1
|
Menail HA, Robichaud S, Cormier R, Blanchard A, Hunter-Manseau F, Léger A, Lamarre SG, Pichaud N. Can Ahiflower® (Buglossoides arvensis) seed-oil supplementation help overcome the adverse effects of imidacloprid in honey bees? Comp Biochem Physiol C Toxicol Pharmacol 2025; 296:110238. [PMID: 40436292 DOI: 10.1016/j.cbpc.2025.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 05/18/2025] [Accepted: 05/24/2025] [Indexed: 06/02/2025]
Abstract
In this study, we investigated the effects of nutritional supplementation as a strategy to mitigate the impacts of imidacloprid (neonicotinoid) on honey bees by using Ahiflower® (Buglossoides arvensis) seed-oil. This oil is rich in stearidonic-acid (SDA, 18:4n3), which is a precursor to eicosapentaenoic-acid (EPA) and docosahexaenoic-acid (DHA) that are known for their beneficial and protective effects. Specifically, we chronically fed newly emerged worker bees with sucrose syrup and pollen patties (control) that we supplemented with (i) imidacloprid (0.375 ng·μl-1), (ii) Ahiflower® oil (5 %) + imidacloprid (0.375 ng·μl-1), and (iii) Ahiflower® oil (5 %). Survival was recorded, and after 21 days, worker bees were sampled to measure mitochondrial respiration, ATP5A1 content, adenylate energy charge, lipid peroxidation in thorax as well as fatty acid composition and peroxidation index in whole bees. Our results indicate that (i) imidacloprid mostly hampers mitochondria, increases saturated fatty acids and decreases survival, (ii) oxidation of alternative substrates allows full recovery of mitochondrial respiration in the imidacloprid-treated group demonstrating mitochondrial flexibility, (iii) Ahiflower® oil in combination with imidacloprid partially restores mitochondrial respiration at the level of complexes I and II, restores fatty acid composition but fails to restore survival. These findings confirm the deleterious effects of imidacloprid on mitochondria while highlighting, for the first time, the potential benefits of Ahiflower® oil in mitochondrial function, though not on honey bee survival. In addition, this study highlights the importance of mitochondrial flexibility when organisms are exposed to toxicants at environmentally relevant levels.
Collapse
Affiliation(s)
- Hichem A Menail
- New Brunswick Centre for Precision Medicine, Moncton, NB E1C8X3, Canada; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada.
| | - Samuel Robichaud
- New Brunswick Centre for Precision Medicine, Moncton, NB E1C8X3, Canada; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Robert Cormier
- New Brunswick Centre for Precision Medicine, Moncton, NB E1C8X3, Canada; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Arianne Blanchard
- New Brunswick Centre for Precision Medicine, Moncton, NB E1C8X3, Canada; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Florence Hunter-Manseau
- New Brunswick Centre for Precision Medicine, Moncton, NB E1C8X3, Canada; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Adèle Léger
- New Brunswick Centre for Precision Medicine, Moncton, NB E1C8X3, Canada; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Simon G Lamarre
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Nicolas Pichaud
- New Brunswick Centre for Precision Medicine, Moncton, NB E1C8X3, Canada; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
2
|
Jin L, Zhang B, Aguila LCR, Lu J, Gao X, Luo J, Cui J, Lin Y. Potential Mechanisms Underlying the Minimal Impact of Cry1Ab1 Protein on Myzus persicae. Int J Mol Sci 2025; 26:2924. [PMID: 40243523 PMCID: PMC11988580 DOI: 10.3390/ijms26072924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 04/18/2025] Open
Abstract
Transgenic crops have been commercially cultivated for nearly three decades, leading to increasing concerns about their environmental safety, particularly their effects on non-target organisms. This study investigated the underlying mechanisms behind the lack of impact of the Cry1Ab1 protein on the Myzus persicae. The Cry1Ab1 protein showed no significant impact on the survival and development of M. persicae. Compared to other Cry protein, fewer Cry1Ab1-binding proteins were identified including beta-actin, ATP synthase subunit alpha, and GPN-loop GTPase 2. Transcriptomic analysis showed that a small set of pathways, mainly involved in immune defense, were temporarily enriched at 24 h after exposure to the Cry1Ab1 protein, while no significant pathways were enriched at 48 h in M. persicae. The results suggest that the Cry1Ab1 protein has a transient and minimal impact on M. persicae. Further structural comparisons between Cry1Ab1 and other Cry proteins (e.g., Cry1Ac) revealed significant differences in Domain III, which likely reduced the binding efficiency and impact on M. persicae's metabolism and biological traits. This study provides valuable insights into the molecular and functional mechanisms behind the ineffectiveness of Cry1Ab1 on M. persicae and contributes to the safety evaluation of Bt for non-target organisms.
Collapse
Affiliation(s)
- Liang Jin
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Binwu Zhang
- Fujian Provincial Key Laboratory of Biochemical Technology, Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Luis Carlos Ramos Aguila
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingwen Lu
- Fujian Provincial Key Laboratory of Biochemical Technology, Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Xueke Gao
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Junyu Luo
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jinjie Cui
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yi Lin
- Fujian Provincial Key Laboratory of Biochemical Technology, Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
3
|
Maloni G, Miotelo L, Otero IVR, Souza FCD, Nocelli RCF, Malaspina O. Acute toxicity and sublethal effects of thiamethoxam on the stingless bee Scaptotrigona postica: Survival, neural morphology, and enzymatic responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125864. [PMID: 39954757 DOI: 10.1016/j.envpol.2025.125864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Native and cultivated plants in the Neotropics benefit from the pollination services provided by stingless bees. The use of neonicotinoid insecticides negatively impacts bee health, even though bees are not their primary targets. This study determined the oral mean lethal concentration (LC50) of thiamethoxam (TMX) after 24 h of exposure for the stingless bee Scaptotrigona postica. Based on the LC₅₀ value (0.11 ng a.i./μL) obtained, two fractions of this value (1/10 and 1/100 LC₅₀) were selected to assess survival time (LT₅₀), as well as to conduct neural morphological and enzymatic analyses. The LC₅₀/100 group had a LT₅₀ of 15 days, compared to 17 days in the control group, while the LC₅₀/10 group survived for 8 days. Morphological analyses revealed increased Kenyon cell spacing and pyknosis in the mushroom bodies after 1, 3, and 6 days of exposure, suggesting that thiamethoxam adversely affects the brain of S. postica. Regarding enzymatic activity, comparisons between the control and the two sublethal concentrations revealed that Carboxylesterase and Glutathione S-transferase (GST) activity increased in the abdomens after six days of exposure. GST activity also increased in the bees' heads for the LC₅₀/10 concentration after six days of exposure (Control x TMX group). The enzymatic results suggests that thiamethoxam induces oxidative stress in S. postica. The results presented underscore the necessity of considering stingless bees in regulatory decisions regarding the use of insecticides, ensuring that the risks to this important group of pollinators are adequately assessed.
Collapse
Affiliation(s)
- Geovana Maloni
- Department of General and Applied Biology, Sao Paulo State University, Biosciences Institute of Rio Claro, Avenida 24-A, 1515, Rio Claro, Brazil
| | - Lucas Miotelo
- Department of General and Applied Biology, Sao Paulo State University, Biosciences Institute of Rio Claro, Avenida 24-A, 1515, Rio Claro, Brazil.
| | - Igor Vinicius Ramos Otero
- Department of General and Applied Biology, Sao Paulo State University, Biosciences Institute of Rio Claro, Avenida 24-A, 1515, Rio Claro, Brazil
| | - Fernanda Carolaine de Souza
- Department of General and Applied Biology, Sao Paulo State University, Biosciences Institute of Rio Claro, Avenida 24-A, 1515, Rio Claro, Brazil
| | | | - Osmar Malaspina
- Department of General and Applied Biology, Sao Paulo State University, Biosciences Institute of Rio Claro, Avenida 24-A, 1515, Rio Claro, Brazil
| |
Collapse
|
4
|
Yue M, Li T, Huang Y, Zhang B, Ma Z. Environmental safety assessment of cumic acid: A comprehensive study on environmental behaviours and toxicological effects on non-target organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177691. [PMID: 39608254 DOI: 10.1016/j.scitotenv.2024.177691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/09/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
Environmental safety assessments are crucial in the research and application of new pesticides. Cuminum cyminum is a widely cultivated crop rich in the antifungal compound cumic acid, which potential can be developed into a new type of botanical fungicide. This study presents an environmental safety assessment of Cuminum cyminum extract and its bioactive component, cumic acid, as prospective agents for botanical fungicides. Evaluation of their toxicity to non-target organisms showed a low impact on silkworms, fish, earthworms, tadpoles, and crops, but moderate toxicity to quails and bees. In addition, adsorption and leaching analyses showed that cumic acid has a strong affinity for soil, resulting in high pesticide concentrations in the topsoil layers and a low leaching tendency. The degradation rate of cumic acid in diverse agricultural soils was rapid, with half-lives ranging from 4.05 to 5.09 days, indicating a low potential for environmental accumulation. Degradation and photolysis studies also showed that cumaric acid did not accumulate readily in the environment. These comprehensive findings highlight the safety and agricultural potential of cumic acid-based products, with implications for the advancement of eco-friendly botanical fungicides derived from cumin extracts.
Collapse
Affiliation(s)
- Mingxing Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Ting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Yuan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Bin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province 712100, China; Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China.
| | - Zhiqing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province 712100, China; Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Hua Q, Chi X, Zhang W, Song H, Wang Y, Liu Z, Wang H, Xu B. Damage to the behavior and physiological functions of Apis mellifera (Hymenoptera: Apidae) by monocrotaline via the modulation of tryptophan metabolism and the corazonin receptor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175931. [PMID: 39218096 DOI: 10.1016/j.scitotenv.2024.175931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Monocrotaline (MCT) is a toxic pyrrolizidine alkaloid found in plants of the Crotalaria genus. As primary pollinators of Crotalaria plants, honeybees come into contact with this harmful substance. However, limited research has been conducted on the effects of MCT on Apis mellifera, particularly the risks of long-term exposure to sublethal concentrations. Through evaluating the proboscis extension reflex (PER) ability, analyzing the honeybee brain transcriptome, and analyzing the honeybee hemolymph metabolome, we discovered that sublethal concentrations of MCT impair the olfactory and memory capabilities of honeybees by affecting tryptophan (Trp) metabolism. Furthermore, MCT upregulates the expression of the corazonin receptor (CrzR) gene in the honeybee brain, which elevates reactive oxygen species (ROS) levels in the brain while reducing glucose levels in the hemolymph, consequently shortening the honeybees' lifespan. Our findings regarding the multifaceted impact of MCT on honeybees lay the foundation for exploring its toxicological pathways and management in honeybee populations.
Collapse
Affiliation(s)
- Qi Hua
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Xuepeng Chi
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Wei Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Hongyu Song
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China.
| |
Collapse
|
6
|
Christen V, Jeker L, Lim KS, Menz MHM, Straub L. Insecticide exposure alters flight-dependent gene-expression in honey bees, Apis mellifera. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177166. [PMID: 39471959 DOI: 10.1016/j.scitotenv.2024.177166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
The increased reports of wild bee declines and annual losses of managed bees pose a significant threat to biodiversity and agricultural productivity. While these losses and declines are likely driven by various factors, the exposure of bees to agrochemicals has raised significant concern due to their ubiquitous use and potential adverse effects. Despite numerous studies suggesting neonicotinoids can negatively affect bees at the behavioral and molecular level, data linking these two factors remains sparse. Here we provide data on the impact of an acute dose of the neonicotinoid thiamethoxam on the flight performance and molecular transcription profiles of foraging honey bees (Apis mellifera). Using a controlled experimental design with tethered flight mills, we measured flight distance, duration, and speed, alongside the expression of genes involved in energy metabolism, hormone regulation, and biosynthesis. Acute thiamethoxam exposure resulted in hyperactive flight behavior but led to significant dysregulation of genes associated with oxidative phosphorylation, indicating potential disruptions in cellular energy production. These molecular changes were particularly evident when bees engaged in flight activities, suggesting that the combined stress of pesticide exposure and physical exertion exacerbates negative outcomes. Our study provides new insights into the molecular mechanisms underlying neonicotinoid-induced impairments in bee physiology that can help understand the potential long-term consequences of xenobiotic exposure on the foraging abilities of bees and ultimately fitness.
