1
|
Fang JT, Wang ST, Wang H, Fang WJ. A Novel Peptide Mapping Method Utilizing Cysteine as a Reducing Agent. Pharm Res 2025; 42:173-184. [PMID: 39849215 DOI: 10.1007/s11095-024-03805-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/05/2024] [Indexed: 01/25/2025]
Abstract
PURPOSES In the peptide mapping reduction process for monoclonal antibodies (mAbs) and other proteins, the conventional reducing reagents β-mercaptoethanol (β-ME) and dithiothreitol (DTT) pose challenges due to their strong odor and toxicity at high concentrations. Cysteine (Cys), an essential amino acid for new protein synthesis, is an overlooked, nontoxic, and odorless reducing agent. This study presents a novel peptide mapping method using Cys as the reducing agent. METHODS We explored the reducing effect of Cys at different concentrations and pH levels for peptide mapping analysis of a specific mAb (mAb-1), using DTT as a positive control. RP-HPLC analysis, including UV chromatogram comparison and overall similarity calculation, was conducted for comparison. LC-MS analysis was subsequently utilized to characterize the primary sequence of mAb-1. We also applied the method to other mAbs or proteins to demonstrate its wide applicability. RESULTS The UV chromatogram and overall similarity of Cys as a reducing agent at concentrations ranging from 10 to 40 mM and pH levels between 7.0 and 11.0 were consistent with those of the positive control. Reduced concentrations of Cys or lower pH levels compromised reducing efficacy. This novel reducing method proficiently characterized the primary sequence of mAb-1, achieving an overall sequence coverage of 97%. In the analysis of other mAbs or proteins, the peptide mapping results also showed high consistency. CONCLUSIONS Cys exhibits a reducing ability comparable to DTT and possesses the advantageous characteristics of being nontoxic and odorless, making it a potential alternative for disulfide bond reduction and peptide mapping analysis of proteins and mAbs.
Collapse
Affiliation(s)
- Jun-Ting Fang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Hangzhou Leading Pharmatech Co. Ltd, Zhejiang University, Hangzhou, 311100, China
| | - Si-Tao Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haibin Wang
- Zhejiang Bioray Biopharmaceutical Co., Taizhou, 317000, China
| | - Wei-Jie Fang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Taizhou Institute of Zhejiang University, Taizhou, 31000, China.
- Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua, 321000, China.
| |
Collapse
|
2
|
Jiang Y, Di J, Gao M, Dong Y. Study on the new slow-release carbon source biochemistry and its improvement of SRB on the acid mine drainage treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122860. [PMID: 39423619 DOI: 10.1016/j.jenvman.2024.122860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
The content of sulfate and heavy metals in acidic mine drainage (AMD) exceeds the standard severely, and the acidity is extremely high, causing serious harm to the environment. SRB can efficiently remove sulfates through its own metabolism. The treatment of AMD by SRB faces problems such as carbon source scarcity and heavy metal ion toxicity to SRB. In this study, corn cob and polycaprolactone were embedded to prepare a novel slow-release carbon source (PSCL), which simultaneously achieves carbon source supply and metal ion removal. Through adsorption isotherms, kinetics, thermodynamics studies, and various characterization analyses, it is known that PSCL removes Cu2+ and Zn2+ through ion exchange, physical and chemical adsorption, electrostatic attraction, and surface complexation. PSCL carbon release experiments and characterization results confirm that its surface carbon distribution is dense, the molecular weight of DOM in the leachate is small, the degree of humification is low, and it has a porous structure, making it a good carbon release material and biological attachment. The experimental results of PSCL enhanced SRB treatment of AMD showed that the removal rates of SO42-, Cu2+ and Zn2+ could be increased to 97.48%, 98.11% and 90.42%, respectively, with a effluent pH of 7.05, effectively improving the water quality of AMD. This study provides new materials and methods to address the limitations of SRB in treating actual AMD.
Collapse
Affiliation(s)
- Yangyang Jiang
- School of Civil Engineering, Liaoning University of Engineering and Technology, Liaoning Province, Fuxin, 123000, China
| | - Junzhen Di
- School of Civil Engineering, Liaoning University of Engineering and Technology, Liaoning Province, Fuxin, 123000, China.
| | - Mengqing Gao
- School of Civil Engineering, Liaoning University of Engineering and Technology, Liaoning Province, Fuxin, 123000, China
| | - Yanrong Dong
- School of Civil Engineering, Liaoning University of Engineering and Technology, Liaoning Province, Fuxin, 123000, China
| |
Collapse
|
3
|
Ye J, Hu A, Gao C, Li F, Li L, Guo Y, Ren G, Li B, Rensing C, Nealson KH, Zhou S, Xiong Y. Abiotic Methane Production Driven by Ubiquitous Non-Fenton-Type Reactive Oxygen Species. Angew Chem Int Ed Engl 2024; 63:e202403884. [PMID: 38489233 DOI: 10.1002/anie.202403884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/17/2024]
Abstract
Abiotic CH4 production driven by Fenton-type reactive oxygen species (ROS) has been confirmed to be an indispensable component of the atmospheric CH4 budget. While the chemical reactions independent of Fenton chemistry to ROS are ubiquitous in nature, it remains unknown whether the produced ROS can drive abiotic CH4 production. Here, we first demonstrated the abiotic CH4 production at the soil-water interface under illumination. Leveraging this finding, polymeric carbon nitrides (CNx) as a typical analogue of natural geobattery material and dimethyl sulfoxide (DMSO) as a natural methyl donor were used to unravel the underlying mechanisms. We revealed that the ROS, photocatalytically produced by CNx, can oxidize DMSO into CH4 with a high selectivity of 91.5 %. Such an abiotic CH4 production process was further expanded to various non-Fenton-type reaction systems, such as electrocatalysis, pyrocatalysis and sonocatalysis. This work provides insights into the geochemical cycle of abiotic CH4, and offers a new route to CH4 production via integrated energy development.
Collapse
Affiliation(s)
- Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Andong Hu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chao Gao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Fengqi Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lei Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yulin Guo
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guoping Ren
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bing Li
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kenneth H Nealson
- Department of Earth Science, University of Southern California, Los Angeles, California, 90089, United States
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yujie Xiong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
4
|
Zhou C, Wu B, Zheng X, Chen B, Chu C. Wavelength-dependent direct and indirect photochemical transformations of organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170414. [PMID: 38272084 DOI: 10.1016/j.scitotenv.2024.170414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Sunlight-induced photochemical transformations greatly affect the persistence of organic pollutants in natural environment. Whereas sunlight intensity is well-known to affect pollutant phototransformation rates, the reliance of pollutant phototransformation kinetics on sunlight spectrum remains poorly understood, which may greatly vary under different spatial-temporal, water matrix, and climatic conditions. Here, we systematically assessed the wavelength-dependent direct and indirect phototransformations of 12 organic pollutants. Their phototransformation rates dramatically decreased with light wavelength increasing from 375 to 632 nm, with direct photolysis displaying higher wavelength-dependence than indirect photolysis. Remarkably, UV light dominated both direct (90.4-99.5 %) and indirect (64.6-98.7 %) photochemical transformations of all investigated organic pollutants, despite its minor portion in sunlight spectrum (e.g., 6.5 % on March 20 at the equator). Based on wavelength-dependent rate constant spectrum, the predicted phototransformation rate of chloramphenicol (4.5 ± 0.7 × 10-4 s-1) agreed well with the observed rate under outdoor sunlight irradiation (4.3 ± 0.0 × 10-4 s-1), and there is no significant difference between the predicted rate and the observed rate (p-value = 0.132). Moreover, rate constant and quantum yield coefficient (QYC) spectrum could be applied for facilely investigate the influence of spectral changes on the phototransformation of pollutants under varying spatial-temporal (e.g., season, latitude) and climatic conditions (e.g., cloud cover). Our study highlights the wavelength-dependence of both direct and indirect phototransformation of pollutants, and the UV part of natural sunlight plays a decisive role in the phototransformation of pollutants.
Collapse
Affiliation(s)
- Chong Zhou
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Binbin Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoshan Zheng
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
5
|
Nkoh JN, Shang C, Okeke ES, Ejeromedoghene O, Oderinde O, Etafo NO, Mgbechidinma CL, Bakare OC, Meugang EF. Antibiotics soil-solution chemistry: A review of environmental behavior and uptake and transformation by plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120312. [PMID: 38340667 DOI: 10.1016/j.jenvman.2024.120312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/21/2023] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
The increased use of antibiotics by humans for various purposes has left the environment polluted. Antibiotic pollution remediation is challenging because antibiotics exist in trace amounts and only highly sensitive detection techniques could be used to quantify them. Nevertheless, their trace quantity is not a hindrance to their transfer along the food chain, causing sensitization and the development of antibiotic resistance. Despite an increase in the literature on antibiotic pollution and the development and transfer of antibiotic-resistant genes (ARGs), little attention has been given to the behavior of antibiotics at the soil-solution interface and how this affects antibiotic adsorption-desorption interactions and subsequent uptake and transformation by plants. Thus, this review critically examines the interactions and possible degradation mechanisms of antibiotics in soil and the link between antibiotic soil-solution chemistry and uptake by plants. Also, different factors influencing antibiotic mobility in soil and the transfer of ARGs from one organism to another were considered. The mechanistic and critical analyses revealed that: (a) the charge characteristics of antibiotics at the soil-root interface determine whether they are adsorbed to soil or taken up by plants; (b) antibiotics that avoid soil colloids and reach soil pore water can be absorbed by plant roots, but their translocation to the stem and leaves depends on the ionic state of the molecule; (c) few studies have explored how plants adapt to antibiotic pollution and the transformation of antibiotics in plants; and (d) the persistence of antibiotics in cropland soils can be influenced by the content of soil organic matter, coexisting ions, and fertilization practices. Future research should focus on the soil/solution-antibiotic-plant interactions to reveal detailed mechanisms of antibiotic transformation by plants and whether plant-transformed antibiotics could be of environmental risk.
Collapse
Affiliation(s)
- Jackson Nkoh Nkoh
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Department of Chemistry, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Chenjing Shang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Emmanuel Sunday Okeke
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya; Department of Biochemistry, Faculty of Biological Science University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 China.
| | - Onome Ejeromedoghene
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya; School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province, 211189, China
| | - Olayinka Oderinde
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Nelson Oshogwue Etafo
- Programa de Posgrado en Ciencia y Tecnología de Materiales, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N Republica, 25280 Saltillo, Coahuila Mexico
| | - Chiamaka Linda Mgbechidinma
- Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; Department of Microbiology, University of Ibadan, Ibadan, Oyo State, 200243, Nigeria
| | - Omonike Christianah Bakare
- Department of Biological Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Elvira Foka Meugang
- School of Metallurgy & Environment, Central South University, 932 Lushan South Road, Changsha, 410083, China
| |
Collapse
|
6
|
Yu W, Zheng X, Tan M, Wang J, Wu B, Ma J, Pan Y, Chen B, Chu C. Field Quantification of Hydroxyl Radicals by Flow-Injection Chemiluminescence Analysis with a Portable Device. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2808-2816. [PMID: 38227742 DOI: 10.1021/acs.est.3c09140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hydroxyl radical (•OH) is a powerful oxidant abundantly found in nature and plays a central role in numerous environmental processes. On-site detection of •OH is highly desirable for real-time assessments of •OH-centered processes and yet is restrained by a lack of an analysis system suitable for field applications. Here, we report the development of a flow-injection chemiluminescence analysis (FIA-CL) system for the continuous field detection of •OH. The system is based on the reaction of •OH with phthalhydrazide to generate 5-hydroxy-2,3-dihydro-1,4-phthalazinedione, which emits chemiluminescence (CL) when oxidatively activated by H2O2 and Cu3+. The FIA-CL system was successfully validated using the Fenton reaction as a standard •OH source. Unlike traditional absorbance- or fluorescence-based methods, CL detection could minimize interference from an environmental medium (e.g., organic matter), therefore attaining highly sensitive •OH detection (limits of detection and quantification = 0.035 and 0.12 nM, respectively). The broad applications of FIA-CL were illustrated for on-site 24 h detection of •OH produced from photochemical processes in lake water and air, where the temporal variations on •OH productions (1.0-12.2 nM in water and 1.5-37.1 × 107 cm-3 in air) agreed well with sunlight photon flux. Further, the FIA-CL system enabled field 24 h field analysis of •OH productions from the oxidation of reduced substances triggered by tidal fluctuations in coastal soils. The superior analytical capability of the FIA-CL system opens new opportunities for monitoring •OH dynamics under field conditions.
