1
|
Nightingale J, Trapp S, Garduño-Jiménez A, Carter L. A framework to assess pharmaceutical accumulation in crops: from wastewater irrigation to consumption. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138297. [PMID: 40300514 DOI: 10.1016/j.jhazmat.2025.138297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 05/01/2025]
Abstract
The reuse of treated wastewater for irrigation can inadvertently introduce a suite of emerging contaminants such as pharmaceuticals into agri-ecosystems. However, current monitoring efforts to characterise exposure usually focus on a limited range of analytes. A modelling framework was developed that employs a sequence of pre-developed models to predict accumulative potential in a model crop, Zea mays (corn), using chemical structure and excretion rate as the only model inputs. Z. mays was selected as the model crop as it is a major food source, stands as one of the highest cultivated crops globally, and is characterised as having a medium uptake potential. The framework was used to predict uptake in Z. mays in three regions characteristic of high wastewater reuse (Australia, the US and the Middle East). Despite regional and plant specific differences, 72.7 % of the calculated concentrations were within a factor of ten of those reported in the literature. Topiramate, furosemide, and gemfibrozil were observed to accumulate to the greatest extent in Z. mays, predicted concentrations ranged between 50.27 and 418.01 ng/g (dw) for the top 10. Acids predominantly accumulated in leaves and fruit whereas a higher proportion of bases were predicted to accumulate in the roots. To the best of our knowledge 56.7 % of the 30 highest-ranked pharmaceuticals have not been previously documented in existing literature or monitoring campaigns. This presented framework demonstrates a method to assess risk posed by pharmaceutical compounds with limited experimental data.
Collapse
Affiliation(s)
| | - Stefan Trapp
- Technical University of Denmark, Kongens Lyngby, Denmark.
| | | | - Laura Carter
- School of Geography, The University of Leeds, Leeds LS2 9J, UK; water@leeds, The University of Leeds, Leeds LS2 9J, UK.
| |
Collapse
|
2
|
Schinkel L, Eberhard Y, Maccagnan A, Berg M, McArdell CS. Antibiotics and other micropollutants in Swiss sewage sludge and fecal compost. CHEMOSPHERE 2025; 375:144216. [PMID: 40015012 DOI: 10.1016/j.chemosphere.2025.144216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/13/2025] [Accepted: 02/10/2025] [Indexed: 03/01/2025]
Abstract
Antibiotics are of environmental concern. Their concentrations in the aquatic environment are frequently studied, while their occurrence in human excreta-derived fertilizers is less investigated. Therefore, levels of antibiotics, preservatives with antimicrobial properties, and various other micropollutants were determined in sewage sludge and in human fecal compost. Digested sludge of 29 Swiss wastewater treatment plants was analyzed, representing about 2.6 Mio people (30% of the Swiss population). This was compared with residues found in compost with dry toilet content after thermophilic composting, representing about 10 000 people. Fluoroquinolones and preservatives dominate in Swiss sewage sludge with weighted mean concentrations of 6500 μg kg-1 and 2300 μg kg-1. Levels of macrolides (240 μg kg-1), β-lactam transformation products (35 μg kg-1) and sulfonamides (15 μg kg-1) were lower. Pollution patterns in digested sewage sludge were relatively constant throughout Switzerland. Levels of contamination in fecal compost were approximately 30 times lower than in sewage sludge. Pollution patterns differed between compost and sludge. Chemicals used in down-the-drain-applications (e.g., preservatives from personal care products or corrosion inhibitors) are less relevant in compost. Based on the Swiss consumption and excretion data, a mass flow analysis was carried out for antibiotics and pharmaceuticals in sludge and compost. The mass flow analysis in sludge showed a good agreement of predicted and measured concentrations for compounds that tend to sorb to organic matter (e.g., fluoroquinolones). Currently, there is no specific legislation that regulates the use of fecal compost from dry toilets as fertilizer. However, the one to two order of magnitude lower levels of contaminants in fecal compost compared to sludge and manure indicate a lower environmental risk when applying it as fertilizer.
Collapse
Affiliation(s)
- Lena Schinkel
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland.
| | - Yves Eberhard
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland
| | - Andreas Maccagnan
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland
| | - Michael Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland
| | - Christa S McArdell
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland.
| |
Collapse
|
3
|
Seller-Brison C, Brison A, Yu Y, Robinson SL, Fenner K. Adaptation towards catabolic biodegradation of trace organic contaminants in activated sludge. WATER RESEARCH 2024; 266:122431. [PMID: 39298898 DOI: 10.1016/j.watres.2024.122431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Trace organic contaminants (TrOCs) are omnipresent in wastewater treatment plants (WWTPs), yet, their removal during wastewater treatment is oftentimes incomplete and underlying biotransformation mechanisms are not fully understood. In this study, we elucidate how different factors, including pre-exposure levels and duration, influence microbial adaptation towards catabolic TrOC biodegradation and its potential role in biological wastewater treatment. Four sequencing batch reactors (SBRs) were operated in parallel in three succeeding phases, adding and removing a selection of 26 TrOCs at different concentration levels. After each phase of SBR operation, a series of batch experiments was conducted to monitor biotransformation kinetics of those same TrOCs across various spike concentrations. For half of our test TrOCs, we detected increased biotransformation in sludge pre-exposed to TrOC concentrations ≥5 µg L-1 over a 30-day period, with most significant differences observed for the insect repellent DEET and the artificial sweetener saccharin. Accordingly, 16S rRNA amplicon sequencing revealed enrichment of taxa that have previously been linked to catabolic biodegradation of several test TrOCs, e.g., Bosea sp. and Shinella sp. for acesulfame degradation, and Pseudomonas sp. for caffeine, cyclamate, DEET, metformin, paracetamol, and isoproturon degradation. We further conducted shotgun metagenomics to query for gene products previously reported to be involved in the TrOCs' biodegradation pathways. In the future, directed microbial adaptation may be a solution to improve bioremediation of TrOCs in contaminated environments or in WWTPs.
Collapse
Affiliation(s)
- Carolin Seller-Brison
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland.
| | - Antoine Brison
- Department of Process Engineering, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Yaochun Yu
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Serina L Robinson
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Kathrin Fenner
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland; Department of Chemistry, University of Zürich, Zürich 8057, Switzerland
| |
Collapse
|
4
|
Chonova T, Ruppe S, Langlois I, Griesshaber DS, Loos M, Honti M, Fenner K, Singer H. Unveiling industrial emissions in a large European river: Insights from data mining of high-frequency measurements. WATER RESEARCH 2024; 268:122745. [PMID: 39577294 DOI: 10.1016/j.watres.2024.122745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/06/2024] [Accepted: 11/02/2024] [Indexed: 11/24/2024]
Abstract
Despite the tremendous efforts to improve river water quality, chemical contamination remains a significant issue. Besides well-known contaminants, in recent years, pollutants of industrial origin received increasing attention because of the huge knowledge gap regarding their occurrence, fate and environmental risks. Moreover, such pollutants often exhibit high concentration fluctuations over time, which makes them less predictable and measurable with classical short-time campaigns. This study provides insights into the different sources of chemical contamination of the Rhine River based on temporal high-frequency LC-HRMS monitoring data from a single location. A newly developed prioritization strategy selected nearly 3000 substances as potentially major contaminants. A novel classification analysis based on temporal behavior identified 53 % of these compounds (accounting for 62 % of the time-integrated intensity recorded in the dataset) as originating from irregular emission sources. Irregular emissions can originate from industrial production cycles. After delimiting other potential irregular sources, we have strong evidence indicating that a considerable share of the irregular emissions likely comes from industrial activities. This finding is supported by the structural elucidation of sixteen irregularly emitted substances, for which the industrial origin was successfully confirmed. Those compounds include 3-chloro-5-(trifluoromethyl)pyridine-2-carboxylic acid and 4-(dimethylamino)-2,2-diphenylpentanenitrile. In addition, 40 other compounds exhibited temporal emission patterns similar to the sixteen industrial compounds, which strongly suggests a common contamination source. Finally, 100 top-ranking compounds were selected for further structural elucidation and emission reduction measures. The computational approach outlined within this study can be effectively applied in other large river catchments to identify unknown contaminants stemming from industrial sources.
Collapse
Affiliation(s)
- Teofana Chonova
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland.
| | - Steffen Ruppe
- AUE-BS, Agency for Environment and Energy Canton Basel-City, Spiegelgasse 15, CH-4001 Basel, Switzerland
| | - Ingrid Langlois
- AUE-BS, Agency for Environment and Energy Canton Basel-City, Spiegelgasse 15, CH-4001 Basel, Switzerland
| | - Dorrit S Griesshaber
- AUE-BS, Agency for Environment and Energy Canton Basel-City, Spiegelgasse 15, CH-4001 Basel, Switzerland
| | | | - Mark Honti
- HUN-REN-BME Water Research Group, Hungarian Research Network, Muegyetem rkp 3, 1111 Budapest, Hungary
| | - Kathrin Fenner
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland; Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Heinz Singer
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland.
| |
Collapse
|
5
|
Earl K, Sleight H, Ashfield N, Boxall ABA. Are pharmaceutical residues in crops a threat to human health? JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:773-791. [PMID: 38959023 DOI: 10.1080/15287394.2024.2371418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The application of biosolids, manure, and slurry onto agricultural soils and the growing use of treated wastewater in agriculture result in the introduction of human and veterinary pharmaceuticals to the environment. Once in the soil environment, pharmaceuticals may be taken up by crops, resulting in consequent human exposure to pharmaceutical residues. The potential side effects of pharmaceuticals administered in human medicine are widely documented; however, far less is known regarding the risks that arise from incidental dietary exposure. The aim of this study was to evaluate human exposure to pharmaceutical residues in crops and assess the associated risk to health for a range of pharmaceuticals frequently detected in soils. Estimated concentrations of carbamazepine, oxytetracycline, sulfamethoxazole, trimethoprim, and tetracycline in soil were used in conjunction with plant uptake and crop consumption data to estimate daily exposures to each compound. Exposure concentrations were compared to Acceptable Daily Intakes (ADIs) to determine the level of risk. Generally, exposure concentrations were lower than ADIs. The exceptions were carbamazepine, and trimethoprim and sulfamethoxazole under conservative, worst-case scenarios, where a potential risk to human health was predicted. Future research therefore needs to prioritize investigation into the health effects following exposure to these compounds from consumption of contaminated crops.
Collapse
Affiliation(s)
- Kirsten Earl
- Department of Environment and Geography, University of York, York, Heslington, UK
| | - Harriet Sleight
- Department of Environment and Geography, University of York, York, Heslington, UK
| | - Nahum Ashfield
- Department of Environment and Geography, University of York, York, Heslington, UK
| | - Alistair B A Boxall
- Department of Environment and Geography, University of York, York, Heslington, UK
| |
Collapse
|
6
|
Lai Y, Koelmel JP, Walker DI, Price EJ, Papazian S, Manz KE, Castilla-Fernández D, Bowden JA, Nikiforov V, David A, Bessonneau V, Amer B, Seethapathy S, Hu X, Lin EZ, Jbebli A, McNeil BR, Barupal D, Cerasa M, Xie H, Kalia V, Nandakumar R, Singh R, Tian Z, Gao P, Zhao Y, Froment J, Rostkowski P, Dubey S, Coufalíková K, Seličová H, Hecht H, Liu S, Udhani HH, Restituito S, Tchou-Wong KM, Lu K, Martin JW, Warth B, Godri Pollitt KJ, Klánová J, Fiehn O, Metz TO, Pennell KD, Jones DP, Miller GW. High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12784-12822. [PMID: 38984754 PMCID: PMC11271014 DOI: 10.1021/acs.est.4c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
In the modern "omics" era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling. However, HRMS-based exposomics encounters unique challenges. New analytical and computational infrastructures are needed to expand the analysis coverage through streamlined, scalable, and harmonized workflows and data pipelines that permit longitudinal chemical exposome tracking, retrospective validation, and multi-omics integration for meaningful health-oriented inferences. In this article, we survey the literature on state-of-the-art HRMS-based technologies, review current analytical workflows and informatic pipelines, and provide an up-to-date reference on exposomic approaches for chemists, toxicologists, epidemiologists, care providers, and stakeholders in health sciences and medicine. We propose efforts to benchmark fit-for-purpose platforms for expanding coverage of chemical space, including gas/liquid chromatography-HRMS (GC-HRMS and LC-HRMS), and discuss opportunities, challenges, and strategies to advance the burgeoning field of the exposome.
