1
|
de Oliveira JPL, da Silva KCD, de Sousa BA, Carneiro WF, de Azevedo Martins MS, Murgas LDS, Carvalho EEN. Zebrafish and bioactive compounds: a bibliometric review. In Silico Pharmacol 2025; 13:75. [PMID: 40371311 PMCID: PMC12069762 DOI: 10.1007/s40203-025-00363-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/23/2025] [Indexed: 05/16/2025] Open
Abstract
Bibliometrics has become a crucial tool for evaluating and analyzing researchers' output. In recent decades, zebrafish has demonstrated its potential for studying oxidative stress, and the use of medicinal plants has proven essential in this context, as they are endowed with bioactive compounds that possess antioxidant properties. Thus, the aim of this study was to conduct a bibliometric review to analyze the evolution of publications concerning the concepts of "zebrafish" and "bioactive compounds." The Web of Science (WoS) database was utilized. Data on authors, countries, most cited journals, co-authorship between countries and authors, co-occurrence of keywords, keyword co-occurrence by publication year, and co-citation of references were analyzed using VOSviewer software. A total of 170 documents were retrieved, spanning the years 2004 to 2024. Jean Luc Wolfender, the United States, and PLoS One were prominent among the authors, countries, and journals with the highest citations, respectively. Among the co-occurrence of keywords, the following were noteworthy: zebrafish (n = 60), bioactive compounds (n = 12), angiogenesis (n = 9), antioxidant (n = 8), oxidative stress (n = 8), apoptosis (n = 7), antioxidant activity (n = 7), and toxicity (n = 7). It was concluded that the highest number of published documents was observed in 2022. Moreover, from 2018 onward, there has been an increase in research using the zebrafish model and bioactive compounds, highlighting the field of Pharmacy/Pharmacology in the development of new drugs, with a strong emphasis on the use of medicinal plants.
Collapse
Affiliation(s)
- João Paulo Lima de Oliveira
- Lavras School of Agricultural Sciences, Department of Agriculture, Federal University of Lavras, Lavras, Minas Gerais 37200-900 Brazil
| | - Kiara Cândido Duarte da Silva
- Faculty of Animal Science and Veterinary Medicine, Department of Veterinary Medicine, Federal University of Lavras, Lavras, Minas Gerais 37200-900 Brazil
| | - Bianca Aparecida de Sousa
- Faculty of Health Sciences, Department of Nutrition, Federal University of Lavras, Lavras, Minas Gerais 37200-900 Brazil
| | - William Franco Carneiro
- Faculty of Animal Science and Veterinary Medicine, Department of Veterinary Medicine, Federal University of Lavras, Lavras, Minas Gerais 37200-900 Brazil
| | - Moises Silvestre de Azevedo Martins
- Faculty of Animal Science and Veterinary Medicine, Department of Veterinary Medicine, Federal University of Lavras, Lavras, Minas Gerais 37200-900 Brazil
| | - Luis David Solis Murgas
- Faculty of Animal Science and Veterinary Medicine, Department of Veterinary Medicine, Federal University of Lavras, Lavras, Minas Gerais 37200-900 Brazil
| | - Elisângela Elena Nunes Carvalho
- Lavras School of Agricultural Sciences, Department of Food Science, Federal University of Lavras, Lavras, Minas Gerais 37200-900 Brazil
| |
Collapse
|
2
|
Yang H, Yao Y, Gu X, Chen H, Zeng Q, Mao Z, Xiang T. Bloom-forming planktonic Microcystis and benthic Oscillatoria-induced oxidative stress and inflammatory responses in juvenile silver carp and bighead carp. Toxicon 2025; 253:108183. [PMID: 39577703 DOI: 10.1016/j.toxicon.2024.108183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/02/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
As global warming and water eutrophication, the multiple proliferation of harmful cyanobacteria can form algal blooms and cause serious ecological problems. In recent years, the large-scale and persistent cyanobacterial blooms occur frequently worldwide and have attracted widespread attention due to the harmful impacts. Among these harmful bloom-forming cyanobacteria, the ecological and toxicological impacts of planktonic cyanobacteria have been extensively studied. However, research on the ecological risks and adverse effects of harmful benthic cyanobacteria is lagging. Filter-feeding fish could suffer from more toxic stimuli than other fish due to their special feeding habits. To investigate and compare the complex toxic effects of different kinds of harmful cyanobacteria on fish, three different-sized (i.e. small, medium, and large) juvenile silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) were exposed to cyanobacterial blooms-related density (1 × 106 cells/mL) of Microcystis aeruginosa (i.e. generating microcystins) and Oscillatoria sp. (i.e. generating cylindrospermopsin) for 3 d, after which biomarkers of oxidative stress and inflammation in the liver of fish were detected. The silver carp and bighead carp can effectively ingest Microcystis cells but cannot effectively ingest Oscillatoria cells through the measurement of the levels of cyanotoxins. Both Microcystis and Oscillatoria cells can induce different levels of oxidative stress and inflammatory responses in the liver of these juvenile filter-feeding fish via altering the biochemical parameters of the antioxidant system (e.g. superoxide dismutase activity) and immune system (e.g. interleukin-1β level). Therefore, our research identified potential data gaps that how the different types of cyanobacteria induce toxic effects in the liver of juvenile filter-feeding fish in a short time. This study contributes to a better understanding of the short-term adverse effects of different cyanobacterial species on juvenile fish, suggesting that the benthic toxic cyanobacteria-induced ecological and health risks require further attention.
Collapse
Affiliation(s)
- Huiting Yang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujia Yao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Gu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China.
| | - Huihui Chen
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qingfei Zeng
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhigang Mao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Tao Xiang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
3
|
Médice RV, Arruda RS, Yoon J, Borges RM, Noyma NP, Lürling M, Crnkovic CM, Marinho MM, Pinto E. Unlocking Biological Activity and Metabolomics Insights: Primary Screening of Cyanobacterial Biomass from a Tropical Reservoir. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2222-2231. [PMID: 39110011 DOI: 10.1002/etc.5962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/20/2024] [Accepted: 07/02/2024] [Indexed: 09/25/2024]
Abstract
Cyanobacterial harmful algal blooms can pose risks to ecosystems and human health worldwide due to their capacity to produce natural toxins. The potential dangers associated with numerous metabolites produced by cyanobacteria remain unknown. Only select classes of cyanopeptides have been extensively studied with the aim of yielding substantial evidence regarding their toxicity, resulting in their inclusion in risk management and water quality regulations. Information about exposure concentrations, co-occurrence, and toxic impacts of several cyanopeptides remains largely unexplored. We used liquid chromatography-mass spectrometry (LC-MS)-based metabolomic methods associated with chemometric tools (NP Analyst and Data Fusion-based Discovery), as well as an acute toxicity essay, in an innovative approach to evaluate the association of spectral signatures and biological activity from natural cyanobacterial biomass collected in a eutrophic reservoir in southeastern Brazil. Four classes of cyanopeptides were revealed through metabolomics: microcystins, microginins, aeruginosins, and cyanopeptolins. The bioinformatics tools showed high bioactivity correlation scores for compounds of the cyanopeptolin class (0.54), in addition to microcystins (0.54-0.58). These results emphasize the pressing need for a comprehensive evaluation of the (eco)toxicological risks associated with different cyanopeptides, considering their potential for exposure. Our study also demonstrated that the combined use of LC-MS/MS-based metabolomics and chemometric techniques for ecotoxicological research can offer a time-efficient strategy for mapping compounds with potential toxicological risk. Environ Toxicol Chem 2024;43:2222-2231. © 2024 SETAC.
Collapse
Affiliation(s)
- Rhuana Valdetário Médice
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Renan Silva Arruda
- Department of Plant Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Jaewon Yoon
- Department of Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ricardo Moreira Borges
- Walter Mors Natural Product Research Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália Pessoa Noyma
- Department of Plant Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Miquel Lürling
- Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands
| | - Camila Manoel Crnkovic
- Department of Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marcelo Manzi Marinho
- Department of Plant Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Ernani Pinto
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
4
|
Arruda RS, Jacinavicius FR, Noyma NP, Drummond E, Barreto DA, da Silva LHS, Huszar VL, Pinto E, Lürling M, Marinho MM. Cyanopeptides occurrence and diversity in a Brazilian tropical reservoir: Exploring relationships with water quality. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124051. [PMID: 38688388 DOI: 10.1016/j.envpol.2024.124051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Microcystins (MCs) are a class of toxic secondary metabolites produced by some cyanobacteria strains that endanger aquatic and terrestrial organisms in various freshwater systems. Although patterns in MC occurrence are being recognized, divergences in the global data still hamper our ability to predict the toxicity of cyanobacterial blooms. This study aimed (i) to determine the dynamics of MCs and other cyanopeptides in a tropical reservoir, (ii) to investigate the correlation between peptides and potential cyanotoxin producers (iii) identifying the possible abiotic factors that influence the peptides. We analyzed, monthly, eight MC variants (MC-RR, -LA, -LF, -LR, -LW, -YR, [D-Asp3]-RR and [D-Asp3]-LR) and other peptides in 47 water samples collected monthly, all season long, from two sampling sites in a tropical eutrophic freshwater reservoir, in southeastern Brazil. The cyanopeptides were assessed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The biomass of potential cyanobacterial producers and water quality variables were measured. MCs were detected in both sampling sites year-round; the total MC concentration varied from 0.21 to 4.04 μg L-1, and three MC variants were identified and quantified (MC-RR, [D-Asp3]-RR, -LR). Additionally, we identified 28 compounds belonging to three other cyanopeptide classes: aeruginosin, microginin, and cyanopeptolin. As potential MC producers, Microcystis spp. and Dolichospermum circinalis were dominant during the study, representing up to 75% of the total phytoplankton. Correlational and redundancy analysis suggested positive effects of dissolved oxygen, nitrate, and total phosphorus on MC and microginins concentration, while water temperature appeared to favor aeruginosins. A comparison between our results and historical data showed a reduction in total phosphorus and cyanobacteria, suggesting increased water quality in the reservoir. However, the current MC concentrations indicate a rise in cyanobacterial toxicity over the last eight years. Moreover, our study underscores the pressing need to explore cyanopeptides other than MCs in tropical aquatic systems.