Collapse
Affiliation(s)
- Wanchao Yu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoshan Zheng
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Mengxi Tan
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jingyi Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Binbin Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Junye Ma
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yishuai Pan
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- ZJU-Anqing Yangtze Delta Future Industry Institute, Anqing 246003, China
| |
Collapse
|
7
|
Guo S, Lu L, Chen B. Effects of carbon-silicon structure on photochemical activity of biochars. CHEMOSPHERE 2024; 347:140719. [PMID: 37967675 DOI: 10.1016/j.chemosphere.2023.140719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 11/05/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Biochar has raised increasing concerns because of its great environmental impacts. It is known that the photocatalytic property of biochar is related to its carbon component and dissolved black carbon, but the effect of silicon component is ignored, and the effect of silicon and carbon phases was far less studied. This study systematically explored the photochemistry of silicon-rich and silicon-deficient biochar under light irradiation by using hexavalent chromium (Cr(VI)) and sulfadiazine as representative pollutants for photoreduction and photooxidation, respectively. It was found that biochar had photoreduction activity under the enhancement of electron donors, and 80.1% Cr(VI) can be removed by biochar with crystalline silicon and carbon (i.e., RH900) after 12 h irradiation. Meanwhile after low temperature pyrolysis, biochar with amorphous silicon and carbon (i.e., RH600) had great photooxidation capacity, and 71.90% organic pollutant was degraded within 24 h. The reaction was illustrated by transient photocurrent response, and hydroxyl radical generation measurement, and other tests. A new photochemical mechanism of the synergy between silicon and carbon model was proposed to elucidate the redox reactions of pollutants under the light. Graphitic carbon or crystalline silicon formed under high temperature played a role of valence band which was excited under light irradiation and the effect of electron donors to benefit photoreduction, while amorphous silicon formed under low temperature facilitated photooxidation process by increasing reactive oxygen species concentration. This study provided a gist for biochar production and application in the field of photocatalysis, and contributed to the broader understanding of biochar geochemical behavior in natural sunlit system.
Collapse
Affiliation(s)
- Siwei Guo
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China.
| | - Lun Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Yu P, Guo Z, Wang T, Wang J, Guo Y, Zhang L. Insights into the mechanisms of natural organic matter on the photodegradation of indomethacin under natural sunlight and simulated light irradiation. WATER RESEARCH 2023; 244:120539. [PMID: 37659181 DOI: 10.1016/j.watres.2023.120539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/03/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
Indomethacin (INDO) is an antipyretic and analgesic pharmaceutical that has been widely detected in the aquatic environment. Photodegradation is an essential pathway for removal of INDO in sunlit surface water, however the effect of dissolved organic matter (DOM) on its photodegradation and the ecotoxicity of photodegradation products are largely unknown. In this study, the effect of DOM on the photodegradation of INDO under both natural and simulated light irradiation was studied. The results showed that indirect photolysis is the main photodegradation pathway of INDO in presence of DOM where 3DOM* plays the most important promoting role. Compared to commercial DOM (SRNOM and SRFA), DOM extracted from local-lake water (SLDOM) promoted the photodegradation to the highest extent. Although the steady-state concentrations of 3DOM* of SRNOM and SRFA were higher than SLDOM, their inhibition effect surpassed SLDOM namely higher light screening effect and phenolic antioxidant concentrations. The photodegradation pathway in pure water is different from that in DOM system where the decarboxylation of acetic acid chain and the oxidative fracture of indole ring are the main degradation pathways. Density Functional Theory (DFT) calculation further supports the proposed degradation pathways of INDO. ECOSAR calculation showed that the toxicity of INDO photodegradation products to aquatic organisms may maintain or even exceed its parent compound. Therefore, comprehensive understanding of the impact of DOM on the photodegradation of INDO is of crucial significance for evaluating its ecological risk in the natural environment.
Collapse
Affiliation(s)
- Pengfei Yu
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Tingting Wang
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Jieqiong Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yuchen Guo
- College of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
9
|
Poulin BA. Selective Photochemical Oxidation of Reduced Dissolved Organic Sulfur to Inorganic Sulfate. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:499-505. [PMID: 37333940 PMCID: PMC10275504 DOI: 10.1021/acs.estlett.3c00210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 06/20/2023]
Abstract
The chemical nature and stability of reduced dissolved organic sulfur (DOSRed) have implications on the biogeochemical cycling of trace and major elements across fresh and marine aquatic environments, but the underlying processes governing DOSRed stability remain obscure. Here, dissolved organic matter (DOM) was isolated from a sulfidic wetland, and laboratory experiments quantified dark and photochemical oxidation of DOSRed using atomic-level measurement of sulfur X-ray absorption near-edge structure (XANES) spectroscopy. DOSRed was completely resistant to oxidation by molecular oxygen in the dark and underwent rapid and quantitative oxidation to inorganic sulfate (SO42-) in the presence of sunlight. The rate of DOSRed oxidation to SO42- greatly exceeded that of DOM photomineralization, resulting in a 50% loss of total DOS and 78% loss of DOSRed over 192 h of irradiance. Sulfonates (DOSSO3) and other minor oxidized DOS functionalities were not susceptible to photochemical oxidation. The observed susceptibility of DOSRed to photodesulfurization, which has implications on carbon, sulfur, and mercury cycling, should be comprehensively evaluated across diverse aquatic environments of differing DOM composition.
Collapse
Affiliation(s)
- Brett A. Poulin
- Department
of Environmental Toxicology, University
of California Davis, Davis, California 95616, United States
| |
Collapse
|
10
|
Zhao J, Payne EM, Liu B, Shang C, Blatchley ER, Mitch WA, Yin R. Making waves: Opportunities and challenges of applying far-UVC radiation in controlling micropollutants in water. WATER RESEARCH 2023; 241:120169. [PMID: 37290191 DOI: 10.1016/j.watres.2023.120169] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
Concerns over human health risks associated with chemical contaminants (micropollutants) in drinking waters are rising due to the increased use of reclaimed water or water supplies impacted by upstream wastewater discharges. Ultraviolet (UV)-driven advanced oxidation processes (UV-AOPs) using radiation sources that emit at 254 nm have been developed as advanced treatments to degrade contaminants, while those UV-AOPs can be improved towards higher radical yields and lower byproduct formation. Several previous studies have suggested that Far-UVC radiation (200-230 nm) is a promising radiance source to drive UV-AOPs because the direct photolysis of micropollutants and production of reactive species from oxidant precursors can both be improved. In this study, we summarize from the literature the photodecay rate constants of five micropollutants by direct UV photolysis, which are higher at 222 than 254 nm. We experimentally determine the molar absorption coefficients at 222 and 254 nm of eight oxidants commonly used in water treatment and present the quantum yields of the oxidant photodecay. Our experimental results also show that the concentrations of HO·, Cl·, and ClO· generated in the UV/chlorine AOP can be increased by 5.15-, 15.76-, and 2.86-fold, respectively, by switching the UV wavelength from 254 to 222 nm. We also point out the challenges of applying Far-UVC for micropollutant abatement in water treatment, including the strong light screening effect of matrix components (e.g., carbonate, nitrate, bromide, and dissolved organic matter), the formation of byproducts via new reaction pathways, and the needs to improve the energy efficiency of the Far-UVC radiation sources.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Emma M Payne
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO 80303, United States
| | - Bryan Liu
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO 80303, United States
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Ernest R Blatchley
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, United States; Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
11
|
Zhang D, Xiang Y, Liu G, Liang L, Chen L, Shi J, Yin Y, Cai Y, Jiang G. Mechanism and controlling factors on rapid methylmercury degradation by ligand-enhanced Fenton-like reaction at circumneutral pH. CHEMOSPHERE 2023; 324:138291. [PMID: 36870614 DOI: 10.1016/j.chemosphere.2023.138291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/09/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Methylmercury (MeHg), derived from industrial processes and microbial methylation, is still a worldwide environmental concern. A rapid and efficient strategy is necessary for MeHg degradation in waste and environmental waters. Here, we provide a new method with ligand-enhanced Fenton-like reaction to rapidly degrade MeHg under neutral pH. Three common chelating ligands were selected (nitriloacetic acid (NTA), citrate, and ethylenediaminetetraacetic disodium (EDTA)) to promote the Fenton-like reaction and degradation of MeHg. Results showed that MeHg can be rapidly degraded, with the following efficiency sequence: EDTA > NTA > citrate. Scavenger addition demonstrated that hydroxyl radical (▪OH), superoxide radical (O2▪-), and ferryl (FeⅣO2+) were involved in MeHg degradation, and their relative contributions highly depended on ligand type. Degradation product and total Hg analysis suggested that Hg(Ⅱ) and Hg0 were generated with the demethylation of MeHg. Further, environmental factors, including initial pH, organic complexation (natural organic matter and cysteine), and inorganic ions (chloride and bicarbonate) on MeHg degradation, were investigated in NTA-enhanced system. Finally, rapid MeHg degradation was validated for MeHg-spiked waste and environmental waters. This study provided a simple and efficient strategy for MeHg remediation in contaminated waters, which is also helpful for understanding its degradation in the natural environment.
Collapse
Affiliation(s)
- Dingxi Zhang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuping Xiang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guangliang Liu
- Department of Chemistry & Biochemistry and Southeast Environmental Research Center, Florida International University, Miami, FL, 33199, United States
| | - Lina Liang
- Beijing Zhongke PUYAN Science and Technology Co., Ltd, Beijing, 100096, China
| | - Lufeng Chen
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China.
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Chemistry & Biochemistry and Southeast Environmental Research Center, Florida International University, Miami, FL, 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
12
|
Li Z, Qu B, Jiang J, Bekele TG, Zhao H. The photoactivity of complexation of DOM and copper in aquatic system: Implication on the photodegradation of TBBPA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163620. [PMID: 37100127 DOI: 10.1016/j.scitotenv.2023.163620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/08/2023]
Abstract
The photoactivity of dissolved organic matter (DOM) has a great impact on the photodegradation of organic pollutants in natural waters. In this study, the photodegradation of TBBPA was investigated under simulated sunlight irradiation in the presence of copper ion (Cu2+), dissolved organic matter (DOM) and Cu-DOM complexation (Cu-DOM) to illustrate the effect of Cu2+ on photoactivity of DOM. The rate of photodegradation of TBBPA in the presence of Cu-DOM complex was 3.2 times higher than that in pure water. The effects of Cu2+, DOM and Cu-DOM on the photodegradation of TBBPA were highly pH dependent and hydroxyl radical(·OH) responded for the acceleration effect. Spectral and radical experiments indicated that Cu2+ had high affinity to fluorescence components of DOM, and acted as both the cation bridge and electron shuttle, resulting the aggregation of DOM and increasing of steady-state concentration of ·OH (·OHss). Simultaneously, Cu2+ also inhibited intramolecular energy transfer leading to the decrease of steady-state concentration singlet oxygen (1O2ss) and triplet of DOM (3DOM⁎ss). The interaction between Cu2+ and DOM followed the order of conjugated carbonyl CO, COO- or CO stretching in phenolic groups and carbohydrate or alcoholic CO groups. With these results, a comprehensive investigation on the photodegradation of TBBPA in the presence of Cu-DOM was conducted, and the effect of Cu2+ on the photoactivity of DOM was illustrated. These findings helped to understanding the potential mechanism of interaction among metal cation, DOM and organic pollutants in sunlit surface water, especially for the DOM-induced photodegradation of organic pollutants.
