogens. Immunotoxic effects, however, are rarely considered in ecotoxicological testing strategies. The aim of this study was to systematically evaluate the suitability of an in vitro immuno-assay using selected fish immune parameters to screen for chemicals with known immunotoxic potential and to differentiate them from non-immunotoxicants. Non-stimulated and lipopolysaccharide-stimulated head kidney leukocytes of rainbow trout (Oncorhynchus mykiss) were exposed for 3 h or 19 h to chemicals with different modes of action. As immune parameters, phagocytosis activity, oxidative burst activity and cytokine transcription (IL-1β, TNFα, IL-10) were examined, accompanied by in silico modelling. The immunotoxicants dexamethasone, benzo(a)pyrene, ethinylestradiol and bisphenol A significantly altered the immune parameters at non-cytotoxic concentrations whereas diclofenac had only weak effects. However, the two baseline chemicals with no known immunotoxic potential, butanol and ethylene glycol, caused significant effects, too. From our results it appears that the in vitro fish leukocyte assay as performed in the present study has only a limited capacity for discriminating between immunotoxicants and non-immunotoxicants.
Collapse
|
10
|
Zheng S, Huang W, Liu C, Xiao J, Wu R, Wang X, Cai Z, Wu K. Behavioral change and transcriptomics reveal the effects of 2, 2', 4, 4'-tetrabromodiphenyl ether exposure on neurodevelopmental toxicity to zebrafish (Danio rerio) in early life stage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141783. [PMID: 32890828 DOI: 10.1016/j.scitotenv.2020.141783] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 02/05/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of widely used flame retardants, and their residue in the environment may threaten the ecosystem and human health. The neurodevelopmental toxic effects of PBDEs have been verified in previous studies, but the mechanisms are still unclear. Behavioral analysis and transcriptomics were performed in this study to assess the neurodevelopmental toxic effects of PBDEs on zebrafish embryos and larvae, and the potential mechanisms. The embryos were collected after fertilization and exposed to control (0.05% DMSO), 10, 50, 100 (ug/L) 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) for 7 days. The locomotion parameters of larvae were recorded and analyzed by a behavioral analysis system (EthoVision XT, Noldus). Enrichment of functions and signaling pathways of differentially expressed genes (DEGs) were analyzed by GO and DAVID database. The comparison with the control group showed adverse developments such as low hatching rate, high mortality rate, alterative heart rate, and abnormal spontaneous tail coiling frequency of embryos (24hpf). For the zebrafish larvae, behavioral analyses results suggested decreased activities and movements of the treatment in the light-dark period at 120, 144 and 168hpf, especially the 50 and 100μg/L groups. The affected functions included steroid hormone regulation, neuro regulation, circadian regulation, cardioblast differentiation, immune-related regulation. The enrichment of KEGG pathways were Hedgehog signaling (Shh), Toll-like receptor signaling, FoxO signaling, and Steroid biosynthesis pathway. Hedgehog signaling pathway was further verified via RT-qPCR for its major role in the development of neurogenesis. The mRNA levels of Shh pathway indicated the inhibition of Shh signal in our study since shha, patched1, gli1 and gli2 genes were significantly down-regulated. In summary, PBDEs might influence the neurodevelopment of zebrafish in the early life stage by multiple toxic signaling pathways alteration.
Collapse
Affiliation(s)
- Shukai Zheng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wenlong Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Caixia Liu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jiefeng Xiao
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Ruotong Wu
- School of Life Science, Xiamen University, Xiamen 361102, Fujian, China
| | - Xin Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zemin Cai
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
11
|
Maddela NR, Venkateswarlu K, Kakarla D, Megharaj M. Inevitable human exposure to emissions of polybrominated diphenyl ethers: A perspective on potential health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115240. [PMID: 32698055 DOI: 10.1016/j.envpol.2020.115240] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 05/24/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) serve as flame retardants in many household materials such as electrical and electronic devices, furniture, textiles, plastics, and baby products. Though the use of PBDEs like penta-, octa- and deca-BDE greatly reduces the fire damage, indoor pollution by these toxic emissions is ever-growing. In fact, a boom in the global market projections of PBDEs threatens human health security. Therefore, efforts are made to minimize PBDEs pollution in USA and Europe by encouraging voluntary phasing out of the production or imposing compelled regulations through Stockholm Convention, but >500 kilotons of PBDEs still exist globally. Both 'environmental persistence' and 'bioaccumulation tendencies' are the hallmarks of PBDE toxicities; however, both these issues concerning household emissions of PBDEs have been least addressed theoretically or practically. Critical physiological functions, lipophilicity and toxicity, trophic transfer and tissue specificities are of utmost importance in the benefit/risk assessments of PBDEs. Since indoor debromination of deca-BDE often yields many products, a better understanding on their sorption propensity, environmental fate and human toxicities is critical in taking rigorous measures on the ever-growing global deca-BDE market. The data available in the literature on human toxicities of PBDEs have been validated following meta-analysis. In this direction, the intent of the present review was to provide a critical evaluation of the key aspects like compositional patterns/isomer ratios of PBDEs implicated in bioaccumulation, indoor PBDE emissions versus human exposure, secured technologies to deal with the toxic emissions, and human toxicity of PBDEs in relation to the number of bromine atoms. Finally, an emphasis has been made on the knowledge gaps and future research directions related to endurable flame retardants which could fit well into the benefit/risk strategy.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador; Facultad la Ciencias la Salud, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, India
| | - Dhatri Kakarla
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
12
|
Thornton Hampton LM, Martyniuk CJ, Venables BJ, Sellin Jeffries MK. Advancing the fathead minnow (Pimephales promelas) as a model for immunotoxicity testing: Characterization of the renal transcriptome following Yersinia ruckeri infection. FISH & SHELLFISH IMMUNOLOGY 2020; 103:472-480. [PMID: 32439514 DOI: 10.1016/j.fsi.2020.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Recent studies have utilized the fathead minnow (Pimephales promelas) to explore the immunotoxic effects associated with a variety of environmental contaminants in the absence of immunological stimuli. Though this approach allows for alterations in the resting immune system to be detected, previous evidence suggests that many immunotoxic effects may only manifest in the activated immune system. However, basic immune responses to pathogens have not been well described in this species. To expand the utility of the fathead minnow as a model for immunotoxicity testing, a more comprehensive understanding of the activated immune system is required. As such, the main goal of this study was to characterize the transcriptomic response to pathogen infection in the fathead minnow using RNA sequencing. To achieve this goal, female fathead minnows were intraperitoneally injected with either Hank's Balanced Salt Solution (sham-injected) or Yersinia ruckeri (pathogen-injected). Eight hours following injection, fish were sacrificed for the assessment of general morphological (i.e., mass, length, condition factor, hepatic index) and immunological (i.e., leukocyte counts, spleen index) endpoints. To assess the molecular immune response to Y. ruckeri, kidney tissue was collected for transcriptomic analysis. A comparison of sham- and pathogen-injected fish revealed that >1800 genes and >500 gene networks were differentially expressed.Gene networks associated with inflammation, innate immunity, complement, hemorrhaging and iron absorption are highlighted and their utility within the context of immunotoxicity is discussed. These data reveal pathogen-related molecular endpoints to improve data interpretation of future studies utilizing the fathead minnow as a model for immunotoxicity.