Collapse
Affiliation(s)
- Renan Silva Arruda
- Laboratory of Ecology and Physiology of Phytoplankton, Department of Plant Biology, University of Rio de Janeiro State, Rua São Francisco Xavier 524-PHLC Sala 511a, Rio de Janeiro, 20550-900, Brazil.
| | - Fernanda Rios Jacinavicius
- Department of Clinical Chemistry, School of Pharmaceutical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 580 - Bloco 17, São Paulo, SP, 05508-000, Brazil
| | - Natália Pessoa Noyma
- Laboratory of Ecology and Physiology of Phytoplankton, Department of Plant Biology, University of Rio de Janeiro State, Rua São Francisco Xavier 524-PHLC Sala 511a, Rio de Janeiro, 20550-900, Brazil
| | - Erick Drummond
- Laboratory of Ecology and Physiology of Phytoplankton, Department of Plant Biology, University of Rio de Janeiro State, Rua São Francisco Xavier 524-PHLC Sala 511a, Rio de Janeiro, 20550-900, Brazil
| | - Davi Almeida Barreto
- Laboratory of Phycology, National Museum, Federal University of Rio de Janeiro - UFRJ, Quinta da Boa Vista, São Cristóvão, CEP, 20940-040, Rio de Janeiro, RJ, Brazil
| | - Lúcia Helena Sampaio da Silva
- Laboratory of Phycology, National Museum, Federal University of Rio de Janeiro - UFRJ, Quinta da Boa Vista, São Cristóvão, CEP, 20940-040, Rio de Janeiro, RJ, Brazil
| | - Vera Lucia Huszar
- Laboratory of Phycology, National Museum, Federal University of Rio de Janeiro - UFRJ, Quinta da Boa Vista, São Cristóvão, CEP, 20940-040, Rio de Janeiro, RJ, Brazil
| | - Ernani Pinto
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário, 303, São Dimas, Piracicaba, SP, 13416-000, Brazil
| | - Miquel Lürling
- Aquatic Ecology & Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700, AA, Wageningen, the Netherlands
| | - Marcelo Manzi Marinho
- Laboratory of Ecology and Physiology of Phytoplankton, Department of Plant Biology, University of Rio de Janeiro State, Rua São Francisco Xavier 524-PHLC Sala 511a, Rio de Janeiro, 20550-900, Brazil
| |
Collapse
|
5
|
Long W, Harshaw K, Wang Y, Xiang Q, Zi Y, Volkoff H, MacIsaac HJ, Xu R, Niu M, Xi Q, Chang X. A non-microcystin-producing Microcystis wesenbergii strain alters fish food intake by disturbing neuro-endocrine appetite regulation. HARMFUL ALGAE 2024; 135:102647. [PMID: 38830717 DOI: 10.1016/j.hal.2024.102647] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024]
Abstract
Cyanobacterial harmful algal blooms (cHABs) are pervasive sources of stress resulting in neurotoxicity in fish. A member of the widely distributed Microcystis genus of bloom-forming cyanobacteria, Microcystis wesenbergii can be found in many freshwater lakes, including Dianchi Lake (China), where it has become one of the dominant contributors to the lake's recurrent blooms. However, unlike its more well-known counterpart M. aeruginosa, the effects of dense non-microcystin-containing M. wesenbergii blooms are seldom studied. The disturbance of appetite regulation and feeding behaviour can have downstream effects on the growth of teleost fish, posing a significant challenge to aquaculture and conservation efforts. Here we examined the effects of M. wesenbergii blooms on the food intake of Acrossocheilus yunnanensis, a native cyprinid in southern China. This fish species has disappeared in Dianchi Lake, and its reintroduction might be negatively affected by the presence of this newly-dominant Microcystis species. We co-cultured juvenile A. yunnanensis with a non-microcystin-producing strain of M. wesenbergii at initial densities between 5 × 104 and 1 × 106 cells/mL and monitored fish feeding behaviour and changes in neurotransmitter and hormone protein levels. High-density M. wesenbergii cultures increased the feeding rate of co-cultured fish, elevating concentrations of appetite-stimulating signalling molecules (Agouti-related protein and γ-aminobutyric acid), while decreasing inhibitory ones (POMC). These changes coincided with histopathological alterations and reduced somatic indices in brain and intestinal tissues. Given this potential for detrimental effects and dysregulation of food intake, further studies are necessary to determine the impacts of chronic exposure of M. wesenbergii in wild fish.
Collapse
Affiliation(s)
- Wenyu Long
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Keira Harshaw
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Yunfeng Wang
- Fishery Technology Extension Station of Yunnan, Kunming 650034, China
| | - Qianqian Xiang
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Yuanyan Zi
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Hugh J MacIsaac
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada; School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Runbing Xu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Minmin Niu
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Qiwen Xi
- Fishery Technology Extension Station of Yunnan, Kunming 650034, China
| | - Xuexiu Chang
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada.
| |
Collapse
|
6
|
Harshaw K, Fahim A, Zi J, Chandrasekera PC, Chang X, Dixon B, MacIsaac HJ. Non-microcystin extracellular metabolites of Microcystis aeruginosa impair viability and reproductive gene expression in rainbow trout cell lines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170747. [PMID: 38340819 DOI: 10.1016/j.scitotenv.2024.170747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Microcystis aeruginosa is a ubiquitous freshwater cyanobacterium best known for producing hepatotoxic microcystins; however, this common bloom-forming species also produces myriad biologically active and potentially deleterious other metabolites. Our understanding of the effects of these non-microcystin metabolites on fish is limited. In this study, we evaluated cytotoxicity of extracellular metabolites harvested from both microcystin-producing (MC+) and non-producing (MC-) strains of M. aeruginosa on rainbow trout (Oncorhynchus mykiss) cell lines derived from tissues of the brain, pituitary, heart, gonads, gills, skin, liver, and milt. We also examined the influence of M. aeruginosa exudates (MaE) on the expression of critical reproduction-related genes using the same cell lines. We found that exudates of the MC- M. aeruginosa strain significantly reduced viability in RTBrain, RTgill-W1, and RT-milt5 cell lines and induced significant cellular stress and/or injury in six of the eight cell lines-highlighting potential target tissues of cyanobacterial cytotoxic effects. Observed sublethal consequences of Microcystis bloom exposure occurred with both MC+ and MC- strains' exudates and significantly altered expression of developmental and sex steroidogenic genes. Collectively, our results emphasize the contributions of non-MC metabolites to toxicity of Microcystis-dominated algal blooms and the need to integrate the full diversity of M. aeruginosa compounds-beyond microcystins-into ecotoxicological risk assessments.
Collapse
Affiliation(s)
- Keira Harshaw
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Ambreen Fahim
- Canadian Centre for Alternatives to Animal Methods, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Jinmei Zi
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | | | - Xuexiu Chang
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada; Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Hugh J MacIsaac
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada; School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| |
Collapse
|
7
|
Davidović P, Blagojević D, Meriluoto J, Simeunović J, Svirčev Z. Biotests in Cyanobacterial Toxicity Assessment-Efficient Enough or Not? BIOLOGY 2023; 12:biology12050711. [PMID: 37237524 DOI: 10.3390/biology12050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Cyanobacteria are a diverse group of organisms known for producing highly potent cyanotoxins that pose a threat to human, animal, and environmental health. These toxins have varying chemical structures and toxicity mechanisms and several toxin classes can be present simultaneously, making it difficult to assess their toxic effects using physico-chemical methods, even when the producing organism and its abundance are identified. To address these challenges, alternative organisms among aquatic vertebrates and invertebrates are being explored as more assays evolve and diverge from the initially established and routinely used mouse bioassay. However, detecting cyanotoxins in complex environmental samples and characterizing their toxic modes of action remain major challenges. This review provides a systematic overview of the use of some of these alternative models and their responses to harmful cyanobacterial metabolites. It also assesses the general usefulness, sensitivity, and efficiency of these models in investigating the mechanisms of cyanotoxicity expressed at different levels of biological organization. From the reported findings, it is clear that cyanotoxin testing requires a multi-level approach. While studying changes at the whole-organism level is essential, as the complexities of whole organisms are still beyond the reach of in vitro methodologies, understanding cyanotoxicity at the molecular and biochemical levels is necessary for meaningful toxicity evaluations. Further research is needed to refine and optimize bioassays for cyanotoxicity testing, which includes developing standardized protocols and identifying novel model organisms for improved understanding of the mechanisms with fewer ethical concerns. In vitro models and computational modeling can complement vertebrate bioassays and reduce animal use, leading to better risk assessment and characterization of cyanotoxins.