Collapse
Affiliation(s)
- Zhansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116023, China
| | - Baocheng Qu
- College of Marine Technology and Environment, Dalian Ocean University, Heishijiao Street 52, Dalian 116024, China
| | - Jingqiu Jiang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No.12 South Zhongguancun Ave., Haidian District, Beijing 100081, China
| | - Tadiyose Girma Bekele
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116023, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116023, China.
| |
Collapse
|
13
|
Ding R, Ouyang Z, Zhang X, Dong Y, Guo X, Zhu L. Biofilm-Colonized versus Virgin Black Microplastics to Accelerate the Photodegradation of Tetracycline in Aquatic Environments: Analysis of Underneath Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5714-5725. [PMID: 36995247 DOI: 10.1021/acs.est.3c00019] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Tire wear particles (TWPs) exposed to the aquatic environment are rapidly colonized by microorganisms and provide unique substrates for biofilm formation, which potentially serve as vectors for tetracycline (TC) to influence their behaviors and potential risks. To date, the photodegradation capacity of TWPs on contaminants due to biofilm formation has not been quantified. To accomplish this, we examined the ability of virgin TWPs (V-TWPs) and biofilm-developed TWPs (Bio-TWPs) to photodegrade TC when exposed to simulated sunlight irradiation. V-TWPs and Bio-TWPs accelerated the photodegradation of TC, with rates (kobs) of 0.0232 ± 0.0014 and 0.0152 ± 0.0010 h-1, respectively (kobs increased by 2.5-3.7 times compared to that for only TC solution). An important factor of increased TC photodegradation behavior was identified and linked to the changed reactive oxygen species (ROS) of different TWPs. The V-TWPs were exposed to light for 48 h, resulting in more ROS for attacking TC, with hydroxyl radicals (•OH) and superoxide anions (O2•-) playing a dominant role in TC photodegradation measured using scavenger/probe chemicals. This was primarily due to the greater photosensitization effects and higher electron-transfer capacity of V-TWPs in comparison to Bio-TWPs. In addition, this study first sheds light on the unique effect and intrinsic mechanism of the crucial role of Bio-TWPs in TC photodegradation, enhancing our holistic understanding of the environmental behavior of TWPs and the associated contaminants.
Collapse
Affiliation(s)
- Rui Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xue Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yankai Dong
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Schroer HW, Londono E, Li X, Lehmler HJ, Arnold W, Just CL. Photolysis of 3-Nitro-1,2,4-triazol-5-one: Mechanisms and Products. ACS ES&T WATER 2023; 3:783-792. [PMID: 36936519 PMCID: PMC10012174 DOI: 10.1021/acsestwater.2c00567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Insensitive munitions formulations that include 3-nitro-1,2,4-triazol-5-one (NTO) are replacing traditional explosive compounds. While these new formulations have superior safety characteristics, the compounds have greater environmental mobility, raising concern over potential contamination and cleanup of training and manufacturing facilities. Here, we examine the mechanisms and products of NTO photolysis in simulated sunlight to further inform NTO degradation in sunlit surface waters. We demonstrate that NTO produces singlet oxygen and that dissolved oxygen increases the NTO photolysis rate in deionized water. The rate of NTO photolysis is independent of concentration and decreases slightly in the presence of Suwannee River Natural Organic Matter. The apparent quantum yield of NTO generally decreases as pH increases, ranging from 2.0 × 10-5 at pH 12 to 1.3 × 10-3 at pH 2. Bimolecular reaction rate constants for NTO with singlet oxygen and hydroxyl radical were measured to be (1.95 ± 0.15) × 106 and (3.28 ± 0.23) × 1010 M-1 s-1, respectively. Major photolysis reaction products were ammonium, nitrite, and nitrate, with nitrite produced in nearly stoichiometric yield upon the reaction of NTO with singlet oxygen. Environmental half-lives are predicted to span from 1.1 to 5.7 days. Taken together, these data enhance our understanding of NTO photolysis under environmentally relevant conditions.
Collapse
Affiliation(s)
- Hunter W. Schroer
- Civil
& Environmental Engineering, The University
of Iowa, Iowa City, Iowa52242, United States
| | - Esteban Londono
- Civil
& Environmental Engineering, The University
of Iowa, Iowa City, Iowa52242, United States
| | - Xueshu Li
- Occupational
& Environmental Health, The University
of Iowa, Iowa City, Iowa52246, United States
| | - Hans-Joachim Lehmler
- Occupational
& Environmental Health, The University
of Iowa, Iowa City, Iowa52246, United States
| | - William Arnold
- Department
of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, Minnesota55455, United States
| | - Craig L. Just
- Civil
& Environmental Engineering, The University
of Iowa, Iowa City, Iowa52242, United States
| |
Collapse
|
15
|
Hoa NT, Ngoc Van LT, Vo QV. Reactions of nicotine and the hydroxyl radical in the environment: Theoretical insights into the mechanism, kinetics and products. CHEMOSPHERE 2023; 314:137682. [PMID: 36586441 DOI: 10.1016/j.chemosphere.2022.137682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Nicotine (NCT) is a prevalent and highly poisonous tobacco alkaloid found in wastewater discharge. Advanced oxidative processes (AOP) are radical interactions between harmful pollutants and ambient free radicals that, theoretically, result in less toxic compounds. For a better understanding of the chemical transformations and long-term environmental effects of toxic discharges, the study of these processes is crucial. Here, quantum chemical calculations are used to investigate the AOP of the NCT in aqueous and lipidic environments. It was found that NCT interacted with HO• in polar and nonpolar media, with an overall rate constant koverall = 106 - 1010 M-1 s-1. The computed kinetic data are reasonably accurate as seen by the comparison with the experimental rate constant in water (pH = 7.0), which results in a kcalculated/kexperimetal ratio of 1.4. The hydrogen transfer (C7, C9, C12)-single electron transfer pathways are the main mechanisms for the HO• + NCT reaction in pentyl ethanoate solvent to form the cations as the primary products of the two-step reaction. However, in aqueous environments, the degradation of NCT by HO• radicals increases with increasing pH levels. It is predicted that oxidation products are less toxic than nicotine itself, especially in an aqueous environment with a pH < 7.0.
Collapse
Affiliation(s)
- Nguyen Thi Hoa
- The University of Danang - University of Technology and Education, Danang, 550000, Viet Nam
| | | | - Quan V Vo
- The University of Danang - University of Technology and Education, Danang, 550000, Viet Nam.
| |
Collapse
|
16
|
Hu A, Li L, Huang Y, Fu QL, Wang D, Zhang W. Photochemical transformation mechanisms of dissolved organic matters (DOM) derived from different bio-stabilization sludge. ENVIRONMENT INTERNATIONAL 2022; 169:107534. [PMID: 36152361 DOI: 10.1016/j.envint.2022.107534] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Bio-stabilization sludge contains numerous dissolved organic matter (DOM) that could enter aquatic environments by soil leaching after sludge land use, but a clear understanding of their photochemical behavior is still lacking. In this study, we systematically investigated the photoactivity and photochemical transformation of aerobic composting sludge-derived DOM (DOMACS) and anaerobic digestion sludge-derived DOM (DOMADS) by using multispectral analysis coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The results indicated that DOMACS and DOMADS have a higher proportion of highly unsaturated and phenolic compounds (HuPh)with high DBEwa, but the different polyphenols (Polyph) abundance of them, causing the different photoactivity between them. DOMACS had much higher apparent quantum yields (AQY) for triplet states of dissolved natural organic matter (3DOM*) and hydroxyl radical (•OH) but slightly lower AQY for singlet oxygen (1O2) than DOMADS under simulated sunlight conditions. As the irradiation time increased, HuPh and Polyph (associated with humic-like substances) contained in DOMACS (DOMADS) decreased by 12.0% (14.1%) and 3.0% (0.2%), respectively, with concurrent decrease in average molecular weight and aromaticity moieties, resulting in more generation of aliphatic compounds. Furthermore, based on 27 types of photochemical transformation reactions, DOMACS containing higher fractions of O10-15 and N1-3Oy class preferred dealkyl group and carboxylic acid reactions, whereas DOMADS composed of more N4Oy and S2Oy fragments preferred oxygen addition and anmine reactions. Consequently, photochemical transformations reduced the Cd (II) ion activity in the presence of DOMACS (DOMADS). This study is believed to unveil the photochemical transformation of bio-stabilization sludge-derived DOM and its impact on pollutants' fate in the aquatic environment.
Collapse
Affiliation(s)
- Aibin Hu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China
| | - Liqing Li
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Yao Huang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Qing-Long Fu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China
| | - Dongsheng Wang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Weijun Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China.
| |
Collapse
|
17
|
Xu Y, Ou Q, Li X, Wang X, van der Hoek JP, Liu G. Combined effects of photoaging and natural organic matter on the colloidal stability of nanoplastics in aquatic environments. WATER RESEARCH 2022; 226:119313. [PMID: 36369686 DOI: 10.1016/j.watres.2022.119313] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/12/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
The transport and fate of nanoplastics (NPs) in aquatic environments are closely associated with their colloidal stability, which is affected by aging and natural organic matter (NOM) adsorption. This study systematically investigated the combined effects of photoaging and NOM (e.g. humic acids, HA; and a model protein, bovine serum albumin, BSA) on the aggregation kinetics of NPs (polystyrene, PS) in NaCl and CaCl2 solutions. Our results showed that photoaged NPs adsorbed less HA than pristine NPs due to weaker hydrophobic and π-π interactions. In return, HA showed weaker impacts on NPs' stability after photoaging. Differently, photoaged NPs absorbed more BSA than pristine NPs due to stronger hydrogen bonding and electrostatic attraction. Thus, the inhibitory effects of BSA on the aggregation kinetics of NPs were enhanced after photoaging. Regarding the effects of NOM on the aging of NPs, our results showed that HA competed with NPs for photons and underwent photo-degradation. Subsequently, the destruction/reconstruction of adsorbed HA increased (in NaCl) or decreased (in CaCl2) the stability of NPs. Notably, light radiation-induced flocculation of BSA molecules, which wrapped and integrated NPs and lead to their destabilization. Overall, this study provided new insights into the aggregation behavior of NPs in aquatic systems, which have significant implications for predicting the transport and fate of NPs in complex real-world environments.
Collapse
Affiliation(s)
- Yanghui Xu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Qin Ou
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Xiaoming Li
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, China
| | - Xintu Wang
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; College of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541004, China
| | - Jan Peter van der Hoek
- Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands; Waternet, Department Research & Innovation, P.O. Box 94370, 1090 GJ Amsterdam, the Netherlands
| | - Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
18
|
Hassanpour B, Blair N, Aristilde L. Metabolomics analysis of unresolved molecular variability in stoichiometry dynamics of a stream dissolved organic matter. WATER RESEARCH 2022; 223:118923. [PMID: 36001905 DOI: 10.1016/j.watres.2022.118923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Broad molecular classification based on stoichiometric ratio relationships has been used extensively to characterize the chemical diversity of aquatic dissolved organic matter (DOM). However, variability in the molecular composition within this classification has remained elusive, thus limiting the interpretation of DOM dynamics, especially with respect to transport versus transformation patterns in response to hydrologic or landscape changes. Here, leveraging high-frequency spatiotemporal sampling during rainfall events at a Critical Zone Observatory project site in Clear Creek, Iowa, we apply a metabolomics-based analysis validated with fragmentation using tandem mass spectrometry to uncover patterns in the molecular features of the DOM composition that were not resolved by classification based on stoichiometric ratios in the chemical formulae. From upstream to downstream sites, beyond the increased aromaticity implied by changes in the stoichiometric ratios, we identified an increased abundance of flavonoids and other phenylpropanoids, two important subgroups of aromatic compounds. The stoichiometric analysis also proposed a localized decline in the abundance of lipid-like compounds, which we attributed specifically to medium-chain and short-chain fatty acids; other lipids such as long-chain fatty acids and sterol lipids remained unchanged. We further determined in-stream molecular transitions and specific compound degradation by capturing changes in the molecular masses of terpenoids, phenylpropanoids, fatty acids, and amino acids. In sum, the metabolomics analysis of the chemical formulae resolved molecular variability imprinted on the stoichiometric DOM composition to implicate key molecular subgroups underlying carbon transport and cycling dynamics in the stream.