Collapse
Affiliation(s)
- Yunjia Lai
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Jeremy P. Koelmel
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Douglas I. Walker
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Elliott J. Price
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Stefano Papazian
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Katherine E. Manz
- Department
of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Delia Castilla-Fernández
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - John A. Bowden
- Center for
Environmental and Human Toxicology, Department of Physiological Sciences,
College of Veterinary Medicine, University
of Florida, Gainesville, Florida 32611, United States
| | | | - Arthur David
- Univ Rennes,
Inserm, EHESP, Irset (Institut de recherche en santé, environnement
et travail) − UMR_S, 1085 Rennes, France
| | - Vincent Bessonneau
- Univ Rennes,
Inserm, EHESP, Irset (Institut de recherche en santé, environnement
et travail) − UMR_S, 1085 Rennes, France
| | - Bashar Amer
- Thermo
Fisher Scientific, San Jose, California 95134, United States
| | | | - Xin Hu
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Elizabeth Z. Lin
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Akrem Jbebli
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Brooklynn R. McNeil
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Dinesh Barupal
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Marina Cerasa
- Institute
of Atmospheric Pollution Research, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Hongyu Xie
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Vrinda Kalia
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Renu Nandakumar
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Randolph Singh
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Zhenyu Tian
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Peng Gao
- Department
of Environmental and Occupational Health, and Department of Civil
and Environmental Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- UPMC Hillman
Cancer Center, Pittsburgh, Pennsylvania 15232, United States
| | - Yujia Zhao
- Institute
for Risk Assessment Sciences, Utrecht University, Utrecht 3584CM, The Netherlands
| | | | | | - Saurabh Dubey
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Kateřina Coufalíková
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Hana Seličová
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Helge Hecht
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Sheng Liu
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Hanisha H. Udhani
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sophie Restituito
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Kam-Meng Tchou-Wong
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Kun Lu
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, The University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jonathan W. Martin
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Benedikt Warth
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - Krystal J. Godri Pollitt
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Jana Klánová
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Oliver Fiehn
- West Coast
Metabolomics Center, University of California−Davis, Davis, California 95616, United States
| | - Thomas O. Metz
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Kurt D. Pennell
- School
of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Dean P. Jones
- Department
of Medicine, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Gary W. Miller
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| |
Collapse
|
7
|
Petromelidou S, Evgenidou E, Tziouvalekas M, Lambropoulou DA. Unravelling psychoactive substances and their metabolites and transformation products: High-Resolution Mass Spectrometry approaches for comprehensive target and suspect screening in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172867. [PMID: 38688363 DOI: 10.1016/j.scitotenv.2024.172867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/10/2024] [Accepted: 04/27/2024] [Indexed: 05/02/2024]
Abstract
Untangling the consumption rates of psychiatric drugs and their metabolites/ transformation products-(TPs) through wastewater gains attention lately. However, the potential environmental impact caused by their release remains ambiguous. As it follows, the monitoring of this class of pharmaceuticals as well as the evaluation of their potential toxicity is a matter of high concern. In the light of the above, here, wastewater samples, were collected in a 1-year and a half sampling campaign (2020-2021) and were further subjected to solid phase extraction. A Q Exactive Focus Orbitrap mass analyzer was employed for the analysis of the samples. For the data curation, except of the monitoring of targets, a comprehensive suspect screening workflow was developed and slightly optimized based on a lab made HRMS database for the investigation of legally or illegally prescribed psychiatric drugs and their relevant metabolites/TPs in influents and effluents. Carbamazepine and amisulpride were quantified at the highest mean concentrations 243 and 225 ng/L respectively, in influents. In effluents, the highest mean concentrations were calculated for carbamazepine (180 ng/L) and venlafaxine (117 ng/L). The implementation of suspect screening approach enhanced the comprehensiveness of analysis by detecting 29 compounds not included in the target list. O-Desmethylvenlafaxine was the predominant metabolite in influents presenting a mean concentration equal to 87 ng/L while the same pattern was also noticed in effluents where the mean concentration was up to 91 ng/L. From the group of suspect compounds for which no analytical standards were available, the predominant compounds with detection frequency 100 % were norephedrine and codeine in influents while in effluents, oxazepam was detected in 81 % of the analyzed samples. Finally, in silico and mathematical tools were employed for the assessment of the risk posed to environmental systems. Most of the detected compounds present high risk in all trophic levels.
Collapse
Affiliation(s)
- Styliani Petromelidou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece
| | - Eleni Evgenidou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece
| | - Miltiadis Tziouvalekas
- Hellenic Agricultural Organization "Demeter", Institute of Industrial and Forage Crops (IIFC), 1 Theophrastos str., 41335 Larissa, Greece
| | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece.
| |
Collapse
|
8
|
Kariyawasam T, Helvig C, Petkovich M, Vriens B. Pharmaceutical removal from wastewater by introducing cytochrome P450s into microalgae. Microb Biotechnol 2024; 17:e14515. [PMID: 38925623 PMCID: PMC11197475 DOI: 10.1111/1751-7915.14515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Pharmaceuticals are of increasing environmental concern as they emerge and accumulate in surface- and groundwater systems around the world, endangering the overall health of aquatic ecosystems. Municipal wastewater discharge is a significant vector for pharmaceuticals and their metabolites to enter surface waters as humans incompletely absorb prescription drugs and excrete up to 50% into wastewater, which are subsequently incompletely removed during wastewater treatment. Microalgae present a promising target for improving wastewater treatment due to their ability to remove some pollutants efficiently. However, their inherent metabolic pathways limit their capacity to degrade more recalcitrant organic compounds such as pharmaceuticals. The human liver employs enzymes to break down and absorb drugs, and these enzymes are extensively researched during drug development, meaning the cytochrome P450 enzymes responsible for metabolizing each approved drug are well studied. Thus, unlocking or increasing cytochrome P450 expression in endogenous wastewater microalgae could be a cost-effective strategy to reduce pharmaceutical loads in effluents. Here, we discuss the challenges and opportunities associated with introducing cytochrome P450 enzymes into microalgae. We anticipate that cytochrome P450-engineered microalgae can serve as a new drug removal method and a sustainable solution that can upgrade wastewater treatment facilities to function as "mega livers".
Collapse
Affiliation(s)
- Thamali Kariyawasam
- Department of Geological Sciences and EngineeringQueen's UniversityKingstonOntarioCanada
- Beaty Water Research CenterQueen's UniversityKingstonOntarioCanada
| | - Christian Helvig
- Department of Biomedical EngineeringQueen's UniversityKingstonOntarioCanada
| | - Martin Petkovich
- Department of Biomedical EngineeringQueen's UniversityKingstonOntarioCanada
| | - Bas Vriens
- Department of Geological Sciences and EngineeringQueen's UniversityKingstonOntarioCanada
- Beaty Water Research CenterQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
9
|
Spycher S, Kalf D, Lahr J, Gönczi M, Lindström B, Pace E, Botta F, Bougon N, Staub PF, Hitzfeld KL, Weisner O, Junghans M, Kroll A. Linking chemical surface water monitoring and pesticide regulation in selected European countries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43432-43450. [PMID: 38862805 PMCID: PMC11222191 DOI: 10.1007/s11356-024-33865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
The progress in chemical analytics and understanding of pesticide dynamics in surface waters allows establishing robust data on compounds with frequent exceedances of quality standards. The current chemical, temporal, and spatial coverage of the pesticide monitoring campaigns differs strongly between European countries. A questionnaire revealed differences in monitoring strategies in seven selected European countries; Nordic countries prioritize temporal coverage, while others focus on spatial coverage. Chemical coverage has increased, especially for non-polar classes like synthetic pyrethroids. Sweden combines monitoring data with agricultural practices for derived quantities, while the Netherlands emphasizes spatial coverage to trace contamination sources. None of the EU member states currently has established a process for linking chemical surface water monitoring data with regulatory risk assessment, while Switzerland has recently established a legally defined feedback loop. Due to their design and objectives, most strategies do not capture concentration peaks, especially 2-week composite samples, but also grab samples. Nevertheless, for substances that appear problematic in many data sets, the need for action is evident even without harmonization of monitoring programs. Harmonization would be beneficial, however, for cross-national assessment including risk reduction measures.
Collapse
Affiliation(s)
| | - Dennis Kalf
- Rijkswaterstaat, Ministry of Infrastructure and Water Management, PO Box 17, 8200 AA, Lelystad, the Netherlands
| | - Joost Lahr
- National Institute of Public Health and the Environment, PO Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Mikaela Gönczi
- Department of Aquatic Sciences and Assessment, SLU Centre for Pesticides in the Environment, Swedish University of Agricultural Sciences, P.O. Box 7050, 75007, Uppsala, Sweden
| | - Bodil Lindström
- Department of Aquatic Sciences and Assessment, SLU Centre for Pesticides in the Environment, Swedish University of Agricultural Sciences, P.O. Box 7050, 75007, Uppsala, Sweden
| | - Emanuela Pace
- Italian Institute for Environmental Protection and Research (ISPRA), 00144, Rome, Italy
| | - Fabrizio Botta
- Unit of Pesticidovigilance, ANSES, Maisons-Alfort, France
| | - Nolwenn Bougon
- French Biodiversity Agency-OFB, 94300, Vincennes, France
| | | | | | - Oliver Weisner
- German Environment Agency (UBA), 06844, Dessau-Roßlau, Germany
| | - Marion Junghans
- Swiss Centre for Applied Ecotoxicology, 8600, Dübendorf, Switzerland
| | - Alexandra Kroll
- Swiss Centre for Applied Ecotoxicology, 8600, Dübendorf, Switzerland.
| |
Collapse
|
10
|
Manaia CM, Aga DS, Cytryn E, Gaze WH, Graham DW, Guo J, Leonard AFC, Li L, Murray AK, Nunes OC, Rodriguez-Mozaz S, Topp E, Zhang T. The Complex Interplay Between Antibiotic Resistance and Pharmaceutical and Personal Care Products in the Environment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:637-652. [PMID: 36582150 DOI: 10.1002/etc.5555] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/29/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are important environmental contaminants. Nonetheless, what drives the evolution, spread, and transmission of antibiotic resistance dissemination is still poorly understood. The abundance of ARB and ARGs is often elevated in human-impacted areas, especially in environments receiving fecal wastes, or in the presence of complex mixtures of chemical contaminants, such as pharmaceuticals and personal care products. Self-replication, mutation, horizontal gene transfer, and adaptation to different environmental conditions contribute to the persistence and proliferation of ARB in habitats under strong anthropogenic influence. Our review discusses the interplay between chemical contaminants and ARB and their respective genes, specifically in reference to co-occurrence, potential biostimulation, and selective pressure effects, and gives an overview of mitigation by existing man-made and natural barriers. Evidence and strategies to improve the assessment of human health risks due to environmental antibiotic resistance are also discussed. Environ Toxicol Chem 2024;43:637-652. © 2022 SETAC.
Collapse
Affiliation(s)
- Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Diana S Aga
- Chemistry Department, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Volcani Institute, Agricultural Research Organization, Rishon-Lezion, Israel
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn Campus, Cornwall, UK
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle, UK
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Queensland, Australia
| | - Anne F C Leonard
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn Campus, Cornwall, UK
| | - Liguan Li
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, The University of Hong Kong, Hong Kong, China
| | - Aimee K Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn Campus, Cornwall, UK
| | - Olga C Nunes
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Sara Rodriguez-Mozaz
- Catalan Institute for Water Research, Girona, Spain
- Universitat de Girona, Girona, Spain
| | - Edward Topp
- Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Hattaway M, Alaimo C, Wong L, Teerlink J, Young TM. Spatial and temporal variability of micropollutants within a wastewater catchment system. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:357-367. [PMID: 38170844 PMCID: PMC10922816 DOI: 10.1039/d3em00361b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Treated wastewater effluent is a major contributor to concentrations of many anthropogenic chemicals in the environment. Examining patterns of these compounds measured from different catchment areas comprising the influent to a wastewater treatment plant, across many months, may reveal patterns in compound sources and seasonality helpful to management efforts. This study considers a wastewater catchment system that was sampled at six sub-catchment sites plus the treatment plant influent and effluent at seven time points spanning nine months. Wastewater samples were analyzed with LC-QTOF-MS using positive electrospray ionization and GC-QTOF-MS using negative chemical ionization and electron ionization. MS data were screened against spectral libraries to identify micropollutants. As expected, multiple classes of chemicals were represented, including pharmaceuticals, plasticizers, personal care products, and flame retardants. Patterns in the compounds seen at different sampling sites and dates reflect the varying uses and down-the-drain routes that influence micropollutant loading in sewer systems. Patterns in examined compounds revealed little spatial variation, and greater temporal variation. For example, the greatest loads of DEET were found to occur in the summer months. Additionally, groups of compounds exhibited strong correlation with each other, which could be indicative of similar down-the-drain routes (such as a group intercorrelated chemicals that are components of cleaning products) or the influence of similar physicochemical processes within the sewer system. This study contributes to the understanding of dynamics of micropollutants in sewer systems.
Collapse
Affiliation(s)
- Madison Hattaway
- Department of Civil and Environmental Engineering, University of California, Davis, Davis, CA 95616, USA.
| | - Chris Alaimo
- Department of Civil and Environmental Engineering, University of California, Davis, Davis, CA 95616, USA.
| | - Luann Wong
- Department of Civil and Environmental Engineering, University of California, Davis, Davis, CA 95616, USA.
| | - Jennifer Teerlink
- California Department of Pesticide Regulation, Sacramento, CA 95618, USA
| | - Thomas M Young
- Department of Civil and Environmental Engineering, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
12
|
Ceolotto N, Dollamore P, Hold A, Balne B, Jagadeesan KK, Standerwick R, Robertson M, Barden R, Kasprzyk-Hordern B. A new Wastewater-Based Epidemiology workflow to estimate community wide non-communicable disease prevalence using pharmaceutical proxy data. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132645. [PMID: 37793253 DOI: 10.1016/j.jhazmat.2023.132645] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/21/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
This manuscript introduces a new wastewater-based epidemiology workflow for estimation of non-communicable diseases (NCDs) prevalence by using wastewater-based epidemiology (WBE) and pharmaceuticals/their metabolites as proxies for NCDs prevalence. 83 targets were selected (54 parent pharmaceuticals and 29 metabolites). Three critical aspects were tested: (i) Solid-Phase Extraction - Ultra-Performance Liquid Chromatography and Tandem Mass Spectrometry (SPE-UHPLC-MS/MS) method performance, (ii) biomarker stability under variable storage conditions (during sampling and long-term storage) and (iii) accounting for human metabolism in WBE back-calculations. High stability of most analytes was observed under tested storage conditions. A few exceptions include diazepam, dihydroketoprofen and 5-hydroxy-lansoprazole. Analyte recoveries varied between 75% and 125% for most analytes. MDLs ranged from 0.2 ng L-1 to 5.6 ng L-1, while MQLs from 0.2 ng L-1 to 16.8 ng L-1. The overall average method accuracy and precision were: 99.5% and 4.0% respectively. A fully validated method was tested using community wastewater in the Southwest of England to estimate pharmaceutical usage, test metabolism correction factors established and compare results with prescription data. The new WBE method for NCD approximation allowed for the estimation of the daily usage/intake of 69 NCD targets with a standardized approach and a consistent reporting format.