Collapse
Affiliation(s)
- Petar Davidović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Dajana Blagojević
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Jussi Meriluoto
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi, Tykistökatu 6 A, 20520 Turku, Finland
| | - Jelica Simeunović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi, Tykistökatu 6 A, 20520 Turku, Finland
| |
Collapse
|
8
|
Shahmohamadloo RS, Bhavsar SP, Ortiz Almirall X, Marklevitz SAC, Rudman SM, Sibley PK. Lake Erie fish safe to eat yet afflicted by algal hepatotoxins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160474. [PMID: 36481113 DOI: 10.1016/j.scitotenv.2022.160474] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/28/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Toxic harmful algal blooms (HABs) pose serious threats to human health and instances of wildlife death have been documented across taxa. However, the extent of toxicological impacts on wildlife species is largely unresolved, raising uncertainty about the repercussions of increasingly severe HABs on the biodiversity and functioning of aquatic ecosystems. Here, we conducted a field study to assess human health risks from consuming fish caught across all stages of a HAB and to determine the pervasiveness of potentially harmful levels of the cosmopolitan toxin microcystin on fish populations. We collected 190 fish in 2015 and 2017 from Lake Erie, a large freshwater ecosystem that is highly productive for fisheries and is an epicenter of HABs and microcystin toxicity events. Fish muscles and livers were analyzed for total microcystins, which was used to conduct a human health risk assessment for comparison against fish consumption advisory benchmarks available for Lake Erie. We found microcystins pose low risks to human health from fillet consumption (mean 1.80 ng g-1 ww) but substantial risks to fish health and recruitment from liver concentrations measured well before and after seasonal bloom events (mean 460.13 ng g-1 ww). Our findings indicate HABs are a previously underappreciated but pervasive threat to fish populations.
Collapse
Affiliation(s)
- René S Shahmohamadloo
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686, United States; School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada.
| | - Satyendra P Bhavsar
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Rd, Toronto, ON M9P 3V6, Canada; Department of Physical & Environmental Sciences, University of Toronto, 1065 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Xavier Ortiz Almirall
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Rd, Toronto, ON M9P 3V6, Canada; IQS School of Engineering, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain
| | - Stephen A C Marklevitz
- Lake Erie Management Unit, Ontario Ministry of Natural Resources and Forestry, 320 Milo Road, Wheatley, ON N0P 2P0, Canada
| | - Seth M Rudman
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686, United States
| | - Paul K Sibley
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
9
|
Foucault P, Gallet A, Duval C, Marie B, Duperron S. Gut microbiota and holobiont metabolome composition of the medaka fish (Oryzias latipes) are affected by a short exposure to the cyanobacterium Microcystis aeruginosa. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106329. [PMID: 36274502 DOI: 10.1016/j.aquatox.2022.106329] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Blooms of toxic cyanobacteria are a common stress encountered by aquatic fauna. Evidence indicates that long-lasting blooms affect fauna-associated microbiota. Because of their multiple roles, host-associated microbes are nowadays considered relevant to ecotoxicology, yet the respective timing of microbiota versus functional changes in holobionts response needs to be clarified. The response of gut microbiota and holobiont's metabolome to exposure to a dense culture of Microcystis aeruginosa was investigated as a microcosm-simulated bloom in the model fish species Oryzias latipes (medaka). Both gut microbiota and gut metabolome displayed significant composition changes after only 2 days of exposure. A dominant symbiont, member of the Firmicutes, plummeted whereas various genera of Proteobacteria and Actinobacteriota increased in relative abundance. Changes in microbiota composition occurred earlier and faster compared to metabolome composition. Liver and muscle metabolome were much less affected than guts, supporting that the gut and associated microbiota are in the front row upon exposure. This study highlights that even short cyanobacterial blooms, that are increasingly frequent, trigger changes in microbiota composition and holobiont metabolome. It emphasizes the relevance of multi-omics approaches to explore organism's response to an ecotoxicological stress.
Collapse
Affiliation(s)
- Pierre Foucault
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France; UMR7618 iEES-Paris, Sorbonne Université, Paris, France
| | - Alison Gallet
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Charlotte Duval
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Benjamin Marie
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Sébastien Duperron
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France.
| |
Collapse
|
10
|
Hu MY, Yu QZ, Lin JQ, Fang SG. Sexual Dimorphism of the Gut Microbiota in the Chinese Alligator and Its Convergence in the Wild Environment. Int J Mol Sci 2022; 23:12140. [PMID: 36292992 PMCID: PMC9603114 DOI: 10.3390/ijms232012140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/27/2022] Open
Abstract
The gut microbiota forms a complex microecosystem in vertebrates and is affected by various factors. As a key intrinsic factor, sex has a persistent impact on the formation and development of gut microbiota. Few studies have analyzed sexual dimorphism of gut microbiota, particularly in wild animals. We used 16S rRNA gene sequencing to analyze the gut microbiota of juvenile and adult Chinese alligators, and untargeted metabolomics to study serum metabolomes of adult alligators. We observed significant sexual differences in the community diversity in juvenile, but not adult, alligators. In terms of taxonomic composition, the phylum Fusobacteriota and genus Cetobacterium were highly abundant in adult alligators, similar to those present in carnivorous fishes, whereas the gut microbiota composition in juvenile alligators resembled that in terrestrial reptiles, indicating that adults are affected by their wild aquatic environment and lack sex dimorphism in gut microbiota. The correlation analysis revealed that the gut microbiota of adults was also affected by cyanobacteria in the external environment, and this effect was sex-biased and mediated by sex hormones. Overall, this study reveals sexual differences in the gut microbiota of crocodilians and their convergence in the external environment, while also providing insights into host-microbiota interactions in wildlife.
Collapse
Affiliation(s)
- Meng-Yuan Hu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qin-Zhang Yu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian-Qing Lin
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China
| | - Sheng-Guo Fang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Song W, Wu K, Wu X, Lu Y, Li J, Li J, Cui M. The antiestrogen-like activity and reproductive toxicity of 2,6-DCBQ on female zebrafish upon sub-chronic exposure. J Environ Sci (China) 2022; 117:10-20. [PMID: 35725062 DOI: 10.1016/j.jes.2021.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/01/2021] [Accepted: 11/12/2021] [Indexed: 06/15/2023]
Abstract
2,6-Dichloro-1,4-benzoquinone (2,6-DCBQ), an emerging water disinfection by-product, is widely detected in water resources. However, its potential effects on the reproductive system are largely unknown. Here, we investigated the long-term effects of 2,6-DCBQ on gonadal development by exposing zebrafish from 15 to 180 days postfertilization (dpf). Following exposure to 2,6-DCBQ (20 and 100 µg/L), female-specific effects including delayed puberty onset, retarded ovarian growth and breakdown of the zona radiata were observed, resulting in subfertility in adult females. Adverse effects in folliculogenesis disappeared two months after cessation of 2,6-DCBQ administration. In contrast, no adverse impacts were noted in male testes. The effects on females were associated with significant reduction in 17β-estradiol (E2) level, suggesting a role for 2,6-DCBQ in anti-estrogenic activity. E2 level change in blood was further supported by dysregulated expression of genes (cyp19a1a, fshb, kiss3, esr2b, vtg1, and vtg3) related to the hypothalamic-pituitary-gonad-liver (HPGL) axis. The present study demonstrates for the first time that 2,6-DCBQ induces reproductive impairments in female zebrafish through disrupting 17β-estradiol level.
Collapse
Affiliation(s)
- Weiyi Song
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221000, China
| | - Kun Wu
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiling Wu
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221000, China
| | - Yichun Lu
- School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
| | - Jing Li
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221000, China
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun 130025, China.
| | - Mengqiao Cui
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221000, China.
| |
Collapse
|
12
|
Ling X, Zuo J, Pan M, Nie H, Shen J, Yang Q, Hung TC, Li G. The presence of polystyrene nanoplastics enhances the MCLR uptake in zebrafish leading to the exacerbation of oxidative liver damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151749. [PMID: 34843796 DOI: 10.1016/j.scitotenv.2021.151749] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
The accumulation of diminutive plastic waste in the environment, including microplastics and nanoplastics, has threatened the health of multiple species. Nanoplastics can adsorb the pollutants from the immediate environment, and may be used as carriers for pollutants to enter organisms and bring serious ecological risk. To evaluate the toxic effects of microcystin-LR (MCLR) on the liver of adult zebrafish (Danio rerio) in the presence of 70 nm polystyrene nanoplastics (PSNPs), zebrafish were exposed to MCLR alone (0, 0.9, 4.5 and 22.5 μg/L) and a mixture of MCLR + PSNPs (100 μg/L) for three months. The results indicated that groups with combined exposure to MCLR and PSNPs further enhanced the accumulation of MCLR in the liver when compared to groups only exposed to MCLR. Cellular swelling, fat vacuolation, and cytoarchitectonic damage were observed in zebrafish livers after exposure to MCLR, and the presence of PSNPs exacerbated these adverse effects. The results of biochemical tests showed the combined effect of MCLR + PSNPs enhanced MCLR-induced hepatotoxicity, which could be attributed to the altered levels of reactive oxygen species, malondialdehyde and glutathione, and activities of catalase. The expression of genes related to antioxidant responses (p38a, p38b, ERK2, ERK3, Nrf2, HO-1, cat1, sod1, gax, JINK1, and gstr1) was further performed to study the mechanisms of MCLR combined with PSNPs aggravated oxidative stress of zebrafish. The results showed that PSNPs could improve the bioavailability of MCLR in the zebrafish liver by acting as a carrier and accelerate MCLR-induced oxidative stress by regulating the levels of corresponding enzymes and genes.