Collapse
Affiliation(s)
- Bahareh Hassanpour
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL 60208, United States
| | - Neal Blair
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL 60208, United States; Department of Earth and Planetary Sciences, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, United States
| | - Ludmilla Aristilde
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
19
|
Wu B, Zhou C, Zhao G, Wang J, Dai H, Liu T, Zheng X, Chen B, Chu C. Enhanced photochemical production of reactive intermediates at the wetland soil-water interface. WATER RESEARCH 2022; 223:118971. [PMID: 35977437 DOI: 10.1016/j.watres.2022.118971] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Photochemically produced reactive intermediates (PPRIs) formed by sunlight-irradiation of natural photosensitizers play critical roles in accelerating biogeochemical cycles on earth surface. Existing PPRI studies mostly focus on bulk phase reactions (e.g., bulk water), with PPRI processes at the environmental interfaces largely unexplored. Here, we report the wetland soil-water interface (SWI) as a widespread but previously unappreciated hotspot for PPRI productions. Massive productions of four important PPRI species (i.e., triplet-state excited organic matter (3OM*), singlet oxygen (1O2), hydrogen peroxide (H2O2), and hydroxyl radical (•OH)) were observed at the SWI. All four PPRI species exhibited higher productions at the SWI than those in bulk water, where •OH production was largely elevated by up to one order of magnitude. The enhanced PPRI productions at the SWI were caused by intensified photon absorption and vibrant Fe-mediated redox processes, where the light absorption by less- or non-photoactive soil substances partially offset the enhancement on PPRI productions. Nationwide wetland investigations demonstrate that the SWI was a ubiquitous hotspot for PPRI productions. Simulations on PPRIs-mediated reactions suggest that the enhanced PPRI productions could greatly affect the kinetics and transformation pathways of nutrients and pollutants. Given that the SWI also acts a hotspot for nutrient and pollutant accumulation, incorporating the SWI enhanced PPRI productions into biogeochemical process assessments is pivotal for advancing our understandings on the element cycles and pollutant dynamics in wetlands.
Collapse
Affiliation(s)
- Binbin Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Chong Zhou
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Guoqiang Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jingyi Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Hengyi Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Tian Liu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoshan Zheng
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
Zhao G, Wu B, Zheng X, Chen B, Kappler A, Chu C. Tide-Triggered Production of Reactive Oxygen Species in Coastal Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11888-11896. [PMID: 35816724 DOI: 10.1021/acs.est.2c03142] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report an unrecognized, tidal source of reactive oxygen species (ROS). Using a newly developed ROS-trapping gel film, we observed hot spots for ROS generation within ∼2.5 mm of coastal surface soil. Kinetic analyses showed rapid production of hydroxyl radicals (•OH), superoxide (O2•-), and hydrogen peroxide (H2O2) upon a shift from high tide to low tide. The ROS production exhibited a distinct rhythmic fluctuation. The oscillations of the redox potential and dissolved oxygen concentration followed the same pattern as the •OH production, suggesting the alternating oxic-anoxic conditions as the main geochemical drive for ROS production. Nationwide coastal field investigations confirmed the widespread and sustainable production of ROS via tidal processes (22.1-117.4 μmol/m2/day), which was 5- to 36-fold more efficient than those via classical photochemical routes (1.5-7.6 μmol/m2/day). Analyses of soil physicochemical properties demonstrated that soil redox-metastable components such as redox-active iron minerals and organic matter played a key role in storing electrons at high tide and shuttling electrons to infiltrated oxygen at low tide for ROS production. Our work sheds light on a ubiquitous but previously overlooked tidal source of ROS, which may accelerate carbon and metal cycles as well as pollutant degradation in coastal soils.
Collapse
Affiliation(s)
- Guoqiang Zhao
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Binbin Wu
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoshan Zheng
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, 72074 Tübingen, Germany
| | - Chiheng Chu
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Li C, Wang H, Yan G, Dong W, Chu Z, Wang H, Chang Y, Ling Y, Zhang Y. Initial carbon release characteristics, mechanisms and denitrification performance of a novel slow release carbon source. J Environ Sci (China) 2022; 118:32-45. [PMID: 35305771 DOI: 10.1016/j.jes.2021.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 06/14/2023]
Abstract
External carbon source addition is one of the effective methods for the treatment of wastewater with low carbon to nitrogen ratio (C/N). Compared with fast-release liquid carbon sources, slow-release solid carbon sources are more suitable for the denitrification process. A novel slow-release solid carbon source (corncob-polyvinyl alcohol sodium alginate- poly-caprolactone, i.e. CPSP) was prepared using corn cob (CC) and poly-caprolactone with polyvinyl alcohol sodium alginate as hybrid scaffold. The physical properties and carbon release characteristics of CPSP and three other carbon sources were compared. CPSP had stable framework and good carbon release performance, which followed the second order release equation. The formic acid, acetic acid, propionic acid and butyric acid released from CPSP accounted for 8.27% ± 1.66 %, 56.48% ± 3.71 %, 18.46% ± 2.69% and 16.79% ± 3.02% of the total released acids respectively. The start-up period of CPSP was shorter than that of the other carbon sources in denitrification experiment, and no COD pollution was observed in the start-up phase (25-72 h) and stable phase (73-240 hr). The composition and structure of the dissolved organic compounds released by CPSP and other carbon sources were analyzed by UV-Vis absorption spectroscopy and three-dimensional fluorescence spectroscopy, which indicated that CPSP was more suitable for denitrification than the other studied carbon sources.
Collapse
Affiliation(s)
- Congyu Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Haiyan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China.
| | - Guokai Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Weiyang Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Zhaosheng Chu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Huan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Yang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Yu Ling
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Yanjie Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| |
Collapse
|
22
|
Dai H, Wu B, Chen B, Ma B, Chu C. Diel Fluctuation of Extracellular Reactive Oxygen Species Production in the Rhizosphere of Rice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9075-9082. [PMID: 35593708 DOI: 10.1021/acs.est.2c00005] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reactive oxygen species (ROS) are ubiquitous on earth and drive numerous redox-centered biogeochemical processes. The rhizosphere of wetland plants is a highly dynamic interface for the exchange of oxygen and electrons, presenting the basis of the precedent for ROS production, yet whether extracellular ROS are produced in the rhizosphere remains unknown. Here, we designed a microfluidic chip setup to detect in-situ ROS productions in the rhizosphere of rice with spatial and temporal resolutions. Fluorescence imaging clearly displayed the hot spots of ROS generation in the rhizosphere. The formation concentration of the hydroxyl radical (•OH, a representative ROS, 10-6 M) was comparable to those by the classical photochemical route (10-6-10-7 M) in aquatic systems, therefore highlighting the rhizosphere as an unrecognized hotspot for ROS production. Moreover, the rhizosphere ROS production exhibits diel fluctuation, which simultaneously fluctuated with dissolved oxygen, redox potential, and pH, all driven by radial oxygen loss near the root in the daytime. The production and diel fluctuation of ROS were confirmed in the rhizosphere of rice root incubated in natural soils. We demonstrated that the extracellular ROS production was triggered by the interplay between root-released oxygen and microbial respiration released extracellular electrons, while iron mineral and organic matter might play key roles in storing and shuttling electrons. Our results highlight the rhizosphere as a widespread but previously unappreciated hotspot for ROS production, which may affect pollutant redox dynamics and biogeochemical processes in soils.
Collapse
Affiliation(s)
- Hengyi Dai
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Binbin Wu
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bin Ma
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Chiheng Chu
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
23
|
Liu K, Li F, Pang Y, Fang L, Hocking R. Electron shuttle-induced oxidative transformation of arsenite on the surface of goethite and underlying mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127780. [PMID: 34801297 DOI: 10.1016/j.jhazmat.2021.127780] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
The redox process of electron shuttles like cysteine on iron minerals under aerobic conditions may largely determine the fate of arsenic (As) in soils, while the interfacial processes and underlying mechanisms are barely explored. This work systematically investigates the interfacial oxidation processes of As(III) on goethite induced by cysteine. Results show that the addition of cysteine significantly enhances the oxidation efficiency (~ 40%) of As(III) (C0: 10 mg/L) by goethite at pH 7 under aerobic conditions, which is 19.5 times of that without cysteine. cysteine induces Fe(III) reduction on the surface of goethite, and the generation absorbed Fe(II) species play an important role in As(III) oxidation. In particular, the further complexation of Fe(II) with cysteine is thermodynamically favorable for electron transfer, leading to an enhanced As(III) oxidation efficiency. The oxidation efficiency of As(III) in the goethite/cysteine system increases by increasing cysteine concentration and decreases by elevating pH conditions. In addition, evidence indicates that •O2- radicals account for approximately 80% of total oxidized As(III). Meanwhile, only 16% of As(III) oxidation can be attributed to the formed •OH radicals. This work provides new insight into the role of organic electron shuttling compounds in determining As cycling in soils.
Collapse
Affiliation(s)
- Kai Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Yan Pang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Liping Fang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China.
| | - Rosalie Hocking
- Department of Chemistry and Biotechnology and Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122, Australia
| |
Collapse
|
24
|
Dong S, Liu Y, Feng L, Zhang L. Oxidation of pyrazolone pharmaceuticals by peracetic acid: Kinetics, mechanism and genetic toxicity variations. CHEMOSPHERE 2022; 291:132947. [PMID: 34800509 DOI: 10.1016/j.chemosphere.2021.132947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Peracetic acid (PAA) oxidation is an emerging technology in water disinfection and purification. This study evaluated the oxidation of three pyrazolone pharmaceuticals (i.e., Aminopyrine (AMP), Antipyrine (ANT), and Isopropylphenazone (PRP) by PAA. Experimental results showed that PAA exhibited structure selectivity to the above three pharmaceuticals and oxidized AMP with the highest reactivity. The degradation kinetics of AMP was investigated by calculating the apparent second-order rate constants (kapp) under different initial pH. Through kinetic simulation, the second-order rate constants of elementary reactions between AMP (i.e., neutral (AMP0) and protonated (AMP+) species) with PAA (i.e., neutral (PAA0) and anionic (PAA-) species) were obtained to be 0.34 ± 0.077 M-1 s-1(k"AMP+, PAA0), 0.89 ± 0.091 M-1 s-1(k"AMP0, PAA-) and 5.94 ± 0.142 M-1 s-1(k"AMP0, PAA0), respectively. The PAA could oxidize AMP via electrophilic attack, and the degradation site of AMP was confirmed to be the central nitrogen of -N(CH3)2 with the highest relative electrophilicity (sk-/sk+, 48.8614) by Density Functional Theory (DFT) calculation. The intermediates/products of AMP degradation were identified by high-performance liquid chromatography-mass spectrometry (LC-MS/MS), and the transformation pathways of AMP during PAA oxidation were inferred to be hydroxylation, demethylation, and CC cleavage. The genetic toxicity of AMP contaminated water could be reduced after PAA oxidation, which was evaluated by the micronucleus test of Vicia faba root tips.
Collapse
Affiliation(s)
- Shunqi Dong
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Yongze Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China.
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China.
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
25
|
Worms IAM, Kavanagh K, Moulin E, Regier N, Slaveykova VI. Asymmetrical Flow Field-Flow Fractionation Methods for Quantitative Determination and Size Characterization of Thiols and for Mercury Size Speciation Analysis in Organic Matter-Rich Natural Waters. Front Chem 2022; 10:800696. [PMID: 35252112 PMCID: PMC8888841 DOI: 10.3389/fchem.2022.800696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Asymmetrical flow field-flow fractionation (AF4) efficiently separates various macromolecules and nano-components of natural waters according to their hydrodynamic sizes. The online coupling of AF4 with fluorescence (Fluo) and UV absorbance (UV) detectors (FluoD and UVD, respectively) and inductively coupled plasma–mass spectrometry (ICP-MS) provides multidimensional information. This makes it a powerful tool to characterize and quantify the size distributions of organic and inorganic nano-sized components and their interaction with trace metals. In this study, we developed a method combining thiol labeling by monobromo(trimethylammonio)bimane bromide (qBBr) with AF4–FluoD to determine the size distribution and the quantities of thiols in the macromolecular dissolved organic matter (DOM) present in highly colored DOM-rich water sampled from Shuya River and Lake Onego, Russia. We found that the qBBr-labeled components of DOM (qB-DOM) were of humic type, characterized by a low hydrodynamic size (dh < 2 nm), and have concentrations <0.3 μM. After enrichment with mercury, the complexes formed between the nano-sized components and Hg were analyzed using AF4–ICP-MS. The elution profile of Hg followed the distribution of the UV-absorbing components of DOM, characterized by slightly higher sizes than qB-DOM. Only a small proportion of Hg was associated with the larger-sized components containing Fe and Mn, probably inorganic oxides that were identified in most of the samples from river to lake. The size distribution of the Hg–DOM complexes was enlarged when the concentration of added Hg increased (from 10 to 100 nM). This was explained by the presence of small iron oxides, overlapping the size distribution of Hg–DOM, on which Hg bound to a small proportion. In addition, to provide information on the dispersion of macromolecular thiols in colored DOM-rich natural water, our study also illustrated the potential of AF4–FluoD–UVD–ICP-MS to trace or quantify dynamic changes while Hg binds to the natural nano-colloidal components of surface water.