Collapse
Affiliation(s)
- Nicola Ceolotto
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Centre for Doctoral Training in Sustainable Chemical Technologies, University of Bath, Bath BA2 7AY, UK; Institute for Sustainability, University of Bath, Bath BA2 7AY, UK
| | | | - Angus Hold
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - Bethany Balne
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | | | - Richard Standerwick
- Wessex Water Service Ltd., Claverton Down, BA2 7WW, Bath, UK; Environment Agency, Bristol, UK
| | - Megan Robertson
- Wessex Water Service Ltd., Claverton Down, BA2 7WW, Bath, UK
| | - Ruth Barden
- Wessex Water Service Ltd., Claverton Down, BA2 7WW, Bath, UK
| | - Barbara Kasprzyk-Hordern
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Centre for Doctoral Training in Sustainable Chemical Technologies, University of Bath, Bath BA2 7AY, UK; Institute for Sustainability, University of Bath, Bath BA2 7AY, UK; Water and Innovation Research Centre, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
13
|
Cannata C, Backhaus T, Bramke I, Caraman M, Lombardo A, Whomsley R, Moermond CTA, Ragas AMJ. Prioritisation of data-poor pharmaceuticals for empirical testing and environmental risk assessment. ENVIRONMENT INTERNATIONAL 2024; 183:108379. [PMID: 38154319 DOI: 10.1016/j.envint.2023.108379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023]
Abstract
There are more than 3,500 active pharmaceutical ingredients (APIs) on the global market for human and veterinary use. Residues of these APIs eventually reach the aquatic environment. Although an environmental risk assessment (ERA) for marketing authorization applications of medicinal products is mandatory in the European Union since 2006, an ERA is lacking for most medicines approved prior to 2006 (legacy APIs). Since it is unfeasible to perform extensive ERA tests for all these legacy APIs, there is a need for prioritization of testing based on the limited data available. Prioritized APIs can then be further investigated to estimate their environmental risk in more detail. In this study, we prioritized more than 1,000 APIs used in Europe based on their predicted risk for aquatic freshwater ecosystems. We determined their risk by combining an exposure estimate (Measured or Predicted Environmental Concentration; MEC or PEC, respectively) with a Predicted No Effect Concentration (PNEC). We developed several procedures to combine the limited empirical data available with in silico data, resulting in multiple API rankings varying in data needs and level of conservativeness. In comparing empirical with in silico data, our analysis confirmed that the PEC estimated with the default parameters used by the European Medicines Agency often - but not always - represents a worst-case scenario. Comparing the ecotoxicological data for the three main taxonomic groups, we found that fish represents the most sensitive species group for most of the APIs in our list. We furthermore show that the use of in silico tools can result in a substantial underestimation of the ecotoxicity of APIs. After combining the different exposure and effect estimates into four risk rankings, the top-ranking APIs were further screened for availability of ecotoxicity data in data repositories. This ultimately resulted in the prioritization of 15 APIs for further ecotoxicological testing and/or exposure assessment.
Collapse
Affiliation(s)
- Cristiana Cannata
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, the Netherlands.
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Irene Bramke
- Global Sustainability, AstraZeneca, Den Haag, the Netherlands
| | - Maria Caraman
- European Medicines Agency (EMA), Amsterdam, the Netherlands
| | - Anna Lombardo
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Rhys Whomsley
- European Medicines Agency (EMA), Amsterdam, the Netherlands
| | - Caroline T A Moermond
- Centre for Safety of Substances and Products (VSP), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ad M J Ragas
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
14
|
Lee HJ, Oh JE. Target and suspect screening of (new) psychoactive substances in South Korean wastewater by LC-HRMS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162613. [PMID: 36871726 DOI: 10.1016/j.scitotenv.2023.162613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
New psychoactive substances (NPS) are a type of abused drug designed to mimic the effects of the currently known illicit drugs, whose structures are constantly changing to escape surveillance. The quick identification of NPS use in the community therefore demands immediate action. This study aimed to develop a target and suspect screening method using LC-HRMS to identify NPS in wastewater samples. An in-house database of 95 traditional and NPS was built using the reference standards, and an analytical method was developed. Wastewater samples were collected from 29 wastewater treatment plants (WWTP) across South Korea, representing 50 % of the total population. The psychoactive substances in waste water samples were screened using in-house database and developed analytical methods. A total of 14 substances were detected in the target analysis, including three NPS (N-methyl-2-AI, 25E-NBOMe, and 25D-NBOMe) and 11 traditional psychoactive substances and their metabolites (zolpidem phenyl-4-COOH, ephedrine, ritalinic acid, tramadol, phenmetrazine, phendimetrazine, phentermine, methamphetamine, codeine, morphine, and ketamine). Out of these, N-methyl-2-AI, zolpidem phenyl-4-COOH, ephedrine, ritalinic acid, tramadol, phenmetrazine, and phendimetrazine were detected with a detection frequency of over 50 %. Primarily, N-methyl-2-Al was detected in all the wastewater samples. Additionally, four NPSs (amphetamine-N-propyl, benzydamine, isoethcathinone, methoxyphenamine) were tentatively identified at level 2b in a suspect screening analysis. This is the most comprehensive study to investigate NPS using target and suspect analysis methods at the national level. This study raises a need for continuous monitoring of NPS in South Korea.
Collapse
Affiliation(s)
- Heon-Jun Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan, Republic of Korea
| | - Jeong-Eun Oh
- Institute for Environmental and Energy, Pusan National University, Busan, Republic of Korea; Department of Civil and Environmental Engineering, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
15
|
Feng Y, Lu Y, Chen Y, Xu J, Jiang J. Microbial community structure and antibiotic resistance profiles in sediments with long-term aquaculture history. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118052. [PMID: 37141714 DOI: 10.1016/j.jenvman.2023.118052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
The aim of this investigation was to examine the microbial populations and their resistance patterns towards antibiotics, including the impact of nitrogen metabolism in response to the reintroduction of antibiotics, as well as the presence of resistance genes in sediments from shrimp ponds that have been utilized for extended periods of 5, 15, and over 30 years. Results showed that the sediments exhibited a high prevalence of Proteobacteria, Bacteroidetes, Planctomycetes, Chloroflexi, and Oxyphotobacteria as the most abundant bacterial phyla, accounting for 70.35-77.43% of the total bacterial community. The five most abundant phyla of fungi detected in all sediments, namely Rozellomycota, Ascomycota, Aphelidiomycota, Basidiomycota, and Mortierellomycota, constituted 24.26-32.54% of the total fungal community. It was highly probable that the Proteobacteria and Bacteroidetes phyla serve as the primary reservoir of antibiotic-resistant bacteria (ARB) in the sediment, which included various genera like Sulfurovum, Woeseia, Sulfurimonas, Desulfosarcina, and Robiginitalea. Among these genera, Sulfurovum appeared to be the most widespread in the sediment of aquaculture ponds that have been in operation for more than three decades, while Woeseia dominated in ponds that have been recently reclaimed and have a 15-year aquaculture history. Antibiotic resistance genes (ARGs) were categorized into seven distinct groups according to their mechanism of action. The prevalence of multidrug-resistant ARGs was found to be the highest among all types, with an abundance ranging from 8.74 × 10-2 to 1.90 × 10-1 copies per 16S rRNA gene copies. The results of a comparative analysis of sediment samples with varying aquaculture histories indicated that the total relative abundance of ARGs was significantly diminished in sediment with a 15-year aquaculture history as opposed to sediment with either a 5-year or 30-year aquaculture history. Another assessment of antibiotic resistances in aquaculture sediments involved an examination of the effects of reintroducing antibiotics on nitrogen metabolism processes. The findings revealed that the rates of ammonification, nitrification, and denitrification in the sediment with a history of 5 years and 15 years, decreased as the concentration of oxytetracycline increased from 1 to 300, and 2000 mg/kg, and inhibitory effects were found to be less pronounced in sediments with a 5-year history compared to those with a 15-year history. In contrast, oxytetracycline exposure led to a significant decrease in the rates of these processes in aquaculture pond sediments with a >30 years of aquaculture history across all the concentrations tested. The emergence and dissemination of antibiotic resistance profiles in aquaculture environments requires attention in future aquaculture management.
Collapse
Affiliation(s)
- Ying Feng
- School of Resources and Environmental Science, Quanzhou Normal University, 362000, Quanzhou, China; Institute of Environmental Sciences, Quanzhou Normal University, 362000, Quanzhou, China
| | - Yue Lu
- School of Resources and Environmental Science, Quanzhou Normal University, 362000, Quanzhou, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Yongshan Chen
- School of Resources and Environmental Science, Quanzhou Normal University, 362000, Quanzhou, China; Institute of Environmental Sciences, Quanzhou Normal University, 362000, Quanzhou, China.
| | - Jinghua Xu
- School of Resources and Environmental Science, Quanzhou Normal University, 362000, Quanzhou, China; Institute of Environmental Sciences, Quanzhou Normal University, 362000, Quanzhou, China
| | - Jinping Jiang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| |
Collapse
|
16
|
Zhai W, Jiang W, Guo Q, Wang Z, Liu D, Zhou Z, Wang P. Existence of antibiotic pollutant in agricultural soil: Exploring the correlation between microbiome and pea yield. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162152. [PMID: 36775170 DOI: 10.1016/j.scitotenv.2023.162152] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Due to sewage irrigation, manure fertilizer application or other agricultural activities, antibiotics have been introduced into farmland as an emerging contaminant, existing with other agrochemicals. However, the potential influences of antibiotics on the efficiency of agrochemicals and crops health are still unclear. In this work, the effect of antibiotics on fertilization efficiency and pea yield was evaluated, and the mechanism was explored in view of soil microbiome. Nitrogen utilization and pea yield were decreased by antibiotics. In specific, the weight of seeds decreased 9.5 % by 5 mg/kg antibiotics and decreased 25.1 % by 50 mg/kg antibiotics. For N nutrient in pea, antibiotics resulted in 62.5 %-63.7 % decrease in amino acid content and 8.3 %-35.3 % decrease in inorganic-N content. Further research showed that antibiotics interfered with N cycle in soil, inhibiting urea decomposition and denitrification process by reducing function genes ureC, nirK and norB in soil, thus decreasing N availability. Meanwhile, antibiotics destroyed the enzyme function in N assimilation. This work evaluated the environmental risk of antibiotics from fertilization efficiency and N utilization in crop. Antibiotics could not only affect N cycle, limiting the decomposition of N fertilizer, but also affect N utilization in plants, thus affecting the yield and even the quality of leguminous crops.
Collapse
Affiliation(s)
- Wangjing Zhai
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Wenqi Jiang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Qiqi Guo
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhixuan Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China.
| |
Collapse
|
17
|
Varga L, Fenner K, Singer H, Honti M. From market to environment - consumption-normalised pharmaceutical emissions in the Rhine catchment. WATER RESEARCH 2023; 239:120017. [PMID: 37172372 DOI: 10.1016/j.watres.2023.120017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/17/2023] [Accepted: 04/28/2023] [Indexed: 05/14/2023]
Abstract
Direct and indirect threats by organic micropollutants can only be reliably assessed and prevented if the exposure to these chemicals is known, which in turn requires a confident estimate of their emitted amounts into the environment. APIs (Active Pharmaceutical Ingredients) enter surface waters mostly through the sewer system and wastewater treatment plants (WWTPs). However, their effluent fluxes are highly variable and influenced by several different factors that challenge robust emission estimates. Here, we defined a dimensionless, theoretically consumption-independent 'escape factor' (kesc) for estimating the amount of APIs (expected to be) present in WWTP effluents. The factor is determined as the proportion of marketed and actually emitted amounts of APIs. A large collection of German and Swiss monitoring datasets were analyzed to calculate stochastic kesc values for 31 APIs, reflecting both the magnitude and uncertainty of consumption-normalised emissions. Escape factors provide an easy-to-use tool for the estimation of average API emissions and expected variability from numerous WWTPs given that consumption data are provided, thereby supporting simulation modeling of the fate of APIs in stream networks or exposure assessments.