Collapse
Affiliation(s)
- Leah M Thornton Hampton
- Department of Biology, Texas Christian University, Fort Worth, TX, USA; Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, USA
| | - Barney J Venables
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | | |
Collapse
|
13
|
Zhou Z, Jian X, Zhou B, Lu K, Wang Y. Changes in the immune function of rainbow trout (Oncorhynchus mykiss) provide insights into strategies against BDE-47 stress. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122212. [PMID: 32078968 DOI: 10.1016/j.jhazmat.2020.122212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are ubiquitous in marine ecosystems and have been suggested to bioaccumulate in aquatic food webs, with potentially negative impacts on marine organism. In this study, a 21-day experiment was performed under controlled laboratory conditions, in which 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), the most biotoxic PBDE in the marine environment, was fed to rainbow trout (Oncorhynchus mykiss) at concentrations of 50 and 500 ng g-1 in the diet. BDE-47 significantly decreased the specific growth rate of O. mykiss and was highly concentrated in the liver and head kidney, as evidenced by increased bioaccumulation factor (BAF) values. Tissue observation revealed impairment of the microstructure of the head kidney. Important immune factors in the skin, blood and head kidney were significantly inhibited by BDE-47 treatment (p < 0.05), whereas the respiratory burst activity of macrophages was enhanced. Additionally, immune-related genes were strongly downregulated following BDE-47 exposure (p < 0.05). In a bacterial challenge, the treatment groups had much higher mortality than did the control group (p < 0.05). BDE-47 accumulated and impaired immune organs, and the hierarchy of immune responses was impaired, consequently reducing O. mykiss resistance to pathogen invasion.
Collapse
Affiliation(s)
- Zhongyuan Zhou
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Xiaoyang Jian
- North China Sea Environmental Monitoring Centre, State Oceanic Administration, Fushun Road 22, Qingdao, 266003, China
| | - Bin Zhou
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Keyu Lu
- Department of Geography, University College London, London, WC1E 6BT, UK
| | - You Wang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
14
|
Lulijwa R, Alfaro AC, Merien F, Meyer J, Young T. Advances in salmonid fish immunology: A review of methods and techniques for lymphoid tissue and peripheral blood leucocyte isolation and application. FISH & SHELLFISH IMMUNOLOGY 2019; 95:44-80. [PMID: 31604150 DOI: 10.1016/j.fsi.2019.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Evaluating studies over the past almost 40 years, this review outlines the current knowledge and research gaps in the use of isolated leucocytes in salmonid immunology understanding. This contribution focuses on the techniques used to isolate salmonid immune cells and popular immunological assays. The paper also analyses the use of leucocytes to demonstrate immunomodulation following dietary manipulation, exposure to physical and chemical stressors, effects of pathogens and parasites, vaccine design and application strategies assessment. We also present findings on development of fish immune cell lines and their potential uses in aquaculture immunology. The review recovered 114 studies, where discontinuous density gradient centrifugation (DDGC) with Percoll density gradient was the most popular leucocyte isolation method. Fish head kidney (HK) and peripheral blood (PB) were the main sources of leucocytes, from rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Phagocytosis and respiratory burst were the most popular immunological assays. Studies used isolated leucocytes to demonstrate that dietary manipulations enhance fish immunity, while chemical and physical stressors suppress immunity. In addition, parasites, and microbial pathogens depress fish innate immunity and induce pro-inflammatory cytokine gene transcripts production, while vaccines enhance immunity. This review found 10 developed salmonid cell lines, mainly from S. salar and O. mykiss HK tissue, which require fish euthanisation to isolate. In the face of high costs involved with density gradient reagents, the application of hypotonic lysis in conjunction with mico-volume blood methods can potentially reduce research costs, time, and using nonlethal and ethically flexible approaches. Since the targeted literature review for this study retrieved no metabolomics study of leucocytes, indicates that this approach, together with traditional technics and novel flow cytometry could help open new opportunities for in vitro studies in aquaculture immunology and vaccinology.