Collapse
|
26
|
Liu Y, Wang M, Yin S, Xie L, Qu X, Fu H, Shi Q, Zhou F, Xu F, Tao S, Zhu D. Comparing Photoactivities of Dissolved Organic Matter Released from Rice Straw-Pyrolyzed Biochar and Composted Rice Straw. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2803-2815. [PMID: 35089700 DOI: 10.1021/acs.est.1c08061] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Here, we systematically compared the photoactivity and photobleaching behavior between dissolved black carbon (DBC) from rice straw biochar and leached dissolved organic carbon (LDOC) from rice straw compost using complementary techniques. The Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) analysis showed that DBC was dominated by polycyclic aromatic (55.1%) and tannin-like molecules (24.1%), while LDOC was dominated by lignin-like (58.9%) and tannin-like molecules (19.7%). Under simulated sunlight conditions, DBC had much higher apparent quantum yields for 3DOM* and 1O2 but much lower apparent quantum yields for •OH than LDOC. After a 168 h irradiation, the total number of LDOC formulas identified by FT-ICR MS decreased by 40.1% with concurrent increases in O/C and H/C ratios and also decreases in double bond equivalence minus oxygen (DBE - O) and average molecular weight identified by gel permeation chromatography. However, despite the large decreases in UVA254 and DOC, the total number of DBC formulas decreased only by 12.0% with nearly unchanged O/C ratio, DBE - O values, molecular weight distribution, and benzenepolycarboxylic aromatic condensation (BACon) index regardless of the decreased percentage of condensed aromatic carbon (ConAC %). Compared with LDOC, the photolysis of DBC was much less oxidative and destructive mainly via breakup of a small portion of the highly condensed aromatic rings, probably accompanied by photodecarboxylation.
Collapse
Affiliation(s)
- Yafang Liu
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Minli Wang
- School of the Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Shujun Yin
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Lekai Xie
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Xiaolei Qu
- School of the Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Heyun Fu
- School of the Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Quan Shi
- School of Chemical Engineering and Environment, State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Feng Zhou
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Fuliu Xu
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Shu Tao
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Dongqiang Zhu
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| |
Collapse
|
27
|
Wu B, Liu T, Wang Y, Zhao G, Chen B, Chu C. High Sample Throughput LED Reactor for Facile Characterization of the Quantum Yield Spectrum of Photochemically Produced Reactive Intermediates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16204-16214. [PMID: 34553927 DOI: 10.1021/acs.est.1c04608] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photochemically produced reactive intermediates (PPRIs) by natural photosensitizers such as chromophoric dissolved organic matter (CDOM) play numerous key roles in aquatic biogeochemical processes. PPRI productions rely on both the intensity and the spectrum of incident sunlight. While the impacts of sunlight intensity on PPRI productions are well-studied, there remains insufficient understanding of the spectrum-dependence of PPRI productions. Here we designed a high sample throughput reactor equipped with monochromatic LED lights for systematic assessments of wavelength-dependent productions of four important PPRI species, i.e., triplet-state excited CDOM (3CDOM*), singlet oxygen (1O2), hydrogen peroxide (H2O2), and hydroxyl radical (•OH), in CDOM solutions. The quantum yields of PPRIs followed the order: 3CDOM* > 1O2 ≫ H2O2 > •OH. Moreover, PPRI quantum yields decreased with the light wavelength increasing from 375 to 490 nm and sharply decreased to zero above 490 nm, while the shapes of quantum yield spectra differed among PPRI species. Simulations on PPRI productions under varying season, latitude, altitude, and cloud cover conditions show that the sunlight spectrum plays a role as equally important as intensity in determining PPRI productions and PPRI-mediated transformations of aquatic nutrients and micropollutants. Therefore, incorporating the spectrum dependence of PPRI productions will advance our understandings of PPRI-driven biogeochemical processes and pollutant dynamics under varying spatial-temporal and climatic conditions. Regarding this, the high sample throughput LED reactor sheds light on a new approach for the facile characterization of PPRI quantum yield spectrum.
Collapse
Affiliation(s)
- Binbin Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Tian Liu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yanling Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Guoqiang Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
28
|
Modiri Gharehveran M, Shah AD. Influence of dissolved organic matter on carbonyl sulfide and carbon disulfide formation from dimethyl sulfide during sunlight photolysis. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2982-2997. [PMID: 34595800 DOI: 10.1002/wer.1650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/23/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Carbonyl sulfide (COS) and carbon disulfide (CS2 ) are important atmospheric gases photochemically generated from organic sulfur precursors in sunlit natural waters. This study examined these processes by evaluating COS and CS2 photoproduction from dimethyl sulfide (DMS) in the presence of dissolved organic matter (DOM). DOM was added because it photochemically produces various reactive intermediates (3 CDOM*, • OH, 1 O2 , and H2 O2 ) potentially involved in these reaction pathways. DMS-amended synthetic waters at pH 8 were varied in terms of their DOM type and concentration, spiked with the 3 CDOM* quenching agent, phenol, in certain cases, and subsequently irradiated over varying exposure times. Results indicated that various DOM types ranging from freshwater to open-ocean DOM increased COS but did not alter CS2 , which remained at nondetect levels. DOM type influenced COS only at higher concentrations (20 mg/L), whereas increasing DOM concentrations proportionally increased COS concentrations for all DOM types. Phenol addition lowered COS formation for reasons that remained unclear because phenol likely quenched 3 CDOM* and DMS-derived sulfur-based radicals. Further comparisons with DMS-spiked natural waters and cysteine (CYS)-spiked synthetic and natural waters assessed previously indicated that COS formation from both precursors in natural waters was always greater than in waters containing DOM alone. PRACTITIONER POINTS: DMS- and DOM-spiked synthetic waters formed COS but did not form CS2 during sunlight photolysis. In DMS-spiked synthetic solutions, DOM type has a limited influence on COS formation whereas DOM concentration has a stronger influence on COS formation. COS formation in the DMS-spiked synthetic waters was fairly proportional to the DOC concentration but was generally lower than COS formation in DMS-spiked natural waters.
Collapse
Affiliation(s)
| | - Amisha D Shah
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana, USA
- Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
29
|
Li JL, Zhai X, Du L. Photosensitized formation of sulfate and volatile sulfur gases from dissolved organic sulfur: Roles of pH, dissolved oxygen, and salinity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147449. [PMID: 33984698 DOI: 10.1016/j.scitotenv.2021.147449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
The photodegradation of dissolved organic sulfur (DOS) is a potential source of aqueous sulfate and its chemical precursors in surface water. However, the photochemical fate of DOS and factors that control its fate still remain unclear. Herein, we employed a DOS model featuring a photosensitizer (humic acids, HA) to investigate the photochemical degradation pathways of DOS in various natural water sources, from which we observed the substantial photosensitized formation of sulfate, methanesulfonic acid (MSA), carbonyl sulfide (COS), and carbon disulfide (CS2). However, the photochemical production of sulfate and MSA tends to be more efficient than COS and CS2. The formation of sulfur-containing photodegradation products was also strongly affected by the identity of the organic sulfur precursor, the oxygen concentration, and the pH, while the salinity did not significantly influence the production ratios. Our results revealed that the photosensitization of DOS contributed significantly to the overall production of sulfate and MSA production, especially in acidic and oxygen-enriched environments, which was attributed to the photochemical production of reactive intermediates, such as excited CDOM (3CDOM*) and reactive oxygen species (ROS). Considering the coexistence of DOS and photosensitizers in aquatic environments, photochemistry may play an essential role in the fate of aquatic DOS.
Collapse
Affiliation(s)
- Jian-Long Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xing Zhai
- Marine Ecology Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Lin Du
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
30
|
Pem B, Toma M, Vrček V, Vinković Vrček I. Combined NMR and Computational Study of Cysteine Oxidation during Nucleation of Metallic Clusters in Biological Systems. Inorg Chem 2021; 60:4144-4161. [PMID: 33657797 DOI: 10.1021/acs.inorgchem.1c00321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The widespread biomedical applications of silver and gold nanoparticles (AgNPs and AuNPs, respectively) prompt the need for mechanistic evaluation of their interaction with biomolecules. In biological media, metallic NPs are known to transform by various pathways, especially in the presence of thiols. The interplay between metallic NPs and thiols may lead to unpredictable consequences for the health status of an organism. This study explored the potential events occurring during biotransformation, dissolution, and reformation of NPs in the thiol-rich biological media. The study employed a model system evaluating the interaction of cysteine with small-sized AgNPs and AuNPs. The interplay of cysteine on transformation and reformation pathways of these NPs was experimentally investigated by nuclear magnetic resonance (NMR) spectroscopy and supported by light scattering techniques and transmission electron microscopy (TEM). As the main outcome, Ag- or Au-catalyzed oxidation of cysteine to cystine was found to occur through generation of reactive oxygen species (ROS). Computational simulations confirmed this mechanism and the role of ROS in the oxidative dimerization of biothiol during NPs reformation. The obtained results represent valuable mechanistic data about the complex events during the transport of metallic NPs in thiol-rich biological systems that should be considered for the future biomedical applications of metal-based nanomaterials.
Collapse
Affiliation(s)
- Barbara Pem
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Mateja Toma
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Valerije Vrček
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| |
Collapse
|
31
|
Guo Z, Wang J, Chen X, Cui F, Wang T, Zhou C, Song G, Zhang S, Chen J. Photochemistry of dissolved organic matter extracted from coastal seawater: Excited triplet-states and contents of phenolic moieties. WATER RESEARCH 2021; 188:116568. [PMID: 33137523 DOI: 10.1016/j.watres.2020.116568] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
Coastal seawater constitutes an important ecosystem receiving inputs of organic micropollutants (OMPs) such as sulfa antibiotics from land-based sources or mariculture activities. It is necessary to investigate photodegradation of OMPs in coastal seawaters for assessing their environmental fate and risks. However, effects of coastal seawater dissolved organic matter (S-DOM) on OMPs photodegradation are largely unknown, given that chemical compositions of S-DOM are different from those of freshwater DOM. Herein, photochemical characteristics of S-DOM extracted from Dalian coastal seawaters were investigated by simulating photochemical experiment adopting sulfachloropyridazine as a case. Results show that S-DOM accelerates the photodegradation mainly through excited triplet-state DOM (3DOM*) with an apparent rate constant (4.43 × 108 M-1 s-1) ten folds of that of freshwater DOM, which is mainly due to much lower phenol contents detected in the S-DOM (0.022 mg-Gallic acid mg-C-1). The S-DOM impacted by mariculture can photogenerate more high-energy 3DOM* than those less impacted by mariculture, further contributing to the high 3DOM* reactivity. The study shows that to accurately predict photolytic persistence of OMPs in field water bodies, it is of significance to determine the second-order reaction rate constants between 3DOM* and target OMPs using DOM extracted from relevant water bodies.