Collapse
Affiliation(s)
- Xiaodong Ling
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Zuo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Meiqi Pan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongyan Nie
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianzhong Shen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Yang
- Key Laboratory of Ecological Impacts of Hydraulic Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California-Davis, Davis, CA 95616, USA
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| |
Collapse
|
13
|
Sergi E, Orfanakis M, Dimitriadi A, Christou M, Zachopoulou A, Kourkouta C, Printzi A, Zervou SK, Makridis P, Hiskia A, Koumoundouros G. Sublethal exposure to Microcystis aeruginosa extracts during embryonic development reduces aerobic swimming capacity in juvenile zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106074. [PMID: 35030472 DOI: 10.1016/j.aquatox.2022.106074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/26/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
In the last decades, cyanobacterial harmful algal blooms (CyanoHABs) pose an intensifying ecological threat. Microcystis aeruginosa is a common CyanoHAB species in freshwater ecosystems, with severe toxic effects in a wide range of organisms. In the present paper we examined whether transient and short (48 h) exposure of fish embryos to sublethal levels of M. aeruginosa crude extract (200 mg biomass dw L-1) affects swimming performance at later life stages (end of metamorphosis, ca 12 mm TL, 22,23 days post-fertilization). Pre-exposed metamorphosing larvae presented a significant decrease in swimming performance (9.7 ± 1.6 vs 11.4 ± 1.7 TL s-1 in the control group, p < 0.01), and a significant decrease in the ventricle length-to-depth ratio (1.23 ± 0.15 vs 1.42 ± 0.15 in control fish, p < 0.05). In addition, extract-exposed fish presented significantly elevated rates of vertebral abnormalities (82 ± 13% vs 7 ± 4% in the control group), mainly consisting of the presence of extra neural and haemal processes. No significant differences between groups were detected in survival and growth rates. Results are discussed in respect to the mechanisms that might mediate the detected cyanobacterial effects. This is the first evidence of a direct link between sublethal exposure to M. aeruginosa during the embryonic period and swimming performance at later life-stages. Decreased swimming performance, altered cardiac shape, and elevated vertebral abnormalities in response to early exposure to M. aeruginosa could have significant effects on fish populations in the wild.
Collapse
Affiliation(s)
| | | | | | - Maria Christou
- Biology Department, University of Crete, Heraklion, Greece
| | | | | | - Alice Printzi
- Biology Department, University of Crete, Heraklion, Greece
| | - Sevasti-Kiriaki Zervou
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Athens, Greece
| | | | - Anastasia Hiskia
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Athens, Greece
| | | |
Collapse
|
14
|
Ma Y, Liu H, Du X, Shi Z, Liu X, Wang R, Zhang S, Tian Z, Shi L, Guo H, Zhang H. Advances in the toxicology research of microcystins based on Omics approaches. ENVIRONMENT INTERNATIONAL 2021; 154:106661. [PMID: 34077854 DOI: 10.1016/j.envint.2021.106661] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Microcystins (MCs) are the most widely distributed cyanotoxins, which can be ingested by animals and human body in multiple ways, resulting in a threat to human health and the biodiversity of wildlife. Therefore, the study on toxic effects and mechanisms of MCs is one of the focuses of attention. Recently, the Omics techniques, i.e. genomics, transcriptomics, proteomics and metabolomics, have significantly contributed to the comprehensive understanding and revealing of the molecular mechanisms about the toxicity of MCs. This paper mainly reviews current literature using the Omics approaches to explore the toxicity mechanism of MCs in liver, gonad, spleen, brain, intestine and lung of multiple species. It was found that MCs can exert strong toxic effects on various metabolic activities and cell signal transduction in cell cycle, apoptosis, destruction of cell cytoskeleton and redox disorder, at protein, transcription and metabolism level. Meanwhile, it was also revealed that the alteration of non-coding RNAs (miRNA, circRNA and lncRNA, etc.) and gut microbiota plays an essential regulatory role in the toxic effects of MCs, especially in hepatotoxicity and reproductive toxicity. In addition, we summarized current research gaps and pointed out the future directions for research. The detailed information in this paper shows that the application and development of Omics techniques have significantly promoted the research on MCs toxicity, and it is also a valuable resource for exploring the toxic mechanism of MCs.
Collapse
Affiliation(s)
- Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Ziang Shi
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, PR China
| | - Xiaohui Liu
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, PR China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
15
|
Jia M, Teng M, Tian S, Yan J, Meng Z, Yan S, Li R, Zhou Z, Zhu W. Effects of penconazole enantiomers exposure on hormonal disruption in zebrafish Danio rerio (Hamilton, 1822). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43476-43482. [PMID: 33834344 DOI: 10.1007/s11356-021-13446-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
PEN is a widely used triazole fungicide, usually used to control grape white rot. In the process of agricultural use, PEN will be scattered to the soil and water environment, which brings certain environmental safety risks. In this study, we used a 200-μg/L solution of Rac-PEN, (+)-PEN, and (-)-PEN to perform a 28-day exposure test on zebrafish. The results showed that long-term low-dose PEN exposure did not significantly change the growth factor K and the number of spawning of zebrafish. However, the content of four important hormones vitellogenin, 17β-estradiol, testosterone, and 11-ketotestosterone in zebrafish has changed significantly. Furthermore, we measured the expression of hypothalamus-pituitary-gonads-liver (HPGL) axis-related genes, and the results showed that the expressions of related genes in the brain, gonads, and liver all changed significantly. Combining the above results, we can conclude that PEN has obvious endocrine disrupting effect on zebrafish, and has gender-specific endocrine effects. Meanwhile, Rac-PEN and (+)-PEN had stronger effects on the endocrine system of zebrafish than (-)-PEN.
Collapse
Affiliation(s)
- Ming Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Miaomiao Teng
- College of Sciences, China Agricultural University, Beijing, China
| | - Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Jin Yan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Zhiyuan Meng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Sen Yan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Ruisheng Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
16
|
Santos AA, Soldatou S, de Magalhães VF, Azevedo SMFO, Camacho-Muñoz D, Lawton LA, Edwards C. Degradation of Multiple Peptides by Microcystin-Degrader Paucibacter toxinivorans (2C20). Toxins (Basel) 2021; 13:265. [PMID: 33917728 PMCID: PMC8068134 DOI: 10.3390/toxins13040265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 11/16/2022] Open
Abstract
Since conventional drinking water treatments applied in different countries are inefficient at eliminating potentially toxic cyanobacterial peptides, a number of bacteria have been studied as an alternative to biological filters for the removal of microcystins (MCs). Here, we evaluated the degradation of not only MCs variants (-LR/DM-LR/-RR/-LF/-YR), but also non-MCs peptides (anabaenopeptins A/B, aerucyclamides A/D) by Paucibactertoxinivorans over 7 days. We also evaluated the degradation rate of MC-LR in a peptide mix, with all peptides tested, and in the presence of M. aeruginosa crude extract. Furthermore, biodegradation was assessed for non-cyanobacterial peptides with different chemical structures, such as cyclosporin A, (Glu1)-fibrinopeptide-B, leucine-enkephalin, and oxytocin. When cyanopeptides were individually added, P. toxinivorans degraded them (99%) over 7 days, except for MC-LR and -RR, which decreased by about 85 and 90%, respectively. The degradation rate of MC-LR decreased in the peptide mix compared to an individual compound, however, in the presence of the Microcystis extract, it was degraded considerably faster (3 days). It was noted that biodegradation rates decreased in the mix for all MCs while non-MCs peptides were immediately degraded. UPLC-QTOF-MS/MS allowed us to identify two linear biodegradation products for MC-LR and MC-YR, and one for MC-LF. Furthermore, P. toxinivorans demonstrated complete degradation of non-cyanobacterial peptides, with the exception of oxytocin, where around 50% remained after 7 days. Thus, although P. toxinivorans was previously identified as a MC-degrader, it also degrades a wide range of peptides under a range of conditions, which could be optimized as a potential biological tool for water treatment.
Collapse
Affiliation(s)
- Allan A. Santos
- Biophysics Institute, Federal University of Rio de Janeiro, 373 Avenida Carlos Chagas Filho, Ilha do Fundão, Rio de Janeiro 21941-901, Brazil; (V.F.d.M.); (S.M.F.O.A.)