Collapse
Affiliation(s)
- Verena Christen
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland.
| | - Lukas Jeker
- Swiss Bee Research Centre, Agroscope, Bern, Switzerland
| | - Ka S Lim
- Computational and Analytical Science, Rothamsted Research, Harpenden ALF 2JQ, UK
| | - Myles H M Menz
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia; Max Planck Institute of Animal Behavior, Department of Migration, Radolfzell, Germany
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Centre for Ecology, Evolution, and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom.
| |
Collapse
|
7
|
Zhang Y, Zhu W, Wang Y, Li X, Lv J, Luo J, Yang M. Insight of neonicotinoid insecticides: Exploring exposure, mechanisms in non-target organisms, and removal technologies. Pharmacol Res 2024; 209:107415. [PMID: 39306021 DOI: 10.1016/j.phrs.2024.107415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/18/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024]
Abstract
Neonicotinoid insecticides (NEOs) have garnered global attention due to their selective toxicity to insects and minimal impact on mammals. However, growing concerns about their extensive use and potential adverse effects on the ecological environment and non-target organisms necessitate further investigation. This study utilized bibliometric tools to analyze Web of Science data from 2003 to 2024, elucidating the current research landscape, identifying key research areas, and forecasting future trends related to NEOs. This paper provides an in-depth analysis of NEO exposure in non-target organisms, including risk assessments for various samples and maximum residue limits established by different countries. Additionally, it examines the impacts and mechanisms of NEOs on non-target organisms. Finally, it reviews the current methods for NEO removal and degradation. This comprehensive analysis provides valuable insights for regulating NEO usage and addressing associated exposure challenges.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wanxuan Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ying Wang
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing 102629, China
| | - Xueli Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianxin Lv
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Meihua Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China.
| |
Collapse
|
8
|
Sun J, Wu J, Zhang X, Wei Q, Kang W, Wang F, Liu F, Zhao M, Xu S, Han B. Enantioselective toxicity of the neonicotinoid dinotefuran on honeybee (Apis mellifera) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:174014. [PMID: 38880156 DOI: 10.1016/j.scitotenv.2024.174014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The threat of neonicotinoids to insect pollinators, particularly honeybees (Apis mellifera), is a global concern, but the risk of chiral neonicotinoids to insect larvae remains poorly understood. In the current study, we evaluated the acute and chronic toxicity of dinotefuran enantiomers to honeybee larvae in vitro and explored the mechanism of toxicity. The results showed that the acute median lethal dose (LD50) of S-dinotefuran to honeybee larvae was 30.0 μg/larva after oral exposure for 72 h, which was more toxic than rac-dinotefuran (92.7 μg/larva) and R-dinotefuran (183.6 μg/larva). Although the acute toxicity of the three forms of dinotefuran to larvae was lower than that to adults, chronic exposure significantly reduced larval survival, larval weight, and weight of newly emerged adults. Analysis of gene expression and hormone titer indicated that dinotefuran affects larval growth and development by interfering with nutrient digestion and absorption and the molting system. Analysis of hemolymph metabolome further revealed that disturbances in the neuroactive ligand-receptor interaction pathway and energy metabolism are the key mechanisms of dinotefuran toxicity to bee larvae. In addition, melatonin and vitellogenin are used by larvae to cope with dinotefuran-induced oxidative stress. Our results contribute to a comprehensive understanding of dinotefuran damage to bees and provide new insights into the mechanism of enantioselective toxicity of insecticides to insect larvae.
Collapse
Affiliation(s)
- Jiajing Sun
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Modern Agricultural College, Yibin Vocational and Technical College, Yibin 644100, China
| | - Jiangli Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xufeng Zhang
- Institute of Horticultural Research, Shanxi Academy of Agricultural Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Qiaohong Wei
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weipeng Kang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feng Wang
- Institute of Horticultural Research, Shanxi Academy of Agricultural Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Fengying Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Meijiao Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shufa Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
9
|
de Castro Lippi IC, da Luz Scheffer J, de Lima YS, Lunardi JS, Astolfi A, Kadri SM, Alvarez MVN, de Oliveira Orsi R. Intake of imidacloprid in lethal and sublethal doses alters gene expression in Apis mellifera bees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173393. [PMID: 38795984 DOI: 10.1016/j.scitotenv.2024.173393] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
Bees are important pollinators for ecosystems and agriculture; however, populations have suffered a decline that may be associated with several factors, including habitat loss, climate change, increased vulnerability to diseases and parasites and use of pesticides. The extensive use of neonicotinoids, including imidacloprid, as agricultural pesticides, leads to their persistence in the environment and accumulation in bees, pollen, nectar, and honey, thereby inducing deleterious effects. Forager honey bees face significant exposure to pesticide residues while searching for resources outside the hive, particularly systemic pesticides like imidacloprid. In this study, 360 Apis mellifera bees, twenty-one days old (supposed to be in the forager phase) previously marked were fed syrup (honey and water, 1:1 m/v) containing a lethal dose (0.081 μg/bee) or sublethal dose (0.00081 μg/bee) of imidacloprid. The syrup was provided in plastic troughs, with 250 μL added per trough onto each plastic Petri dish containing 5 bees (50 μL per bee). The bees were kept in the plastic Petri dishes inside an incubator, and after 1 and 4 h of ingestion, the bees were euthanised and stored in an ultra-freezer (-80 °C) for transcriptome analysis. Following the 1-h ingestion of imidacloprid, 1516 genes (73 from lethal dose; 1509 from sublethal dose) showed differential expression compared to the control, while after 4 h, 758 genes (733 from lethal dose; 25 from sublethal) exhibited differential expression compared to the control. All differentially expressed genes found in the brain tissue transcripts of forager bees were categorised based on gene ontology into functional groups encompassing biological processes, molecular functions, and cellular components. These analyses revealed that sublethal doses might be capable of altering more genes than lethal doses, potentially associated with a phenomenon known as insecticide-induced hormesis. Alterations in genes related to areas such as the immune system, nutritional metabolism, detoxification system, circadian rhythm, odour detection, foraging activity, and memory in bees were present after exposure to the pesticide. These findings underscore the detrimental effects of both lethal and sublethal doses of imidacloprid, thereby providing valuable insights for establishing public policies regarding the use of neonicotinoids, which are directly implicated in the compromised health of Apis mellifera bees.
Collapse
Affiliation(s)
- Isabella Cristina de Castro Lippi
- Centre of Education, Science and Technology in Rational Beekeeping (NECTAR), Department of Animal Production and Medicine Veterinary Preventive, UNESP - Univ. Estadual Paulista, Botucatu, Brazil
| | - Jaine da Luz Scheffer
- Centre of Education, Science and Technology in Rational Beekeeping (NECTAR), Department of Animal Production and Medicine Veterinary Preventive, UNESP - Univ. Estadual Paulista, Botucatu, Brazil
| | - Yan Souza de Lima
- Centre of Education, Science and Technology in Rational Beekeeping (NECTAR), Department of Animal Production and Medicine Veterinary Preventive, UNESP - Univ. Estadual Paulista, Botucatu, Brazil
| | - Juliana Sartori Lunardi
- Centre of Education, Science and Technology in Rational Beekeeping (NECTAR), Department of Animal Production and Medicine Veterinary Preventive, UNESP - Univ. Estadual Paulista, Botucatu, Brazil
| | - Aline Astolfi
- Centre of Education, Science and Technology in Rational Beekeeping (NECTAR), Department of Animal Production and Medicine Veterinary Preventive, UNESP - Univ. Estadual Paulista, Botucatu, Brazil
| | - Samir Moura Kadri
- Centre of Education, Science and Technology in Rational Beekeeping (NECTAR), Department of Animal Production and Medicine Veterinary Preventive, UNESP - Univ. Estadual Paulista, Botucatu, Brazil
| | | | - Ricardo de Oliveira Orsi
- Centre of Education, Science and Technology in Rational Beekeeping (NECTAR), Department of Animal Production and Medicine Veterinary Preventive, UNESP - Univ. Estadual Paulista, Botucatu, Brazil.
| |
Collapse
|
10
|
Albacete S, Sancho G, Azpiazu C, Sgolastra F, Rodrigo A, Bosch J. Exposure to sublethal levels of insecticide-fungicide mixtures affect reproductive success and population growth rates in the solitary bee Osmia cornuta. ENVIRONMENT INTERNATIONAL 2024; 190:108919. [PMID: 39094406 DOI: 10.1016/j.envint.2024.108919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
In agricultural environments, bees are routinely exposed to combinations of pesticides. For the most part, exposure to these pesticide mixtures does not result in acute lethal effects, but we know very little about potential sublethal effects and their consequences on reproductive success and population dynamics. In this study, we orally exposed newly emerged females of the solitary bee Osmia cornuta to environmentally-relevant levels of acetamiprid (a cyano-substituted neonicotinoid insecticide) singly and in combination with tebuconazole (a sterol-biosynthesis inhibitor (SBI) fungicide). The amount of feeding solution consumed during the exposure phase was lowest in bees exposed to the pesticide mixture. Following exposure, females were individually marked and released into oilseed rape field cages to monitor their nesting performance and assess their reproductive success. The nesting performance and reproductive success of bees exposed to the fungicide or the insecticide alone were similar to those of control bees and resulted in a 1.3-1.7 net population increases. By contrast, bees exposed to the pesticide mixture showed lower establishment, shortened nesting period, and reduced fecundity. Together, these effects led to a 0.5-0.6 population decrease. Female establishment and shortened nesting period were the main population bottlenecks. We found no effects of the pesticide mixture on nest provisioning rate, offspring body weight or sex ratio. Our study shows how sublethal pesticide exposure may affect several components of bee reproductive success and, ultimately, population growth. Our results calls for a rethinking of pollinator risk assessment schemes, which should target not only single compounds but also combinations of compounds likely to co-occur in agricultural environments.
Collapse
Affiliation(s)
- Sergio Albacete
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain.
| | - Gonzalo Sancho
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain
| | - Celeste Azpiazu
- Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain; Institute of Evolutionary Biology (CSIC - Universitat Pompeu Fabra), 08034 Barcelona, Spain; Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Fabio Sgolastra
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy
| | - Anselm Rodrigo
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain
| | - Jordi Bosch
- Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain
| |
Collapse
|
11
|
Antonietta Carrera M, Martinez Martinez JA, Hernando MD, Fernández-Alba AR. Simultaneous analysis of pesticides and mycotoxins in primary processed foods: The case of bee pollen. Heliyon 2024; 10:e33512. [PMID: 39040399 PMCID: PMC11260969 DOI: 10.1016/j.heliyon.2024.e33512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Primary Processed Foods are a class of food items that are ready for consumption after minimal processing in the supply chain. These products are ubiquitous in our daily diet, but so far a limited number of studies dealt with the optimization of quality control methods to check their content of contaminants. Among primary processed foods, bee pollen is a nutritionally acclaimed food supplement, whose contamination with pesticides and mycotoxins has been largely proven. For this reason, the present study aimed at optimizing for the first time a comprehensive LC-MS/MS method capable of analyzing 282 pesticides and 8 mycotoxins in bee pollen. To obtain a suitable method, two extraction procedures (QuEChERS and Accelerated Solvent Extraction), as well as different chromatographic gradients and columns, were tested. The optimized methodology, comprehending an extraction based on semi-automated QuEChERS, and an analytical method including inert LC column technology, was validated and applied to a sample set of 34 bee pollens. The analyzed samples collectively showed the presence of 41 pesticides and 1 mycotoxin.
Collapse
Affiliation(s)
- Maria Antonietta Carrera
- Department of Desertification and Geo-ecology, Experimental Station of Arid Zones, CSIC, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - José Antonio Martinez Martinez
- European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables Agrifood Campus of International Excellence (ceiA3), Department of Chemistry and Physics, University of Almeria, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - María Dolores Hernando
- Department of Desertification and Geo-ecology, Experimental Station of Arid Zones, CSIC, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - Amadeo R. Fernández-Alba
- European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables Agrifood Campus of International Excellence (ceiA3), Department of Chemistry and Physics, University of Almeria, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| |
Collapse
|
12
|
Murawska A, Migdał P, Mating M, Bieńkowski P, Berbeć E, Einspanier R. Metabolism gene expression in worker honey bees after exposure to 50Hz electric field - semi-field analysis. Front Zool 2024; 21:14. [PMID: 38807222 PMCID: PMC11134740 DOI: 10.1186/s12983-024-00535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
The investigation of the effects of artificial 50 Hz electric field (E-field) frequency on Apis mellifera is a relatively new field of research. Since the current literature focuses mainly on short-term effects, it is unknown whether E-fields have permanent effects on bees or whether their effects can be neutralized. In this study we assessed gene expression immediately after exposure to the E-field, as well as 7 days after exposure. The aim of this work was to identify potentially dysregulated gene transcripts in honey bees that correlate with exposure time and duration to E-fields.Newly emerged bees were marked daily with a permanent marker (one color for each group). Then bees were exposed to the 50 Hz E-field with an intensity of 5.0 kV/m or 10.0 kV/m for 1-3 h. After exposure, half of the bees were analyzed for gene expression changes. The other half were transferred to a colony kept in a mini-hive. After 7 days, marked bees were collected from the mini-hive for further analysis. Six regulated transcripts were selected of transcripts involved in oxidative phosphorylation (COX5a) and transcripts involved in endocrine functions (HBG-3, ILP-1), mitochondrial inner membrane transport (TIM10), and aging (mRPL18, mRPS30).Our study showed that in Apis mellifera the expression of selected genes is altered in different ways after exposure to 50 Hz electric fields -. Most of those expression changes in Cox5a, mRPL18, mRPS30, and HGB3, were measurable 7 days after a 1-3 h exposure. These results indicate that some E-field effects may be long-term effects on honey bees due to E-field exposure, and they can be observed 7 days after exposure.