Collapse
Affiliation(s)
- Zhongyu Guo
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jieqiong Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Xi Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Feifei Cui
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tingting Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chengzhi Zhou
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Guobao Song
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
32
|
Egli CM, Stravs MA, Janssen EML. Inactivation and Site-specific Oxidation of Aquatic Extracellular Bacterial Leucine Aminopeptidase by Singlet Oxygen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14403-14412. [PMID: 33146524 DOI: 10.1021/acs.est.0c04696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Extracellular enzymes are master recyclers of organic matter, and to predict their functional lifetime, we need to understand their environmental transformation processes. In surface waters, direct and indirect photochemical transformation is a known driver of inactivation. We investigated molecular changes that occur along with inactivation in aminopeptidase, an abundant class of extracellular enzymes. We studied the inactivation kinetics and localized oxidation caused by singlet oxygen, 1O2, a major photochemically derived oxidant toward amino acids. Aminopeptidase showed second-order inactivation rate constants with 1O2 comparable to those of free amino acids. We then visualized site-specific oxidation kinetics within the three-dimensional protein and demonstrated that fastest oxidation occurred around the active site and at other reactive amino acids. However, second-order oxidation rate constants did not correlate strictly with the 1O2-accessible surface areas of those amino acids. We inspected site-specific processes by a comprehensive suspect screening for 723,288 possible transformation products. We concluded that histidine involved in zinc coordination at the active site reacted slower than what was expected by its accessibility, and we differentiated between two competing reaction pathways of 1O2 with tryptophan residues. This systematic analysis can be directly applied to other proteins and transformation reactions.
Collapse
Affiliation(s)
- Christine M Egli
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zürich 8092, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dubendorf 8600, Switzerland
| | - Michael A Stravs
- Institute of Molecular Systems Biology, ETH Zurich, Zürich 8093, Switzerland
| | - Elisabeth M L Janssen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dubendorf 8600, Switzerland
| |
Collapse
|
33
|
Ossola R, Clerc B, McNeill K. Mechanistic Insights into Dissolved Organic Sulfur Photomineralization through the Study of Cysteine Sulfinic Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13066-13076. [PMID: 32936630 DOI: 10.1021/acs.est.0c04340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photochemical reactions convert dissolved organic matter (DOM) into inorganic and low-molecular-weight organic products, contributing to its cycling across environmental compartments. However, knowledge on the formation mechanisms of these products is still scarce. In this work, we investigate the triplet-sensitized photodegradation of cysteine sulfinic acid, a (photo)degradation product of cysteine, to sulfate (SO42-). We use kinetic analysis, targeted experiments, and previous literature from several fields of chemistry to explain the elementary steps that lead to the release of sulfate. Our analysis indicates that triplet sensitizers act as one-electron oxidants on the sulfinate S lone pair. The resulting radical undergoes C-S fragmentation to form SO2, which becomes hydrated to sulfite/bisulfite (S(IV)). S(IV) is further oxidized to SO42- in the presence of triplet sensitizers and oxygen. We point out that the reaction sequence SO2 ⇌ S(IV) → SO42- is valid independently of the chemical structure of the model compound and might represent a sulfate photoproduction mechanism with general validity for DOS. Our mechanistic investigation revealed that amino acids in general might also be photochemical precursors of CO2, ammonia, acetaldehyde, and H2O2 and that reaction byproducts can influence the rate and mechanism of S(IV) (photo)oxidation.
Collapse
Affiliation(s)
- Rachele Ossola
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Baptiste Clerc
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
34
|
Modiri Gharehveran M, Hain E, Blaney L, Shah AD. Influence of dissolved organic matter on carbonyl sulfide and carbon disulfide formation from cysteine during sunlight photolysis. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1852-1864. [PMID: 32966465 DOI: 10.1039/d0em00219d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbonyl sulfide (COS) and carbon disulfide (CS2) are important atmospheric gases that are formed from organic sulfur precursors present in natural waters when exposed to sunlight. However, it remains unclear how specific water constituents, such as dissolved organic matter (DOM), affect COS and CS2 formation. To better understand the role of DOM, irradiation experiments were conducted in O2-free synthetic waters containing four different DOM isolates, acquired from freshwater to open ocean sources, and the sulfur-based amino acid, cysteine (CYS). CYS is a known natural precursor of COS and CS2. Results indicated that COS formation did not vary strongly with DOM type, although small impacts were observed on the kinetic patterns. COS formation also increased with increasing CYS concentration but decreased with increasing DOM concentration. Quenching experiments indicated that ˙OH was not involved in the rate-limiting step of COS formation, whereas excited triplet states of DOM (3CDOM*) were plausibly involved, although the quenching agents used to remove 3CDOM* may have reacted with the CYS-derived intermediates as well. CS2 was not formed under any of the experimental conditions. Overall, DOM-containing synthetic waters had a limited to no effect towards forming COS and CS2, especially when compared to the higher concentrations formed in sunlit natural waters, as examined previously. The reasons behind this limited effect need to be explored further but may be due to the additional water quality constituents present in these natural waters. The findings of this study imply that multiple variables beyond DOM govern COS and CS2 photoproduction when moving from freshwaters to open ocean waters.
Collapse
Affiliation(s)
| | - Ethan Hain
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Lee Blaney
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Amisha D Shah
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana, USA. and Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
35
|
Zhang X, Li J, Yao MC, Fan WY, Yang CW, Yuan L, Sheng GP. Unrecognized Contributions of Dissolved Organic Matter Inducing Photodamages to the Decay of Extracellular DNA in Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1614-1622. [PMID: 31976657 DOI: 10.1021/acs.est.9b06029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Extracellular DNA (eDNA), which is derived from lysis or secretion of cells, is ubiquitous in various environments and crucial for gene dissemination, bacterial metabolism, biofilm integrity, and aquatic monitoring. However, these processes are largely influenced by damage to eDNA. Photodamage to eDNA, one of the most important types of DNA damage in natural waters, thus far remains unclear. In particular, the roles of the ubiquitous dissolved organic matter (DOM) in this process have yet to be determined. In this study, eDNA photodamage, including both deoxynucleoside damage and strand breaks, proved to be significantly influenced by DOM. DOM competed with eDNA for photons to inhibit the direct photodamage of eDNA. Nevertheless, DOM was photosensitized to produce reactive oxygen species (ROS) (i.e., hydroxyl radicals (·OH) and singlet oxygen (1O2)) to enhance the indirect photodamage of eDNA. The ·OH induced damage to four deoxynucleosides and strand breaks, and the 1O2 substantially enhanced deoxyguanosine damage. The presence of DOM changed the main photodamage products of deoxynucleosides, additional oxidation products induced by ROS formed besides pyrimidine dimers caused by UV. Results indicate that DOM-mediated indirect photodamage contributed significantly to eDNA photodamage in most water bodies. This study revealed the previously unrecognized crucial role of DOM in the decay of eDNA in waters.
Collapse
Affiliation(s)
- Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Jing Li
- School of Life Sciences , University of Science and Technology of China , Hefei 230026 , China
| | - Mu-Cen Yao
- School of Life Sciences , University of Science and Technology of China , Hefei 230026 , China
| | - Wen-Yuan Fan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Chuan-Wang Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| |
Collapse
|
36
|
Lian L, Yan S, Zhou H, Song W. Overview of the Phototransformation of Wastewater Effluents by High-Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1816-1826. [PMID: 31893633 DOI: 10.1021/acs.est.9b04669] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photochemical transformation driven by sunlight is one of the most important natural processes for organic contaminant attenuation. In the current study, statistical analysis-assisted high-resolution mass spectrometry was employed to investigate the phototransformation of nontarget features in wastewater effluents under various radical quenching/enhancing conditions. A total of 9694 nontarget features were extracted from the effluents, including photoresistant features, photolabile features, and transformation products. 65% of the wastewater effluent features were photoresistant, and the photolabile features could be classified into five groups: direct photolysis group (group I), HO•-originated species-dominated group (group II), 3OM*-dominated group (group III), photochemically produced reactive intermediates combination-dominated group (group IV), and non-first-order degradation group (group V). The direct photolyzed features were observed to degrade significantly faster than the indirect photolyzed features. Moreover, group II dominated by HO•-originated species contributed 34% to the photolabile features. The reaction types that occurred in the phototransformation process were analyzed by linkage analysis. The results suggested that oxygen addition and dealkyl group reactions were the most common reaction types identified in the phototransformation process. Overall, high-resolution mass spectrometry coupled with statistical analysis was applied here to understand the photochemical behavior of the unknown features in wastewater effluents.
Collapse
Affiliation(s)
- Lushi Lian
- Department of Environmental Science and Engineering , Fudan University , Shanghai 200438 , P. R. China
| | - Shuwen Yan
- Department of Environmental Science and Engineering , Fudan University , Shanghai 200438 , P. R. China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , P. R. China
| | - Huaxi Zhou
- Department of Environmental Science and Engineering , Fudan University , Shanghai 200438 , P. R. China
| | - Weihua Song
- Department of Environmental Science and Engineering , Fudan University , Shanghai 200438 , P. R. China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , P. R. China
| |
Collapse
|
37
|
Zhang X, Li J, Fan WY, Yao MC, Yuan L, Sheng GP. Enhanced Photodegradation of Extracellular Antibiotic Resistance Genes by Dissolved Organic Matter Photosensitization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10732-10740. [PMID: 31469271 DOI: 10.1021/acs.est.9b03096] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Extracellular antibiotic resistance genes (eARGs) contribute to antibiotic resistance, and as such, they pose a serious threat to human health. eARGs, regarded as an emerging contaminant, have been widely detected in various bodies of water. Degradation greatly weakens their distribution potential and environmental risks. Dissolved organic matter (DOM), mainly consisted of humic substances, carbohydrates, and organic acids, is ubiquitous in diverse waters and significantly affects the degradation of coexisting contaminants. However, the photodegradation of eARGs in natural water, especially regarding the roles of DOM in this process, remains unknown. Herein, we investigated the eARGs photodegradation in waters with and without DOM. Illumination has been found to effectively photodegrade eARGs, and this process was significantly enhanced by DOM. Further experiments revealed that photosensitization of DOM produced hydroxyl radicals (•OH) to enhance plasmid strand breaks and produced singlet oxygen (1O2) to accelerate the guanine oxidation, which in turn promoted the photodegradation of plasmid-carried eARGs. Transformation assays indicated that eARGs transformation efficiencies were reduced after their photodegradation. The presence of DOM accelerated the decreases of eARGs transformation efficiencies under illumination. DOM concentration and some ions (e.g., NO3-, NO2-, HCO3-, Br-, and Fe3+) affected •OH or 1O2 levels, further influencing the photodegradation of eARGs. Overall, eARGs photodegradation in aquatic environments is a crucial process both in the reduction of eARGs concentrations and in transformation efficiencies. This work facilitated us to better understand the fate of eARGs in waters.
Collapse
Affiliation(s)
- Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Jing Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Wen-Yuan Fan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Mu-Cen Yao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| |
Collapse
|
38
|
Chu C, Yang J, Huang D, Li J, Wang A, Alvarez PJJ, Kim JH. Cooperative Pollutant Adsorption and Persulfate-Driven Oxidation on Hierarchically Ordered Porous Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10352-10360. [PMID: 31386358 DOI: 10.1021/acs.est.9b03067] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study presents a 3D hierarchically ordered porous carbon material (HOPC) that simultaneously achieves efficient adsorption of a range of water pollutants as well as catalytic oxidation of adsorbed pollutants. High adsorption capacity and rapid adsorption kinetics are attributed to the hydrophobic nature of the carbon substrate, the large surface area due to high porosity, and the relatively uniform size of pores that comprise the structure. The oxidative degradation is achieved by efficient mediation of electron transfer from pollutants to persulfate through the sp2-hybridized carbon and nitrogen network. As the persulfate activation and pollutant oxidation do not involve reactive radicals, oxidative degradation of the adsorbent is prevented, which has been a primary concern when adsorption and oxidation are combined either to regenerate adsorbate or to enhance oxidation performance. Batch tests showed that near complete removal of various recalcitrant micropollutants can be achieved within a short time (less than 1 min) even when treating a complex water matrix, as pollutants are concentrated on the surface of HOPC, where their oxidation is catalyzed.