Collapse
Affiliation(s)
- Ronald Lulijwa
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand; National Agricultural Research Organisation (NARO), Rwebitaba Zonal Agricultural Research and Development Institute (Rwebitaba-ZARDI), P. O. Box 96, Fort Portal, Uganda
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| | - Fabrice Merien
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand; AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Jill Meyer
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand; AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Tim Young
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand; The Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, New Zealand
| |
Collapse
|
15
|
Bailey C, von Siebenthal EW, Rehberger K, Segner H. Transcriptomic analysis of the impacts of ethinylestradiol (EE2) and its consequences for proliferative kidney disease outcome in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C Toxicol Pharmacol 2019; 222:31-48. [PMID: 31004835 DOI: 10.1016/j.cbpc.2019.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/19/2019] [Accepted: 04/13/2019] [Indexed: 12/11/2022]
Abstract
Freshwater fish are threatened by the cumulative impact of multiple stressors. The purpose of this study was to unravel the molecular and organism level reactions of rainbow trout, Oncorhynchus mykiss, to the combined impact of two such stressors that occur in the natural habitat of salmonids. Fish were infected with either the myxozoan parasite, Tetracapsuloides bryosalmonae, which causes proliferative kidney disease (PKD), or exposed to ethinylestradiol (EE2) an estrogenic endocrine disrupting compound, or to a combination of both (PKD × EE2). PKD is a slow progressive chronic disease here we focused on a later time point (130-day post-infection (d.p.i.)) when parasite intensity in the fish kidney has already started to decrease. At 130 d.p.i., RNA-seq technology was applied to the posterior kidney, the main target organ for parasite development. This resulted with 280 (PKD), 14 (EE2) and 444 (PKD × EE2) differentially expressed genes (DEGs) observed in the experimental groups. In fish exposed to the combination of stressors (PKD × EE2), a number of pathways were regulated that were neither observed in the single stressor groups. Parasite infection, alone and in combination with EE2, only resulted in a low intensity immune response that negatively correlated with an upregulation of genes involved in a variety of metabolic and inflammation resolution processes. This could indicate a trade-off whereby the host increases investment in recovery/resolution processes over immune responses at a later stage of disease. When PKD infection took place under simultaneous exposure to EE2 (PKD × EE2), parasite intensity decreased and pathological alterations in the posterior kidney were reduced in comparison to the PKD only condition. These findings suggest that EE2 modulated these response profiles in PKD infected fish, attenuating the disease impact on the fish.
Collapse
Affiliation(s)
- Christyn Bailey
- University of Bern, Vetsuisse Faculty, Centre for Fish and Wildlife Health, Länggassstrasse 122, CH-3012 Bern, Switzerland; Fish Immunology and Pathology Laboratory, Animal Health Research Center (CISA-INIA), Madrid, Spain.
| | - Elena Wernicke von Siebenthal
- University of Bern, Vetsuisse Faculty, Centre for Fish and Wildlife Health, Länggassstrasse 122, CH-3012 Bern, Switzerland
| | - Kristina Rehberger
- University of Bern, Vetsuisse Faculty, Centre for Fish and Wildlife Health, Länggassstrasse 122, CH-3012 Bern, Switzerland
| | - Helmut Segner
- University of Bern, Vetsuisse Faculty, Centre for Fish and Wildlife Health, Länggassstrasse 122, CH-3012 Bern, Switzerland
| |
Collapse
|
16
|
Zhang L, Zhao X, Yan S, Zha J, Ma X. The immune responses of the Chinese rare minnow (Gobiocypris rarus) exposed to environmentally relevant concentrations of cypermethrin and subsequently infected by the bacteria Pseudomonas fluorescens. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:990-997. [PMID: 31085486 DOI: 10.1016/j.envpol.2019.03.126] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
In the present study, to assess the immunotoxicity of cypermethrin (CYP) in fish, Chinese rare minnows (Gobiocypris rarus) were exposed to environmentally relevant concentrations (0.15, 0.5, and 1.5 μg/L) of CYP for 28 d and subjected to pathogen challenge trials for 2 d. After 28 d of CYP exposure, the levels of Immunoglobulin M (IgM), Alkaline phosphatase (ALP), and C-reactive protein (CRP) were significantly decreased (p < 0.05) after treatment with 1.5 μg/L CYP. Moreover, an induction of inflammatory cytokine transcripts (tnfa, il-6, il-8, and il-12) was observed (p < 0.05) after treatment with 1.5 μg/L CYP. After challenge with Pseudomonas fluorescens (P. fluorescens), plasma lysozyme (LYS) activity at 24 and 48 hours post-injection (hpi) was significantly decreased in the 0.5 and 1.5 μg/L CYP treatment groups (p < 0.05). Moreover, liver Complement component 3 (C3) and CRP contents at 24 hpi were significantly decreased in the 1.5 μg/L CYP treatment group (p < 0.05), whereas significant decreases in liver C3 and IgM contents were observed at 48 hpi (p < 0.05). Inhibition of expression of Toll-like receptor-nuclear factor kappa B (TLR-NF-kB) signaling pathway-related genes was observed in the CYP treatment groups and resulted in significant down-regulation of inflammatory cytokines (il-1β and il-12) in the 1.5 μg/L CYP treatment group at 48 hpi (p < 0.05). Interestingly, the mortality in the 0.5 and 1.5 μg/L CYP treatments was significantly increased at 48 hpi (p < 0.05). These results indicated that environmentally relevant concentrations of CYP suppressed the Chinese rare minnow immune system and reduced immune defense against bacterial infection, thereby causing subsequent mortality. Meanwhile, our results demonstrated that a subsequent host resistance challenge is an effective method for determining the immunotoxicity of chemicals (e.g., CYP).