Collapse
Affiliation(s)
- Agnieszka Murawska
- Department of Bees Breeding, Institute of Animal Husbandry, Wroclaw University of Environmental and Life Sciences, Wroclaw, 51-630, Poland.
| | - Paweł Migdał
- Department of Bees Breeding, Institute of Animal Husbandry, Wroclaw University of Environmental and Life Sciences, Wroclaw, 51-630, Poland
- Institute of Veterinary Biochemistry, Freie Universitaet Berlin, Berlin, 14163, Germany
| | - Moritz Mating
- Institute of Veterinary Biochemistry, Freie Universitaet Berlin, Berlin, 14163, Germany
| | - Paweł Bieńkowski
- Telecommunications and Teleinformatics Department, Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego St., Wroclaw, 50-370, Poland
| | - Ewelina Berbeć
- Department of Bees Breeding, Institute of Animal Husbandry, Wroclaw University of Environmental and Life Sciences, Wroclaw, 51-630, Poland
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Freie Universitaet Berlin, Berlin, 14163, Germany
| |
Collapse
|
13
|
Zhao L, Zhou X, Kang Z, Peralta-Videa JR, Zhu YG. Nano-enabled seed treatment: A new and sustainable approach to engineering climate-resilient crops. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168640. [PMID: 37989394 DOI: 10.1016/j.scitotenv.2023.168640] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Under a changing climate, keeping the food supply steady for an ever-increasing population will require crop plants adapted to environmental fluctuations. Genetic engineering and genome-editing approaches have been used for developing climate-resilient crops. However, genetically modified crops have yet to be widely accepted, especially for small-scale farmers in low-income countries and some societies. Nano-priming (seed exposure to nanoparticles, NPs) has appeared as an alternative to the abovementioned techniques. This technique improves seed germination speed, promotes seedlings' vigor, and enhances plant tolerance to adverse conditions such as drought, salinity, temperature, and flooding, which may occur under extreme weather conditions. Moreover, nano-enabled seed treatment can increase the disease resistance of crops by boosting immunity, which will reduce the use of pesticides. This unsophisticated, farmer-available, cost-effective, and environment-friendly seed treatment approach may help crop plants fight climate change challenges. This review discusses the previous information about nano-enabled seed treatment for enhancing plant tolerance to abiotic stresses and increasing disease resistance. Current knowledge about the mechanisms underlying nanomaterial-seed interactions is discussed. To conclude, the review includes research questions to address before this technique reaches its full potential.
Collapse
Affiliation(s)
- Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Xiaoding Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zhao Kang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jose R Peralta-Videa
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
14
|
Chen X, Li A, Yin L, Ke L, Dai P, Liu YJ. Early-Life Sublethal Thiacloprid Exposure to Honey Bee Larvae: Enduring Effects on Adult Bee Cognitive Abilities. TOXICS 2023; 12:18. [PMID: 38250974 PMCID: PMC10820931 DOI: 10.3390/toxics12010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024]
Abstract
Honey bees have significant ecological and economic value as important pollinators, but they are continuously exposed to various environmental stressors, including insecticides, which can impair their health and cause colony decline. (1) Background: Cognitive abilities are vital for the functional maintenance of honey bees; however, it remains unknown if chronic, low-dose exposure to thiacloprid during the larval stage impairs the cognitive abilities of emerged adult honey bees. (2) Methods: To explore this question, honey bee larvae were fed 0, 0.5, and 1.0 mg/L thiacloprid during their developmental phase. Then, the cognitive (i.e., olfactory learning and memory) abilities of adult honey bees were quantified to assess the delayed impacts of early-stage thiacloprid exposure on adult honey bee cognition. Neural apoptosis and transcriptomic level were also evaluated to explore the neurological mechanisms underlying these effects. (3) Results: Our results revealed that chronic larval exposure to sublethal thiacloprid impaired the learning and memory abilities of adult honey bees by inducing neuronal apoptosis and transcriptomic alterations. (4) Conclusions: We highlighted a previously unknown impairment caused by thiacloprid in honey bees.
Collapse
Affiliation(s)
| | | | | | | | | | - Yong-Jun Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
15
|
Mustard JA, Dobb R, Wright GA. Chronic nicotine exposure influences learning and memory in the honey bee. JOURNAL OF INSECT PHYSIOLOGY 2023; 151:104582. [PMID: 37918514 DOI: 10.1016/j.jinsphys.2023.104582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
In insects, nicotine activates nicotinic acetylcholine receptors, which are expressed throughout the central nervous system. However, little work has been done to investigate the effects of chronic nicotine treatment on learning or other behaviors in non-herbivorous insects. To examine the effects of long term nicotine consumption on learning and memory, honey bees were fed nicotine containing solutions over four days. Bees were able to detect nicotine at 0.1 mM in sucrose solutions, and in a no choice assay, bees reduced food intake when nicotine was 1 mM or higher. Treatment with a low dose of nicotine decreased the proportion of bees able to form an associative memory when bees were conditioned with either a massed or spaced appetitive olfactory training paradigm. On the other hand, higher doses of nicotine increased memory retention and the proportion of bees responding to the odor during 10 min and 24 h recall tests. The reduction in nicotine containing food consumed may also impact response levels during learning and recall tests. These data suggest that long term exposure to nicotine has complex effects on learning and memory.
Collapse
Affiliation(s)
- Julie A Mustard
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA.
| | - Rachel Dobb
- Centre for Behaviour and Evolution, Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | |
Collapse
|
16
|
Patir A, Raper A, Fleming R, Henderson BEP, Murphy L, Henderson NC, Clark EL, Freeman TC, Barnett MW. Cellular heterogeneity of the developing worker honey bee (Apis mellifera) pupa: a single cell transcriptomics analysis. G3 (BETHESDA, MD.) 2023; 13:jkad178. [PMID: 37548242 PMCID: PMC10542211 DOI: 10.1093/g3journal/jkad178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 06/30/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
It is estimated that animals pollinate 87.5% of flowering plants worldwide and that managed honey bees (Apis mellifera) account for 30-50% of this ecosystem service to agriculture. In addition to their important role as pollinators, honey bees are well-established insect models for studying learning and memory, behavior, caste differentiation, epigenetic mechanisms, olfactory biology, sex determination, and eusociality. Despite their importance to agriculture, knowledge of honey bee biology lags behind many other livestock species. In this study, we have used scRNA-Seq to map cell types to different developmental stages of the worker honey bee (prepupa at day 11 and pupa at day 15) and sought to determine their gene expression signatures. To identify cell-type populations, we examined the cell-to-cell network based on the similarity of the single-cells transcriptomic profiles. Grouping similar cells together we identified 63 different cell clusters of which 17 clusters were identifiable at both stages. To determine genes associated with specific cell populations or with a particular biological process involved in honey bee development, we used gene coexpression analysis. We combined this analysis with literature mining, the honey bee protein atlas, and gene ontology analysis to determine cell cluster identity. Of the cell clusters identified, 17 were related to the nervous system and sensory organs, 7 to the fat body, 19 to the cuticle, 5 to muscle, 4 to compound eye, 2 to midgut, 2 to hemocytes, and 1 to malpighian tubule/pericardial nephrocyte. To our knowledge, this is the first whole single-cell atlas of honey bees at any stage of development and demonstrates the potential for further work to investigate their biology at the cellular level.
Collapse
Affiliation(s)
- Anirudh Patir
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Anna Raper
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Robert Fleming
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Beth E P Henderson
- The Queen's Medical Research Institute, Centre for Inflammation Research, University of Edinburgh,Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Neil C Henderson
- The Queen's Medical Research Institute, Centre for Inflammation Research, University of Edinburgh,Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK
- Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh,Edinburgh EH4 2XU, UK
| | - Emily L Clark
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Tom C Freeman
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Mark W Barnett
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
- Beebytes Analytics CIC, The Roslin Innovation Centre, University of Edinburgh, The Charnock Bradley Building, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
17
|
Bakker R, Xie L, Vooijs R, Roelofs D, Hoedjes KM, van Gestel CAM. Validation of biomarkers for neonicotinoid exposure in Folsomia candida under mutual exposure to diethyl maleate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95338-95347. [PMID: 37542693 PMCID: PMC10482762 DOI: 10.1007/s11356-023-28940-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/14/2023] [Indexed: 08/07/2023]
Abstract
Neonicotinoid insecticides are harmful to non-target soil invertebrates, which are crucial for sustainable agriculture. Gene expression biomarkers could provide economic and high-throughput metrics of neonicotinoid exposure and toxicity to non-target invertebrates. Thereby, biomarkers can help guide remediation efforts or policy enforcement. Gene expression of Glutathione S-Transferase 3 (GST3) has previously been proposed as a biomarker for the neonicotinoid imidacloprid in the soil ecotoxicological model species Folsomia candida (Collembola). However, it remains unclear how reliably gene expression of neonicotinoid biomarkers, such as GST3, can indicate the exposure to the broader neonicotinoid family under putative GST enzymatic inhibition. In this work, we exposed springtails to two neonicotinoids, thiacloprid and imidacloprid, alongside diethyl maleate (DEM), a known GST metabolic inhibitor that imposes oxidative stress. First, we determined the influence of DEM on neonicotinoid toxicity to springtail fecundity. Second, we surveyed the gene expression of four biomarkers, including GST3, under mutual exposure to neonicotinoids and DEM. We observed no effect of DEM on springtail fecundity. Moreover, the expression of GST3 was only influenced by DEM under mutual exposure with thiacloprid but not with imidacloprid. The results indicate that GST3 is not a robust indicator of neonicotinoid exposure and that probable GST enzymatic inhibition mediates the toxicity of imidacloprid and thiacloprid differentially. Future research should investigate biomarker reliability under shifting metabolic conditions such as provided by DEM exposure.
Collapse
Affiliation(s)
- Ruben Bakker
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Liyan Xie
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Riet Vooijs
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Dick Roelofs
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- Keygene N.V., Agro Business Park 90, Wageningen, 6708 PW, The Netherlands
| | - Katja M Hoedjes
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Gao X, Zhang K, Zhao L, Zhu X, Wang L, Li D, Ji J, Niu L, Luo J, Cui J. Sublethal toxicity of sulfoxaflor to parasitoid Binodoxys communis Gahan. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115169. [PMID: 37379663 DOI: 10.1016/j.ecoenv.2023.115169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/17/2023] [Accepted: 06/18/2023] [Indexed: 06/30/2023]
Abstract
Integrated pest management is focused on combining biological and chemical controls. There is evidence of a negative impact of neonicotinoids on biological control, however, sulfoxaflor (SFX), a novel insecticide, its impact on parasitoid natural predator remain limited. Binodoxys communis is an important parasitic natural enemy of Aphis gossypii, which may have direct and indirect toxicity from the insecticides and aphids. Understanding the potential threat of SFX to B. communis is therefore essential to integrated pest management and the conservation of parasitoids. Here, the effects of sublethal doses of SFX on B. communis larvae and adults are presented for the first time. Sublethal SFX doses had a significant negative effect on the survival rate, adult life span, duration of development, and rate of parasitism. Moreover, exposure to sublethal SFX doses also had adverse effects on the biological performance of the next generation of B. communis. Based on the transcriptome analysis, the expression of genes involved in fatty acid metabolism, glycerolipid metabolism, glycerophospholipid metabolism, peroxidase, lysosomes, glutathione metabolism, drug metabolism, and CYP450 were significantly shifted by sublethal SFX exposure. These results indicate that sublethal SFX doses might adversely affect the biological performance of B. communis by altering gene expression related to the function of detoxification systems and energy metabolism. In conclusion, considering the beneficial ecological services of provided by parasitoids and the negative effects of sulfoxaflor across a greater usage scale, we emphasize the importance to optimize pesticide applications in IPM packages, in order to ensure the safety and survival of natural pest parasitoids.
Collapse
Affiliation(s)
- Xueke Gao
- Zhengzhou Reseach Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Kaixin Zhang
- Zhengzhou Reseach Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Likang Zhao
- Zhengzhou Reseach Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiangzhen Zhu
- Zhengzhou Reseach Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Li Wang
- Zhengzhou Reseach Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Dongyang Li
- Zhengzhou Reseach Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jichao Ji
- Zhengzhou Reseach Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lin Niu
- Zhengzhou Reseach Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Junyu Luo
- Zhengzhou Reseach Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | - Jinjie Cui
- Zhengzhou Reseach Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
19
|
Han W, Ye Z, Gu Y, Zhong Y, Gao J, Zhao S, Wang S. Gut microbiota composition and gene expression changes induced in the Apis cerana exposed to acetamiprid and difenoconazole at environmentally realistic concentrations alone or combined. Front Physiol 2023; 14:1174236. [PMID: 37256066 PMCID: PMC10226273 DOI: 10.3389/fphys.2023.1174236] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023] Open
Abstract
Apis cerana is an important pollinator of agricultural crops in China. In the agricultural environment, A. cerana may be exposed to acetamiprid (neonicotinoid insecticide) and difenoconazole (triazole fungicide), alone or in combination because they are commonly applied to various crops. At present, our understanding of the toxicological effects of acetamiprid and difenoconazole on honey bee gut microbiomes is limited. The primary objective of this study was to explore whether these two pesticides affect honey bees' gut microbiota and to analyze the transcriptional effects of these two pesticides on honey bees' head and gut. In this study, adults of A. cerana were exposed to acetamiprid and/or difenoconazole by contaminated syrup at field-realistic concentrations for 10 days. Results indicated that acetamiprid and/or difenoconazole chronic exposure did not affect honey bees' survival and food consumption, whereas difenoconazole decreased the weight of honey bees. 16S rRNA sequencing suggested that difenoconazole and the mixture of difenoconazole and acetamiprid decreased the diversity index and shaped the composition of gut bacteria microbiota, whereas acetamiprid did not impact the gut bacterial community. The ITS sequence data showed that neither of the two pesticides affected the fungal community structure. Meanwhile, we also observed that acetamiprid or difenoconazole significantly altered the expression of genes related to detoxification and immunity in honey bees' tissues. Furthermore, we observed that the adverse effect of the acetamiprid and difenoconazole mixture on honey bees' health was greater than that of a single mixture. Taken together, our study demonstrates that acetamiprid and/or difenoconazole exposure at field-realistic concentrations induced changes to the honey bee gut microbiome and gene expression.