Collapse
Affiliation(s)
- Laura Varga
- Department of Sanitary and Environmental Engineering, Faculty of Civil Engineering, Budapest University of Technology and Economics, Budapest H-1111, Hungary.
| | - Kathrin Fenner
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Dübendorf CH-8600, Switzerland; Department of Chemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Heinz Singer
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Dübendorf CH-8600, Switzerland
| | - Mark Honti
- Eötvös Loránd Research Network, ELKH-BME Water Research Group, Budapest H-1111, Hungary
| |
Collapse
|
18
|
Yang Y, Yang L, Zheng M, Cao D, Liu G. Data acquisition methods for non-targeted screening in environmental analysis. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
19
|
Fu L, Bin L, Luo Z, Huang Z, Li P, Huang S, Nyobe D, Fu F, Tang B. Spectral change of dissolved organic matter after extracted by solid-phase extraction and its feasibility in predicting the acute toxicity of polar organic pollutants in textile wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130344. [PMID: 36444059 DOI: 10.1016/j.jhazmat.2022.130344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Spectroscopic parameters can be used as proxies to effectively trace the occurrence of organic trace contaminants, but their suitability for predicting the toxicity of discharged industrial wastewater with similar spectra is still unknown. In this study, the organic contaminants in treated textile wastewater were subdivided and extracted by four commonly-used solid-phase extraction (SPE) cartridges, and the resulting spectral change and toxicity of textile effluent were analyzed and compared. After SPE, the spectra of the percolates from the four cartridges showed obvious differences with respect to the substances causing the spectral changes and being more readily adsorbed by the WAX cartridges. Non-target screening results showed source differences in organic micropollutants, which were one of the main contributors leading to their spectral properties and spectral variations after SPE in the effluents. Two fluorescence parameters (C1 and humic-like) identified by the excitation emission matrix-parallel factor analysis (EEM-PARAFAC) were closely correlated to the toxicity endpoints for Scenedesmus obliquus (inhibition ratios of cell growth and Chlorophyll-a synthesis), which can be applied to quantitatively predict the change of toxicity effect caused by polar organic pollutants. The results would provide novel insights into the spectral feature analysis and toxicity prediction of the residual DOM in industrial wastewater.
Collapse
Affiliation(s)
- Lingfang Fu
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China; National Key Laboratory of Water Environmental Simulation and Pollution Control, Guangdong Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environmental of the People's Republic of China, Guangzhou 510535, China
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Zhaobo Luo
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Zehong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Shaosong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Dieudonne Nyobe
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China.
| |
Collapse
|
20
|
Mohammed Taha H, Aalizadeh R, Alygizakis N, Antignac JP, Arp HPH, Bade R, Baker N, Belova L, Bijlsma L, Bolton EE, Brack W, Celma A, Chen WL, Cheng T, Chirsir P, Čirka Ľ, D’Agostino LA, Djoumbou Feunang Y, Dulio V, Fischer S, Gago-Ferrero P, Galani A, Geueke B, Głowacka N, Glüge J, Groh K, Grosse S, Haglund P, Hakkinen PJ, Hale SE, Hernandez F, Janssen EML, Jonkers T, Kiefer K, Kirchner M, Koschorreck J, Krauss M, Krier J, Lamoree MH, Letzel M, Letzel T, Li Q, Little J, Liu Y, Lunderberg DM, Martin JW, McEachran AD, McLean JA, Meier C, Meijer J, Menger F, Merino C, Muncke J, Muschket M, Neumann M, Neveu V, Ng K, Oberacher H, O’Brien J, Oswald P, Oswaldova M, Picache JA, Postigo C, Ramirez N, Reemtsma T, Renaud J, Rostkowski P, Rüdel H, Salek RM, Samanipour S, Scheringer M, Schliebner I, Schulz W, Schulze T, Sengl M, Shoemaker BA, Sims K, Singer H, Singh RR, Sumarah M, Thiessen PA, Thomas KV, Torres S, Trier X, van Wezel AP, Vermeulen RCH, Vlaanderen JJ, von der Ohe PC, Wang Z, Williams AJ, Willighagen EL, Wishart DS, Zhang J, Thomaidis NS, Hollender J, Slobodnik J, Schymanski EL. The NORMAN Suspect List Exchange (NORMAN-SLE): facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry. ENVIRONMENTAL SCIENCES EUROPE 2022; 34:104. [PMID: 36284750 PMCID: PMC9587084 DOI: 10.1186/s12302-022-00680-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Background The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for "suspect screening" lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide. Results The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA's CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101). Conclusions The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the "one substance, one assessment" approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/). Supplementary Information The online version contains supplementary material available at 10.1186/s12302-022-00680-6.
Collapse
Affiliation(s)
- Hiba Mohammed Taha
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikiforos Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
| | | | - Hans Peter H. Arp
- Norwegian Geotechnical Institute (NGI), Ullevål Stadion, P.O. Box 3930, 0806 Oslo, Norway
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Richard Bade
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102 Australia
| | | | - Lidia Belova
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
| | - Evan E. Bolton
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Werner Brack
- UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt Am Main, Germany
| | - Alberto Celma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
- Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Wen-Ling Chen
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, 17 Xuzhou Rd., Zhongzheng Dist., Taipei, Taiwan
| | - Tiejun Cheng
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Parviel Chirsir
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| | - Ľuboš Čirka
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
- Faculty of Chemical and Food Technology, Institute of Information Engineering, Automation, and Mathematics, Slovak University of Technology in Bratislava (STU), Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - Lisa A. D’Agostino
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden
| | | | - Valeria Dulio
- INERIS, National Institute for Environment and Industrial Risks, Verneuil en Halatte, France
| | - Stellan Fischer
- Swedish Chemicals Agency (KEMI), P.O. Box 2, 172 13 Sundbyberg, Sweden
| | - Pablo Gago-Ferrero
- Institute of Environmental Assessment and Water Research-Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona, Spain
| | - Aikaterini Galani
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Birgit Geueke
- Food Packaging Forum Foundation, Staffelstrasse 10, 8045 Zurich, Switzerland
| | - Natalia Głowacka
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
| | - Juliane Glüge
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Ksenia Groh
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Sylvia Grosse
- Thermo Fisher Scientific, Dornierstrasse 4, 82110 Germering, Germany
| | - Peter Haglund
- Department of Chemistry, Chemical Biological Centre (KBC), Umeå University, Linnaeus Väg 6, 901 87 Umeå, Sweden
| | - Pertti J. Hakkinen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Sarah E. Hale
- Norwegian Geotechnical Institute (NGI), Ullevål Stadion, P.O. Box 3930, 0806 Oslo, Norway
| | - Felix Hernandez
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
| | - Elisabeth M.-L. Janssen
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Tim Jonkers
- Department Environment and Health, Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
| | - Karin Kiefer
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Michal Kirchner
- Water Research Institute (WRI), Nábr. Arm. Gen. L. Svobodu 5, 81249 Bratislava, Slovak Republic
| | - Jan Koschorreck
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, Germany
| | - Martin Krauss
- UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Jessy Krier
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| | - Marja H. Lamoree
- Department Environment and Health, Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
| | - Marion Letzel
- Bavarian Environment Agency, 86179 Augsburg, Germany
| | - Thomas Letzel
- Analytisches Forschungsinstitut Für Non-Target Screening GmbH (AFIN-TS), Am Mittleren Moos 48, 86167 Augsburg, Germany
| | - Qingliang Li
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - James Little
- Mass Spec Interpretation Services, 3612 Hemlock Park Drive, Kingsport, TN 37663 USA
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (SKLECE, RCEES, CAS), No. 18 Shuangqing Road, Haidian District, Beijing, 100086 China
| | - David M. Lunderberg
- Hope College, Holland, MI 49422 USA
- University of California, Berkeley, CA USA
| | - Jonathan W. Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden
| | - Andrew D. McEachran
- Agilent Technologies, Inc., 5301 Stevens Creek Blvd, Santa Clara, CA 95051 USA
| | - John A. McLean
- Department of Chemistry, Center for Innovative Technology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235 USA
| | - Christiane Meier
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, Germany
| | - Jeroen Meijer
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Frank Menger
- Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Carla Merino
- University Rovira i Virgili, Tarragona, Spain
- Biosfer Teslab, Reus, Spain
| | - Jane Muncke
- Food Packaging Forum Foundation, Staffelstrasse 10, 8045 Zurich, Switzerland
| | | | - Michael Neumann
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, Germany
| | - Vanessa Neveu
- Nutrition and Metabolism Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Kelsey Ng
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Muellerstrasse 44, Innsbruck, Austria
| | - Jake O’Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102 Australia
| | - Peter Oswald
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
| | - Martina Oswaldova
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
| | - Jaqueline A. Picache
- Department of Chemistry, Center for Innovative Technology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235 USA
| | - Cristina Postigo
- Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
- Technologies for Water Management and Treatment Research Group, Department of Civil Engineering, University of Granada, Campus de Fuentenueva S/N, 18071 Granada, Spain
| | - Noelia Ramirez
- University Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili, Tarragona, Spain
| | | | - Justin Renaud
- Agriculture and Agri-Food Canada/Agriculture et Agroalimentaire Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | | | - Heinz Rüdel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME), Schmallenberg, Germany
| | - Reza M. Salek
- Nutrition and Metabolism Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Saer Samanipour
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, Amsterdam, 1090 GD The Netherlands
| | - Martin Scheringer
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Ivo Schliebner
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, Germany
| | - Wolfgang Schulz
- Laboratory for Operation Control and Research, Zweckverband Landeswasserversorgung, Am Spitzigen Berg 1, 89129 Langenau, Germany
| | - Tobias Schulze
- UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Manfred Sengl
- Bavarian Environment Agency, 86179 Augsburg, Germany
| | - Benjamin A. Shoemaker
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Kerry Sims
- Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH UK
| | - Heinz Singer
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Randolph R. Singh
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
- Chemical Contamination of Marine Ecosystems (CCEM) Unit, Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER), Rue de l’Ile d’Yeu, BP 21105, 44311 Cedex 3, Nantes France
| | - Mark Sumarah
- Agriculture and Agri-Food Canada/Agriculture et Agroalimentaire Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | - Paul A. Thiessen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Kevin V. Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102 Australia
| | | | - Xenia Trier
- Section for Environmental Chemistry and Physics, Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Annemarie P. van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Roel C. H. Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Jelle J. Vlaanderen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | | | - Zhanyun Wang
- Technology and Society Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Antony J. Williams
- Computational Chemistry and Cheminformatics Branch (CCCB), Chemical Characterization and Exposure Division (CCED), Center for Computational Toxicology and Exposure (CCTE), United States Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711 USA
| | - Egon L. Willighagen
- Department of Bioinformatics-BiGCaT, NUTRIM, Maastricht University, Maastricht, The Netherlands
| | | | - Jian Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Nikolaos S. Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Juliane Hollender
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | | | - Emma L. Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| |
Collapse
|
21
|
Rapid target and non-target screening method for determination of emerging organic chemicals in fish. J Chromatogr A 2022; 1676:463185. [DOI: 10.1016/j.chroma.2022.463185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 11/22/2022]
|
22
|
Paszkiewicz M, Godlewska K, Lis H, Caban M, Białk-Bielińska A, Stepnowski P. Advances in suspect screening and non-target analysis of polar emerging contaminants in the environmental monitoring. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Zhang Y, Li J, Su G. Comprehensively screening of citric acid ester (CAE) plasticizers in Chinese foodstuffs, and the food-based assessment of human exposure risk of CAEs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152933. [PMID: 35007585 DOI: 10.1016/j.scitotenv.2022.152933] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/27/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
An increasing number of studies on the toxicities of citric acid esters (CAEs)-a class of so-called "safe" alternative plasticizers-have highlighted the urgent need to understand their contamination profiles in foodstuffs and the corresponding potential risks to human health. This study determined the concentrations of 8 target CAEs in 105 foodstuff samples, grouped into 6 food categories, collected from Nanjing City, China, in 2020. All eight CAEs were detected in at least one of the analyzed samples and had detection frequencies (DFs) of 5-47%. The DFs and distribution profiles of the target CAEs varied among different food categories; for example, cereals had the highest DF (92%), while meat/fish contained the highest mean total concentration of CAEs (8.35 ng/g wet weight (ww)). Among the target CAEs, acetyl tributyl citrate (ATBC) had the highest DF (47%), and tributyl citrate (TBC) exhibited the highest mean concentration (1.24 ng/g ww). Based on the food ingestion route, the estimated total daily intake (EDI) values of the target CAEs for adults under average- and high-exposure scenarios were 38.3 ng/kg of body weight (bw) and 111 ng/kg bw, respectively, which were attributed to the high percentage contributions of TBC (50.6%) and ATBC (23.7%). In addition, a suspect and characteristic fragment-dependent screening strategy was applied to the foodstuff data, and a novel CAE, monoethyl citrate (MEC, CAS: 4552-00-5), with a DF of 34% was tentatively identified. Overall, this study provides novel and comprehensive information regarding the pollution status of CAEs in foodstuffs.
Collapse
Affiliation(s)
- Yayun Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
24
|
A Fully Automated Online SPE-LC-MS/MS Method for the Determination of 10 Pharmaceuticals in Wastewater Samples. TOXICS 2022; 10:toxics10030103. [PMID: 35324728 PMCID: PMC8955396 DOI: 10.3390/toxics10030103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023]
Abstract
The increasing use of pharmaceuticals, their presence in the aquatic environment, and the associated toxic effects, have raised concerns in recent years. In this work, a new multi-residue analytical method was developed and validated for the determination of 10 pharmaceuticals in wastewaters using online solid-phase extraction (online SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The compounds included in the method were antineoplastics (cabazitaxel, docetaxel, doxorubicin, etoposide, irinotecan, methotrexate, paclitaxel, and topotecan), renin inhibitors (aliskiren), and antidepressants (maprotiline). The method was developed through several experiments on four online SPE cartridges, three reversed phase chromatography columns, and four combinations of mobile phase components. Under optimal conditions, very low limits of detection (LODs) of 1.30 to 10.6 ng L−1 were obtained. The method was repeatable, with relative standard deviations (RSD, %) for intraday and interday precisions ranged from 1.6 to 7.8 and from 3.3 to 13.2, respectively. Recovery values ranged from 78.4 to 111.4%, indicating the reproducibility of the method. Matrix effects were mainly presented as signal suppression, with topotecan and doxorubicin being the two most affected compounds (31.0% signal suppression). The proposed method was successfully applied to hospital effluents, detecting methotrexate (4.7–9.3 ng L−1) and maprotiline (11.2–23.1 ng L−1). Due to the shorter overall run time of 15 min, including sample preparation, and reduced sample volume (0.9 mL), this on-line SPE-LC-MS/MS method was extremely convenient and efficient in comparison to the classical off-line SPE method. The proposed method was also highly sensitive and can be used for ultratrace quantification of the studied pharmaceuticals in wastewaters, providing useful data for effective environmental monitoring.