Collapse
Affiliation(s)
- Le Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xu Zhao
- South China Institute of Environmental Sciences, Ministry of Environmental Protection of the People's Republic of China, Guangzhou, 510655, China
| | - Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Xufa Ma
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China.
| |
Collapse
|
17
|
Arkoosh MR, Van Gaest AL, Strickland SA, Hutchinson GP, Krupkin AB, Hicks MBR, Dietrich JP. Dietary exposure to a binary mixture of polybrominated diphenyl ethers alters innate immunity and disease susceptibility in juvenile Chinook salmon (Oncorhynchus tshawytscha). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:96-103. [PMID: 30041130 DOI: 10.1016/j.ecoenv.2018.07.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) have been used as flame retardants in consumer products and are now found in the aquatic environment. The presence of PBDEs puts the health and survival of aquatic species at risk due to the various toxic effects associated with exposure to these compounds. The effects of a binary dietary mixture of PBDEs on innate immunity and disease susceptibility of juvenile Chinook salmon (Oncorhynchus tshawytscha) were examined in the present study. Salmon were fed roughly 1:1 mixtures of two environmentally predominant PBDE congeners, BDE-47 and BDE-99. The six resulting whole body total PBDE concentrations ranged from less than the limit of quantification to 184 ng/g, wet weight (ww). The innate immune system was assessed by using two in vitro macrophage function assays. Specifically, assays that examined the ability of head kidney macrophages to: (1) engulf sheep red blood cells (SRBCs); and (2) produce a respiratory burst, as determined by the production of a reactive oxygen species, superoxide anion. Macrophages from salmon fed the BDE-47/99 mixture diets engulfed more SRBCs and produced greater superoxide anion than salmon fed the control diet. An increase in macrophage function was observed in fish with whole body total PBDE concentrations ranging from 2.81 ng/g, ww to 184 ng/g, ww. The mechanism for this increase in macrophage function due to PBDE exposure is currently unknown, but may be due to the ability of PBDEs to act as an endocrine receptor agonist and/or antagonist. Salmon exposed to the BDE-47/99 mixture diets were also challenged with the pathogenic bacteria, Vibrio (Listonella) anguillarum to determine disease susceptibility. Kaplan-Meier survival curves of fish exposed to the BDE-47/99 mixture and control diets were significantly different. The Cox proportional hazard risk ratios of disease-induced mortality in juvenile Chinook salmon with whole body concentrations of total PBDEs of 10.9, 36.8, and 184 ng/g, ww were significantly greater than the fish fed the control diet by 1.56, 1.83 and 1.50 times, respectively. Not all concentrations of the binary mixture diets had significant hazard ratios relative to the control diet, due to a non-monotonic concentration response curve. The mixture of PBDE congeners resulted in interactive effects that were generally non-additive and dependent upon the congener concentrations and metric examined. Consequently, predicting the interactive effects in juvenile Chinook salmon exposed to mixtures of PBDE congeners on innate immunity and disease susceptibility cannot be readily determined from the adverse effects of individual PBDE congeners.
Collapse
Affiliation(s)
- Mary R Arkoosh
- Environmental & Fisheries Sciences Division, Northwest Fisheries Science Center National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2032 South East OSU Drive, Newport, OR 97365, USA.
| | - Ahna L Van Gaest
- Frank Orth & Associates, Under Contract to Northwest Fisheries Science Center National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2032 South East OSU Drive, Newport, OR 97365, USA.
| | - Stacy A Strickland
- Frank Orth & Associates, Under Contract to Northwest Fisheries Science Center National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2032 South East OSU Drive, Newport, OR 97365, USA.
| | - Greg P Hutchinson
- Frank Orth & Associates, Under Contract to Northwest Fisheries Science Center National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2032 South East OSU Drive, Newport, OR 97365, USA.
| | - Alex B Krupkin
- Frank Orth & Associates, Under Contract to Northwest Fisheries Science Center National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2032 South East OSU Drive, Newport, OR 97365, USA.
| | - Mary Beth Rew Hicks
- Lynker Technologies, Under Contract to Northwest Fisheries Science Center National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2032 South East OSU Drive, Newport, OR 97365, USA.
| | - Joseph P Dietrich
- Environmental & Fisheries Sciences Division, Northwest Fisheries Science Center National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2032 South East OSU Drive, Newport, OR 97365, USA.
| |
Collapse
|
18
|
Bailey C, Rubin A, Strepparava N, Segner H, Rubin JF, Wahli T. Do fish get wasted? Assessing the influence of effluents on parasitic infection of wild fish. PeerJ 2018; 6:e5956. [PMID: 30479904 PMCID: PMC6238765 DOI: 10.7717/peerj.5956] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022] Open
Abstract
Many ecosystems are influenced simultaneously by multiple stressors. One important environmental stressor is aquatic pollution via wastewater treatment plant (WWTP) effluents. WWTP effluents may contribute to eutrophication or contain anthropogenic contaminants that directly and/or indirectly influence aquatic wildlife. Both eutrophication and exposure to anthropogenic contaminants may affect the dynamics of fish-parasite systems. With this in mind, we studied the impact of WWTP effluents on infection of brown trout by the parasite Tetracapsuloides bryosalmonae, the causative agent of proliferative kidney disease (PKD). PKD is associated with the long-term decline of wild brown trout (Salmo trutta) populations in Switzerland. We investigated PKD infection of brown trout at two adjacent sites (≈400 m apart) of a Swiss river. The sites are similar in terms of ecology except that one site receives WWTP effluents. We evaluated the hypothesis that fish inhabiting the effluent site will show greater susceptibility to PKD in terms of prevalence and disease outcome. We assessed susceptibility by (i) infection prevalence, (ii) parasite intensity, (iii) host health in terms of pathology, and (iv) estimated apparent survival rate. At different time points during the study, significant differences between sites concerning all measured parameters were found, thus providing evidence of the influence of effluents on parasitic infection of fish in our study system. However, from these findings we cannot determine if the effluent has a direct influence on the fish host via altering its ability to manage the parasite, or indirectly on the parasite or the invertebrate host via increasing bryozoa (the invertebrate host) reproduction. On a final note, the WWTP adhered to all national guidelines and the effluent only resulted in a minor water quality reduction assessed via standardized methods in this study. Thus, we provide evidence that even a subtle decrease in water quality, resulting in small-scale pollution can have consequences for wildlife.