Collapse
Affiliation(s)
- Wensu Han
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Bee Industry Technology Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zheyuan Ye
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yifan Gu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yihai Zhong
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Bee Industry Technology Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jinglin Gao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Bee Industry Technology Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shan Zhao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Bee Industry Technology Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shijie Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Bee Industry Technology Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
20
|
Gao X, Zhao L, Zhu X, Wang L, Zhang K, Li D, Ji J, Niu L, Luo J, Cui J. Exposure to flupyradifurone affect health of biocontrol parasitoid Binodoxys communis (Hymenoptera: Braconidae) via disrupting detoxification metabolism and lipid synthesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114785. [PMID: 36934546 DOI: 10.1016/j.ecoenv.2023.114785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/25/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Assessing the potential effects of insecticides on beneficial biological control agents is key to facilitating the success of integrated pest management (IPM) approaches. Flupyradifurone (FPF) is a novel neonicotinoid insecticide that is replacing traditional neonicotinoids over a large geographical range to control pests. Binodoxys communis, is the dominant parasitic natural enemy of aphids. To date, no reports have addressed sublethal effects of FPF on B. communis. In this study, the lethal and sublethal effects of FPF on B. communis were investigated by indirect exposure to larvae and direct exposure to adults. Results showed that the sublethal LC10 and LC25 of FPF had negative effects on the biological parameters of B. communis, including significantly reducing survival rate, adult longevity, parasitism rate, and emergence rate, and significantly prolonging the developmental stages from egg to cocoons. In addition, we observed a transgenerational effect of FPF on the next generation (F1). RNA-Seq transcriptomic analysis identified a total of 1429 differentially expressed genes (DEGs) that were significantly changed between FPF-treated and control groups. These DEGs are mainly enriched in metabolic pathways such as peroxisomes, glutamate metabolism, carbon metabolism, fatty acid metabolism, and amino acid metabolism. This report is the first comprehensive evaluation of how FPF effects B. communis, which adds to the methods of assessing pesticide exposure in parasitic natural enemies. We speculate that the significant changes in pathways, especially those related to lipid synthesis, may be the reason for weakened parasitoid biocontrol ability. The present study provides new evidence for the toxic effects and environmental residue risk of FPF.
Collapse
Affiliation(s)
- Xueke Gao
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, 831100, Changji, China
| | - Likang Zhao
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Xiangzhen Zhu
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Li Wang
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Kaixin Zhang
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Dongyang Li
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Jichao Ji
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Lin Niu
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Junyu Luo
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, 831100, Changji, China.
| | - Jinjie Cui
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, 831100, Changji, China.
| |
Collapse
|
21
|
Pineaux M, Grateau S, Lirand T, Aupinel P, Richard FJ. Honeybee queen exposure to a widely used fungicide disrupts reproduction and colony dynamic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121131. [PMID: 36709033 DOI: 10.1016/j.envpol.2023.121131] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Pollinators have to cope with a wide range of stressful, not necessarily lethal factors limiting their performance and the ecological services they provide. Among these stressors are pesticides, chemicals that are originally designed to target crop-harming organisms but that also disrupt various functions in pollinators, including flight, communication, orientation and memory. Although all these functions are crucial for reproductive individuals when searching for mates or nesting places, it remains poorly understood how pesticides affect reproduction in pollinators. In this study, we investigated how a widely used fungicide, boscalid, affects reproduction in honey bees (Apis mellifera), an eusocial insect in which a single individual, the queen, fulfills the reproductive functions of the whole colony. Boscalid is a succinate dehydrogenase inhibitor (SDHI) fungicide mainly used on rapeseed flowers to target mitochondrial respiration in fungi but it is also suspected to disrupt foraging-linked functions in bees. We found that immature queen exposure to sublethal, field relevant doses of boscalid disrupted reproduction, as indicated by a dramatic increase in queen mortality during and shortly after the nuptial flights period and a decreased number of spermatozoa stored in the spermatheca of surviving queens. However, we did not observe a decreased paternity frequency in exposed queens that successfully established a colony. Queen exposure to boscalid had detrimental consequences on the colonies they later established regarding brood production, Varroa destructor infection and pollen storage but not nectar storage and population size. These perturbations at the colony-level correspond to nutritional stress conditions, and may have resulted from queen reduced energy provisioning to the eggs. Accordingly, we found that exposed queens had decreased gene expression levels of vitellogenin, a protein involved in egg-yolk formation. Overall, our results indicate that boscalid decreases honey bee queen reproductive quality, thus supporting the need to include reproduction in the traits measured during pesticide risk assessment procedures.
Collapse
Affiliation(s)
- Maxime Pineaux
- Unité Expérimentale d'Entomologie, INRAe, Le Magneraud, Surgères, France; Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions UMR CNRS 7267, Equipe Ecologie Evolution Symbiose, France.
| | - Stéphane Grateau
- Unité Expérimentale d'Entomologie, INRAe, Le Magneraud, Surgères, France
| | - Tiffany Lirand
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions UMR CNRS 7267, Equipe Ecologie Evolution Symbiose, France
| | - Pierrick Aupinel
- Unité Expérimentale d'Entomologie, INRAe, Le Magneraud, Surgères, France
| | - Freddie-Jeanne Richard
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions UMR CNRS 7267, Equipe Ecologie Evolution Symbiose, France.
| |
Collapse
|
22
|
Mixture effects of thiamethoxam and seven pesticides with different modes of action on honey bees (Aplis mellifera). Sci Rep 2023; 13:2679. [PMID: 36792894 PMCID: PMC9932168 DOI: 10.1038/s41598-023-29837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Even though honey bees in the field are routinely exposed to a complex mixture of many different agrochemicals, few studies have surveyed toxic effects of pesticide mixtures on bees. To elucidate the interactive actions of pesticides on crop pollinators, we determined the individual and joint toxicities of thiamethoxam (THI) and other seven pesticides [dimethoate (DIM), methomyl (MET), zeta-cypermethrin (ZCY), cyfluthrin (CYF), permethrin (PER), esfenvalerate (ESF) and tetraconazole (TET)] to honey bees (Aplis mellifera) with feeding toxicity test. Results from the 7-days toxicity test implied that THI elicited the highest toxicity with a LC50 data of 0.25 (0.20-0.29) μg mL-1, followed by MET and DIM with LC50 data of 4.19 (3.58-4.88) and 5.30 (4.65-6.03) μg mL-1, respectively. By comparison, pyrethroids and TET possessed relatively low toxicities with their LC50 data from the range of 33.78 (29.12-38.39) to 1125 (922.4-1,442) μg mL-1. Among 98 evaluated THI-containing binary to octonary mixtures, 29.59% of combinations exhibited synergistic effects. In contrast, 18.37% of combinations exhibited antagonistic effects on A. mellifera. Moreover, 54.8% pesticide combinations incorporating THI and TET displayed synergistic toxicities to the insects. Our findings emphasized that the coexistence of several pesticides might induce enhanced toxicity to honey bees. Overall, our results afforded worthful toxicological information on the combined actions of neonicotinoids and current-use pesticides on honey bees, which could accelerate farther comprehend on the possible detriments of other pesticide mixtures in agro-environment.
Collapse
|
23
|
Cang T, Lou Y, Zhu YC, Li W, Weng H, Lv L, Wang Y. Mixture toxicities of tetrachlorantraniliprole and tebuconazole to honey bees (Apis mellifera L.) and the potential mechanism. ENVIRONMENT INTERNATIONAL 2023; 172:107764. [PMID: 36689864 DOI: 10.1016/j.envint.2023.107764] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
The extensive use of pesticides has negative effects on the health of insect pollinators. Although pollinators in the field are seldom exposed to individual pesticides, few reports have assessed the toxic impacts of pesticide combinations on them. In this work, we purposed to reveal the combined impacts of tetrachlorantraniliprole (TET) and tebuconazole (TEB) on honey bees (Apis mellifera L.). Our data exhibited that TET had greater toxicity to A. mellifera (96-h LC50 value of 298.2 mg a.i. L-1) than TEB (96-h LC50 value of 1,841 mg a.i. L-1). The mixture of TET and TEB displayed acute synergistic toxicity to the pollinators. Meanwhile, the activities of CarE, CYP450, trypsin, and sucrase, as well as the expressions of five genes (ppo, abaecin, cat, CYP4G11, and CYP6AS14) associated with immune response, oxidative stress, and detoxification metabolism, were conspicuously altered when exposed to the mixture relative to the individual exposures. These results provided an overall comprehension of honey bees upon the challenge of sublethal toxicity between neonicotinoid insecticides and triazole fungicides and could be used to assess the intricate toxic mechanisms in honey bees when exposed to pesticide mixtures. Additionally, these results might guide pesticide regulation strategies to enhance the honey bee populations.
Collapse
Affiliation(s)
- Tao Cang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Yancen Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Yu-Cheng Zhu
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), 141 Experiment Station Road, Stoneville, MS 38776, USA
| | - Wenhong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China; Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, PR China
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China.
| |
Collapse
|
24
|
Scharpf I, Cichocka S, Le DT, von Mikecz A. Peripheral neuropathy, protein aggregation and serotonergic neurotransmission: Distinctive bio-interactions of thiacloprid and thiamethoxam in the nematode Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120253. [PMID: 36155223 DOI: 10.1016/j.envpol.2022.120253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Due to worldwide production, sales and application, neonicotinoids dominate the global use of insecticides. While, neonicotinoids are considered as pinpoint neurotoxicants that impair cholinergic neurotransmission in pest insects, the sublethal effects on nontarget organisms and other neurotransmitters remain poorly understood. Thus, we investigated long-term neurological outcomes in the decomposer nematode Caenorhabditis elegans. In the adult roundworm the neonicotinoid thiacloprid impaired serotonergic and dopaminergic neuromuscular behaviors, while respective exposures to thiamethoxam showed no effects. Thiacloprid caused a concentration-dependent delay of the transition between swimming and crawling locomotion that is controlled by dopaminergic and serotonergic neurotransmission. Age-resolved analyses revealed that impairment of locomotion occurred in young as well as middle-aged worms. Treatment with exogenous serotonin rescued thiacloprid-induced swimming deficits in young worms, whereas additional exposure with silica nanoparticles enhanced the reduction of swimming behavior. Delay of forward locomotion was partly caused by a new paralysis pattern that identified thiacloprid as an agent promoting a specific rigidity of posterior body wall muscle cells and peripheral neuropathy in the nematode (lowest-observed-effect-level 10 ng/ml). On the molecular level exposure with thiacloprid accelerated protein aggregation in body wall muscle cells of polyglutamine disease reporter worms indicating proteotoxic stress. The results from the soil nematode Caenorhabditis elegans show that assessment of neurotoxicity by neonicotinoids requires acknowledgment and deeper research into dopaminergic and serotonergic neurochemistry of nontarget organisms. Likewise, it has to be considered more that different neonicotinoids may promote diverse neural end points.
Collapse
Affiliation(s)
- Inge Scharpf
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Sylwia Cichocka
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Dang Tri Le
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Anna von Mikecz
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany.
| |
Collapse
|
25
|
Han M, Wang Y, Yang Z, Wang Y, Huang M, Luo B, Wang H, Chen Y, Jiang Q. Neonicotinoids residues in the honey circulating in Chinese market and health risk on honey bees and human. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120146. [PMID: 36096262 DOI: 10.1016/j.envpol.2022.120146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/13/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
China is the largest beekeeping and honey consumption country globally. Neonicotinoids in honey can pose adverse effects on honey bees and human, but data on neonicotinoids residues in honey and its health risk remain limited in China. A total of 94 honey samples were selected from Chinese market based on production region and sale volume in 2020. Eight neonicotinoids and four metabolites were determined by liquid chromatography coupled to mass spectrometry. Health risk of neonicotinoids in honey on honey bees and human was assessed by hazard quotient (HQ) and hazard index (HI). Neonicotinoids and their metabolites were overall detected in 97.9% of honey samples. Acetamiprid, thiamethoxam, and imidacloprid were top three dominant neonicotinoids in honey with the detection frequencies of 92.6%, 90.4%, and 73.4%, respectively. For honey bees, 78.7% of honey samples had a HI larger than one based on the safety threshold value of sublethal effects. Top three neonicotinoids with the highest percent proportion of HQ larger than one for honey bees were acetamiprid (43.6%), imidacloprid (31.9%), and thiamethoxam (24.5%) and their maximum HQs were 420, 210, and 41, respectively. Based on oral median lethal doses for honey bees, both HQ and HI were lower than one in all honey samples. For human, both HQ and HI were lower than one based on acceptable daily intakes in all honey samples. Neonicotinoids concentrations and detection frequencies in honey samples and its health risk varied with production region, commercial value of nectariferous plants, number of nectariferous plants, and sale price. The results suggested extensive residues of neonicotinoids in honey in Chinese market with a variation by the characteristics of honey. The residues were likely to affect the health of honey bees, but showed no detectable effect on human health.