Collapse
|
25
|
Adeleye AS, Xue J, Zhao Y, Taylor AA, Zenobio JE, Sun Y, Han Z, Salawu OA, Zhu Y. Abundance, fate, and effects of pharmaceuticals and personal care products in aquatic environments. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127284. [PMID: 34655870 DOI: 10.1016/j.jhazmat.2021.127284] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are found in wastewater, and thus, the environment. In this study, current knowledge about the occurrence and fate of PPCPs in aquatic systems-including wastewater treatment plants (WWTPs) and natural waters around the world-is critically reviewed to inform the state of the science and highlight existing knowledge gaps. Excretion by humans is the primary route of PPCPs entry into municipal wastewater systems, but significant contributions also occur through emissions from hospitals, PPCPs manufacturers, and agriculture. Abundance of PPCPs in raw wastewater is influenced by several factors, including the population density and demography served by WWTPs, presence of hospitals and drugs manufacturers in the sewershed, disease burden of the population served, local regulations, and climatic conditions. Based on the data obtained from WWTPs, analgesics, antibiotics, and stimulants (e.g., caffeine) are the most abundant PPCPs in raw wastewater. In conventional WWTPs, most removal of PPCPs occurs during secondary treatment, and overall removal exceeds 90% for treatable PPCPs. Regardless, the total PPCP mass discharged with effluent by an average WWTP into receiving waters (7.35-20,160 g/day) is still considerable, because potential adverse effects of some PPCPs (such as ibuprofen) on aquatic organisms occur within measured concentrations found in surface waters.
Collapse
Affiliation(s)
- Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA.
| | - Jie Xue
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yixin Zhao
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Alicia A Taylor
- Ecological and Biological Sciences Practice, Exponent, Inc., Oakland, CA 94612, USA
| | - Jenny E Zenobio
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yian Sun
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA; Water-Energy Nexus Center, University of California, Irvine, CA 92697-2175, USA
| | - Ziwei Han
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Omobayo A Salawu
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yurong Zhu
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697-2580, USA
| |
Collapse
|
26
|
Lopez-Herguedas N, González-Gaya B, Castelblanco-Boyacá N, Rico A, Etxebarria N, Olivares M, Prieto A, Zuloaga O. Characterization of the contamination fingerprint of wastewater treatment plant effluents in the Henares River Basin (central Spain) based on target and suspect screening analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151262. [PMID: 34715212 DOI: 10.1016/j.scitotenv.2021.151262] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/03/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The interest in contaminants of emerging concern (CECs) has increased lately due to their continued emission and potential ecotoxicological hazards. Wastewater treatment plants (WWTPs) are generally not capable of eliminating them and are considered the main pathway for CECs to the aquatic environment. The number of CECs in WWTPs effluents is often so large that complementary approaches to the conventional target analysis need to be implemented. Within this context, multitarget quantitative analysis (162 compounds) and a suspect screening (>40,000 suspects) approaches were applied to characterize the CEC fingerprint in effluents of five WWTPs in the Henares River basin (central Spain) during two sampling campaigns (summer and autumn). The results indicated that 76% of the compounds quantified corresponded to pharmaceuticals, 21% to pesticides and 3% to industrial chemicals. Apart from the 82 compounds quantified, suspect screening increased the list to 297 annotated compounds. Significant differences in the CEC fingerprint were observed between summer and autumn campaigns and between the WWTPs, being those serving the city of Alcalá de Henares the ones with the largest number of compounds and concentrations. Finally, a risk prioritization approach was applied based on risk quotients (RQs) for algae, invertebrates, and fish. Azithromycin, diuron, chlortoluron, clarithromycin, sertraline and sulfamethoxazole were identified as having the largest risks to algae. As for invertebrates, the compounds having the largest RQs were carbendazim, fenoxycarb and eprosartan, and for fish acetaminophen, DEET, carbendazim, caffeine, fluconazole, and azithromycin. The two WWTPs showing higher calculated Risk Indexes had tertiary treatments, which points towards the need of increasing the removal efficiency in urban WWTPs. Furthermore, considering the complex mixtures emitted into the environment and the low dilution capacity of Mediterranean rivers, we recommend the development of detailed monitoring plans and stricter regulations to control the chemical burden created to freshwater ecosystems.
Collapse
Affiliation(s)
- N Lopez-Herguedas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - B González-Gaya
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - N Castelblanco-Boyacá
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - A Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Alcalá de Henares, Madrid, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Valencia, Spain
| | - N Etxebarria
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - M Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - A Prieto
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - O Zuloaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| |
Collapse
|
27
|
Du Y, Xu X, Liu Q, Bai L, Hang K, Wang D. Identification of organic pollutants with potential ecological and health risks in aquatic environments: Progress and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150691. [PMID: 34600995 DOI: 10.1016/j.scitotenv.2021.150691] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Thousands of organic pollutants are intentionally and unintentionally discharged into water bodies, adversely affecting the ecological environment and human health. Screening for organic pollutants that pose a potential risk in aquatic environments is essential for risk management. This review evaluates the processes, methods, and technologies used to screen such pollutants in the aquatic environment and discuss their advantages and disadvantages, in addition to the challenges and knowledge gaps in this field. Combining non-target screening, target screening, and suspect screening is often effective for compiling a list of potential risk compounds and enables the quantitative analysis of these compounds. Sample preparation technologies and pollutant detection technologies considerably affect the results of pollutant screening. The limited amount of chemical and toxicological information contained in databases hinders the screening of organic pollutants with potential risk. Machine learning, high-throughput methods, and other technologies will increase the accuracy and convenience of screening for high-risk pollutants. This review provides an important reference for screening these compounds in aquatic environments and can be used in future pollutant screening and risk management.
Collapse
Affiliation(s)
- Yanjun Du
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 100021 Beijing, China
| | - Xiong Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Quanzhen Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lu Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Kexin Hang
- Experimental High School Attached to Beijing Normal University, 100052 Beijing, China
| | - Donghong Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
28
|
Daniel D, Campos JC, Costa PC, Nunes B. Toxicity of two drugs towards the marine filter feeder Mytilus spp, using biochemical and shell integrity parameters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118562. [PMID: 34813888 DOI: 10.1016/j.envpol.2021.118562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/04/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The increasing presence of anthropogenic contaminants in the environment may constitute a challenge to non-target biota, considering that most contaminants can exert deleterious effects. Salicylic acid (SA) is a non-steroid anti-inflammatory drug (NSAID) which exerts its activity by inhibiting the enzyme cyclooxygenase (COX). Another class of drugs is that of the diuretics, in which acetazolamide (ACZ) is included. This pharmaceutical acts by inhibiting carbonic anhydrase (CA), a key enzyme in acid-base homeostasis, regulation of pH, being also responsible for the bio-availability of Ca2+ for shell biomineralization processes. In this work, we evaluated the chronic (28-day) ecotoxicological effects resulting from the exposures to SA and ACZ (alone, and in combination) on individuals of the marine mussel species Mytillus spp., using enzymatic (catalase (CAT), glutathione S-transferases (GSTs), COX and CA), non-enzymatic (lipid peroxidation, TBARS levels) and morphological and physiological (shell hardness, shell index and feeding behaviour) biomarkers. Exposure to ACZ and SA did not cause significant alterations in CAT and GSTs activities, and in TBARS levels. In terms of CA, this enzyme was inhibited by the highest concentration of ACZ in gills of exposed animals, but no effects occurred in the mantle tissue. The activity of COX was not altered after exposure to the single chemicals. However, animals exposed to the mixture of ACZ and SA evidenced a significant inhibition of COX activity. Morphological and physiological processes (namely, feeding, shell index, and shell hardness) were not affected by the here tested pharmaceutical drugs. Considering the general absence of adverse effects, further studies are needed to fully evaluate the effects of these pharmaceutical drugs on alternative biochemical and physiological pathways.
Collapse
Affiliation(s)
- David Daniel
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João C Campos
- UCIBIO, REQUIMTE, Laboratório de Tecnologia Farmacêutica, Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Paulo C Costa
- UCIBIO, REQUIMTE, Laboratório de Tecnologia Farmacêutica, Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
29
|
Mladenov N, Dodder NG, Steinberg L, Richardot W, Johnson J, Martincigh BS, Buckley C, Lawrence T, Hoh E. Persistence and removal of trace organic compounds in centralized and decentralized wastewater treatment systems. CHEMOSPHERE 2022; 286:131621. [PMID: 34325254 DOI: 10.1016/j.chemosphere.2021.131621] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 07/03/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The persistence of trace organic chemicals in treated effluent derived from both centralized wastewater treatment plants (WWTPs) and decentralized wastewater treatment systems (DEWATS) is of concern due to their potential impacts on human and ecosystem health. Here, we utilize non-targeted analysis (NTA) with comprehensive two-dimensional gas chromatography coupled with time of flight mass spectrometry (GC × GC/TOF-MS) to conduct an evaluation of the common persistent and removed compounds found in two centralized WWTPs in the USA and South Africa and one DEWATS in South Africa. Overall, removal efficiencies of chemicals were similar between the treatment plants when they were compared according to the number of chemical features detected in the influents and effluents of each treatment plant. However, the DEWATS treatment train, which has longer solids retention and hydraulic residence times than both of the centralized WWTPs and utilizes primarily anaerobic treatment processes, was able to remove 13 additional compounds and showed a greater decrease in normalized peak areas compared to the centralized WWTPs. Of the 111 common compounds tentatively identified in all three influents, 11 compounds were persistent in all replicates, including 5 compounds not previously reported in effluents of WWTPs or water reuse systems. There were no significant differences among the physico-chemical properties of persistent and removed compounds, but significant differences were observed among some of the molecular descriptors. These results have important implications for the treatment of trace organic chemicals in centralized and decentralized WWTPs and the monitoring of new compounds in WWTP effluent.
Collapse
Affiliation(s)
- Natalie Mladenov
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA, 92182, USA.
| | - Nathan G Dodder
- School of Public Health, San Diego State University, San Diego, CA, 92182, USA; San Diego State University Research Foundation, San Diego, CA, 92182, USA
| | - Lauren Steinberg
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA, 92182, USA
| | - William Richardot
- San Diego State University Research Foundation, San Diego, CA, 92182, USA
| | - Jade Johnson
- School of Public Health, San Diego State University, San Diego, CA, 92182, USA
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Chris Buckley
- Water, Sanitation & Hygiene Research & Development Centre, School of Engineering, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Tolulope Lawrence
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Eunha Hoh
- School of Public Health, San Diego State University, San Diego, CA, 92182, USA
| |
Collapse
|
30
|
Gonçalves NPF, Iezzi L, Belay MH, Dulio V, Alygizakis N, Dal Bello F, Medana C, Calza P. Elucidation of the photoinduced transformations of Aliskiren in river water using liquid chromatography high-resolution mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149547. [PMID: 34391152 DOI: 10.1016/j.scitotenv.2021.149547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/16/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Aliskiren was selected as a compound of potential concern among a suspect screening list of more than 40,000 substances on a basis of high occurrence, potential risk and the absence of information about its environmental fate. This study investigated the photoinduced degradation of aliskiren in river water samples spiked at trace levels exposed to simulated sunlight. A half-life time of 24 h was observed with both direct and indirect photolysis playing a role on pollutant degradation. Its photo-induced transformation involved the formation of six transformation products (TPs), elucidated by LC-HRMS - resulted from the drug hydroxylation, oxidation and moieties loss with subsequent cyclization structurally. The retrospective suspected analysis performed on a total of 754 environmental matrices evidenced the environmental occurrence of aliskiren and two TPs in surface waters (river and seawater), fresh water, sediments and biota. In silico bioassays suggested that aliskiren degradation undergoes thought the formation of TPs with distinct toxicity comparing with the parent compound.
Collapse
Affiliation(s)
| | - Lucia Iezzi
- Department of Chemistry, University of Turin, Torino, Italy
| | - Masho H Belay
- Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Valeria Dulio
- INERIS, National Institute for Environment and Industrial Risks, Verneuil en Halatte, France
| | - Nikiforos Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; Environmental Institute, Okružná 784/42, 97241 Koš, Slovak Republic
| | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Paola Calza
- Department of Chemistry, University of Turin, Torino, Italy.
| |
Collapse
|
31
|
Evaluation of Sample Preparation Methods for Non-Target Screening of Organic Micropollutants in Urban Waters Using High-Resolution Mass Spectrometry. Molecules 2021; 26:molecules26237064. [PMID: 34885646 PMCID: PMC8659043 DOI: 10.3390/molecules26237064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 02/02/2023] Open
Abstract
Non-target screening (NTS) has gained interest in recent years for environmental monitoring purposes because it enables the analysis of a large number of pollutants without predefined lists of molecules. However, sample preparation methods are diverse, and few have been systematically compared in terms of the amount and relevance of the information obtained by subsequent NTS analysis. The goal of this work was to compare a large number of sample extraction methods for the unknown screening of urban waters. Various phases were tested for the solid-phase extraction of micropollutants from these waters. The evaluation of the different phases was assessed by statistical analysis based on the number of detected molecules, their range, and physicochemical properties (molecular weight, standard recoveries, polarity, and optical properties). Though each cartridge provided its own advantages, a multilayer cartridge combining several phases gathered more information in one single extraction by benefiting from the specificity of each one of its layers.