Collapse
Affiliation(s)
- Christyn Bailey
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | - Aurélie Rubin
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland.,University of Applied Sciences, Hepia, Geneva, Switzerland
| | - Nicole Strepparava
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | - Helmut Segner
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | - Jean-François Rubin
- University of Applied Sciences, Hepia, Geneva, Switzerland.,Maison de la Rivière, Tolochenaz, Switzerland
| | - Thomas Wahli
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Thornton LM, Path EM, Nystrom GS, Venables BJ, Sellin Jeffries MK. Embryo-larval BDE-47 exposure causes decreased pathogen resistance in adult male fathead minnows (Pimephales promelas). FISH & SHELLFISH IMMUNOLOGY 2018; 80:80-87. [PMID: 29859315 DOI: 10.1016/j.fsi.2018.05.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/12/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Exposures to polybrominated diphenyl ethers (PBDEs) have been shown to alter immune function in adult organisms across a variety of taxa. However, few if any studies have investigated the long-term consequences of early life stage PBDE exposures on immune function in fish. This study sought to determine the effects of early life stage BDE-47 exposure on pathogen resistance in the fathead minnow (Pimephales promelas) following an extended depuration period (≥180 d). Minnows were exposed to BDE-47 via a combination of maternal transfer and diet through 34 days post fertilization (dpf), raised to adulthood (>215 dpf) on a clean diet, then subjected to pathogen resistance trials. Early life stage exposures to BDE-47 did not affect the ability of females to survive from Yersinia ruckeri infection. However, the survival of BDE-47 exposed males was significantly reduced relative to controls, indicating that developmental exposures to BDE-47 altered male immunity. Because BDE-47 is a known thyroid hormone disruptor and thyroid hormone disruptors have the potential to adversely impact immune development and function, metrics indicative of thyroid disruption were evaluated, as were immune parameters known to be altered in response to thyroid disruption. BDE-47 exposed minnows exhibited signs of thyroid disruption (i.e., reduced growth); however, no alterations were observed in immune parameters known to be influenced by thyroid hormones (i.e., thymus size, expression of genes associated with lymphoid development) suggesting that the observed alterations in immunocompetence may occur through alternative mechanisms. Regardless of the mechanisms responsible, the results of this study demonstrate the potential for early life stage PBDE exposures to adversely impact immunity and illustrate that the immunological consequences of PBDE exposures are sex dependent.
Collapse
Affiliation(s)
- Leah M Thornton
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA; Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Elise M Path
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA
| | - Gunnar S Nystrom
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA
| | - Barney J Venables
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | | |
Collapse
|
20
|
Su G, Letcher RJ, Farmahin R, Crump D. Photolysis of highly brominated flame retardants leads to time-dependent dioxin-responsive mRNA expression in chicken embryonic hepatocytes. CHEMOSPHERE 2018; 194:352-359. [PMID: 29220751 DOI: 10.1016/j.chemosphere.2017.11.153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/08/2017] [Accepted: 11/25/2017] [Indexed: 06/07/2023]
Abstract
Tetradecabromo-1,4-diphenoxybenzene (TeDB-DiPhOBz) and 2,2',3,3',4,4',5,5',6,6'-decabromodiphenyl ether (BDE-209) are flame retardant chemicals that can undergo photolytic degradation. The present study compared the time-dependent photolyic degradation of TeDB-DiPhOBz and BDE-209, and dioxin-like product formation as a result of (UV) irradiation (I; irradiation time periods of 0, 1, 4, 15 and 40 days). Photo-degraded product fractions of UV-I-TeDB-DiPhOBz (nominal concentration: 1.9 μM) were administered to chicken embryonic hepatocytes (CEH), and significant induction of CYP1A4/5 mRNA expression was observed for fractions collected at the day 15 and 40 time points (fold change of 7.3/3.6 and 9.1/4.7, respectively). For the UV-I-BDE-209 fractions (nominal concentration: 10 μM), significant CYP1A4/5 up-regulation occurred at all time points, and the fraction collected on day 1 induced the greatest fold change of 510/86, followed by 410/68 (day 4) and 110/26 (day 15), respectively. For the UV-I-BDE-209 fraction collected at day 40, significant CEH cytotoxicity was observed. As a result, CYP1A4/5 expression was determined at a nominal concentration of 1 μM instead of 10 μM and CYP1A4/5 fold changes of 11/8.2 (day 40) were observed. Fractions eliciting the greatest CYP1A4/5 mRNA upregulation were further screened for transcriptomic effects using a PCR array comprising 27 dioxin-responsive genes. A total of 6 and 16 of the 27 target genes were up or down-regulated following UV-I-TeDB-DiPhOBz and UV-I-BDE-209 exposure, respectively. Overall, and regardless of the formation rate, these results raise concerns regarding the potential formation of dioxin-like compounds from flame retardants in products and materials such as plastics, and in natural sunlight irradiation situations in the environment (e.g. in landfill sites or electronic waste facilities).
Collapse
Affiliation(s)
- Guanyong Su
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, K1A 0H3, Canada; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, K1A 0H3, Canada; Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada.
| | - Reza Farmahin
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, K1A 0H3, Canada; Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Doug Crump
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, K1A 0H3, Canada
| |
Collapse
|
21
|
Nakayama K, Yamashita R, Kitamura SI. Use of common carp (Cyprinus carpio) and Aeromonas salmonicida for detection of immunomodulatory effects of chemicals on fish. MARINE POLLUTION BULLETIN 2017; 124:710-713. [PMID: 28063699 DOI: 10.1016/j.marpolbul.2016.12.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
To develop a test for assessing the immunomodulatory effects of chemical pollutants on fish, we evaluated the effects of dexamethasone on the natural host-pathogen interaction between common carp (Cyprinus carpio) and Aeromonas salmonicida. Carp were exposed to 1mgL-1 dexamethasone for the entire experimental period. One week after the exposure test started, the exposed fish, as well as unexposed fish, were bath-infected with A. salmonicida. One hundred percent mortality was observed in bacteria-infected fish exposed to dexamethasone, whereas no infection-associated mortality was observed in infected fish in the absence of dexamethasone exposure. In a separate experiment, dexamethasone exposure significantly suppressed hemolytic complement activity in bacteria-infected fish. These results clearly indicate that exposure to a high concentration of dexamethasone suppressed the carp immune system and caused subsequent mortality. Thus, this proposed test method is likely to be useful for evaluating the immunomodulatory effects of chemicals in fish.