Collapse
Affiliation(s)
- Minghui Han
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yuanping Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Zichen Yang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yi Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Min Huang
- The People's Hospital of Pingyang, Pingyang County, Zhejiang Province, 325400, China
| | - Baozhang Luo
- Department of Food Safety, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Hexing Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1G5Z3, Canada
| | - Qingwu Jiang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| |
Collapse
|
26
|
Bakker R, Ekelmans A, Xie L, Vooijs R, Roelofs D, Ellers J, Hoedjes KM, van Gestel CAM. Biomarker development for neonicotinoid exposure in soil under interaction with the synergist piperonyl butoxide in Folsomia candida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80897-80909. [PMID: 35729387 PMCID: PMC9596504 DOI: 10.1007/s11356-022-21362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Pesticide toxicity is typically assessed by exposing model organisms to individual compounds and measuring effects on survival and reproduction. These tests are time-consuming, labor-intensive, and do not accurately capture the effect of pesticide mixtures. Moreover, it is unfeasible to screen the nearly infinite combinations of mixtures for synergistic effects on model organisms. Therefore, reliable molecular indicators of pesticide exposure have to be identified, i.e., biomarkers. These biomarkers can form the basis of rapid and economical screening procedures to assess the toxicity of pesticides even under synergistic interaction with other pollutants. In this study, we screened the expression patterns of eight genes for suitability as a biomarker for neonicotinoid exposure in the soil ecotoxicological model Folsomia candida (springtails). Springtails were exposed to the neonicotinoids imidacloprid and thiacloprid either alone or with various levels of piperonyl butoxide (PBO), which inhibits cytochrome P450 enzymes (CYPs): a common point of synergistic interaction between neonicotinoid and other pesticides. First, we confirmed PBO as a potency enhancer for neonicotinoid toxicity to springtail fecundity, and then used it as a tool to confirm biomarker robustness. We identified two genes that are reliably indicative for neonicotinoid exposure even under metabolic inhibition of CYPs by PBO, nicotinic acetylcholine receptor-subunit alpha 1 (nAchR) and sodium-coupled monocarboxylate transporter (SMCT). These results can form the basis for developing high-throughput screening procedures for neonicotinoid exposure in varying mixture compositions.
Collapse
Affiliation(s)
- Ruben Bakker
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands.
| | - Astrid Ekelmans
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Liyan Xie
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Riet Vooijs
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Dick Roelofs
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
- Keygene N.V., Agro Business Park 90, Wageningen, 6708, PW, The Netherlands
| | - Jacintha Ellers
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Katja M Hoedjes
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Zhao H, Li G, Cui X, Wang H, Liu Z, Yang Y, Xu B. Review on effects of some insecticides on honey bee health. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105219. [PMID: 36464327 DOI: 10.1016/j.pestbp.2022.105219] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/03/2022] [Accepted: 08/26/2022] [Indexed: 06/17/2023]
Abstract
Insecticides, one of the main agrochemicals, are useful for controlling pests; however, the indiscriminate use of insecticides has led to negative effects on nontarget insects, especially honey bees, which are essential for pollination services. Different classes of insecticides, such as neonicotinoids, pyrethroids, chlorantraniliprole, spinosad, flupyradifurone and sulfoxaflor, not only negatively affect honey bee growth and development but also decrease their foraging activity and pollination services by influencing their olfactory sensation, memory, navigation back to the nest, flight ability, and dance circuits. Honey bees resist the harmful effects of insecticides by coordinating the expression of genes related to immunity, metabolism, and detoxification pathways. To our knowledge, more research has been conducted on the effects of neonicotinoids on honey bee health than those of other insecticides. In this review, we summarize the current knowledge regarding the effects of some insecticides, especially neonicotinoids, on honey bee health. Possible strategies to increase the positive impacts of insecticides on agriculture and reduce their negative effects on honey bees are also discussed.
Collapse
Affiliation(s)
- Hang Zhao
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Guilin Li
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Xuepei Cui
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yuewei Yang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
28
|
Al Naggar Y, Estrella-Maldonado H, Paxton RJ, Solís T, Quezada-Euán JJG. The Insecticide Imidacloprid Decreases Nannotrigona Stingless Bee Survival and Food Consumption and Modulates the Expression of Detoxification and Immune-Related Genes. INSECTS 2022; 13:972. [PMID: 36354796 PMCID: PMC9699362 DOI: 10.3390/insects13110972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 05/04/2023]
Abstract
Stingless bees are ecologically and economically important species in the tropics and subtropics, but there has been little research on the characterization of detoxification systems and immune responses within them. This is critical for understanding their responses to, and defenses against, a variety of environmental stresses, including agrochemicals. Therefore, we studied the detoxification and immune responses of a stingless bee, Nanotrigona perilampoides, which is an important stingless bee that is widely distributed throughout Mexico, including urban areas, and has the potential to be used in commercial pollination. We first determined the LC50 of the neonicotinoid insecticide imidacloprid for foragers of N. perilampoides, then chronically exposed bees for 10 days to imidacloprid at two field-realistic concentrations, LC10 (0.45 ng/µL) or LC20 (0.74 ng/µL), which are respectively 2.7 and 1.3-fold lower than the residues of imidacloprid that have been found in honey (6 ng/g) in central Mexico. We found that exposing N. perilampoides stingless bees to imidacloprid at these concentrations markedly reduced bee survival and food consumption, revealing the great sensitivity of this stingless bee to the insecticide in comparison to honey bees. The expression of detoxification (GSTD1) and immune-related genes (abaecin, defensin1, and hymenopteacin) in N. perilampoides also changed over time in response to imidacloprid. Gene expression was always lower in bees after 8 days of exposure to imidacloprid (LC10 or LC20) than it was after 4 days. Our results demonstrate that N. perilampoides stingless bees are extremely sensitive to imidacloprid, even at low concentrations, and provide greater insight into how stingless bees respond to pesticide toxicity. This is the first study of its kind to look at detoxification systems and immune responses in Mexican stingless bees, an ecologically and economically important taxon.
Collapse
Affiliation(s)
- Yahya Al Naggar
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Humberto Estrella-Maldonado
- Departamento de Apicultura Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida CP 97100, Mexico
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Ixtacuaco, Km 4.5 Carretera Martínez de la Torre-Tlapacoyan, Tlapacoyan CP 93600, Mexico
| | - Robert J. Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Teresita Solís
- Departamento de Apicultura Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida CP 97100, Mexico
| | - J. Javier G. Quezada-Euán
- Departamento de Apicultura Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida CP 97100, Mexico
| |
Collapse
|
29
|
Cheng Y, Wang H, Deng Z, Wang J, Liu Z, Chen Y, Ma Y, Li B, Yang L, Zhang Z, Wu L. Efficient removal of Imidacloprid and nutrients by algae-bacteria biofilm reactor (ABBR) in municipal wastewater: Performance, mechanisms and the importance of illumination. CHEMOSPHERE 2022; 305:135418. [PMID: 35750233 DOI: 10.1016/j.chemosphere.2022.135418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Neonicotinoids, such as Imidacloprid (IMI), are frequently detected in water and wastewater, posing a threat on both the environment and the health of living things. In this work, a novel algae-bacteria biofilm reactor (ABBR) was constructed to remove IMI and conventional nutrients from municipal wastewater, aiming to explore the removal effect and advantage of ABBR. Results showed that ABBR achieved 74.9% removal of IMI under 80 μmol m-2·s-1 light, higher than photobioreactor (PBR) without biofilm (61.2%) or ABBR under 40 μmol m-2·s-1 light (48.4%) after 16 days of operation. Moreover, it also showed that ABBR allowed a marked improvement on the removal of total dissolved nitrogen (TDN), total dissolved phosphorus (TDP) and soluble chemical oxygen demand (sCOD). ABBR showed different IMI removal efficiencies and bacterial communities under different light conditions, indicating that light played an important role in driving ABBR. The merits of ABBR are including (i) ABBR showed rapid pollutant removal in a short time, (ii) in ABBR, stable consortiums were formed and chlorophyll content in effluent was very low, (iii) compared with PBR, degradation products in ABBR showed lower biological toxicity. Our study highlights the benefits of ABBR on IMI removing from municipal wastewater and provides an effective and environment-friendly engineering application potential of IMI removal.
Collapse
Affiliation(s)
- Yongtao Cheng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Hongyu Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Zhikang Deng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jiping Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Zhe Liu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Yulin Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Bolin Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China; The James Hutton Institute, Craigiebuckler, Aberdeen, ABI5 8QH, UK
| | - Li Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China.
| |
Collapse
|
30
|
Wang ZM, Li S, Shi CC, Xie LJ, Fu KY, Jiang WH. The actions of neonicotinoid insecticides on nicotinic acetylcholine subunits Ldα1 and Ldα8 of Leptinotarsa decemlineata and assembled receptors. INSECT SCIENCE 2022; 29:1387-1400. [PMID: 35038787 DOI: 10.1111/1744-7917.13005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/07/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
The insect nicotinic acetylcholine receptor (nAChR) is a pentameric channel protein and also a target for neonicotinoids. There are few reported studies on the molecular interactions of Leptinotarsa decemlineata nAChRs with neonicotinoids. In this study, we analyzed the response of acetylcholine and neonicotinoids (thiamethoxam [TMX], imidacloprid [IMI], and clothianidin [CLO]) on hybrid receptors constructed by nAChR α1 and α8 subunits of L. decemlineata (Ldα1 and Ldα8) co-expressed with rat β2 subunit (rβ2) at different capped RNA (cRNA) ratios in Xenopus oocytes. In addition, we evaluated the expression changes of Ldα1 and Ldα8 after median lethal dose of TMX treatment for 72 h by quantitative polymerase chain reaction (qPCR). The resulting functional nAChRs Ldα1/rβ2 and Ldα1/Ldα8/rβ2 showed different pharmacological characteristics. The neonicotinoids tested showed lower agonist affinity on Ldα1/Ldα8/rβ2 compared to Ldα1/rβ2 at same ratios of subunit cRNAs. The sensitivities of neonicotinoids tested for Ldα1/rβ2 and Ldα1/Ldα8/rβ2 at cRNA ratios of 5:1, 1:1 and 5:5:1, 1:1:1, respectively, were lower than those for nAChRs at ratios of 1:5 and 1:1:5, respectively, whereas the values of maximum response (Imax ) varied. For Ldα1/Ldα8/rβ2, a reduction of Lda8 cRNA resulted in increased sensitivity to IMI and decreased sensitivity to TMX. The expression of Ldα1 and Ldα8 significantly decreased in adults by 82.12% and 47.02%, respectively, while Ldα8 was significantly upregulated by 2.44 times in 4th instar larvae after exposure to TMX. We infer that Ldα1 and Ldα8 together play an important role in the sensitivity of L. decemlineata to neonicotinoids.
Collapse
Affiliation(s)
- Zhi-Min Wang
- College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Sha Li
- College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Cheng-Cheng Shi
- College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Lin-Jie Xie
- College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Kai-Yun Fu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry Agriculture P.R. China, Urumqi, China
| | - Wei-Hua Jiang
- College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| |
Collapse
|
31
|
Parkinson RH, Fecher C, Gray JR. Chronic exposure to insecticides impairs honeybee optomotor behaviour. FRONTIERS IN INSECT SCIENCE 2022; 2:936826. [PMID: 38468783 PMCID: PMC10926483 DOI: 10.3389/finsc.2022.936826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/11/2022] [Indexed: 03/13/2024]
Abstract
Honeybees use wide-field visual motion information to calculate the distance they have flown from the hive, and this information is communicated to conspecifics during the waggle dance. Seed treatment insecticides, including neonicotinoids and novel insecticides like sulfoxaflor, display detrimental effects on wild and managed bees, even when present at sublethal quantities. These effects include deficits in flight navigation and homing ability, and decreased survival of exposed worker bees. Neonicotinoid insecticides disrupt visual motion detection in the locust, resulting in impaired escape behaviors, but it had not previously been shown whether seed treatment insecticides disrupt wide-field motion detection in the honeybee. Here, we show that sublethal exposure to two commonly used insecticides, imidacloprid (a neonicotinoid) and sulfoxaflor, results in impaired optomotor behavior in the honeybee. This behavioral effect correlates with altered stress and detoxification gene expression in the brain. Exposure to sulfoxaflor led to sparse increases in neuronal apoptosis, localized primarily in the optic lobes, however there was no effect of imidacloprid. We propose that exposure to cholinergic insecticides disrupts the honeybee's ability to accurately encode wide-field visual motion, resulting in impaired optomotor behaviors. These findings provide a novel explanation for previously described effects of neonicotinoid insecticides on navigation and link these effects to sulfoxaflor for which there is a gap in scientific knowledge.