- School of Pharmacy and Life Sciences, Robert Gordon University, The Sir Ian Wood Building, Garthdee Road, Aberdeen AB10 7GJ, UK; (S.S.); (D.C.-M.); (L.A.L.); (C.E.)
| | - Sylvia Soldatou
- School of Pharmacy and Life Sciences, Robert Gordon University, The Sir Ian Wood Building, Garthdee Road, Aberdeen AB10 7GJ, UK; (S.S.); (D.C.-M.); (L.A.L.); (C.E.)
| | - Valeria Freitas de Magalhães
- Biophysics Institute, Federal University of Rio de Janeiro, 373 Avenida Carlos Chagas Filho, Ilha do Fundão, Rio de Janeiro 21941-901, Brazil; (V.F.d.M.); (S.M.F.O.A.)
| | - Sandra M. F. O. Azevedo
- Biophysics Institute, Federal University of Rio de Janeiro, 373 Avenida Carlos Chagas Filho, Ilha do Fundão, Rio de Janeiro 21941-901, Brazil; (V.F.d.M.); (S.M.F.O.A.)
| | - Dolores Camacho-Muñoz
- School of Pharmacy and Life Sciences, Robert Gordon University, The Sir Ian Wood Building, Garthdee Road, Aberdeen AB10 7GJ, UK; (S.S.); (D.C.-M.); (L.A.L.); (C.E.)
| | - Linda A. Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, The Sir Ian Wood Building, Garthdee Road, Aberdeen AB10 7GJ, UK; (S.S.); (D.C.-M.); (L.A.L.); (C.E.)
| | - Christine Edwards
- School of Pharmacy and Life Sciences, Robert Gordon University, The Sir Ian Wood Building, Garthdee Road, Aberdeen AB10 7GJ, UK; (S.S.); (D.C.-M.); (L.A.L.); (C.E.)
| |
Collapse
|
17
|
Li H, Gu X, Chen H, Mao Z, Zeng Q, Yang H, Kan K. Comparative toxicological effects of planktonic Microcystis and benthic Oscillatoria on zebrafish embryonic development: Implications for cyanobacteria risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:115852. [PMID: 33246764 DOI: 10.1016/j.envpol.2020.115852] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 06/12/2023]
Abstract
Planktonic and benthic cyanobacteria blooms are increasing in frequency in recent years. Although many studies have focused on the effects of purified toxins or cyanobacteria extracts on fish developments, the more complex impacts of cyanobacteria cells on fish populations are still considered insufficient. This study compared the toxicological effects of harmful planktonic Microcystis and benthic Oscillatoria on zebrafish (Danio rerio) early stages of development. Zebrafish embryos, at 1-2 h post fertilization (hpf), were exposed to 5, 10, and 20 × 105 cells/mL Microcystis (producing microcystins) or Oscillatoria (producing cylindrospermopsins) until 96 hpf. The results indicated that the effects of benthic Oscillatoria on embryonic development of zebrafish were different from those of planktonic Microcystis. Reduced hatching rates, increased mortality, depressed heart rates and elevated malformation rates were observed following exposures to increased concentrations of Microcystis, whilst Oscillatoria exposures only caused yolk sac edemas. Exposure to a high concentration of Microcystis induced severe oxidative damage, growth inhibition and transcriptional downregulations of genes (GH, GHR1, IGF1, IGF1rb) associated with the growth hormone/insulin-like growth factor (GH/IGF) axis. Although Oscillatoria exposure did not affect the body growth, it obviously enhanced the antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and up-regulated the expressions of several oxidative stress-related genes. Discrepancies in the developmental toxicity caused by Microcystis and Oscillatoria may not only attributed to the different secondary metabolites they secrete, but also to the different adhesion behaviors of algal cells on embryonic chorion. These results suggested that harmful cyanobacteria cells could influence the successful recruitment of fish, while the effects of benthic cyanobacteria should not be ignored. It also highlighted that the necessity for further investigating the ecotoxicity of intact cyanobacterial samples when assessing the risk of cyanobacterial blooms.
Collapse
Affiliation(s)
- Hongmin Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China.
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Huiting Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Kecong Kan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Durán-Vinet B, Araya-Castro K, Chao TC, Wood SA, Gallardo V, Godoy K, Abanto M. Potential applications of CRISPR/Cas for next-generation biomonitoring of harmful algae blooms: A review. HARMFUL ALGAE 2021; 103:102027. [PMID: 33980455 DOI: 10.1016/j.hal.2021.102027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/01/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Research on harmful algal and cyanobacterial blooms (HABs and CHABs) has risen dramatically due to their increasing global distribution, frequency, and intensity. These blooms jeopardize public health, ecosystem function, sustainability and can have negative economic impacts. Numerous monitoring programs have been established using light microscopy, liquid chromatography coupled to mass spectrometry (LC-MS), ELISA, and spectrophotometry to monitor HABs/CHABs outbreaks. Recently, DNA/RNA-based molecular methods have been integrated into these programs to replace or complement traditional methods through analyzing environmental DNA and RNA (eDNA/eRNA) with techniques such as quantitative polymerase chain reaction (qPCR), fluorescent in situ hybridization (FISH), sandwich hybridization assay (SHA), isothermal amplification methods, and microarrays. These have enabled the detection of rare or cryptic species, enhanced sample throughput, and reduced costs and the need for visual taxonomic expertise. However, these methods have limitations, such as the need for high capital investment in equipment or detection uncertainties, including determining whether organisms are viable. In this review, we discuss the potential of newly developed molecular diagnosis technology based on Clustered Regularly Interspaced Short Palindromic Repeats/Cas proteins (CRISPR/Cas), which utilizes the prokaryotic adaptative immune systems of bacteria and archaea. Cas12 and Cas13-based platforms can detect both DNA and RNA with attomolar sensitivity within an hour. CRISPR/Cas diagnostic is a rapid, inexpensive, specific, and ultrasensitive technology that, with some further development, will provide many new platforms that can be used for HABs/CHABs biomonitoring and research.
Collapse
Affiliation(s)
- B Durán-Vinet
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Genomics and Bioinformatics Unit, Universidad de La Frontera, Av. Francisco Salazar, 1145 Temuco, Chile; Bachelor of Biotechnology (Honours) Program, Faculty of Agricultural and Forestry Sciences, Universidad de La Frontera, Av. Francisco Salazar, 1145 Temuco, Chile.
| | - K Araya-Castro
- Doctoral Program in Science of Natural Resources, Universidad de La Frontera, Av. Francisco Salazar, 1145 Temuco, Chile
| | - T C Chao
- Institute of Environmental Change & Society, Department of Biology, University of Regina, Wascana Parkway, 3737 Regina, Canada
| | - S A Wood
- Coastal and Freshwater Group, Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - V Gallardo
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Genomics and Bioinformatics Unit, Universidad de La Frontera, Av. Francisco Salazar, 1145 Temuco, Chile; Bachelor of Biotechnology (Honours) Program, Faculty of Agricultural and Forestry Sciences, Universidad de La Frontera, Av. Francisco Salazar, 1145 Temuco, Chile
| | - K Godoy
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Microscopy and Flow Cytometry Unit, Universidad de La Frontera, Av. Francisco Salazar, 1145 Temuco, Chile
| | - M Abanto
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Genomics and Bioinformatics Unit, Universidad de La Frontera, Av. Francisco Salazar, 1145 Temuco, Chile
| |
Collapse
|
19
|
Hu J, Liu J, Zhu Y, Diaz-Perez Z, Sheridan M, Royer H, Leibensperger R, Maizel D, Brand L, Popendorf KJ, Gaston CJ, Zhai RG. Exposure to Aerosolized Algal Toxins in South Florida Increases Short- and Long-Term Health Risk in Drosophila Model of Aging. Toxins (Basel) 2020; 12:E787. [PMID: 33322328 PMCID: PMC7763642 DOI: 10.3390/toxins12120787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 11/17/2022] Open
Abstract
Harmful algal blooms (HABs) are a rising health and environmental concern in the United States, particularly in South Florida. Skin contact and the ingestion of contaminated water or fish and other seafood have been proven to have severe toxicity to humans in some cases. However, the impact of aerosolized HAB toxins is poorly understood. In particular, knowledge regarding either the immediate or long-term effects of exposure to aerosolized cyanotoxins produced by freshwater blue-green algae does not exist. The aim of this study was to probe the toxicity of aerosolized cyanobacterial blooms using Drosophila melanogaster as an animal model. The exposure of aerosolized HABs at an early age leads to the most severe long-term impact on health and longevity among all age groups. Young groups and old males showed a strong acute response to HAB exposure. In addition, brain morphological analysis using fluorescence imaging reveals significant indications of brain degeneration in females exposed to aerosolized HABs in early or late stages. These results indicate that one-time exposure to aerosolized HAB particles causes a significant health risk, both immediately and in the long-term. Interestingly, age at the time of exposure plays an important role in the specific nature of the impact of aerosol HABs. As BMAA and microcystin have been found to be the significant toxins in cyanobacteria, the concentration of both toxins in the water and aerosols was examined. BMAA and microcystin are consistently detected in HAB waters, although their concentrations do not always correlate with the severity of the health impact, suggesting the potential contribution from additional toxins present in the aerosolized HAB. This study demonstrates, for the first time, the health risk of exposure to aerosolized HAB, and further highlights the critical need and importance of understanding the toxicity of aerosolized cyanobacteria HAB particles and determining the immediate and long-term health impacts of HAB exposure.
Collapse
Affiliation(s)
- Jiaming Hu
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA; (J.H.); (M.S.); (H.R.); (R.L.III); (C.J.G.)
- Programs in Biomedical Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jiaqi Liu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.); (Y.Z.); (Z.D.-P.)