Collapse
Affiliation(s)
- Chiheng Chu
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520-8286 , United States
- Nanotechnology-Enabled Water Treatment (NEWT) , Yale University , 17 Hillhouse Ave , New Haven , Connecticut 06511 , United States
| | - Ji Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China
- State Key Laboratory for Physical Chemistry of Solid Surfaces and MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Dahong Huang
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520-8286 , United States
| | - Jianfeng Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces and MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Aiqin Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering , Rice University , Houston , Texas 77005 , United States
- Nanotechnology-Enabled Water Treatment (NEWT) , Yale University , 17 Hillhouse Ave , New Haven , Connecticut 06511 , United States
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520-8286 , United States
- Nanotechnology-Enabled Water Treatment (NEWT) , Yale University , 17 Hillhouse Ave , New Haven , Connecticut 06511 , United States
| |
Collapse
|
39
|
Vione D, Scozzaro A. Photochemistry of Surface Fresh Waters in the Framework of Climate Change. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7945-7963. [PMID: 31241909 DOI: 10.1021/acs.est.9b00968] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Photochemical processes taking place in surface fresh waters play an important role in the transformation of biorecalcitrant pollutants and some natural compounds and in the inactivation of microorganisms. Such processes are divided into direct photolysis, where a molecule is transformed following sunlight absorption, and indirect photochemistry, where naturally occurring photosensitizers absorb sunlight and produce a range of transient species that can transform dissolved molecules (or inactivate microorganisms). Photochemistry is usually favored in thoroughly illuminated shallow waters, while the dissolved organic carbon (DOC) acts as a switch between different photochemical pathways (direct photolysis, and indirect photochemistry triggered by different transient species). Various phenomena connected with climate change (water browning, changing precipitations) may affect water DOC and water depth, with implications for the kinetics of photoreactions and the associated transformation pathways. The latter are important because they often produce peculiar intermediates, with particular health and environmental impacts. Further climate-induced effects with photochemical implications are shorter ice-cover seasons and enhanced duration of summer stratification in lakes, as well as changes in the flow velocity of rivers that affect the photodegradation time scale. This contribution aims at showing how the different climate-related phenomena can affect photoreactions and which approaches can be followed to quantitatively describe these variations.
Collapse
Affiliation(s)
- Davide Vione
- Department of Chemistry , University of Torino , Via P. Giuria 5 , 10125 Torino , Italy
| | - Andrea Scozzaro
- Department of Chemistry , University of Torino , Via P. Giuria 5 , 10125 Torino , Italy
| |
Collapse
|
40
|
Xu J, Kralles ZT, Dai N. Effects of Sunlight on the Trichloronitromethane Formation Potential of Wastewater Effluents: Dependence on Nitrite Concentration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4285-4294. [PMID: 30913390 DOI: 10.1021/acs.est.9b00447] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study examined the effects of sunlight irradiation on the trichloronitromethane formation potential (TCNM-FP) of wastewater effluents and the roles of nitrite and nitrate in this process. Using disinfected secondary effluents from four treatment plants, we observed that sunlight irradiation (320 W/m2) for 8 h attenuated the TCNM-FP by 17-47% for 9 of 14 samples but increased the TCNM-FP for two of the other samples. A longer irradiation time (≤36 h) further reduced the TCNM-FP in a non-nitrified effluent with low nitrite and nitrate concentrations but increased the TCNM-FP in two nitrified effluents by 2-3-fold. When nitrite (0.1-2 mg N/L) was spiked into effluent samples, an increase in the TCNM-FP after irradiation was observed. The higher the nitrite concentration, the greater the increase in the TCNM-FP. In the presence of ∼1 mg N/L of nitrite, sunlight irradiation for 8 h increased the TCNM-FP of four wastewater samples by 0.3-3.6 μg/mg C. In contrast, the spike of nitrate up to 20 mg N/L had no effect. The nitrite-sunlight effect was also observed for four model precursors (humic acid, tryptophan, tyrosine, and phenol). Humic acid and tryptophan featured larger increases in the TCNM-FP compared to those of tyrosine and phenol after sunlight irradiation.
Collapse
Affiliation(s)
- Jiale Xu
- Department of Civil, Structural and Environmental Engineering , University at Buffalo, the State University of New York , Buffalo , New York 14260 , United States
| | - Zachary T Kralles
- Department of Civil, Structural and Environmental Engineering , University at Buffalo, the State University of New York , Buffalo , New York 14260 , United States
| | - Ning Dai
- Department of Civil, Structural and Environmental Engineering , University at Buffalo, the State University of New York , Buffalo , New York 14260 , United States
| |
Collapse
|
41
|
Xu L, Li H, Mitch WA, Tao S, Zhu D. Enhanced Phototransformation of Tetracycline at Smectite Clay Surfaces under Simulated Sunlight via a Lewis-Base Catalyzed Alkalization Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:710-718. [PMID: 30561992 DOI: 10.1021/acs.est.8b06068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As an important class of soil minerals and a key constituent of colloidal particles in surface aquifers, smectite clays can strongly retain tetracyclines due to their large surface areas and high cation exchange capacities. However, the research on phototransformation of tetracyclines at smectite clay surfaces is rarely studied. Here, the phototransformation kinetics of tetracycline preadsorbed on two model smectite clays (hectorite and montmorillonite) exchanged with Na+, K+, or Ca2+ suspended in aqueous solution under simulated sunlight was compared with that of tetracycline dissolved in water using batch experiments. Adsorption on clays accelerated tetracycline phototransformation (half-lives shortened by 1.1-5.3 times), with the most significant effects observed for Na+-exchanged clays. Regardless of the presence or absence of clay, the phototransformation of tetracycline was facilitated by increasing pH from 4 to 7. Inhibition or enhancement of photolysis-induced reactive species combined with their measurement using scavenger/probe chemicals indicate that the facilitated production of self-photosensitized singlet oxygen (1O2) was the key factor contributing to the clay-enhanced phototransformation of tetracycline. As evidenced by the red shifts and the increased molar absorptivity in the UV-vis absorption spectra, the complexation of tetracycline with the negatively charged (Lewis base) sites on clay siloxane surfaces led to formation of the alkalized form, which has larger light absorption rate and is more readily to be oxidized compared to tetracycline in aqueous solution at equivalent pH. Our findings indicate a previously unrecognized, important phototransformation mechanism of tetracyclines catalyzed by smectite clays.
Collapse
Affiliation(s)
- Liangpang Xu
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes , Peking University , Beijing 100871 , China
| | - Hui Li
- Department of Plant, Soil, and Microbial Sciences , Michigan State University , East Lansing , Michigan 48824 , United States
| | - William A Mitch
- Department of Civil and Environmental Engineering , Stanford University , Stanford , California 94305 , United States
| | - Shu Tao
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes , Peking University , Beijing 100871 , China
| | - Dongqiang Zhu
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes , Peking University , Beijing 100871 , China
| |
Collapse
|
42
|
Du P, Liu W, Cao H, Zhao H, Huang CH. Oxidation of amino acids by peracetic acid: Reaction kinetics, pathways and theoretical calculations. WATER RESEARCH X 2018; 1:100002. [PMID: 31367703 PMCID: PMC6646862 DOI: 10.1016/j.wroa.2018.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 05/28/2023]
Abstract
Peracetic acid (PAA) is a sanitizer with increasing use in food, medical and water treatment industries. Amino acids are important components in targeted foods for PAA treatment and ubiquitous in natural waterbodies and wastewater effluents as the primary form of dissolved organic nitrogen. To better understand the possible reactions, this work investigated the reaction kinetics and transformation pathways of selected amino acids towards PAA. Experimental results demonstrated that most amino acids showed sluggish reactivity to PAA except cysteine (CYS), methionine (MET), and histidine (HIS). CYS showed the highest reactivity with a very rapid reaction rate. Reactions of MET and HIS with PAA followed second-order kinetics with rate constants of 4.6 ± 0.2, and 1.8 ± 0.1 M-1⋅s-1 at pH 7, respectively. The reactions were faster at pH 5 and 7 than at pH 9 due to PAA speciation. Low concentrations of H2O2 coexistent with PAA contributed little to the oxidation of amino acids. The primary oxidation products of amino acids with PAA were [O] addition compounds on the reactive sites at thiol, thioether and imidazole groups. Theoretical calculations were applied to predict the reactivity and regioselectivity of PAA electrophilic attacks on amino acids and improved mechanistic understanding. As an oxidative disinfectant, the reaction of PAA with organics to form byproducts is inevitable; however, this study shows that PAA exhibits lower and more selective reactivity towards biomolecules such as amino acids than other common disinfectants, causing less concern of toxic disinfection byproducts. This attribute may allow greater stability and more targeted actions of PAA in various applications.
Collapse
Affiliation(s)
- Penghui Du
- Beijing Engineering Research Center of Process Pollution Control, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Liu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Science and Engineering, Peking University, Beijing 100871, China
| | - Hongbin Cao
- Beijing Engineering Research Center of Process Pollution Control, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - He Zhao
- Beijing Engineering Research Center of Process Pollution Control, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
43
|
Modiri Gharehveran M, Shah AD. Indirect Photochemical Formation of Carbonyl Sulfide and Carbon Disulfide in Natural Waters: Role of Organic Sulfur Precursors, Water Quality Constituents, and Temperature. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9108-9117. [PMID: 30044083 DOI: 10.1021/acs.est.8b01618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Carbonyl sulfide (COS) and carbon disulfide (CS2) are volatile sulfur compounds that are critical precursors to sulfate aerosols, which enable climate cooling. COS and CS2 stem from the indirect photolysis of organic sulfur precursors in natural waters, but currently the chemistry behind how this occurs remains unclear. This study evaluated how different organic sulfur precursors, water quality constituents, which can form important reactive intermediates (RIs), and temperature affected COS and CS2 formation. Nine natural waters ranging in salinity were spiked with cysteine, cystine, dimethylsulfide (DMS), or methionine and exposed to simulated sunlight over varying times and water quality conditions. Results indicated that COS and CS2 formation increased up to 11× and 4×, respectively, after 12 h of sunlight, while diurnal cycling exhibited varied effects. COS and CS2 formation was also strongly affected by the DOC concentration, organic sulfur precursor type, O2 concentration, and temperature, while salinity differences and CO addition did not play a significant role. Overall, important factors in forming COS and CS2 were identified, which may ultimately impact their atmospheric concentrations.
Collapse
Affiliation(s)
- Mahsa Modiri Gharehveran
- Lyles School of Civil Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Amisha D Shah
- Lyles School of Civil Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
- Division of Environmental and Ecological Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
44
|
Song Y, Jiang T, Liem-Nguyen V, Sparrman T, Björn E, Skyllberg U. Thermodynamics of Hg(II) Bonding to Thiol Groups in Suwannee River Natural Organic Matter Resolved by Competitive Ligand Exchange, Hg L III-Edge EXAFS and 1H NMR Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8292-8301. [PMID: 29983050 DOI: 10.1021/acs.est.8b00919] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A molecular level understanding of the thermodynamics and kinetics of the chemical bonding between mercury, Hg(II), and natural organic matter (NOM) associated thiol functional groups (NOM-RSH) is required if bioavailability and transformation processes of Hg in the environment are to be fully understood. This study provides the thermodynamic stability of the Hg(NOM-RS)2 structure using a robust method in which cysteine (Cys) served as a competing ligand to NOM (Suwannee River 2R101N sample) associated RSH groups. The concentration of the latter was quantified to be 7.5 ± 0.4 μmol g-1 NOM by Hg LIII-edge EXAFS spectroscopy. The Hg(Cys)2 molecule concentration in chemical equilibrium with the Hg(II)-NOM complexes was directly determined by HPLC-ICPMS and losses of free Cys due to secondary reactions with NOM was accounted for in experiments using 1H NMR spectroscopy and 13C isotope labeled Cys. The log K ± SD for the formation of the Hg(NOM-RS)2 molecular structure, Hg2+ + 2NOM-RS- = Hg(NOM-RS)2, and for the Hg(Cys)(NOM-RS) mixed complex, Hg2+ + Cys- + NOM-RS- = Hg(Cys)(NOM-RS), were determined to be 40.0 ± 0.2 and 38.5 ± 0.2, respectively, at pH 3.0. The magnitude of these constants was further confirmed by 1H NMR spectroscopy and the Hg(NOM-RS)2 structure was verified by Hg LIII-edge EXAFS spectroscopy. An important finding is that the thermodynamic stabilities of the complexes Hg(NOM-RS)2, Hg(Cys)(NOM-RS) and Hg(Cys)2 are very similar in magnitude at pH values <7, when all thiol groups are protonated. Together with data on 15 low molecular mass (LMM) thiols, as determined by the same method ( Liem-Ngyuen et al. Thermodynamic stability of mercury(II) complexes formed with environmentally relevant low-molecular-mass thiols studied by competing ligand exchange and density functional theory . Environ. Chem. 2017 , 14 , ( 4 ), 243 - 253 .), the constants for Hg(NOM-RS)2 and Hg(Cys)(NOM-RS) represent an internally consistent thermodynamic data set that we recommend is used in studies where the chemical speciation of Hg(II) is determined in the presence of NOM and LMM thiols.