Collapse
Affiliation(s)
- Rachel H. Parkinson
- Grass Laboratory, Marine Biological Laboratory, Woods Hole, MA, United States
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Caroline Fecher
- Grass Laboratory, Marine Biological Laboratory, Woods Hole, MA, United States
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - John R. Gray
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
32
|
Cartereau A, Pineau X, Lebreton J, Mathé-Allainmat M, Taillebois E, Thany SH. Impairments in learning and memory performances associated with nicotinic receptor expression in the honeybee Apis mellifera after exposure to a sublethal dose of sulfoxaflor. PLoS One 2022; 17:e0272514. [PMID: 35921304 PMCID: PMC9348702 DOI: 10.1371/journal.pone.0272514] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
Sulfoxaflor is a new insecticide which acts on the nicotinic acetylcholine receptor (nAChRs) in a similar way to neonicotinoids. However, sufloxaflor (SFX) is thought to act in a different manner and is thus proposed as an alternative in crop protection. The goal of this study is to evaluate the toxicity of SFX and its sublethal effect on the honeybee Apis mellifera after acute exposure. In toxicological assay studies, the LD50 value and sublethal dose (corresponding to the NOEL: no observed effect level) were 96 and 15 ng/bee, respectively. Using the proboscis extension response paradigm, we found that an SFX dose of 15 ng/bee significantly impairs learning and memory retrieval when applied 12 h before conditioning or 24 h after olfactory conditioning. SFX had no effect on honeybee olfactory performance when exposure happened after the conditioning. Relative quantitative PCR experiments performed on the six nicotinic acetylcholine receptor subunits demonstrated that they are differently expressed in the honeybee brain after SFX exposure, whether before or after conditioning. We found that intoxicated bees with learning defects showed a strong expression of the Amelβ1 subunit. They displayed overexpression of Amelα9 and Amelβ2, and down-regulation of Amelα1, Amelα3 and Amelα7 subunits. These results demonstrated for the first time that a sublethal dose of SFX could affect honeybee learning and memory performance and modulate the expression of specific nAChR subunits in the brain.
Collapse
Affiliation(s)
- Alison Cartereau
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) USC INRAE 1328, Université d’Orléans, Orléans, France
| | - Xavier Pineau
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) USC INRAE 1328, Université d’Orléans, Orléans, France
| | - Jacques Lebreton
- CEISAM UMR CNRS 6230, UFR des Sciences et des Techniques, Université de Nantes, Nantes, France
| | - Monique Mathé-Allainmat
- CEISAM UMR CNRS 6230, UFR des Sciences et des Techniques, Université de Nantes, Nantes, France
| | - Emiliane Taillebois
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) USC INRAE 1328, Université d’Orléans, Orléans, France
| | - Steeve H. Thany
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) USC INRAE 1328, Université d’Orléans, Orléans, France
| |
Collapse
|
33
|
Moreira DR, de Souza THS, Galhardo D, Puentes SMD, Figueira CL, Silva BGD, Chagas FD, Gigliolli AAS, de Toledo VDAA, Ruvolo-Takasusuki MCC. Imidacloprid Induces Histopathological Damage in the Midgut, Ovary, and Spermathecal Stored Spermatozoa of Queens After Chronic Colony Exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1637-1648. [PMID: 35344213 DOI: 10.1002/etc.5332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/18/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Bee colony health is declining as a result of several factors, including exposure to pesticides. The development and strength of honey bee colonies depend on the reproductive success of queen bees. Because flowers are sources of food for bees, foragers can accidentally collect and carry contaminated pollen and nectar to their hives; and this may compromise the longevity and the life span of individuals. Thus, the present study aimed to observe the action of imidacloprid in the midgut and ovaries of Apis mellifera queens, as well as the effects on sperm stored in their spermatheca. To this end, the apiary was divided into three experimental groups: control, commercial imidacloprid, and active ingredient imidacloprid. For toxicity assays, a sucrose solution containing 1 µg/L of imidacloprid was offered to the colonies for 42 days. A control group received only food in the same period. In both treatments with imidacloprid, the midgut of queens showed modifications in the external musculature and cellular alterations. Such changes could lead to the nonrecovery of the epithelium and subsequently malabsorption of nutrients. Moreover, the digestive cells of queen bees exposed to the commercial imidacloprid presented pyknotic nuclei, suggesting a cell death process. The main alterations observed in the ovaries of these reproductive bees treated with commercial imidacloprid were degeneration and resorption of the ovariole content, which probably affected their fertilization and colony development. There were no significant changes in the spermatozoa morphology for both treatments with imidacloprid, but this insecticide may interfere with the development and reproductive success of A. mellifera colonies because it affects the morphology and function of essential organs for the survival of queens. Environ Toxicol Chem 2022;41:1637-1648. SETAC.
Collapse
Affiliation(s)
- Daiani Rodrigues Moreira
- Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | | | - Douglas Galhardo
- Department of Animal Science, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | | | - Cinthia Leão Figueira
- Department of Animal Science, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Breno Gabriel da Silva
- Department of Exact Sciences, Escola Superior de Agricultura "Luiz de Queiroz"-Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Francieli das Chagas
- Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | | | | | | |
Collapse
|
34
|
Kim S, Kim JH, Cho S, Lee DE, Clark JM, Lee SH. Chronic exposure to field-realistic doses of imidacloprid resulted in biphasic negative effects on honey bee physiology. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 144:103759. [PMID: 35341906 DOI: 10.1016/j.ibmb.2022.103759] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
There have been many investigations on the negative effects of imidacloprid (IMD) on honey bees. IMD is known to disrupt honey bee physiology and colony health at a relatively low concentration compared to other pesticides. In this study, honey bee colonies were chronically exposed to field-realistic concentrations (5, 20, and 100 ppb) of IMD, and the body weight, flight performance, carbohydrate reserve, and lipid contents of forager bees analyzed. Transcriptome analyses followed by quantitative PCR were also conducted for both nurse and forager bees to elucidate any changes in energy metabolism related to phenotypic disorders. The body weights of newly emerged and nurse bees showed decreasing tendencies as the IMD concentration increased. In forager bees, however, IMD induced a biphasic change in body weight: body weight was decreased at the lower concentrations (5 and 20 ppb) but increased at the higher concentration (100 ppb). Nevertheless, the flight capability of forager bees significantly decreased in a concentration-dependent manner. The effects of IMD on target gene transcription in forager bees showed biphasic patterns between low (5 and 20 ppb) and high (100 ppb) concentrations. Nurse bees showed typical features of premature transition to foragers in a concentration-dependent manner. When exposed to low concentrations, forager bees exhibited downregulation of genes involved in carbohydrate and lipid metabolism and in the insulin/insulin-like growth factor signaling pathway, upregulation of transporter activity, and a dose-dependent body weight reduction, which were similar to insulin resistance and diabetic symptoms. However, increased lipid metabolism and decreased energy metabolism with body weight gain were observed at high IMD concentration. Considered together, these results suggest that field-realistic doses of IMD alter honey bee energy metabolism in distinctly different ways at low and high concentrations, both of which negatively affect honey bee colony health.
Collapse
Affiliation(s)
- Sanghyeon Kim
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ju Hyeon Kim
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Susie Cho
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Do Eun Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - John Marshall Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, United States
| | - Si Hyeock Lee
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea; Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, South Korea.
| |
Collapse
|
35
|
Roy A, Fajardie P, Lepoittevin B, Baudoux J, Lapinte V, Caillol S, Briou B. CNSL, a Promising Building Blocks for Sustainable Molecular Design of Surfactants: A Critical Review. Molecules 2022; 27:molecules27041443. [PMID: 35209231 PMCID: PMC8876098 DOI: 10.3390/molecules27041443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
Surfactants are crystallizing a certain focus for consumer interest, and their market is still expected to grow by 4 to 5% each year. Most of the time these surfactants are of petroleum origin and are not often biodegradable. Cashew Nut Shell Liquid (CNSL) is a promising non-edible renewable resource, directly extracted from the shell of the cashew nut. The interesting structure of CNSL and its components (cardanol, anacardic acid and cardol) lead to the synthesis of biobased surfactants. Indeed, non-ionic, anionic, cationic and zwitterionic surfactants based on CNSL have been reported in the literature. Even now, CNSL is absent or barely mentioned in specialized review or chapters talking about synthetic biobased surfactants. Thus, this review focuses on CNSL as a building block for the synthesis of surfactants. In the first part, it describes and criticizes the synthesis of molecules and in the second part, it compares the efficiency and the properties (CMC, surface tension, kraft temperature, biodegradability) of the obtained products with each other and with commercial ones.
Collapse
Affiliation(s)
- Audrey Roy
- Orpia Innovation, CNRS, Bâtiment Chimie Balard, 1919 Route de Mendes, 34000 Montpellier, France;
| | - Pauline Fajardie
- Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (P.F.); (V.L.); (S.C.)
| | - Bénédicte Lepoittevin
- Laboratoire de Chimie Moléculaire et Thio-Organique (LCMT), Normandie Université, ENSICAEN, UNICAEN, UMR CNRS 6507, 6 Boulevard Maréchal Juin, 14050 Caen, France; (B.L.); (J.B.)
| | - Jérôme Baudoux
- Laboratoire de Chimie Moléculaire et Thio-Organique (LCMT), Normandie Université, ENSICAEN, UNICAEN, UMR CNRS 6507, 6 Boulevard Maréchal Juin, 14050 Caen, France; (B.L.); (J.B.)
| | - Vincent Lapinte
- Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (P.F.); (V.L.); (S.C.)
| | - Sylvain Caillol
- Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (P.F.); (V.L.); (S.C.)
| | - Benoit Briou
- Orpia Innovation, CNRS, Bâtiment Chimie Balard, 1919 Route de Mendes, 34000 Montpellier, France;
- Correspondence: ; Tel.: +33-6-32-83-21-76
| |
Collapse
|
36
|
Zhang Q, Fu L, Cang T, Tang T, Guo M, Zhou B, Zhu G, Zhao M. Toxicological Effect and Molecular Mechanism of the Chiral Neonicotinoid Dinotefuran in Honeybees. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1104-1112. [PMID: 34967206 DOI: 10.1021/acs.est.1c05692] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the increasing demand for pollinating services, the wellness of honeybees has received widespread attention. Recent evidence indicated honeybee health might be posed a potential threat by widely used neonicotinoids worldwide. However, little is known about the molecular mechanism of these insecticides in honeybees especially at an enantiomeric level. In this study, we selected two species of bees, Apis mellifera (A. mellifera) and Apis cerana (A. cerana), to assess the toxicity and molecular mechanism of neonicotinoid dinotefuran and its enantiomers. The results showed that S-dinotefuran was more toxic than rac-dinotefuran and R-dinotefuran to honeybees by oral and contact exposures as much as 114 times. A. cerana was more susceptible to highly toxic enantiomer S-dinotefuran. S-dinotefuran induced the immune system response in A. cerana after 48 h exposure and significant changes were observed in the neuronal signaling of A. mellifera under three forms of dinotefuran exposure. Moreover, molecular docking also revealed that S-dinotefuran formed more hydrogen bonds than R-dinotefuran with nicotinic acetylcholine receptor, indicating the higher toxicity of S-dinotefuran. Data provided here show that R-dinotefuran may be a safer alternative to control pests and protect pollinators than rac-dinotefuran.
Collapse
Affiliation(s)
- Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Lili Fu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Tao Cang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Tao Tang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Mingcheng Guo
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Bingbing Zhou
- Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, Zhejiang 310015, China
| | - Guohua Zhu
- Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, Zhejiang 310015, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| |
Collapse
|
37
|
Choudhary A, Mohindru B, Karedla AK, Singh J, Chhuneja PK. Sub-lethal effects of thiamethoxam on Apis mellifera Linnaeus. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1958868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Amit Choudhary
- Department of Entomology, Punjab Agricultural University, Ludhiana, India
| | - Bharathi Mohindru
- Department of Entomology, Punjab Agricultural University, Ludhiana, India
| | | | - Jaspal Singh
- Department of Entomology, Punjab Agricultural University, Ludhiana, India
| | | |
Collapse
|
38
|
Zhang JG, Ma DD, Xiong Q, Qiu SQ, Huang GY, Shi WJ, Ying GG. Imidacloprid and thiamethoxam affect synaptic transmission in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112917. [PMID: 34678628 DOI: 10.1016/j.ecoenv.2021.112917] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/10/2021] [Accepted: 10/16/2021] [Indexed: 05/21/2023]
Abstract
Imidacloprid (IMI) and thiamethoxam (THM) are two commonly applied neonicotinoid insecticides. IMI and THM could cause negative impacts on non-target organisms like bees. However, the information about neurotoxicity of IMI and THM in fish is still scarce. Here we investigated the effects of IMI and THM on locomotor behavior, AChE activity, and transcription of genes related to synaptic transmission in zebrafish exposed to IMI and THM with concentrations of 50 ng L-1 to 50,000 ng L-1 at 14 day post fertilization (dpf), 21 dpf, 28 dpf and 35 dpf. Our results showed that IMI and THM significantly influenced the locomotor activity in larvae at 28 dpf and 35 dpf. THM elevated AChE activity at 28 dpf. The qPCR data revealed that IMI and THM affected the transcription of marker genes belonging to the synapse from 14 dpf to 35 dpf. Furthermore, IMI and THM mainly affected transcription of key genes in γ-aminobutyric acid, dopamine and serotonin pathways in larvae at 28 dpf and 35 dpf. These results demonstrated the neurotoxicity of IMI and THM in zebrafish. The findings from this study suggested that IMI and THM in the aquatic environment may pose potential risks to fish fitness and survival.