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.); (Y.Z.); (Z.D.-P.)
| | - Zoraida Diaz-Perez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.); (Y.Z.); (Z.D.-P.)
| | - Michael Sheridan
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA; (J.H.); (M.S.); (H.R.); (R.L.III); (C.J.G.)
| | - Haley Royer
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA; (J.H.); (M.S.); (H.R.); (R.L.III); (C.J.G.)
| | - Raymond Leibensperger
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA; (J.H.); (M.S.); (H.R.); (R.L.III); (C.J.G.)
| | - Daniela Maizel
- Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA; (D.M.); (K.J.P.)
| | - Larry Brand
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA;
| | - Kimberly J. Popendorf
- Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA; (D.M.); (K.J.P.)
| | - Cassandra J. Gaston
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA; (J.H.); (M.S.); (H.R.); (R.L.III); (C.J.G.)
| | - R. Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.); (Y.Z.); (Z.D.-P.)
| |
Collapse
|
20
|
Qian L, Qi S, Zhang J, Duan M, Schlenk D, Jiang J, Wang C. Exposure to Boscalid Induces Reproductive Toxicity of Zebrafish by Gender-Specific Alterations in Steroidogenesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14275-14287. [PMID: 33138376 DOI: 10.1021/acs.est.0c02871] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Boscalid is a succinate dehydrogenase inhibitor fungicide and is frequently detected in surface water. Due to the frequent detection of boscalid, we evaluated its impact on the reproduction of adult zebrafish following a 21 d exposure to 0, 0.01, 0.1, and 1.0 mg/L. Following exposure to boscalid, the fertility of female zebrafish and fertilization rate of spawning eggs were reduced in a concentration-dependent manner up to a respective 87% and 20% in the highest concentration. A significant 16% reduction in the percentage of late vitellogenic oocytes was noted in ovaries, and a significant 74% reduction in the percentage of spermatids in testis was also observed after treatment with 1.0 mg/L. 17β-Estradiol (E2) concentrations decreased significantly in females (34% decrease) but significantly increased in males (15% increase) following 1.0 mg/L boscalid treatment. The expression of genes (such as era, er2b, cyp19a, and cyp19b) related to the hypothalamus-pituitary-gonad-liver (HPGL) axis was significantly altered and positively correlated with E2 concentrations in female and male zebrafish (p < 0.05). Molecular docking results revealed that the binding modes between boscalid and target proteins (ER and CYP19) of zebrafish were similar to that of the reference compounds and the target proteins. The binding energies indicate that boscalid may have a weak estrogen-like binding effect or CYP19 inhibition, potentially altering the HPGL axis, thereby reducing E2 concentrations and fecundity in females. In contrast, boscalid caused significant induction of E2 steroidogenesis and subsequent feminization of gonads in males, indicating gender-specific adverse outcome pathways.
Collapse
Affiliation(s)
- Le Qian
- College of Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Suzhen Qi
- Risk Assessment Laboratory for Bee Product Quality and Safety of Ministry of Agriculture, Institute of Agricultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China
| | - Jie Zhang
- College of Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Manman Duan
- College of Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, California 92521, United States
| | - Jiazhen Jiang
- College of Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
21
|
Marie B. Disentangling of the ecotoxicological signal using "omics" analyses, a lesson from the survey of the impact of cyanobacterial proliferations on fishes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139701. [PMID: 32497891 DOI: 10.1016/j.scitotenv.2020.139701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/16/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Omics technologies offer unprecedented perspectives for the rational investigation of complex biological systems. Indeed, omics present the ability of offering an extensive perception of the biochemistry and physiology of the cell and of any perturbing consequences of contaminants through the joint investigation of thousands of molecular responses simultaneously; then it has recently conducted to a fervent attention by research ecotoxicologists. Beyond the presentation of latest advances, exemplified here by omics investigation of cyanobacterial deleterious effects on various fishes (at various experimental and biological scales and with various analytical tools and pipeline), the present review paper re-explores the promising perspectives and also the pitfalls of such holistic investigations of the ecotoxicological response of organisms for environmental assessment.
Collapse
Affiliation(s)
- Benjamin Marie
- Muséum National d'Histoire Naturelle, UMR 7245, CNRS, MNHN Molécules de Communication et Adaptation des Micro-organismes (MCAM), équipe "Cyanobactéries, Cyanotoxines et Environnement", 12 rue Buffon, CP 39, 75231 Paris Cedex 05, France.
| |
Collapse
|
22
|
Rehberger K, Wernicke von Siebenthal E, Bailey C, Bregy P, Fasel M, Herzog EL, Neumann S, Schmidt-Posthaus H, Segner H. Long-term exposure to low 17α-ethinylestradiol (EE2) concentrations disrupts both the reproductive and the immune system of juvenile rainbow trout, Oncorhynchus mykiss. ENVIRONMENT INTERNATIONAL 2020; 142:105836. [PMID: 32563011 DOI: 10.1016/j.envint.2020.105836] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/08/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Estrogenic endocrine disrupting compounds (EEDCs), such as ethinylestradiol (EE2), are well studied for their impact on the reproductive system of fish. EEDCs may also impact the immune system and, as a consequence, the disease susceptibility of fish. It is currently not yet known whether the low concentrations of EEDCs that are able to disrupt the reproductive system of trout are effective in disrupting the immune system and the fish host resistance towards pathogens, too, or whether such immunodisruptive effects would occur only at higher EEDC concentrations. Therefore, in the present study we compare the effect thresholds of low 17α-ethinylestradiol concentrations (1.5 and 5.5 EE2 ng/L) on the reproductive system, the immune system, the energy expenditures and the resistance of juvenile rainbow trout (Oncorhynchus mykiss) against the parasite Tetracapsuloides bryosalmonae - the etiological agent of proliferative kidney disease (PKD) of salmonids. The parasite infection was conducted without injection and under low pathogen exposure concentrations. The disease development was followed over 130 days post infection - in the presence or absence of EE2 exposure. The results show that the long-term EE2 exposure affected, at both concentrations, reproductive parameters like the mRNA levels of hepatic vitellogenin and estrogen receptors. At the same concentrations, EE2 exposure modulated the immune parameters: mRNA levels of several immune genes were altered and the parasite intensity as well as the disease severity (histopathology) were significantly reduced in EE2-exposed fish compared to infected control fish. The combination of EE2 exposure and parasite infection was energetically costly, as indicated by the decreased values of the swim tunnel respirometry. Although further substantiation is needed, our findings suggest that EE2 exerts endocrine disruptive and immunomodulating activities at comparable effect thresholds, since reproductive and immune parameters were affected by the same, low EE2 concentrations.
Collapse
Affiliation(s)
- Kristina Rehberger
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | | | - Christyn Bailey
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Patrick Bregy
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Melanie Fasel
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Elio L Herzog
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Silvia Neumann
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Heike Schmidt-Posthaus
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Helmut Segner
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Duperron S, Halary S, Gallet A, Marie B. Microbiome-Aware Ecotoxicology of Organisms: Relevance, Pitfalls, and Challenges. Front Public Health 2020; 8:407. [PMID: 32974256 PMCID: PMC7472533 DOI: 10.3389/fpubh.2020.00407] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/09/2020] [Indexed: 01/16/2023] Open
Abstract
Over the last 15 years, the advent of high-throughput "omics" techniques has revealed the multiple roles and interactions occurring among hosts, their microbial partners and their environment. This microbiome revolution has radically changed our views of biology, evolution, and individuality. Sitting at the interface between a host and its environment, the microbiome is a relevant yet understudied compartment for ecotoxicology research. Various recent works confirm that the microbiome reacts to and interacts with contaminants, with consequences for hosts and ecosystems. In this paper, we thus advocate for the development of a "microbiome-aware ecotoxicology" of organisms. We emphasize its relevance and discuss important conceptual and technical pitfalls associated with study design and interpretation. We identify topics such as functionality, quantification, temporality, resilience, interactions, and prediction as major challenges and promising venues for microbiome research applied to ecotoxicology.
Collapse
Affiliation(s)
- Sébastien Duperron
- Muséum National d'Histoire Naturelle, CNRS, UMR7245 Mécanismes de Communication et Adaptation des Micro-organismes, Paris, France.,Institut Universitaire de France, Paris, France
| | - Sébastien Halary
- Muséum National d'Histoire Naturelle, CNRS, UMR7245 Mécanismes de Communication et Adaptation des Micro-organismes, Paris, France
| | - Alison Gallet
- Muséum National d'Histoire Naturelle, CNRS, UMR7245 Mécanismes de Communication et Adaptation des Micro-organismes, Paris, France
| | - Benjamin Marie
- Muséum National d'Histoire Naturelle, CNRS, UMR7245 Mécanismes de Communication et Adaptation des Micro-organismes, Paris, France
| |
Collapse
|
24
|
Burdick SM, Hewitt DA, Martin BA, Schenk L, Rounds SA. Effects of harmful algal blooms and associated water-quality on endangered Lost River and shortnose suckers. HARMFUL ALGAE 2020; 97:101847. [PMID: 32732045 DOI: 10.1016/j.hal.2020.101847] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic eutrophication contributes to harmful blooms of cyanobacteria in freshwater ecosystems worldwide. In Upper Klamath Lake, Oregon, massive blooms of Aphanizomenon flos-aquae and smaller blooms of other cyanobacteria are associated with cyanotoxins, hypoxia, high pH, high concentrations of ammonia, and potentially hypercapnia. Recovery of the endangered Lost River sucker Deltistes luxatus and shortnose sucker Chasmistes brevirostris in Upper Klamath Lake is obstructed by low survival in the juvenile life stage. Water quality associated with the harmful algal blooms and their decomposition (crashes) is often singled out as the primary cause of juvenile sucker mortality. We investigated this general hypothesis with a review of relevant literature and data from decades of monitoring in Upper Klamath Lake. Microcystins, hepatotoxins produced by some cyanobacteria, are unlikely to be directly lethal to suckers; potential effects of other cyanotoxins that are present in the lake warrant investigation. Dissolved-oxygen saturation declined following bloom crashes, but was infrequently low enough for long enough in Upper Klamath Lake to cause direct sucker mortality. Hypercapnia could potentially reach lethal concentrations in the fall and winter, but did not appear to be associated with the summer algal blooms. pH was highest during peaks in cyanobacteria growth, but infrequently reached directly lethal levels (> 10.3). However, pH frequently reached an observed sub-lethal effect level for juvenile suckers (10.0). Un-ionized ammonia rarely exceeded even the lowest effect level measured for suckers. Rather than act as a direct cause of large-scale mortality, the available evidence suggests that water quality associated with massive blooms of cyanobacteria in Upper Klamath Lake contributes to chronic stress for juvenile suckers and may increase mortality due to other factors.