Collapse
|
32
|
Seller C, Özel Duygan BD, Honti M, Fenner K. Biotransformation of Chemicals at the Water–Sediment Interface─Toward a Robust Simulation Study Setup. ACS ENVIRONMENTAL AU 2021; 1:46-57. [PMID: 37101935 PMCID: PMC10114792 DOI: 10.1021/acsenvironau.1c00006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studying aquatic biotransformation of chemicals in laboratory experiments, i.e., OECD 308 and OECD 309 studies, is required by international regulatory frameworks to prevent the release of persistent chemicals into natural water bodies. Here, we aimed to address several previously described shortcomings of OECD 308/309 studies regarding their variable outcomes and questionable environmental relevance by broadly testing and characterizing a modified biotransformation test system in which an aerated water column covers a thin sediment layer. Compared to standard OECD 308/309 studies, the modified system showed little inter-replicate variability, improved observability of biotransformation, and consistency with first-order biotransformation kinetics for the majority of 43 test compounds, including pharmaceuticals, pesticides, and artificial sweeteners. To elucidate the factors underlying the decreased inter-replicate variability compared to OECD 309 outcomes, we used multidimensional flow cytometry data and a machine learning-based cell type assignment pipeline to study cell densities and cell type diversities in the sediment and water compartments. Our here presented data on cell type composition in both water and sediment allows, for the first time, to study the behavior of microbial test communities throughout different biotransformation simulation studies. We found that sediment-associated microbial communities were generally more stable throughout the experiments and exhibited higher cell type diversity than the water column-associated communities. Consistently, our data indicate that aquatic biotransformation of chemicals can be most robustly studied in test systems providing a sufficient amount of sediment-borne biomass. While these findings favor OECD 308-type systems over OECD 309-type systems to study biotransformation at the water-sediment interface, our results suggest that the former should be modified toward lower sediment-water ratios to improve observability and interpretability of biotransformation.
Collapse
Affiliation(s)
- Carolin Seller
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Birge D. Özel Duygan
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Microbiology, CHUV, 1011 Lausanne, Switzerland
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Mark Honti
- MTA-BME Water Research Group, 1111 Budapest, Hungary
| | - Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
33
|
Wang S, Perkins M, Matthews DA, Zeng T. Coupling Suspect and Nontarget Screening with Mass Balance Modeling to Characterize Organic Micropollutants in the Onondaga Lake-Three Rivers System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15215-15226. [PMID: 34730951 PMCID: PMC8600663 DOI: 10.1021/acs.est.1c04699] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/03/2021] [Accepted: 10/20/2021] [Indexed: 05/25/2023]
Abstract
Characterizing the occurrence, sources, and fate of organic micropollutants (OMPs) in lake-river systems serves as an important foundation for constraining the potential impacts of OMPs on the ecosystem functions of these critical landscape features. In this work, we combined suspect and nontarget screening with mass balance modeling to investigate OMP contamination in the Onondaga Lake-Three Rivers system of New York. Suspect and nontarget screening enabled by liquid chromatography-high-resolution mass spectrometry led to the confirmation and quantification of 105 OMPs in water samples collected throughout the lake-river system, which were grouped by their concentration patterns into wastewater-derived and mixed-source clusters via hierarchical cluster analysis. Four of these OMPs (i.e., galaxolidone, diphenylphosphinic acid, N-butylbenzenesulfonamide, and triisopropanolamine) were prioritized and identified by nontarget screening based on their characteristic vertical distribution patterns during thermal stratification in Onondaga Lake. Mass balance modeling performed using the concentration and discharge data highlighted the export of OMPs from Onondaga Lake to the Three Rivers as a major contributor to the OMP budget in this lake-river system. Overall, this work demonstrated the utility of an integrated screening and modeling framework that can be adapted for OMP characterization, fate assessment, and load apportionment in similar surface water systems.
Collapse
Affiliation(s)
- Shiru Wang
- Department
of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United
States
| | - MaryGail Perkins
- Upstate
Freshwater Institute, 224 Midler Park Drive, Syracuse, New York 13206, United
States
| | - David A. Matthews
- Upstate
Freshwater Institute, 224 Midler Park Drive, Syracuse, New York 13206, United
States
| | - Teng Zeng
- Department
of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United
States
| |
Collapse
|
34
|
Fork ML, Fick JB, Reisinger AJ, Rosi EJ. Dosing the Coast: Leaking Sewage Infrastructure Delivers Large Annual Doses and Dynamic Mixtures of Pharmaceuticals to Urban Rivers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11637-11645. [PMID: 34405672 DOI: 10.1021/acs.est.1c00379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals are commonly detected at low concentrations in surface waters, where they disrupt biological and ecological processes. Despite their ubiquity, the annual mass of pharmaceuticals exported from watersheds is rarely quantified. We used liquid chromatography-mass spectroscopy to screen for 92 pharmaceuticals in weekly samples from an urban stream network in Baltimore, MD, USA, that lacks wastewater treatment effluents. Across the network, we detected 37 unique compounds, with higher concentrations and more compounds in streams with higher population densities. We also used concentrations and stream discharge to calculate annual pharmaceutical loads at the watershed outlet, which range from less than 1 kg to ∼15 kg and are equivalent to tens of thousands of human doses. By calculating annual watershed mass balances for eight compounds, we show that ∼0.05 to ∼42% of the pharmaceuticals consumed by humans in this watershed are released to surface waters, with the importance of different pathways (leaking sewage vs treated wastewater effluent) differing among compounds. These results demonstrate the importance of developing, maintaining, and improving sewage infrastructure to protect water resources from pharmaceutical contamination.
Collapse
Affiliation(s)
- Megan L Fork
- Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike AB, Millbrook, New York 12545, United States
| | - Jerker B Fick
- Department of Chemistry, Umeå University, Umeå 907 36, Sweden
| | - Alexander J Reisinger
- Soil and Water Sciences Department, University of Florida, Gainesville, Florida 32603, United States
| | - Emma J Rosi
- Cary Institute of Ecosystem Studies, Millbrook, New York, 12545 United States
| |
Collapse
|
35
|
Hedgespeth ML, McCord JP, Phillips KA, Strynar MJ, Shea D, Nichols EG. Suspect-screening analysis of a coastal watershed before and after Hurricane Florence using high-resolution mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146862. [PMID: 33839655 DOI: 10.1016/j.scitotenv.2021.146862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
On September 14, 2018, Hurricane Florence delivered ~686 mm rainfall to a 106 km2 watershed in coastal North Carolina, USA. A forested land treatment site comprises one third of the watershed wherein municipal wastewater effluent is spray-irrigated onto 8.9 km2 of forest. This communication provides insight for land treatment function under excess water duress as well as changes in organic chemical composition in on- and off-site waters before (June 2018) and after (September & December 2018) Hurricane Florence's landfall. We compare the numbers and relative abundances of chemical features detected using suspect screening high resolution mass spectrometry in waste-, ground-, and surface water samples. Values for upstream and receiving waters in September were lower than for sampling events in June and December, indicating an expected dilution effect across the watershed. Chemical diversity was greatest for all surface water samples in December, but only upstream surface water showed a dramatic five-fold increase in relative chemical abundance. Chemical abundance in on-site water and downstream surface water was equal to or lower than the September storm dilution effect. These data suggest that the land treatment system is functionally and hydrologically robust to extreme storm events and contributed to dilution of upstream chemical reservoirs for downstream receiving waters for months after the storm. Similar systems may embody one water reuse strategy robust to the increasing occurrence of extreme precipitation events.
Collapse
Affiliation(s)
- Melanie L Hedgespeth
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| | - James P McCord
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Research Triangle Park, NC 27709, USA.
| | - Katherine A Phillips
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC 27711, USA.
| | - Mark J Strynar
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Research Triangle Park, NC 27709, USA.
| | - Damian Shea
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| | - Elizabeth Guthrie Nichols
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
36
|
Oberleitner D, Schmid R, Schulz W, Bergmann A, Achten C. Feature-based molecular networking for identification of organic micropollutants including metabolites by non-target analysis applied to riverbank filtration. Anal Bioanal Chem 2021; 413:5291-5300. [PMID: 34286355 PMCID: PMC8405475 DOI: 10.1007/s00216-021-03500-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 01/25/2023]
Abstract
Due to growing concern about organic micropollutants and their transformation products (TP) in surface and drinking water, reliable identification of unknowns is required. Here, we demonstrate how non-target liquid chromatography (LC)-high-resolution tandem mass spectrometry (MS/MS) and the feature-based molecular networking (FBMN) workflow provide insight into water samples from four riverbank filtration sites with different redox conditions. First, FBMN prioritized and connected drinking water relevant and seasonally dependent compounds based on a modification-aware MS/MS cosine similarity. Within the resulting molecular networks, forty-three compounds were annotated. Here, carbamazepine, sartans, and their respective TP were investigated exemplarily. With chromatographic information and spectral similarity, four additional TP (dealkylated valsartan, dealkylated irbesartan, two oxygenated irbesartan isomers) and olmesartan were identified and partly verified with an authentic standard. In this study, sartans and TP were investigated and grouped regarding their removal behavior under different redox conditions and seasons for the first time. Antihypertensives were grouped into compounds being well removed during riverbank filtration, those primarily removed under anoxic conditions, and rather persistent compounds. Observed seasonal variations were mainly limited to varying river water concentrations. FBMN is a powerful tool for identifying previously unknown or unexpected compounds and their TP in water samples by non-target analysis.
Collapse
Affiliation(s)
- Daniela Oberleitner
- Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstraße 24, 48149, Münster, Germany
| | - Robin Schmid
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, 48149, Münster, Germany
| | - Wolfgang Schulz
- Laboratory for Operation Control and Research, Zweckverb and Landeswasserversorgung, Am Spitzigen Berg 1, 89129, Langenau, Germany
| | - Axel Bergmann
- Rheinisch-Westfälische Wasserwerksgesellschaft mbH, Am Schloß Broich 1-3, 45479, Mülheim (Ruhr), Germany
| | - Christine Achten
- Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstraße 24, 48149, Münster, Germany.
| |
Collapse
|
37
|
Gosset A, Wiest L, Fildier A, Libert C, Giroud B, Hammada M, Hervé M, Sibeud E, Vulliet E, Polomé P, Perrodin Y. Ecotoxicological risk assessment of contaminants of emerging concern identified by "suspect screening" from urban wastewater treatment plant effluents at a territorial scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146275. [PMID: 33714835 DOI: 10.1016/j.scitotenv.2021.146275] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Urban wastewater treatment plants (WWTP) are a major vector of highly ecotoxic contaminants of emerging concern (CECs) for urban and sub-urban streams. Ecotoxicological risk assessments (ERAs) provide essential information to public environmental authorities. Nevertheless, ERAs are mainly performed at very local scale (one or few WWTPs) and on pre-selected list of CECs. To cope with these limits, the present study aims to develop a territorial-scale ERA on CECs previously identified by a "suspect screening" analytical approach (LC-QToF-MS) and quantified in the effluents of 10 WWTPs of a highly urbanized territory during three periods of the year. Among CECs, this work focused on pharmaceutical residue and pesticides. ERA was conducted following two complementary methods: (1) a single substance approach, based on the calculation for each CEC of risk quotients (RQs) by the ratio of Predicted Environmental Concentration (PEC) and Predicted No Effect Concentration (PNEC), and (2) mixture risk assessment ("cocktail effect") based on a concentration addition model (CA), summing individual RQs. Chemical results led to an ERA for 41 CEC (37 pharmaceuticals and 4 pesticides) detected in treated effluents. Single substance ERA identified 19 CECs implicated in at least one significant risk for streams, with significant risks for DEET, diclofenac, lidocaine, atenolol, terbutryn, atorvastatin, methocarbamol, and venlafaxine (RQs reaching 39.84, 62.10, 125.58, 179.11, 348.24, 509.27, 1509.71 and 3097.37, respectively). Mixture ERA allowed the identification of a risk (RQmix > 1) for 9 of the 10 WWTPs studied. It was also remarked that CECs leading individually to a negligible risk could imply a significant risk in a mixture. Finally, the territorial ERA showed a diversity of risk situations, with the highest concerns for 3 WWTPs: the 2 biggest of the territory discharging into a large French river, the Rhône, and for the smallest WWTP that releases into a small intermittent stream.