Collapse
Affiliation(s)
- Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Qian Xiong
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Shu-Qing Qiu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
39
|
He X, Chen J, Li X, Wang J, Xin M, Sun X, Cao W, Wang B. Pollution status, influencing factors and environmental risks of neonicotinoids, fipronil and its metabolites in a typical semi-closed bay in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118210. [PMID: 34582920 DOI: 10.1016/j.envpol.2021.118210] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
The occurrence, spatiotemporal variations, influence factors and environmental risks of eight common neonicotinoids (NEOs), fipronil, and three fipronil metabolites (fipronil and its metabolites are collectively referred to as FIPs) in different seasons from the estuary to the inner area of Jiaozhou Bay, China were comprehensively investigated. First- and second-generation NEOs were found to be the predominant pesticides in this area. The average contents of ∑NEOs and ∑FIPs from the estuary to the inner bay decreased from 12.99 ng/L to 0.82 ng/L and from 1.10 ng/L to 0.17 ng/L, respectively. NEO and FIP concentrations were higher in summer and autumn. High ∑NEO content is distributed in main inflow rivers, such as Dagu River and Licun River, which are influenced by pesticide application. NEO concentrations in all rivers were high upstream and low downstream because of the influence of heavy rainfall and seawater dilution in summer. NEO concentrations were high along the coast and low at the mouth and center of Jiaozhou Bay in summer and autumn and evenly distributed in winter and spring. Temperature has a great influence on most NEOs and FIPs owing to its effect on their degradation. Nitrogen-containing nutrients have an important influence on the distribution of fipronil and acetamiprid, which may be due to the activity of nitrogen-containing functional groups in their structure. Only Licun River, Dagu River and Haibo river sewage treatment plant in summer posed a certain risk of chronic toxicity for NEOs using the new threshold established by the species sensitive distribution (SSD) method for Chinese native aquatic lives. These findings should arouse people's attention.
Collapse
Affiliation(s)
- Xiuping He
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China; Shandong University of Science and Technology, Qingdao, 266590, China
| | - Junhui Chen
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China; Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Xiaotong Li
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Jiuming Wang
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Ming Xin
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Xia Sun
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Wei Cao
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Baodong Wang
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China; Shandong University of Science and Technology, Qingdao, 266590, China
| |
Collapse
|
40
|
Christen V, Grossar D, Charrière JD, Eyer M, Jeker L. Correlation Between Increased Homing Flight Duration and Altered Gene Expression in the Brain of Honey Bee Foragers After Acute Oral Exposure to Thiacloprid and Thiamethoxam. FRONTIERS IN INSECT SCIENCE 2021; 1:765570. [PMID: 38468880 PMCID: PMC10926505 DOI: 10.3389/finsc.2021.765570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/19/2021] [Indexed: 03/13/2024]
Abstract
Neonicotinoids as thiamethoxam and thiacloprid are suspected to be implicated in the decline of honey bee populations. As nicotinic acetylcholine receptor agonists, they disturb acetylcholine receptor signaling in insects, leading to neurotoxicity and are therefore globally used as insecticides. Several behavioral studies have shown links between neonicotinoid exposure of bees and adverse effects on foraging activity, homing flight performance and reproduction, but the molecular aspects underlying these effects are not well-understood. In the last years, several studies through us and others showed the effects of exposure to neonicotinoids on gene expression in the brain of honey bees. Transcripts of acetylcholine receptors, hormonal regulation, stress markers, detoxification enzymes, immune system related genes and transcripts of the energy metabolism were altered after neonicotinoid exposure. To elucidate the link between homing flight performance and shifts in gene expression in the brain of honey bees after neonicotinoid exposure, we combined homing flight activity experiments applying RFID technology and gene expression analysis. We analyzed the expression of endocrine factors, stress genes, detoxification enzymes and genes linked to energy metabolism in forager bees after homing flight experiments. Three different experiments (experiment I: pilot study; experiment II: "worst-case" study and experiment III: laboratory study) were performed. In a pilot study, we wanted to investigate if we could see differences in gene expression between controls and exposed bees (experiment I). This first study was followed by a so-called "worst-case" study (experiment II), where we investigated mainly differences in the expression of transcripts linked to energy metabolism between fast and slow returning foragers. We found a correlation between homing flight duration and the expression of cytochrome c oxidase subunit 5A, one transcript linked to oxidative phosphorylation. In the third experiment (experiment III), foragers were exposed in the laboratory to 1 ng/bee thiamethoxam and 8 ng/bee thiacloprid followed by gene expression analysis without a subsequent flight experiment. We could partially confirm the induction of cytochrome c oxidase subunit 5A, which we detected in experiment II. In addition, we analyzed the effect of the feeding mode (group feeding vs. single bee feeding) on data scattering and demonstrated that single bee feeding is superior to group feeding as it significantly reduces variability in gene expression. Based on the data, we thus hypothesize that the disruption of energy metabolism may be one reason for a prolongation of homing flight duration in neonicotinoid treated bees.
Collapse
Affiliation(s)
- Verena Christen
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland
| | | | | | - Michael Eyer
- Agroscope, Swiss Bee Research Center, Bern, Switzerland
- Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
| | - Lukas Jeker
- Agroscope, Swiss Bee Research Center, Bern, Switzerland
| |
Collapse
|
41
|
Zhang Y, Du Y, Ma W, Liu J, Jiang Y. The Transcriptomic Landscape of Molecular Effects after Sublethal Exposure to Dinotefuran on Apis mellifera. INSECTS 2021; 12:insects12100898. [PMID: 34680667 PMCID: PMC8537135 DOI: 10.3390/insects12100898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Apis mellifera is one of the most important pollinator communities in nature. Insecticide residues in pollen and nectar, due to their wide use, may harm bees. Thus, it is crucial to provide novel insights into the effects of neonicotinoid insecticides on pollinators for protecting bees and maintaining a long-term stable ecological environment. The aim of our study was to investigate the effect and the mechanisms underlying bees impaired by dinotefuran. In the present study, for the first time, we found the mRNA expression profile of bees changes after treatment with sublethal doses of dinotefuran. Overall, our findings enhance understanding of the molecular mechanisms that underly physiological and behavioural damage for bees after dinotefuran exposure. Abstract The decreasing number of bees is a global ecological problem. With the advancement of agricultural modernisation, the large-scale use of neonicotinoid insecticides is one of the main factors leading to the decline of bees. The aim of the present study was to investigate the effect and the mechanisms underlying bees impaired by dinotefuran. Acute (48 h) oral toxicity tests showed that a 5% lethal concentration (LC5) was 0.220 mg/L, and a 20% lethal concentration (LC20) was 0.458 mg/L. The gene expression profile shows that when compared with the control group, the LC5 group induced 206 significantly upregulated, differentially expressed genes (DEGs) and 363 significantly downregulated DEGs, while the LC20 group induced 180 significantly upregulated DEGs and 419 significantly downregulated DEGs. Significantly, transcriptomic analysis revealed DEGs involved in immunity, detoxification, and the nervous system, such as antimicrobial peptides, vitellogenin, synaptotagmin-10, AChE-2, and nAChRa9. Furthermore, Gene Ontology (GO) annotation and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis revealed that DEGs were enriched in amino acid and fatty acid biosynthesis and metabolism pathways. Collectively, our findings will help clarify the deleterious physiological and behavioural impacts of dinotefuran on bees and provide a basis for future research on the mechanisms underlying bees impaired by dinotefuran.
Collapse
|
42
|
Barascou L, Sene D, Barraud A, Michez D, Lefebvre V, Medrzycki P, Di Prisco G, Strobl V, Yañez O, Neumann P, Le Conte Y, Alaux C. Pollen nutrition fosters honeybee tolerance to pesticides. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210818. [PMID: 34540259 PMCID: PMC8437229 DOI: 10.1098/rsos.210818] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/10/2021] [Indexed: 05/11/2023]
Abstract
A reduction in floral resource abundance and diversity is generally observed in agro-ecosystems, along with widespread exposure to pesticides. Therefore, a better understanding on how the availability and quality of pollen diets can modulate honeybee sensitivity to pesticides is required. For that purpose, we evaluated the toxicity of acute exposure and chronic exposures to field realistic and higher concentrations of azoxystrobin (fungicide) and sulfoxaflor (insecticide) in honeybees provided with pollen diets of differing qualities (named S and BQ pollens). We found that pollen intake reduced the toxicity of the acute doses of pesticides. Contrary to azoxystrobin, chronic exposures to sulfoxaflor increased by 1.5- to 12-fold bee mortality, which was reduced by pollen intake. Most importantly, the risk of death upon exposure to a high concentration of sulfoxaflor was significantly lower for the S pollen diet when compared with the BQ pollen diet. This reduced pesticide toxicity was associated with a higher gene expression of vitellogenin, a glycoprotein that promotes bee longevity, a faster sulfoxaflor metabolization and a lower concentration of the phytochemical p-coumaric acid, known to upregulate detoxification enzymes. Thus, our study revealed that pollen quality can influence the ability of bees to metabolize pesticides and withstand their detrimental effects, providing another strong argument for the restoration of suitable foraging habitat.
Collapse
Affiliation(s)
| | - Deborah Sene
- INRAE, Abeilles et Environnement, Avignon, France
| | - Alexandre Barraud
- Research Institute for Biosciences, Laboratory of Zoology, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Denis Michez
- Research Institute for Biosciences, Laboratory of Zoology, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Victor Lefebvre
- Research Institute for Biosciences, Laboratory of Zoology, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Piotr Medrzycki
- Council for Agricultural Research and Economics—Agriculture and Environment Research Centre, Via di Corticella 133, 40128 Bologna, Italy
| | - Gennaro Di Prisco
- Council for Agricultural Research and Economics—Agriculture and Environment Research Centre, Via di Corticella 133, 40128 Bologna, Italy
- Institute for Sustainable Plant Protection, National Research-Council, Piazzale Enrico Fermi 1, 80055 Portici, Naples, Italy
| | - Verena Strobl
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Cedric Alaux
- INRAE, Abeilles et Environnement, Avignon, France
| |
Collapse
|
43
|
Powner MB, Priestley G, Hogg C, Jeffery G. Improved mitochondrial function corrects immunodeficiency and impaired respiration in neonicotinoid exposed bumblebees. PLoS One 2021; 16:e0256581. [PMID: 34437613 PMCID: PMC8389381 DOI: 10.1371/journal.pone.0256581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/10/2021] [Indexed: 01/05/2023] Open
Abstract
Neonicotinoid pesticides undermine pollinating insects including bumblebees. However, we have previously shown that mitochondrial damage induced by neonicotinoids can be corrected by 670nm light exposure. But we do not know if this protection extends to immunity or what the minimum effective level of 670nm light exposure is necessary for protection. We use whole body bee respiration in vivo as a metric of neonicotinoid damage and assess the amount of light exposure needed to correct it. We reveal that only 1 min of 670nm exposure is sufficient to correct respiratory deficits induced by pesticide and that this also completely repairs damaged immunocompetence measured by haemocyte counts and the antibacterial action of hemolymph. Further, this single 1 min exposure remains effective for 3–6 days. Longer exposures were not more effective. Such data are key for development of protective light strategies that can be delivered by relatively small economic devices placed in hives.
Collapse
Affiliation(s)
- Michael Barry Powner
- Centre for Applied Vision Research, City University of London, London, United Kingdom
| | | | - Chris Hogg
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
44
|
Krishnan N, Jurenka RA, Bradbury SP. Neonicotinoids can cause arrested pupal ecdysis in Lepidoptera. Sci Rep 2021; 11:15787. [PMID: 34349192 PMCID: PMC8339065 DOI: 10.1038/s41598-021-95284-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022] Open
Abstract
Recently, we reported a novel mode of action in monarch butterfly (Danaus plexippus) larvae exposed to neonicotinoid insecticides: arrest in pupal ecdysis following successful larval ecdysis. In this paper, we explore arrested pupal ecdysis in greater detail and propose adverse outcome pathways to explain how neonicotinoids cause this effect. Using imidacloprid as a model compound, we determined that final-instar monarchs, corn earworms (Helicoverpa zea), and wax moths (Galleria mellonella) showed high susceptibility to arrested pupal ecdysis while painted ladies (Vanessa cardui) and red admirals (Vanessa atalanta) showed low susceptibility. Fall armyworms (Spodoptera frugiperda) and European corn borers (Ostrinia nubilalis) were recalcitrant. All larvae with arrested ecdysis developed pupal cuticle, but with incomplete shedding of larval cuticle and unexpanded pupal appendages; corn earworm larvae successfully developed into adults with unexpanded appendages. Delayed initiation of pupal ecdysis was also observed with treated larvae. Imidacloprid exposure was required at least 26 h prior to pupal ecdysis to disrupt the molt. These observations suggest neonicotinoids may disrupt the function of crustacean cardioactive peptide (CCAP) neurons, either by directly acting on their nicotinic acetylcholine receptors or by acting on receptors of inhibitory neurons that regulate CCAP activity.