Collapse
Affiliation(s)
- Kei Nakayama
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan.
| | - Ryohei Yamashita
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Shin-Ichi Kitamura
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| |
Collapse
|
22
|
Rehberger K, Werner I, Hitzfeld B, Segner H, Baumann L. 20 Years of fish immunotoxicology - what we know and where we are. Crit Rev Toxicol 2017; 47:509-535. [PMID: 28425344 DOI: 10.1080/10408444.2017.1288024] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Despite frequent field observations of impaired immune response and increased disease incidence in contaminant-exposed wildlife populations, immunotoxic effects are rarely considered in ecotoxicological risk assessment. The aim of this study was to review the literature on immunotoxic effects of chemicals in fish to quantitatively evaluate (i) which experimental approaches were used to assess immunotoxic effects, (ii) whether immune markers exist to screen for potential immunotoxic activities of chemicals, and (iii) how predictive those parameters are for adverse alterations of fish immunocompetence and disease resistance. A total of 241 publications on fish immunotoxicity were quantitatively analyzed. The main conclusions included: (i) To date, fish immunotoxicology focused mainly on innate immune responses and immunosuppressive effects. (ii) In numerous studies, the experimental conditions are poorly documented, as for instance age or sex of the fish or the rationale for the selected exposure conditions is often missing. (iii) Although a broad variety of parameters were used to assess immunotoxicity, the rationale for the choice of measured parameters was often not given, remaining unclear how they link to the suspected immunotoxic mode of action of the chemicals. (iv) At the current state of knowledge, it is impossible to identify a set of immune parameters that could reliably screen for immunotoxic potentials of chemicals. (v) Similarly, in fish immunotoxicology there is insufficient understanding of how and when chemical-induced modulations of molecular/cellular immune changes relate to adverse alterations of fish immunocompetence, although this would be crucial to include immunotoxicity in ecotoxicological risk assessment.
Collapse
Affiliation(s)
- Kristina Rehberger
- a Centre for Fish and Wildlife Health, Vetsuisse Faculty , University of Bern , Bern , Switzerland
| | - Inge Werner
- b Swiss Centre for Applied Ecotoxicology , Dübendorf , Switzerland
| | | | - Helmut Segner
- a Centre for Fish and Wildlife Health, Vetsuisse Faculty , University of Bern , Bern , Switzerland
| | - Lisa Baumann
- a Centre for Fish and Wildlife Health, Vetsuisse Faculty , University of Bern , Bern , Switzerland
| |
Collapse
|
23
|
Yu Y, Wang M, Zhang K, Yang D, Zhong Y, An J, Lei B, Zhang X. The transepithelial transport mechanism of polybrominated diphenyl ethers in human intestine determined using a Caco-2 cell monolayer. ENVIRONMENTAL RESEARCH 2017; 154:93-100. [PMID: 28056407 DOI: 10.1016/j.envres.2016.12.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/02/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
Oral ingestion plays an important role in human exposure to polybrominated diphenyl ethers (PBDEs). The uptake of PBDEs primarily occurs in the small intestine. The aim of the present study is to investigate the transepithelial transport characteristics and mechanisms of PBDEs in the small intestine using a Caco-2 cell monolayer model. The apparent permeability coefficients of PBDEs indicated that tri- to hepta-BDEs were poorly absorbed compounds. A linear increase in transepithelial transport was observed with various concentrations of PBDEs, which suggested that passive diffusion dominated their transport at the concentration range tested. In addition, the pseudo-first-order kinetics equation can be applied to the transepithelial transport of PBDEs. The rate-determining step in transepithelial transport of PBDEs was trans-cell transport including the trans-pore process. The significantly lower transepithelial transport rates at low temperature for bidirectional transepithelial transport suggested that an energy-dependent transport mechanism was involved. The efflux transporters (P-glycoprotein, multidrug resistance-associated protein, and breast cancer resistance protein) and influx transporters (organic cation transporters) participated in the transepithelial transport of PBDEs. In addition, the transepithelial transport of PBDEs was pH sensitive; however, more information is required to understand the influence of pH.
Collapse
Affiliation(s)
- Yingxin Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Mengmeng Wang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Kaiqiong Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Dan Yang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yufang Zhong
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Jing An
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xinyu Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
24
|
Jian X, Tang X, Xu N, Sha J, Wang Y. Responses of the rotifer Brachionus plicatilis to flame retardant (BDE-47) stress. MARINE POLLUTION BULLETIN 2017; 116:298-306. [PMID: 28094042 DOI: 10.1016/j.marpolbul.2017.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
A series of short-term toxicological tests were conducted on the rotifer Brachionus plicatilis to assess the toxicity of the flame retardant 2,2',4,4'-tetrabrominated biphenyl ether (BDE-47). BDE-47 increased mortality, morphological damage, and altered population dynamics and fecundity of rotifer. Antioxidant enzymes were differentially changed to maintain the balance between antioxidant and pro-oxidant activity. However, with increases in the concentration of BDE-47, the metabolic and antioxidant activity decreased. Moreover, the reactive oxygen species (ROS) and malondialdehyde contents increased and the ratio between glutathione and glutathione-SH decreased, indicating oxidative stress. The addition of the ROS-inhibitor N-acetylcysteine alleviated the degree of damage and stimulated the activity of xenobiotic-metabolizing and antioxidant system, which suggested that ROS were the most important loop in the stress response.