Collapse
Affiliation(s)
- Antoine Gosset
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France; Université de Lyon & Université Lyon 2, Lyon, F-69007, CNRS, UMR 5824 GATE Lyon Saint-Etienne, Ecully F-69130, France; Ecole Urbaine de Lyon, Institut Convergences, Commissariat général aux investissements d'avenir, Bât. Atrium, 43 Boulevard du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Laure Wiest
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Aurélie Fildier
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Christine Libert
- Grand Lyon Urban Community, Water and Urban Planning Department, 69003 Lyon, 9, France
| | - Barbara Giroud
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Myriam Hammada
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France
| | - Matthieu Hervé
- Grand Lyon Urban Community, Water and Urban Planning Department, 69003 Lyon, 9, France
| | - Elisabeth Sibeud
- Grand Lyon Urban Community, Water and Urban Planning Department, 69003 Lyon, 9, France
| | - Emmanuelle Vulliet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Philippe Polomé
- Université de Lyon & Université Lyon 2, Lyon, F-69007, CNRS, UMR 5824 GATE Lyon Saint-Etienne, Ecully F-69130, France
| | - Yves Perrodin
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France
| |
Collapse
|
38
|
Angeles LF, Singh RR, Vikesland PJ, Aga DS. Increased coverage and high confidence in suspect screening of emerging contaminants in global environmental samples. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125369. [PMID: 33647625 DOI: 10.1016/j.jhazmat.2021.125369] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 05/06/2023]
Abstract
Suspect screening using liquid chromatography with high resolution mass spectrometry provides an opportunity for expanding the detection coverage of emerging contaminants in the environment. Screening workflows may suffer from high frequency of false positives or insufficient confidence in the identification of compounds; however, stringent criteria could lead to high false negatives. A workflow must have a balanced criteria, both selective and sensitive, to be able to identify real features without missing low abundant features traceable to analytes of interest. A highly selective (87%) and sensitive (97%) workflow was developed by characterizing the occurrence of contaminants in wastewater and surface water from Hong Kong, India, Philippines, Sweden, Switzerland, and the U.S. Sixty-eight contaminants were identified and confirmed with reference standards, including pharmaceuticals, pesticides, and industrial chemicals. The antimicrobials metronidazole, clindamycin, linezolid, and rifaximin were detected. Notably, antifungal compounds were detected in samples from six countries, with levels up to 1380 ng/L. Amoxicillin transformation products, penilloic acid (285-8047 ng/L) and penicilloic acid (107 ng/L), were confirmed for the first time with reference standards in wastewater samples from India, Sweden, and U.S. This workflow provides an efficient approach to broad-scale identification of emerging contaminants using publicly-available databases for suspect screening and prioritization.
Collapse
Affiliation(s)
- Luisa F Angeles
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Randolph R Singh
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260, United States; Laboratoire Biogéochimie des Contaminants Organiques, Ifremer, F-44311, Nantes, France
| | - Peter J Vikesland
- Department of Civil and Environmental Engineering, Virginia Polytechnic and State University, Blacksburg, VA 24060-0361, United States
| | - Diana S Aga
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260, United States.
| |
Collapse
|
39
|
Meijer J, Lamoree M, Hamers T, Antignac JP, Hutinet S, Debrauwer L, Covaci A, Huber C, Krauss M, Walker DI, Schymanski EL, Vermeulen R, Vlaanderen J. An annotation database for chemicals of emerging concern in exposome research. ENVIRONMENT INTERNATIONAL 2021; 152:106511. [PMID: 33773387 DOI: 10.1016/j.envint.2021.106511] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/03/2021] [Accepted: 03/06/2021] [Indexed: 05/18/2023]
Abstract
BACKGROUND Chemicals of Emerging Concern (CECs) include a very wide group of chemicals that are suspected to be responsible for adverse effects on health, but for which very limited information is available. Chromatographic techniques coupled with high-resolution mass spectrometry (HRMS) can be used for non-targeted screening and detection of CECs, by using comprehensive annotation databases. Establishing a database focused on the annotation of CECs in human samples will provide new insight into the distribution and extent of exposures to a wide range of CECs in humans. OBJECTIVES This study describes an approach for the aggregation and curation of an annotation database (CECscreen) for the identification of CECs in human biological samples. METHODS The approach consists of three main parts. First, CECs compound lists from various sources were aggregated and duplications and inorganic compounds were removed. Subsequently, the list was curated by standardization of structures to create "MS-ready" and "QSAR-ready" SMILES, as well as calculation of exact masses (monoisotopic and adducts) and molecular formulas. The second step included the simulation of Phase I metabolites. The third and final step included the calculation of QSAR predictions related to physicochemical properties, environmental fate, toxicity and Absorption, Distribution, Metabolism, Excretion (ADME) processes and the retrieval of information from the US EPA CompTox Chemicals Dashboard. RESULTS All CECscreen database and property files are publicly available (DOI: https://doi.org/10.5281/zenodo.3956586). In total, 145,284 entries were aggregated from various CECs data sources. After elimination of duplicates and curation, the pipeline produced 70,397 unique "MS-ready" structures and 66,071 unique QSAR-ready structures, corresponding with 69,526 CAS numbers. Simulation of Phase I metabolites resulted in 306,279 unique metabolites. QSAR predictions could be performed for 64,684 of the QSAR-ready structures, whereas information was retrieved from the CompTox Chemicals Dashboard for 59,739 CAS numbers out of 69,526 inquiries. CECscreen is incorporated in the in silico fragmentation approach MetFrag. DISCUSSION The CECscreen database can be used to prioritize annotation of CECs measured in non-targeted HRMS, facilitating the large-scale detection of CECs in human samples for exposome research. Large-scale detection of CECs can be further improved by integrating the present database with resources that contain CECs (metabolites) and meta-data measurements, further expansion towards in silico and experimental (e.g., MassBank) generation of MS/MS spectra, and development of bioinformatics approaches capable of using correlation patterns in the measured chemical features.
Collapse
Affiliation(s)
- Jeroen Meijer
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands; Department Environment & Health, Vrije Universiteit, Amsterdam, the Netherlands
| | - Marja Lamoree
- Department Environment & Health, Vrije Universiteit, Amsterdam, the Netherlands
| | - Timo Hamers
- Department Environment & Health, Vrije Universiteit, Amsterdam, the Netherlands
| | | | | | - Laurent Debrauwer
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, Toulouse, France
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Belgium
| | - Carolin Huber
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Martin Krauss
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Emma L Schymanski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Jelle Vlaanderen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
40
|
Black GP, He G, Denison MS, Young TM. Using Estrogenic Activity and Nontargeted Chemical Analysis to Identify Contaminants in Sewage Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6729-6739. [PMID: 33909413 PMCID: PMC8378343 DOI: 10.1021/acs.est.0c07846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Diverse organic compounds, many derived from consumer products, are found in sewage sludge worldwide. Understanding which of these poses the most significant environmental threat following land application can be investigated through a variety of predictive and cell-based toxicological techniques. Nontargeted analysis using high-resolution mass spectrometry with predictive estrogenic activity modeling was performed on sewage sludge samples from 12 wastewater treatment plants in California. Diisobutyl phthalate and dextrorphan were predicted to exhibit estrogenic activity and identified in >75% of sludge samples, signifying their universal presence and persistence. Additionally, the application of an estrogen-responsive cell bioassay revealed reductions in agonistic activity during mesophilic and thermophilic treatment but significant increases in antagonism during thermophilic treatment, which warrants further research. Ten nontarget features were identified (metoprolol, fenofibric acid, erythrohydrobupropion, oleic acid, mestranol, 4'-chlorobiphenyl-2,3-diol, medrysone, scillarenin, sudan I, and N,O-didesmethyltramadol) in treatment set samples and are considered to have influenced the in vitro estrogenic activity observed. The combination of predictive and in vitro estrogenicity with nontargeted analysis has led to confirmation of 12 estrogen-active contaminants in California sewage sludge and has highlighted the importance of evaluating both agonistic and antagonistic responses when evaluating the bioactivity of complex samples.
Collapse
Affiliation(s)
- Gabrielle P. Black
- Agricultural & Environmental Chemistry Graduate Group, University of California, Davis
| | - Guochun He
- Department of Environmental Toxicology, University of California, Davis
| | | | - Thomas M. Young
- Agricultural & Environmental Chemistry Graduate Group, University of California, Davis
- Department of Civil & Environmental Engineering, University of California, Davis
| |
Collapse
|
41
|
Daniel D, Nunes B. Evaluation of single and combined effects of two pharmaceuticals on the marine gastropod Phorcus lineatus enzymatic activity under two different exposure periods. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:756-765. [PMID: 33829385 DOI: 10.1007/s10646-021-02396-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceutical drugs are among the most used chemicals for human and veterinary medicines, aquaculture and agriculture. Pharmaceuticals are environmentally persistent, biologically active molecules, thereby having the potential to exert biological effects on non-target species. Among the most used pharmaceuticals, one may find salicylic acid (SA), a non-steroid anti-inflammatory drug (NSAID) that acts by inhibiting the enzymes cyclooxigenases; it is also possible to identify acetazolamide (ACZ), a diuretic that acts by inhibiting the activity of carbonic anhydrase (CA). In this work, the effects of both single and combined effects of these drugs were assessed on the marine gastropod Phorcus lineatus, by measuring key enzymatic activities, namely carbonic anhydrase (CA) and cyclooxygenase (COX), under two different exposure periods (14 and 28 days). We observed no straightforward pattern of enzymatic response in all treatments of both pharmaceuticals, on both analyzed tissues (gut and gills), and for both exposure regimes. We assume that this species is not responsive to the hereby tested pharmaceuticals, a finding that may be due to general mechanisms of response to adverse conditions, such as reduction of metabolism, of heart rate, of filtration rates, and to the increase production of mucus. All these functional adaptations can mitigate the deleterious effects caused by adverse conditions, without triggering biochemical responses. In conclusion, the species P. lineatus seems not to be sensitive in terms of these specific enzymatic pathways to these contaminants, under the adopted conditions.
Collapse
Affiliation(s)
- David Daniel
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
42
|
Guardian MGE, He P, Bermudez A, Duan S, Kaushal SS, Rosenfeldt E, Aga DS. Optimized suspect screening approach for a comprehensive assessment of the impact of best management practices in reducing micropollutants transport in the Potomac River watershed. WATER RESEARCH X 2021; 11:100088. [PMID: 33598649 PMCID: PMC7868815 DOI: 10.1016/j.wroa.2021.100088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The vast number of chemicals potentially reaching aquatic environment pose a challenge in maintaining the quality of water resources. However, best management practices to improve water quality are typically focused on reducing nutrient transport without assessing how these practices may impact the occurrence of micropollutants. The potential for co-management of nutrients and organic micropollutants exists, but few studies have comprehensively evaluated the suite of contaminants associated with different water quality management practices (riparian zone restoration, stormwater management, etc.). Furthermore, most studies dealing with the determination of micropollutants in environmental samples include only a limited number of target analytes, leaving many contaminants undetected. To address this limitation, there has been a gradual shift in environmental monitoring from using target analysis to either suspect screening analysis (SSA) or non-targeted analysis (NTA), which relies on accurate mass measurements, mass spectral fragmentation patterns, and retention time information obtained using liquid chromatography coupled to high-resolution mass spectrometry. The work presented in this paper focuses on a wide-scope detection of micropollutants in surface water samples from the Potomac River watershed (United States). An in-house database composed of 1039 compounds based on experimental analysis of primary standards was established, and SSA workflow was optimized and applied to determine the presence of micropollutants in surface water. A total of 103 micropollutants were detected in the samples, some of which are contaminants that were not previously monitored and belong to various classes such as pharmaceuticals, personal care products, per-and polyfluoroalkyl substances and other persistent industrial chemicals. The impact of best management practices being implemented for nitrogen and phosphorus reductions were also assessed for their potential to reduce micropollutant transport. This work illustrates the advantages of suspect screening methods to determine a large number of micropollutants in environmental samples and reveals the potential to co-manage a diverse array of micropollutants based on shared transport and transformation mechanisms in watersheds.
Collapse
Affiliation(s)
- Mary Grace E. Guardian
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, 14260, USA
| | - Ping He
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, 14260, USA
| | - Alysson Bermudez
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, 14260, USA
| | - Shuiwang Duan
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20740, USA
| | - Sujay S. Kaushal
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20740, USA
| | | | - Diana S. Aga
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, 14260, USA
| |
Collapse
|
43
|
González-Gaya B, Lopez-Herguedas N, Bilbao D, Mijangos L, Iker AM, Etxebarria N, Irazola M, Prieto A, Olivares M, Zuloaga O. Suspect and non-target screening: the last frontier in environmental analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1876-1904. [PMID: 33913946 DOI: 10.1039/d1ay00111f] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Suspect and non-target screening (SNTS) techniques are arising as new analytical strategies useful to disentangle the environmental occurrence of the thousands of exogenous chemicals present in our ecosystems. The unbiased discovery of the wide number of substances present over environmental analysis needs to find a consensus with powerful technical and computational requirements, as well as with the time-consuming unequivocal identification of discovered analytes. Within these boundaries, the potential applications of SNTS include the studies of environmental pollution in aquatic, atmospheric, solid and biological samples, the assessment of new compounds, transformation products and metabolites, contaminant prioritization, bioremediation or soil/water treatment evaluation, and retrospective data analysis, among many others. In this review, we evaluate the state of the art of SNTS techniques going over the normalized workflow from sampling and sample treatment to instrumental analysis, data processing and a brief review of the more recent applications of SNTS in environmental occurrence and exposure to xenobiotics. The main issues related to harmonization and knowledge gaps are critically evaluated and the challenges of their implementation are assessed in order to ensure a proper use of these promising techniques in the near future.