Collapse
Affiliation(s)
- Yu Song
- Department of Forest Ecology and Management , Swedish University of Agricultural Science , SE-901 83 Umeå , Sweden
| | - Tao Jiang
- Department of Forest Ecology and Management , Swedish University of Agricultural Science , SE-901 83 Umeå , Sweden
| | - Van Liem-Nguyen
- Department of Forest Ecology and Management , Swedish University of Agricultural Science , SE-901 83 Umeå , Sweden
- School of Science and Technology , Örebro University , SE-701 82 Örebro , Sweden
| | - Tobias Sparrman
- Department of Chemistry , Umeå University , SE-901 87 Umeå , Sweden
| | - Erik Björn
- Department of Chemistry , Umeå University , SE-901 87 Umeå , Sweden
| | - Ulf Skyllberg
- Department of Forest Ecology and Management , Swedish University of Agricultural Science , SE-901 83 Umeå , Sweden
| |
Collapse
|
45
|
Oladeinde A, Lipp E, Chen CY, Muirhead R, Glenn T, Cook K, Molina M. Transcriptome Changes of Escherichia coli, Enterococcus faecalis, and Escherichia coli O157:H7 Laboratory Strains in Response to Photo-Degraded DOM. Front Microbiol 2018; 9:882. [PMID: 29867797 PMCID: PMC5953345 DOI: 10.3389/fmicb.2018.00882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/17/2018] [Indexed: 11/26/2022] Open
Abstract
In this study, we investigated gene expression changes in three bacterial strains (Escherichia coli C3000, Escherichia coli O157:H7 B6914, and Enterococcus faecalis ATCC 29212), commonly used as indicators of water quality and as control strains in clinical, food, and water microbiology laboratories. Bacterial transcriptome responses from pure cultures were monitored in microcosms containing water amended with manure-derived dissolved organic matter (DOM), previously exposed to simulated sunlight for 12 h. We used RNA sequencing (RNA-seq) and quantitative real-time reverse transcriptase (qRT-PCR) to compare differentially expressed temporal transcripts between bacteria incubated in microcosms containing sunlight irradiated and non-irradiated DOM, for up to 24 h. In addition, we used whole genome sequencing simultaneously with RNA-seq to identify single nucleotide variants (SNV) acquired in bacterial populations during incubation. These results indicate that E. coli and E. faecalis have different mechanisms for removal of reactive oxygen species (ROS) produced from irradiated DOM. They are also able to produce micromolar concentrations of H2O2 from non-irradiated DOM, that should be detrimental to other bacteria present in the environment. Notably, this study provides an assessment of the role of two conjugative plasmids carried by the E. faecalis and highlights the differences in the overall survival dynamics of environmentally-relevant bacteria in the presence of naturally-produced ROS.
Collapse
Affiliation(s)
- Adelumola Oladeinde
- National Exposure Research Laboratory, Student Volunteer, U.S. Environmental Protection Agency, Office of Research and Development, Athens, GA, United States.,Department of Environmental Health Science, University of Georgia, Athens, GA, United States
| | - Erin Lipp
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States
| | - Chia-Ying Chen
- National Exposure Research Laboratory, National Research Council Associate, U.S. Environmental Protection Agency, Office of Research and Development, Athens, GA, United States
| | | | - Travis Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States
| | - Kimberly Cook
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States
| | - Marirosa Molina
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Office of Research and Development, Athens, GA, United States
| |
Collapse
|
46
|
Chu C, Stamatelatos D, McNeill K. Aquatic indirect photochemical transformations of natural peptidic thiols: impact of thiol properties, solution pH, solution salinity and metal ions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:1518-1527. [PMID: 29090717 DOI: 10.1039/c7em00324b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Natural peptidic thiols play numerous important roles in aquatic systems. While thiols are known to be susceptible to sensitized photoreaction, the photochemical transformation of thiols in surface waters remains largely unknown. This study systematically assessed the photochemical transformation of naturally occurring thiols, including arginylcysteine (RC), γ-glutamylcysteine (γEC), glutathione (GSH), and phytochelatin (PC) in solutions containing dissolved organic matter (DOM). The results show that all thiols underwent rapid indirect photochemical transformation. The transformation rates of thiols were highly pH-dependent and increased with increasing solution pH. γEC and GSH show lower transformation rates than free Cys, which was ascribed to their higher thiol pKa values. In comparison, PC and RC show much higher transformation rates than γEC and GSH, due to more reactive thiol groups contained in the PC molecule and sorption of RC to DOM macromolecules, respectively. While all investigated pathways contributed to thiol transformation, hydroxyl radical-mediated oxidation dominated at low solution pH and singlet oxygen-mediated oxidation dominated at high solution pH in the DOM-sensitized phototransformations of γEC, GSH, and PC. Furthermore, the effects of metal complexation and solution salinity on thiol transformation rates were examined. Thiol reactivity was not affected by Fe3+ and Ag+, slightly enhanced in the presence of Zn2+, Cd2+ and Hg2+, and significantly enhanced by Cu2+. Additionally, enhanced thiol transformation rates were observed in solutions with high salinity.
Collapse
Affiliation(s)
- Chiheng Chu
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland.
| | - Dimitrios Stamatelatos
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland.
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
47
|
Schmitt M, Erickson PR, McNeill K. Triplet-State Dissolved Organic Matter Quantum Yields and Lifetimes from Direct Observation of Aromatic Amine Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13151-13160. [PMID: 29035568 DOI: 10.1021/acs.est.7b03402] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Excited triplet state chromophoric dissolved organic matter (3CDOM*) is a short-lived mixture of excited-state species that plays important roles in aquatic photochemical processes. Unlike the study of the triplet states of well-defined molecules, which are amenable to transient absorbance spectroscopy, the study of 3CDOM* is hampered by it being a complex mixture and its low average intersystem crossing quantum yield (ΦISC). This study is an alternative approach to investigating 3CDOM* using transient absorption laser spectroscopy. The radical cation of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), formed through oxidation by 3CDOM*, was directly observable by transient absorption spectroscopy and was used to probe basic photophysical properties of 3CDOM*. Quenching and control experiments verified that TMPD•+ was formed from 3CDOM* under anoxic conditions. Model triplet sensitizers with a wide range of excited triplet state reduction potentials and CDOM oxidized TMPD at near diffusion-controlled rates. This gives support to the idea that a large cross-section of 3CDOM* moieties are able to oxidize TMPD and that the complex mixture of 3CDOM* can be simplified to a single signal. Using the TMPD•+ transient, the natural triplet lifetime and ΦISC for different DOM isolates and natural waters were quantified; values ranged from 12 to 26 μs and 4.1-7.8%, respectively.
Collapse
Affiliation(s)
- Markus Schmitt
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
| | - Paul R Erickson
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
| |
Collapse
|
48
|
Parker KM, Sander M. Environmental Fate of Insecticidal Plant-Incorporated Protectants from Genetically Modified Crops: Knowledge Gaps and Research Opportunities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12049-12057. [PMID: 28968072 DOI: 10.1021/acs.est.7b03456] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Plant-incorporated protectants (PIPs) are biopesticides expressed in genetically modified (GM) crops and are typically macromolecular in nature. First-generation insecticidal PIPs were Cry proteins expressed in GM crops containing transgenes from the soil bacterium Bacillus thuringiensis; next-generation double-stranded ribonucleic acid (dsRNA) PIPs have been recently approved. Like conventional synthetic pesticides, the use of either Cry protein or dsRNA PIPs results in their release to receiving environments. However, as opposed to conventional low molecular weight pesticides, the environmental fate of macromolecular PIPs remains less studied and is poorly understood. This Feature highlights the knowledge gaps and challenges that have emerged while investigating the environmental fate of Cry protein PIPs and suggests new avenues to advance the state of the research necessary for the ongoing environmental fate assessment of dsRNA PIPs.
Collapse
Affiliation(s)
- Kimberly M Parker
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich , 8092 Zurich, Switzerland
- Department of Energy, Environmental and Chemical Engineering, Washington University , St. Louis, Missouri 63130, United States
| | - Michael Sander
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich , 8092 Zurich, Switzerland
| |
Collapse
|
49
|
Cooke MV, Oviedo MB, Peláez WJ, Argüello GA. UV characterization and photodegradation mechanism of the fungicide chlorothalonil in the presence and absence of oxygen. CHEMOSPHERE 2017; 187:156-162. [PMID: 28846971 DOI: 10.1016/j.chemosphere.2017.08.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/15/2017] [Accepted: 08/20/2017] [Indexed: 06/07/2023]
Abstract
An experimental and theoretical study of the UV spectrum of chlorothalonil (CT) was carried out and the vibrationally resolved HOMO→LUMO transition is presented for the first time. The fluorescence spectrum has also been recorded. Furthermore, preparative photolysis allowed a detailed study of the photoproducts formed with recognition of different isomers. In the presence of oxygen only the first reductive dechlorination-decyanation occurred, while in its absence a successive dechlorination-decyanation takes place.
Collapse
Affiliation(s)
- María Victoria Cooke
- INFIQC-CONICET-Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - María Belén Oviedo
- INFIQC-CONICET-Dpto. de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Walter José Peláez
- INFIQC-CONICET-Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Gustavo Alejandro Argüello
- INFIQC-CONICET-Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, X5000HUA, Argentina.
| |
Collapse
|
50
|
Lian L, Yan S, Yao B, Chan SA, Song W. Photochemical Transformation of Nicotine in Wastewater Effluent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11718-11730. [PMID: 28942634 DOI: 10.1021/acs.est.7b03223] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nicotine is a highly toxic tobacco alkaloid that is ubiquitous in wastewater effluent. For the first time, we report the identification of the products and the pathways for the photodegradation of nicotine in an effluent matrix under simulated solar irradiation. Nicotine was found to be degraded by triplet-state organic matter (3OM*), thus indicating that electron transfer is a preferred reaction mechanism. Using the multivariate statistical strategies orthogonal projection to latent structures discriminant analysis (OPLS-DA) and hierarchical clustering, 49 potential transformation products (TPs) of nicotine were successfully extracted from the water matrix via high-resolution ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS). Overall, 30 TPs, including 4 groups of nonseparated isomeric photo TPs, were identified with various levels of confidence based on the tandem mass spectrometry information on standard compounds and the isotope-labeling method (using rac-nicotine-2',3',3'-D3, rac-nicotine-13CD3, and rac-nicotine-D4) under air-saturated conditions. The pyrrolidine ring of nicotine was found to be the reactive site under sunlight irradiation. Pseudooxynicotine was the main primary TP from nicotine, with a maximum transformation ratio of 64%. Nicotinic acid, cotinine, 3'-hydroxycotinine, and myosmine were the final stable TPs after 72 h of solar irradiation, with yields of 13%, 3%, 5%, and 5%, respectively.
Collapse
Affiliation(s)
- Lushi Lian
- Department of Environmental Science and Engineering, Fudan University , Shanghai 200433, China
| | - Shuwen Yan
- Department of Environmental Science and Engineering, Fudan University , Shanghai 200433, China
| | - Bo Yao
- Department of Environmental Science and Engineering, Fudan University , Shanghai 200433, China
| | - Shen-An Chan
- Agilent Technology, Inc. , 1350 North Sichuan Road, Shanghai 200080, PR China
| | - Weihua Song
- Department of Environmental Science and Engineering, Fudan University , Shanghai 200433, China
| |
Collapse
|