Collapse
Affiliation(s)
- Xiaoyang Jian
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Ningning Xu
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Jingjing Sha
- North China Sea Environmental Monitoring Center, State Oceanic Administration, Fushun Road 22, Qingdao, Shandong Province 266033, China
| | - You Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
25
|
Arkoosh MR, Van Gaest AL, Strickland SA, Hutchinson GP, Krupkin AB, Dietrich JP. Alteration of thyroid hormone concentrations in juvenile Chinook salmon (Oncorhynchus tshawytscha) exposed to polybrominated diphenyl ethers, BDE-47 and BDE-99. CHEMOSPHERE 2017; 171:1-8. [PMID: 28006665 DOI: 10.1016/j.chemosphere.2016.12.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 05/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) have been used as flame-retardants in consumer products and are currently detected in salmon globally. The two most predominant PBDE congeners found in salmon are BDE-47 (2,2',4,4'-tetrabromodiphenyl ether) and BDE-99 (2,2',4,4',5-pentabromodiphenyl ether). In the present study, groups of juvenile Pacific Chinook salmon were fed five environmentally relevant concentrations of either BDE-47 (0.3-552 ng total PBDEs/g food), BDE-99 (0.3-580 ng total PBDEs/g food), or nearly equal mixtures of both congeners (0.7-690 ng total PBDEs/g food) for 39-40 days. The concentrations of circulating total thyroid hormones, thyroxine (T4) and 3,5,3'-triiodothyronine (T3), were measured using a hormone-specific time-resolved fluoroimmunoassay to determine if PBDE exposure disrupts the hypothalamic-pituitary-thyroid endocrine axis. The concentrations of both circulating T4 and T3 were altered in juvenile salmon by dietary uptake of BDE-99. Exposure to BDE-47 did not alter either T3 or T4 circulating hormone concentrations. However, exposure to a mixture of BDE-47 and BDE-99 reduced T3 in fish with lower concentrations of total whole body PBDEs than with either congener alone at equivalent PBDE whole body concentrations. Accordingly, the disruption of PBDEs on circulating thyroid hormone concentrations has the potential to impact a number of critical functions in juvenile salmon including growth, parr-smolt transformation, and immunological processes.
Collapse
Affiliation(s)
- Mary R Arkoosh
- Environmental & Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2032 South East OSU Drive, Newport, OR 97365, USA.
| | - Ahna L Van Gaest
- Frank Orth & Associates, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2032 South East OSU Drive, Newport, OR 97365, USA
| | - Stacy A Strickland
- Frank Orth & Associates, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2032 South East OSU Drive, Newport, OR 97365, USA
| | - Greg P Hutchinson
- Frank Orth & Associates, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2032 South East OSU Drive, Newport, OR 97365, USA
| | - Alex B Krupkin
- Frank Orth & Associates, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2032 South East OSU Drive, Newport, OR 97365, USA
| | - Joseph P Dietrich
- Environmental & Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2032 South East OSU Drive, Newport, OR 97365, USA
| |
Collapse
|
26
|
Jiang Y, Tang X, Sun T, Wang Y. BDE-47 exposure changed the immune function of haemocytes in Mytilus edulis: An explanation based on ROS-mediated pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 182:58-66. [PMID: 27871004 DOI: 10.1016/j.aquatox.2016.11.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 06/06/2023]
Abstract
Brominated Tetra-BDE (BDE-47), is suggested to be widely distributed in marine environments and highly accumulated in marine organisms. Blue mussel Mytilus edulis is a sentinel organism that is commonly used for monitoring chemical contaminants in coastal ecosystems, and its haemocytes play an essential role in immune function. Therefore, we estimated the effects of BDE-47 exposure on the M. edulis haemocytes' immune function under controlled laboratory conditions. The study found the following results: (1) BDE-47 exposure increased the mortality of the haemocytes and decreased the total haemocyte counts. The ultrastructure and microstructure in the haemocytes were significantly changed, and the micronucleus frequency was increased steadily in a concentration-dependent manner, inferring that cellular and molecular damages occur during the exposure. (2) The immune function of the haemocytes was estimated from lysosomal and phagocytic changes. The lysosomal membrane stability was significantly disrupted compared to the control according to neutral red retention time changes, and the phagocytic ability was reduced significantly. Two lysosomal enzymes, acid phosphatases and alkaline phosphatases, presented similar increasing trends during the treatment. (3) BDE-47 exposure significantly induced the overproduction of reactive oxygen species and malondialdehyde in a clear time- and concentration-dependent manner, suggesting the occurrence of oxidative stress. We thus presumed that BDE-47 exposure affected the immune function of the mussel's haemocytes, and an ROS-mediated pathway might be one of the possible explanations for the observation.
Collapse
Affiliation(s)
- Yongshun Jiang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Tianli Sun
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - You Wang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
27
|
Salvadó JA, Sobek A, Carrizo D, Gustafsson Ö. Observation-Based Assessment of PBDE Loads in Arctic Ocean Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2236-2245. [PMID: 26840066 DOI: 10.1021/acs.est.5b05687] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Little is known about the distribution of polybrominated diphenyl ethers (PBDE) -also known as flame retardants- in major ocean compartments, with no reports yet for the large deep-water masses of the Arctic Ocean. Here, PBDE concentrations, congener patterns and inventories are presented for the different water masses of the pan-Arctic shelf seas and the interior basin. Seawater samples were collected onboard three cross-basin oceanographic campaigns in 2001, 2005, and 2008 following strict trace-clean protocols. ∑14PBDE concentrations in the Polar Mixed Layer (PML; a surface water mass) range from 0.3 to 11.2 pg·L(-1), with higher concentrations in the pan-Arctic shelf seas and lower levels in the interior basin. BDE-209 is the dominant congener in most of the pan-Arctic areas except for the ones close to North America, where penta-BDE and tetra-BDE congeners predominate. In deep-water masses, ∑14PBDE concentrations are up to 1 order of magnitude higher than in the PML. Whereas BDE-209 decreases with depth, the less-brominated congeners, particularly BDE-47 and BDE-99, increase down through the water column. Likewise, concentrations of BDE-71 -a congener not present in any PBDE commercial mixture- increase with depth, which potentially is the result of debromination of BDE-209. The inventories in the three water masses of the Central Arctic Basin (PML, intermediate Atlantic Water Layer, and the Arctic Deep Water Layer) are 158 ± 77 kg, 6320 ± 235 kg and 30800 ± 3100 kg, respectively. The total load of PBDEs in the entire Arctic Ocean shows that only a minor fraction of PBDEs emissions are transported to the Arctic Ocean. These findings represent the first PBDE data in the deep-water compartments of an ocean.