Collapse
Affiliation(s)
- Niranjana Krishnan
- Department of Entomology, Iowa State University, Ames, IA, USA. .,Toxicology Program, Iowa State University, Ames, IA, USA.
| | | | - Steven P Bradbury
- Department of Entomology, Iowa State University, Ames, IA, USA.,Toxicology Program, Iowa State University, Ames, IA, USA.,Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, USA
| |
Collapse
|
45
|
Kabbani N, Olds JL. Nicotinic receptor targeting in physiological and environmental vulnerability: A whole of biosphere perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146642. [PMID: 34001335 DOI: 10.1016/j.scitotenv.2021.146642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
We propose a biosphere model of convergent interactions between nicotine and neonicotinoids (neonics) within a related framework of nicotinic receptor targeting agents (NrTA) across the globe. We explore how rising global trends in the use nicotine as well as neonics impacts vulnerability, within and across species, and posit that evolutionary conservation at the nicotinic acetylcholine receptor (nAChR) provides an operational strategy map for pathogens and disease. Furthermore, we examine the effects of NrTA exposure on balance within extant and developing ecological niches, food chains, and human societies. We advocate for a global strategy for biomonitoring across agriculture, wildlife, and human centers. Such a strategy would relate emergent pathogenic and infectious diseases, amongst others, along a tractable biological stress pathway. This new framework aims to better prepare society in the face of emergent pandemics through 1. identifying primary chemical drivers that can impact emergent diseases; 2. outlining data-driven strategy options for health and environmental policy decision makers.
Collapse
Affiliation(s)
- Nadine Kabbani
- School of Systems Biology, George Mason University, USA.
| | - James L Olds
- Schar School for Policy and Government, George Mason University, USA
| |
Collapse
|
46
|
Janner DE, Gomes NS, Poetini MR, Poleto KH, Musachio EAS, de Almeida FP, de Matos Amador EC, Reginaldo JC, Ramborger BP, Roehrs R, Prigol M, Guerra GP. Oxidative stress and decreased dopamine levels induced by imidacloprid exposure cause behavioral changes in a neurodevelopmental disorder model in Drosophila melanogaster. Neurotoxicology 2021; 85:79-89. [PMID: 34000340 DOI: 10.1016/j.neuro.2021.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 03/01/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Neurodevelopmental disorders, such as Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD) are responsible for behavioral deficits in children. Imidacloprid is a nicotinic acetylcholine receptor agonist, capable of causing behavioral changes in Drosophila melanogaster, similar to the ADHD-like phenotypes. We assess whether behavioral damage induced by imidacloprid exposure in Drosophila melanogaster is associated with neurochemical changes and whether these changes are similar to those observed in neurodevelopmental disorders such as ASD and ADHD. The fruit flies were divided into four groups, exposed to either a standard diet (control) or a diet containing imidacloprid (200, 400 or 600 ρM) and allowed to mate for 7 days. After hatching, the progeny was subjected to in vivo and ex vivo tests. The ones exposed to imidacloprid showed an increase in hyperactivity, aggressiveness, anxiety and repetitive movements, as well as, a decrease in social interaction. Furthermore, exposure to imidacloprid decreased dopamine levels, cell viability and increased oxidative stress in the flies' progeny. These results demonstrated that the behavioral damage induced by imidacloprid exposure involves a reduction in dopamine levels and oxidative stress and that these neurochemical changes are in line with the events that occur in ASD and ADHD-like phenotypes in other models.
Collapse
Affiliation(s)
- Dieniffer Espinosa Janner
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa, Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil
| | - Nathalie Savedra Gomes
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa, Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil
| | - Márcia Rósula Poetini
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa, Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil
| | - Kétnne Hanna Poleto
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa, Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa, Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil
| | - Francielli Polet de Almeida
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa, Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil
| | - Elen Caroline de Matos Amador
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa, Campus Itaqui, 97650-000, Itaqui, RS, Brazil
| | - Jocemara Corrêa Reginaldo
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa, Campus Itaqui, 97650-000, Itaqui, RS, Brazil
| | - Bruna Piaia Ramborger
- Grupo Interdisciplinar de Pesquisa em Prática de Ensino (GIPPE), Universidade Federal do Pampa, Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil
| | - Rafael Roehrs
- Grupo Interdisciplinar de Pesquisa em Prática de Ensino (GIPPE), Universidade Federal do Pampa, Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa, Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa, Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil.
| |
Collapse
|
47
|
Danis BEG, Marlatt VL. Investigating Acute and Subchronic Effects of Neonicotinoids on Northwestern Salamander Larvae. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:691-707. [PMID: 33880625 DOI: 10.1007/s00244-021-00840-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
This research investigated the adverse effects of neonicotinoids on the Northwestern salamander (Ambystoma gracile; NWS) after acute and subchronic exposures during early aquatic life stages via whole organism (i.e., growth, development) and molecular (i.e., gene expression) level endpoints. In a 96-h exposure, NWS larvae were exposed to four imidacloprid concentrations (250, 750, 2250, 6750 µg/L) and a water control treatment, and no effects on survival, body weight, snout-vent length (SVL), and total body length were observed. However, a significant 1.70- and 2.33-fold decrease in thyroid receptor β (TRβ) mRNA expression levels were detected in the larvae exposed to 750 and 2250 µg/L imidacloprid, respectively, compared with the larvae in the water control. In subsequent subchronic experiments, NWS larvae were exposed for 35 days to imidacloprid alone and an equal part mixture of neonicotinoids (imidacloprid, clothianidin, and thiamethoxam (ICT)) at three concentrations (10, 100 and 1000 µg total neonicotinoids/L) and a water control. In these experiments, there were no effects on larval survival, body weight, SVL, and total body length. However, advanced development of larvae in the 100 µg/L imidacloprid treatment was observed compared with the control after 35-day imidacloprid exposure, providing some evidence of disruption of the thyroid endocrine axis at an environmentally relevant concentration. Ultimately, there is a paucity of studies conducted examining the sensitivity of salamanders to pollutants; thus, this study reports novel findings that will contribute to understanding the sensitivity of a Caudate amphibian model to a common environmental pollutant.
Collapse
Affiliation(s)
- Blake E G Danis
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - Vicki L Marlatt
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
48
|
Giorio C, Safer A, Sánchez-Bayo F, Tapparo A, Lentola A, Girolami V, van Lexmond MB, Bonmatin JM. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 1: new molecules, metabolism, fate, and transport. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11716-11748. [PMID: 29105037 PMCID: PMC7920890 DOI: 10.1007/s11356-017-0394-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/02/2017] [Indexed: 05/04/2023]
Abstract
With the exponential number of published data on neonicotinoids and fipronil during the last decade, an updated review of literature has been conducted in three parts. The present part focuses on gaps of knowledge that have been addressed after publication of the Worldwide Integrated Assessment (WIA) on systemic insecticides in 2015. More specifically, new data on the mode of action and metabolism of neonicotinoids and fipronil, and their toxicity to invertebrates and vertebrates, were obtained. We included the newly detected synergistic effects and/or interactions of these systemic insecticides with other insecticides, fungicides, herbicides, adjuvants, honeybee viruses, and parasites of honeybees. New studies have also investigated the contamination of all environmental compartments (air and dust, soil, water, sediments, and plants) as well as bees and apicultural products, food and beverages, and the exposure of invertebrates and vertebrates to such contaminants. Finally, we review new publications on remediation of neonicotinoids and fipronil, especially in water systems. Conclusions of the previous WIA in 2015 are reinforced; neonicotinoids and fipronil represent a major threat worldwide for biodiversity, ecosystems, and all the services the latter provide.
Collapse
Affiliation(s)
- Chiara Giorio
- Laboratoire Chimie de l'Environnement, Centre National de la Recherche Scientifique (CNRS) and Aix Marseille University, Marseille, France
| | - Anton Safer
- Institute of Public Health, Ruprecht-Karls-University, INF324, 69120, Heidelberg, Germany
| | - Francisco Sánchez-Bayo
- School of Life and Environmental Sciences, The University of Sydney, 1 Central Avenue, Eveleigh, NSW, 2015, Australia
| | - Andrea Tapparo
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131, Padua, Italy
| | - Andrea Lentola
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131, Padua, Italy
| | - Vincenzo Girolami
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131, Padua, Italy
| | | | - Jean-Marc Bonmatin
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS), Rue Charles Sadron, 45071, Orléans, France.
| |
Collapse
|
49
|
Pisa L, Goulson D, Yang EC, Gibbons D, Sánchez-Bayo F, Mitchell E, Aebi A, van der Sluijs J, MacQuarrie CJK, Giorio C, Long EY, McField M, Bijleveld van Lexmond M, Bonmatin JM. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11749-11797. [PMID: 29124633 PMCID: PMC7921077 DOI: 10.1007/s11356-017-0341-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/25/2017] [Indexed: 05/15/2023]
Abstract
New information on the lethal and sublethal effects of neonicotinoids and fipronil on organisms is presented in this review, complementing the previous Worldwide Integrated Assessment (WIA) in 2015. The high toxicity of these systemic insecticides to invertebrates has been confirmed and expanded to include more species and compounds. Most of the recent research has focused on bees and the sublethal and ecological impacts these insecticides have on pollinators. Toxic effects on other invertebrate taxa also covered predatory and parasitoid natural enemies and aquatic arthropods. Little new information has been gathered on soil organisms. The impact on marine and coastal ecosystems is still largely uncharted. The chronic lethality of neonicotinoids to insects and crustaceans, and the strengthened evidence that these chemicals also impair the immune system and reproduction, highlights the dangers of this particular insecticidal class (neonicotinoids and fipronil), with the potential to greatly decrease populations of arthropods in both terrestrial and aquatic environments. Sublethal effects on fish, reptiles, frogs, birds, and mammals are also reported, showing a better understanding of the mechanisms of toxicity of these insecticides in vertebrates and their deleterious impacts on growth, reproduction, and neurobehaviour of most of the species tested. This review concludes with a summary of impacts on the ecosystem services and functioning, particularly on pollination, soil biota, and aquatic invertebrate communities, thus reinforcing the previous WIA conclusions (van der Sluijs et al. 2015).
Collapse
Affiliation(s)
| | - Dave Goulson
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - En-Cheng Yang
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - David Gibbons
- RSPB Centre for Conservation of Science, The Lodge, Sandy, Bedfordshire, SG19 2DL, UK
| | - Francisco Sánchez-Bayo
- School of Life and Environmental Sciences, The University of Sydney, 1 Central Avenue, Eveleigh, NSW, 2015, Australia
| | - Edward Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Alexandre Aebi
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
- Anthropology Institute, University of Neuchâtel, Rue Saint-Nicolas 4, 2000, Neuchâtel, Switzerland
| | - Jeroen van der Sluijs
- Centre for the Study of the Sciences and the Humanities, University of Bergen, Postboks 7805, 5020, Bergen, Norway
- Department of Chemistry, University of Bergen, Postboks 7805, 5020, Bergen, Norway
- Copernicus Institute of Sustainable Development, Environmental Sciences, Utrecht University, Heidelberglaan 2, 3584 CS, Utrecht, The Netherlands
| | - Chris J K MacQuarrie
- Natural Resources Canada, Canadian Forest Service, 1219 Queen St. East, Sault Ste. Marie, ON, P6A 2E5, Canada
| | | | - Elizabeth Yim Long
- Department of Entomology, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
| | - Melanie McField
- Smithsonian Institution, 701 Seaway Drive Fort Pierce, Florida, 34949, USA
| | | | - Jean-Marc Bonmatin
- Centre National de la Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Rue Charles Sadron, 45071, Orléans, France.
| |
Collapse
|
50
|
Fent K, Haltiner T, Kunz P, Christen V. Insecticides cause transcriptional alterations of endocrine related genes in the brain of honey bee foragers. CHEMOSPHERE 2020; 260:127542. [PMID: 32683019 DOI: 10.1016/j.chemosphere.2020.127542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/10/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Bees are exposed to endocrine active insecticides. Here we assessed expressional alteration of marker genes indicative of endocrine effects in the brain of honey bees. We exposed foragers to chlorpyrifos, cypermethrin and thiacloprid and assessed the expression of genes after exposure for 24 h, 48 h and 72 h. Chlorpyrifos caused the strongest expressional changes at 24 h characterized by induction of vitellogenin, major royal jelly protein (mrjp) 2 and 3, insulin-like peptide (ilp1), alpha-glucosidase (hbg3) and sima, and down-regulation of buffy. Cypermethrin caused minor induction of mrjp1, mrjp2, mmp1 and ilp1. The sima transcript showed down-regulation at 48 h and up-regulation at 72 h. Exposure to thiacloprid caused down-regulation of vitellogenin, mrjp1 and sima at 24 h, and hbg3 at 72 h, as well as induction of ilp1 at 48 h. The buffy transcript was down-regulated at 24 h and up-regulated at 48 h. Despite compound-specific expression patterns, each insecticide altered the expression of some of the suggested endocrine system related genes. Our study suggests that expressional changes of genes prominently expressed in nurse or forager bees, including down-regulation of buffy and mrjps and up-regulation of hbg3 and ilp1 may serve as indicators for endocrine activity of insecticides in foragers.
Collapse
Affiliation(s)
- Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, CH-8092, Zürich, Switzerland.
| | - Tiffany Haltiner
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland
| | - Petra Kunz
- Swiss Federal Office for the Environment, Section Biocides and Plant Protection Products, 3003, Bern, Switzerland
| | - Verena Christen
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland
| |
Collapse
|