Collapse
Affiliation(s)
- Summer M Burdick
- U.S. Geological Survey, Western Fisheries Research Center and Oregon Water Science Center USA; 2795 Anderson Ave. Suite 106, Klamath Falls, OR 97603 USA.
| | - David A Hewitt
- U.S. Geological Survey, Western Fisheries Research Center and Oregon Water Science Center USA; 2795 Anderson Ave. Suite 106, Klamath Falls, OR 97603 USA.
| | - Barbara A Martin
- U.S. Geological Survey, Western Fisheries Research Center and Oregon Water Science Center USA; 2795 Anderson Ave. Suite 106, Klamath Falls, OR 97603 USA.
| | - Liam Schenk
- U.S. Geological Survey, Western Fisheries Research Center and Oregon Water Science Center USA; 63095 Deschutes Market Rd., Bend, OR 97701 USA.
| | - Stewart A Rounds
- U.S. Geological Survey, Western Fisheries Research Center and Oregon Water Science Center USA; 2130 SW 5th Ave, Portland, OR 97201 USA.
| |
Collapse
|
25
|
Park JA, Kang JK, Jung SM, Choi JW, Lee SH, Yargeau V, Kim SB. Investigating Microcystin-LR adsorption mechanisms on mesoporous carbon, mesoporous silica, and their amino-functionalized form: Surface chemistry, pore structures, and molecular characteristics. CHEMOSPHERE 2020; 247:125811. [PMID: 31945720 DOI: 10.1016/j.chemosphere.2020.125811] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/20/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Microcystin-LR (MC-LR) is the most common cyanotoxin released from algal-blooms. The study investigated the MC-LR adsorption mechanisms by comparing adsorption performance of protonated mesoporous carbon/silica (MC-H, MS-H) and their amino-functionalized forms (MC-NH2 and MS-NH2) considering surface chemistry and pore characteristics. The maximum MC-LR adsorption capacity (Langmuir model) of MC-H (37.87 mg/g) was the highest followed by MC-NH2 (29.25 mg/g) and MS-NH2 (23.03 mg/g), because pore structure is partly damaged during amino-functionalization. However, MC-NH2 (k2 = 0.042 g/mg/min) reacted faster with MC-LR than MC-H during early-stage adsorption due to enhancing electrostatic interactions. Intra-particle diffusion model fit indicated Kp,1 of MC-H (2.11 mg/g/min1/2) was greater than MC-NH2 due to its greater surface area and pore volume. Also, large mesopore diameters are favorable to MC-LR adsorption by pore diffusion. The effect of adsorbate molecular size on adsorption trend against MC-H, MC-NH2 and MS-NH2 was determined by kinetic experiments using two dyes, reactive blue and acid orange: MS-NH2 achieved the highest adsorption for both dyes due to the large number of amino groups on its surface (41.2 NH2/nm2). Overall, it was demonstrated that adsorption of MC-LR on mesoporous materials is governed by (meso-)pore diffusion and π - π (and hydrophobic) interactions induced by carbon materials; in addition, positively-charged grafted amino groups enhance initial MC-LR adsorption rate.
Collapse
Affiliation(s)
- Jeong-Ann Park
- Department of Chemical Engineering, McGill University, 3610 University St., Montréal, H3A 0C5, Québec, Canada; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Kyu Kang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Environmental Functional Materials and Water Treatment Laboratory, Department of Rural Systems Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung-Mok Jung
- Korea Water and Wastewater Works Association, Seoul, 07379, Republic of Korea
| | - Jae-Woo Choi
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sang-Hyup Lee
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; KU-KIST Green School, Graduate School of Energy and Environment, Korea University, Seoul, 02841, Republic of Korea
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, 3610 University St., Montréal, H3A 0C5, Québec, Canada
| | - Song-Bae Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Environmental Functional Materials and Water Treatment Laboratory, Department of Rural Systems Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
26
|
Zhang L, Wang Z, Wang N, Gu L, Sun Y, Huang Y, Chen Y, Yang Z. Mixotrophic Ochromonas Addition Improves the Harmful Microcystis-Dominated Phytoplankton Community in In Situ Microcosms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4609-4620. [PMID: 32126758 DOI: 10.1021/acs.est.9b06438] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Driven by global warming and eutrophication, outbreaks of cyanobacterial blooms have severely impacted ecosystem stability and water safety. Of the organisms used to control cyanobacteria, protozoa can highly resist cyanotoxins, efficiently control cyanobacterial populations, and show considerably different feeding strategies from those of metazoans. Thus, protozoa have great potential to control harmful cyanobacteria and improve phytoplankton composition in eutrophic waters. To evaluate the actual effects of protozoa in controlling cyanobacteria and improving the phytoplankton community structure in the field, an in situ microcosm study was performed using a flagellate Ochromonas gloeopara that ingests Microcystis. Results showed that adding Ochromonas reduced the cyanobacterial populations and increased the chlorophyte and diatom proportions. Furthermore, the species richness and diversity of the phytoplankton community were enhanced in microcosms with Ochromonas. Additionally, there was a gradual increase in the chlorophyte population in the unicellular Microcystis control, while Ochromonas addition significantly accelerated the replacement of dominant species. This study was the first to show the practical effects of protozoa on controlling cyanobacteria in the field, highlighting that a reduction in in situ cyanobacteria via protozoa can improve the phytoplankton community structure, dredge the toxic cyanobacteria-dominated microbial food web, and mitigate harmful cyanobacteria risks in fresh waters.
Collapse
Affiliation(s)
- Lu Zhang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Zeshuang Wang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Na Wang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Lei Gu
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yunfei Sun
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yuan Huang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yafen Chen
- State Key Laboratory of Lake and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
| | - Zhou Yang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
27
|
Riba M, Kiss-Szikszai A, Gonda S, Parizsa P, Deák B, Török P, Valkó O, Felföldi T, Vasas G. Chemotyping of terrestrial Nostoc-like isolates from alkali grassland areas by non-targeted peptide analysis. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Structure optimization and bioactivity evaluation of ThDP analogs targeting cyanobacterial pyruvate dehydrogenase E1. Bioorg Med Chem 2019; 27:115159. [PMID: 31699453 DOI: 10.1016/j.bmc.2019.115159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 11/22/2022]
Abstract
Harmful cyanobacteria bloom (HCB) has occurred frequently in recent years and it is urgent to develop novel algicides to deal with this problem. In this paper, a series of novel thiamin diphosphate (ThDP) analogs 5a-5g were designed and synthesized targeting cyanobacterial pyruvate dehydrogenase complex E1 (Cy-PDHc E1). Our results showed that compounds 5a-5g have higher inhibitory activities against Cy-PDHc E1 (IC50 9.56-3.48 µM) and higher inhibitory activities against two model cyanobacteria strains Synechocystis sp PCC6803 (EC50 2.03-1.58 µM) and Microcystis aeruginosa FACHB905 (EC50 1.86-0.95 µM). Especially, compound 5b displayed highest inhibitory activities (IC50 = 3.48 µM) against Cy-PDHc E1 and powerful inhibitory activities against cyanobacteria Synechocystis sp PCC6803 (EC50 = 1.58 µM) and Microcystis aeruginosa FACHB905 (EC50 = 1.04 µM). Moreover, the inhibitory activities of compound 5b were even higher than those of copper sulfate (EC50 = 2.02 and 1.71 µM separately) which has been widely used as algicide against cyanobacteria PCC6803 and FACHB905. The more important was that compound 5b display much higher inhibitory selectivity between Cy-PDHc E1 (Inhibitory rate 97.4%) and porcine PDHc E1 (Inhibitory rate 11.8%) under the same concentration (100 μM). The inhibition kinetic experiment and molecular docking research showed that compound 5b can inhibit Cy-PDHc E1 by occupying the ThDP-binding pocket and then blocking Cy-PDHc E1 bound to ThDP as competitive inhibitor. The imagines of SEM and TEM showed that cellular microstructures were heavily destroyed under compound 5b stress. Our results demonstrated compound 5b could be taken as a potential lead compound targeting Cy-PDHc E1 to obtain environment-friendly algicide for harmful cyanobacterial blooms control.