Collapse
Affiliation(s)
- B González-Gaya
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Basque Country, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Non-targeted screening of trace organic contaminants in surface waters by a multi-tool approach based on combinatorial analysis of tandem mass spectra and open access databases. Talanta 2021; 230:122293. [PMID: 33934765 DOI: 10.1016/j.talanta.2021.122293] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 01/04/2023]
Abstract
Non-targeted screening (NTS) in mass spectrometry (MS) helps alleviate the shortcoming of targeted analysis such as missing the presence of concerning compounds that are not monitored and its lack of retrospective analysis to subsequently look for new contaminants. Most NTS workflows include high resolution tandem mass spectrometry (HRMS2) and structure annotation with libraries which are still limited. However, in silico combinatorial fragmentation tools that simulate MS2 spectra are available to help close the gap of missing compounds in empirical libraries. Three NTS tools were combined and used to detect and identify unknown contaminants at ultra-trace levels in surface waters in real samples in this qualitative study. Two of them were based on combinatorial fragmentation databases, MetFrag and the Similar Partition Searching algorithm (SPS), and the third, the Global Natural Products Social Networking (GNPS), was an ensemble of empirical databases. The three NTS tools were applied to the analysis of real samples from a local river. A total of 253 contaminants were identified by combining all three tools: 209 were assigned a probable structure and 44 were confirmed using reference standards. The two major classes of contaminants observed were pharmaceuticals and consumer product additives. Among the confirmed compounds, octylphenol ethoxylates, denatonium, irbesartan and telmisartan are reported for the first time in surface waters in Canada. The workflow presented in this work uses three highly complementary NTS tools and it is a powerful approach to help identify and strategically select contaminants and their transformation products for subsequent targeted analysis and uncover new trends in surface water contamination.
Collapse
|
45
|
Castro V, Quintana JB, Carpinteiro I, Cobas J, Carro N, Cela R, Rodil R. Combination of different chromatographic and sampling modes for high-resolution mass spectrometric screening of organic microcontaminants in water. Anal Bioanal Chem 2021; 413:5607-5618. [PMID: 33625537 DOI: 10.1007/s00216-021-03226-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/19/2021] [Accepted: 02/08/2021] [Indexed: 11/30/2022]
Abstract
This study explores the combination of two sampling strategies (polar organic compounds integrative sampler (POCIS) vs. spot sampling) and four chromatographic retention modes (reversed-phase liquid chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC), mixed-mode liquid chromatography (MMLC) and supercritical fluid chromatography (SFC)) for high-resolution mass spectrometry (HRMS) screening of organic pollutants in water samples. To this end, a suspect screening approach, using iterative data-dependent tandem mass spectrometry (MS/MS) driven by a library of 3227 chemicals (including pharmaceuticals, pesticides, drugs of abuse, human metabolites, industrial chemicals and other pollutants), was employed. Results show that POCIS can afford a larger number of positive identifications as compared to spot sampling. On the other hand, the best suited retention mechanisms, in terms of identified analytes, are SFC, and followed by RPLC, MMLC and HILIC. However, the best combination (POCIS + SFC) would only allow the identification of 67% of the detected analytes. Thus, the combination of the two sampling strategies, spot and passive sampling, with two orthogonal retention mechanisms, RPLC and SFC, is proposed in order to maximize the number of analytes detected (89%). This strategy was applied to different surface water (river and estuary) samples from Galicia (NW Spain). A total of 155 compounds were detected at a confidence level 2a, from which the major class was pharmaceuticals (61%).
Collapse
Affiliation(s)
- Verónica Castro
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José Benito Quintana
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Inmaculada Carpinteiro
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Julio Cobas
- INTECMAR - Technological Institute for the Monitoring of the Marine Environment of Galicia, Peirao de Vilaxoán S/N, 36611, Vilagarcía de Arousa, Spain
| | - Nieves Carro
- INTECMAR - Technological Institute for the Monitoring of the Marine Environment of Galicia, Peirao de Vilaxoán S/N, 36611, Vilagarcía de Arousa, Spain
| | - Rafael Cela
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Rosario Rodil
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
46
|
Perkons I, Rusko J, Zacs D, Bartkevics V. Rapid determination of pharmaceuticals in wastewater by direct infusion HRMS using target and suspect screening analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142688. [PMID: 33059144 DOI: 10.1016/j.scitotenv.2020.142688] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/11/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
A wide-scope screening of active pharmaceutical ingredients (APIs) and their transformation products (TPs) in wastewater can yield valuable insights and pinpoint emerging contaminants that have not been previously reported. Such information is relevant to investigate their occurrence and fate in various environmental compartments. In this study, we explored the applicability of direct infusion high resolution mass spectrometry (DI-HRMS) for comprehensive and rapid detection of APIs and their TPs in wastewater samples. The method was developed using a Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) system and incorporated both wide-scope suspect screening and semi-quantitative determination of selected analytes. The identification strategy was based on the following criteria: narrow accurate mass window (±1.25 ppm) for two most abundant full-MS signals, isotopic pattern fit and additional confirmation on the basis of MS2 spectra at three fragmentation levels. The tentative identification of suspects and target compounds relied on an in-house database containing more than 500 different APIs and TPs. The measured fragment spectra were matched against experimental MS2 patterns obtained from a publicly available spectral library (MassBank of North America) and in-silico generated fragmentation features (from the CFM-ID algorithm). In total, 79 suspects were identified and 24 target compounds were semi-quantified in 72 wastewater samples. The highest detection frequencies in treated wastewater effluents were observed for diclofenac, metoprolol and telmisartan, while hydroxydiclofenac, dextrorphan, and carbamazepine metabolites were the most frequently detected TPs. The obtained API profiles were in accordance with the national consumption statistics and the origin of wastewater samples. The developed method is suitable for rapid screening of APIs in wastewater and can be used as a complementary tool to characterize API emissions from wastewater treatment facilities and to identify problematic compounds that require more rigorous monitoring.
Collapse
Affiliation(s)
- Ingus Perkons
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, Riga LV-1076, Latvia; University of Latvia, Faculty of Chemistry, Jelgavas iela 1, Riga LV-1004, Latvia.
| | - Janis Rusko
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, Riga LV-1076, Latvia; University of Latvia, Faculty of Chemistry, Jelgavas iela 1, Riga LV-1004, Latvia
| | - Dzintars Zacs
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, Riga LV-1076, Latvia
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, Riga LV-1076, Latvia; University of Latvia, Faculty of Chemistry, Jelgavas iela 1, Riga LV-1004, Latvia
| |
Collapse
|
47
|
Sun F, Tan H, Li Y, De Boevre M, Zhang H, Zhou J, Li Y, Yang S. An integrated data-dependent and data-independent acquisition method for hazardous compounds screening in foods using a single UHPLC-Q-Orbitrap run. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123266. [PMID: 32763673 DOI: 10.1016/j.jhazmat.2020.123266] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Thousands of hazardous compounds that contaminate foods and feeds pose potential risks for human and animal health. However, it remains a challenge to perform a fast monitoring for safety surveillance. Herein we report a novel approach, integrated data-dependent and data-independent acquisition (DDIA) method, to efficiently screen for hundreds of chemicals in a single run using ultra-high-performance liquid chromatography coupled with quadrupole Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap). This method was successfully applied to analyze 180 veterinary drugs in milk, 220 pesticides in tomato and 50 mycotoxins in maize, respectively. Compared with the widely used approaches of data-dependent acquisition (DDA) or data-independent acquisition (DIA), the obtained results indicate that DDIA-based method combines the advantages of both DDA and DIA, since it achieves higher reproducibility of identification, lower false results for targeted compounds. Notably, the advantage of DDIA approach is that it enables better date retroactivity for untargeted compounds, such as metabolites and decomposition products. With the improvement in high-resolution mass spectrometry (HRMS) as well as data-mining techniques, we believe that DDIA data acquisition approach based on LC-HRMS will be widely applied in various fields in the near future, especially in compound screening and omics field, such as metabolomics and proteomics.
Collapse
Affiliation(s)
- Feifei Sun
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, 100093, People's Republic of China; College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Haiguang Tan
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, 100093, People's Republic of China; College of Life Science, Yantai University, Yantai, Shandong, 264005, People's Republic of China
| | - Yanshen Li
- College of Life Science, Yantai University, Yantai, Shandong, 264005, People's Republic of China
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Huiyan Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Jinhui Zhou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, 100093, People's Republic of China.
| | - Yi Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, 100093, People's Republic of China.
| | - Shupeng Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, 100093, People's Republic of China.
| |
Collapse
|
48
|
Liu Q, Zhao Z, Li H, Su M, Liang SX. Occurrence and removal of organic pollutants by a combined analysis using GC-MS with spectral analysis and acute toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111237. [PMID: 32905934 DOI: 10.1016/j.ecoenv.2020.111237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
The presence of xenobiotic compounds especially organic micro-pollutants in municipal wastewater treatment plant (MWWTP) is a major concern worldwide. The occurrence and removal of trace organic pollutants in a MWWTP by a combined analysis using GC-MS with spectral analysis and acute toxicity were studied in this work. Non-target screening and toxicity analysis of organic compounds were conducted to understand the types of toxic and refractory pollutants in municipal wastewater and evaluated the toxicity removal efficiency of MWWTP. The results showed that most of the effects were significantly reduced or completely eliminated during the wastewater treatment process, while some compounds, such as antioxidants, drugs, and organic plasticizers, had detection rates of up to 100% at each site, indicating that these harmful substances remained throughout wastewater treatment process. Based on Pearson correlation analysis, paired correlation analysis showed a positive correlation between UV254, humification index, conventional parameters, and organic acute toxicity, while acute toxicity was negatively correlated with biological index and fluorescence index. The results indicated that the composition of MWWTP had a similar influence law in different locations, and the combination of spectral analysis provided a new insight to qualitatively and quantitatively showed the distribution of organic pollutants in the wastewater treatment system.
Collapse
Affiliation(s)
- Qiong Liu
- College of Chemistry and Environmental Science, Hebei University; Key Laboratory of Analytical Science and Technology of Hebei Province; Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - Zhe Zhao
- College of Chemistry and Environmental Science, Hebei University; Key Laboratory of Analytical Science and Technology of Hebei Province; Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - Hui Li
- College of Chemistry and Environmental Science, Hebei University; Key Laboratory of Analytical Science and Technology of Hebei Province; Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - Ming Su
- College of Chemistry and Environmental Science, Hebei University; Key Laboratory of Analytical Science and Technology of Hebei Province; Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - Shu-Xuan Liang
- College of Chemistry and Environmental Science, Hebei University; Key Laboratory of Analytical Science and Technology of Hebei Province; Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China.
| |
Collapse
|
49
|
Köpping I, McArdell CS, Borowska E, Böhler MA, Udert KM. Removal of pharmaceuticals from nitrified urine by adsorption on granular activated carbon. WATER RESEARCH X 2020; 9:100057. [PMID: 32566925 PMCID: PMC7298675 DOI: 10.1016/j.wroa.2020.100057] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/26/2020] [Accepted: 05/31/2020] [Indexed: 05/28/2023]
Abstract
Nitrification and distillation of urine allow for the recovery of all nutrients in a highly concentrated fertilizer solution. However, pharmaceuticals excreted with urine are only partially removed during these two process steps. For a sustainable and safe application, more extensive removal of pharmaceuticals is necessary. To enhance the pharmaceutical removal, which is already occurring during urine storage, nitrification and distillation, an adsorption column with granular activated carbon (GAC) can be included in the treatment train. We executed a pilot-scale study to investigate the adsorption of eleven indicator pharmaceuticals on GAC. During 74 days, we treated roughly 1000 L of pre-filtered and nitrified urine spiked with pharmaceuticals in two flow-through GAC columns filled with different grain sizes. We compared the performance of these columns by calculating the number of treated bed volumes until breakthrough and carbon usage rates. The eleven spiked pharmaceuticals were candesartan, carbamazepine, clarithromycin, diclofenac, emtricitabine, hydrochlorothiazide, irbesartan, metoprolol, N4-acetylsulfamethoxazole, sulfamethoxazole and trimethoprim. At the shortest empty bed contact time (EBCT) of 25 min, immediate breakthrough was observed in both columns shortly after the start of the experiments. Strong competition by natural organic material (NOM) could have caused the low pharmaceutical removal at the EBCT of 25 min. At EBCTs of 70, 92 and 115 min, more than 660 bed volumes could be treated until breakthrough in the column with fine GAC. The earliest breakthrough was observed for candesartan and clarithromycin. On coarse GAC, only half the number of bed volumes could be treated until breakthrough compared to fine GAC. The probable reason for the later breakthrough with fine GAC is the smaller intraparticle diffusive path length. DOC and UV absorbance measurements at 265 nm indicated that both parameters can be used as indicators for the breakthrough of pharmaceuticals. In contrast to pharmaceuticals and DOC, the nutrient compounds ammonium, nitrate, phosphate, potassium and sulfate were not removed significantly. A comparison with literature values suggests that the amount of GAC needed to remove pharmaceuticals from human excreta could be reduced by nearly two orders of magnitude, if urine were treated on site instead of being discharged and treated in a centralized wastewater treatment plant.
Collapse
Affiliation(s)
- Isabell Köpping
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Christa S. McArdell
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Ewa Borowska
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Marc A. Böhler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Kai M. Udert
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| |
Collapse
|
50
|
Guo Z, Huang S, Wang J, Feng YL. Recent advances in non-targeted screening analysis using liquid chromatography - high resolution mass spectrometry to explore new biomarkers for human exposure. Talanta 2020; 219:121339. [DOI: 10.1016/j.talanta.2020.121339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/16/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022]
|