Collapse
Affiliation(s)
- Joan A Salvadó
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University , Stockholm, 10691 Sweden
| | - Anna Sobek
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University , Stockholm, 10691 Sweden
| | - Daniel Carrizo
- Institute for Global Food Security, Queen's University , Belfast, BT9 5BN United Kingdom
| | - Örjan Gustafsson
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University , Stockholm, 10691 Sweden
| |
Collapse
|
28
|
Su G, Letcher RJ, Crump D, Farmahin R, Giesy JP, Kennedy SW. Sunlight Irradiation of Highly Brominated Polyphenyl Ethers Generates Polybenzofuran Products That Alter Dioxin-responsive mRNA Expression in Chicken Hepatocytes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2318-2327. [PMID: 26854739 DOI: 10.1021/acs.est.5b04939] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report on two highly brominated polyphenyl ether flame retardants, tetradecabromo-1,4- diphenoxybenzene (TeDB-DiPhOBz) and 2,2',3,3',4,4',5,5',6,6'-decabromodiphenyl ether (BDE-209), that formed photolytic degradation products in tetrahydrofuran (THF)/hexane solvent after 21 days of natural sunlight irradiation (SI). These degradation products of SI-TeDB-DiPhOBz and SI-BDE-209 included the numerous polybrominated homologue groups of polybenzofurans and dibenzofurans, respectively. Formation of similar polybenzofuran and dibenzofuran products was also observed following a 3 month exposure of the solid powder forms of TeDB-DiPhOBz and BDE-209 to natural SI. These resulting degradation product mixtures were administered to chicken embryonic hepatocytes (CEH) to determine effects on mRNA expression levels of 27 dioxin-responsive genes. For the solvent-based SI study, equivalent concentrations of 1 or 25 μM of SI-TeDB-DiPhOBz or 1 or 10 μM of SI-BDE-209 resulted in gene expression profiles that were similar to those of the most potent dioxin-like compound, 2,3,7,8-tetrachlorodibenzo-p-dioxin. In addition, a concentration-dependent induction of CYP1A4 and CYP1A5 mRNA was observed following exposure to SI-TeDB-DiPhOBz and SI-BDE-209. Based on ECthreshold values for CYP1A4/5 mRNA expression, relative potency (ReP) values were 1 × 10(-6) and 1 × 10(-5) for SI-TeDB-DiPhOBz and SI-BDE-209, respectively. The SI TeDB-DiPhOBz and BDE-209 powder degradation product mixture also significantly induced CYP1A4 mRNA levels in CEH. Our findings clearly show that the environmental stability of TeDB-DiPhOBz and BDE-209, and possibly other highly brominated polyphenyl ethers, is of great concern from a dioxin-like degradation products and toxicity perspective.
Collapse
Affiliation(s)
- Guanyong Su
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University , Ottawa, Ontario K1A 0H3, Canada
- Department of Chemistry, Carleton University , Ottawa, Ontario K1S 5B6, Canada
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University , Ottawa, Ontario K1A 0H3, Canada
- Department of Chemistry, Carleton University , Ottawa, Ontario K1S 5B6, Canada
| | - Doug Crump
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University , Ottawa, Ontario K1A 0H3, Canada
| | - Reza Farmahin
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University , Ottawa, Ontario K1A 0H3, Canada
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Zoology and Center for Integrative Toxicology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Sean W Kennedy
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University , Ottawa, Ontario K1A 0H3, Canada
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
29
|
Feng Y, Zeng W, Wang Y, Shen H, Wang Y. Long-term exposure to high levels of decabrominated diphenyl ether inhibits CD4 T-cell functions in C57Bl/6 mice. J Appl Toxicol 2015; 36:1112-9. [PMID: 26682527 DOI: 10.1002/jat.3270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/09/2015] [Accepted: 10/27/2015] [Indexed: 12/16/2022]
Abstract
In recent years, the adverse health effects of decabrominated diphenyl ether (BDE-209) have raised more concerns as a growing number of studies reported its persistence in the environment and abundance in the human population, especially in occupational environmental compartments and exposed personnel. This study applies our previous animal model simulating occupational exposure to BDE-209 to investigate its potential adverse effects on CD4 T cells. Female C57Bl/6 mice were orally gavaged with BDE-209 at a dose of 800 mg kg(-1) every 2 days for 10 months and the blood of each mouse was collected for analysis. Kinetic changes of the peripheral immune system were investigated from 1 to 5 months of exposure. The chronic effects on cytokine production, proliferation and the antigen-specific responses of CD4 T cells were evaluated at 7, 9 and 10 months, respectively. The results have shown that impaired proliferation and cytokine (IFN-γ, IL-2 or TNF-α) production of CD4 T cells were observed in BDE-209-exposed mice, accompanied by increased T regulatory cells in the blood. BDE-209 exposure in vitro also suppressed the reactivity of CD4 T cells at concentrations of 0.01, 0.1, 1 and 10 μM. Furthermore, we observed weaker antigen-specific CD4 T-cell responses to Listeria monocytogenes infection in the mice exposed to BDE-209, suggesting decreased resistance to exogenous pathogens. Taken together, these observations indicate an impaired cellular immunity after long-term and relative high-dose exposure to BDE-209 in adult mice. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yan Feng
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weihong Zeng
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hao Shen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yan Wang
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|