Collapse
|
29
|
Moreira DA, Soares RM, Valente RH, Bebianno MJ, Rebelo MF. Molecular effects of Microcystin-LA in tilapia (Oreochromis niloticus). Toxicon 2019; 166:76-82. [PMID: 31121173 DOI: 10.1016/j.toxicon.2019.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 04/25/2019] [Accepted: 05/11/2019] [Indexed: 10/26/2022]
Abstract
Nile tilapia (Oreochromis niloticus) is a freshwater phytoplanktivorous fish species reported to accumulate and tolerate large amounts of cyanotoxins such as microcystins (MCs). The present study aimed to investigate molecular responses to the acute exposure of Nile tilapia to the Microcystin-LA analogue (MC-LA). Thus, the specimens were sublethally exposed to 1000 μg kg-1 of MC-LA for 12, 24, 48, and 96 h. Gene expression of PP1, PP2A, GST, GPX and actin was analyzed by quantitative PCR. The protein abundance profile of PP2A was determined by immunoblotting, while the integrity of its biological function was assessed by a phosphatase enzymatic assay. PP2A activity was significantly and strongly reduced by MC-LA. A resulting feedback mechanism significantly increased PP2A gene expression and protein abundance in all assessed times. However, a recovery of that phosphatase activity was not observed. In this study, the observed increase in GPX gene expression was the only response that could be directly related to the unknown factors associated to the fish survival to such high dose exposure.
Collapse
Affiliation(s)
- Daniel A Moreira
- Laboratory of Environmental Molecular Biology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Graduate Program in Computational and Systems Biology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Raquel M Soares
- Multidisciplinary Center of Research in Biology - NUMPEX-BIO - Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, Brazil.
| | - Richard H Valente
- Laboratory of Toxinology, Instituto Oswaldo Cruz. Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Maria J Bebianno
- Laboratory of Environmental Molecular Biology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; CIMA, University of Algarve, Campus de Gambelas, 8000-397, Faro, Portugal
| | - Mauro F Rebelo
- Laboratory of Environmental Molecular Biology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Teng M, Zhou Y, Song M, Dong K, Chen X, Wang C, Bi S, Zhu W. Chronic Toxic Effects of Flutolanil on the Liver of Zebrafish ( Danio rerio). Chem Res Toxicol 2019; 32:995-1001. [PMID: 30942079 DOI: 10.1021/acs.chemrestox.8b00300] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Flutolanil is a broad-spectrum amide fungicide that is widely used to prevent fungal pathogens in agriculture. However, its usage may have a potential environmental impact on organisms. So far, few literatures have investigated the chronic toxicity of flutolanil at concentrations relevant to environmental conditions in the nontarget aquatic organisms. This study was aimed at evaluating whether the long-term exposure of flutolanil affects oxidative stress, immune response, and apoptosis in the liver of zebrafish ( Danio rerio). The results showed that the activity of catalase (CAT) was significantly decreased in the liver in all flutolanil-treated groups. Interestingly, the malondialdehyde (MDA) contents were remarkably increased following the flutolanil exposure. Deoxyribonucleic acid (DNA) damage was increased with a concentration-dependent manner. The transcription level of genes involved in apoptosis and the immune system were significantly altered following flutolanil chronic exposure in zebrafish liver. Furthermore, the caspase-3 enzyme activity was significantly increased. Taken together, this study demonstrated that the resulting effects on oxidative stress, immune toxicity, and apoptosis may be responsible for the pathological alterations in zebrafish liver after flutolanil exposure at concentrations relevant to environmental conditions, advancing the knowledge of pesticide environmental risk assessment.
Collapse
Affiliation(s)
- Miaomiao Teng
- Department of Applied Chemistry, College of Sciences , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Yimeng Zhou
- Department of Applied Chemistry, College of Sciences , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Min Song
- Tai'an Academy of Agricultural Sciences , Taian , Shandong Province 271018 , China
| | - Kai Dong
- Zhangdian District of Zibo City Youth Palace, Zibo , Shandong Province 255000 , China
| | - Xiangguang Chen
- Department of Applied Chemistry, College of Sciences , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Chengju Wang
- Department of Applied Chemistry, College of Sciences , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Sheng Bi
- Department of Psychiatry and Behavioral Sciences , The Johns Hopkins University School of Medicine , Baltimore , Maryland 21205 , United States
| | - Wentao Zhu
- Department of Applied Chemistry, College of Sciences , China Agricultural University , Beijing 100193 , People's Republic of China
| |
Collapse
|
31
|
Janssen EML. Cyanobacterial peptides beyond microcystins - A review on co-occurrence, toxicity, and challenges for risk assessment. WATER RESEARCH 2019; 151:488-499. [PMID: 30641464 DOI: 10.1016/j.watres.2018.12.048] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/18/2018] [Accepted: 12/31/2018] [Indexed: 05/28/2023]
Abstract
Cyanobacterial bloom events that produce natural toxins occur in freshwaters across the globe, yet the potential risk of many cyanobacterial metabolites remains mostly unknown. Only microcystins, one class of cyanopeptides, have been studied intensively and the wealth of evidence regarding exposure concentrations and toxicity led to their inclusion in risk management frameworks for water quality. However, cyanobacteria produce an incredible diversity of hundreds of cyanopeptides beyond the class of microcystins. The question arises, whether the other cyanopeptides are in fact of no human and ecological concern or whether these compounds merely received (too) little attention thus far. Current observations suggest that an assessment of their (eco)toxicological risk is indeed relevant: First, other cyanopeptides, including cyanopeptolins and anabaenopeptins, can occur just as frequently and at similar nanomolar concentrations as microcystins in surface waters. Second, cyanopeptolins, anabaenopeptins, aeruginosins and microginins inhibit proteases in the nanomolar range, in contrast to protein phosphatase inhibition by microcystins. Cyanopeptolins, aeruginosins, and aerucyclamide also show toxicity against grazers in the micromolar range comparable to microcystins. The key challenge for a comprehensive risk assessment of cyanopeptides remains their large structural diversity, lack of reference standards, and high analytical requirements for identification and quantification. One way forward would be a prevalence study to identify the priority candidates of tentatively abundant, persistent, and toxic cyanopeptides to make comprehensive risk assessments more manageable.
Collapse
Affiliation(s)
- Elisabeth M-L Janssen
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, 8600, Switzerland.
| |
Collapse
|
32
|
Rietjens IMCM, Vervoort J, Maslowska-Górnicz A, Van den Brink N, Beekmann K. Use of proteomics to detect sex-related differences in effects of toxicants: implications for using proteomics in toxicology. Crit Rev Toxicol 2018; 48:666-681. [PMID: 30257127 DOI: 10.1080/10408444.2018.1509941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review provides an overview of results obtained when using proteome analysis for detecting sex-based differences in response to toxicants. It reveals implications to be taken into account when considering the use of proteomics in toxicological studies. It appears that results may differ when studying the same chemical in the same species in different target tissues. Another result of interest is the limited dose-response behavior of differential abundance patterns observed in studies where more than one dose level is tested. It is concluded that use of proteomics to study differences in modes of action of toxic compounds is an active area of research. The examples from use of proteomics to study sex-dependent differences also reveal that further studies are needed to provide reliable insight in modes of action, novel biomarkers or even novel therapies. To eventually reach this aim for this and other toxicological endpoints, it is essential to consider background variability, consequences of timing of toxicant administration, dose-response behavior, relevant species and target organ, species and organ variability and the presence of proteoforms.
Collapse
Affiliation(s)
| | - Jacques Vervoort
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | | | - Nico Van den Brink
- Division of Toxicology, Wageningen University, Wageningen, The Netherlands
| | - Karsten Beekmann
- Division of Toxicology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
33
|
Hou J, Liu H, Wang L, Duan L, Li S, Wang X. Molecular Toxicity of Metal Oxide Nanoparticles in Danio rerio. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7996-8004. [PMID: 29944347 DOI: 10.1021/acs.est.8b01464] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Metal oxide nanoparticles can exert adverse effects on humans and aquatic organisms; however, their toxic mechanisms are still unclear. We investigated the toxic effects and mechanisms of copper oxide, zinc oxide, and nickel oxide nanoparticles in Danio rerio using microarray analysis and the comet assay. Copper oxide nanoparticles were more lethal than the other metal oxide nanoparticles. Gene ontology analysis of genes that were differentially expressed following exposure to all three metal oxide nanoparticles showed that the nanoparticles mainly affected nucleic acid metabolism in the nucleus via alterations in nucleic acid binding. KEGG analysis classified the differentially expressed genes to the genotoxicity-related pathways "cell cycle", "Fanconi anemia", "DNA replication", and "homologous recombination". The toxicity of metal oxide nanoparticles may be related to impairments in DNA synthesis and repair, as well as to increased production of reactive oxygen species.
Collapse
Affiliation(s)
- Jing Hou
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , China
| | - Haiqiang Liu
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , China
| | - Luyao Wang
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , China
| | - Linshuai Duan
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences , Chinese Academy of Science , Beijing 100085 , China
| | - Xiangke Wang
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , China
| |
Collapse
|
34
|
Qian H, Liu G, Lu T, Sun L. Developmental neurotoxicity of Microcystis aeruginosa in the early life stages of zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 151:35-41. [PMID: 29304416 DOI: 10.1016/j.ecoenv.2017.12.059] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/26/2017] [Accepted: 12/28/2017] [Indexed: 05/26/2023]
Abstract
Accumulating evidence suggests that cyanotoxins can exert neurotoxic effects on exposed aquatic organisms but most studies have focused on purified toxins rather than on the more complex effects of cyanobacterial blooms. To evaluate this issue in an environmentally relevant model, we assessed the developmental neurotoxicity induced by Microcystis aeruginosa on newly hatched zebrafish. After four days of exposure, the locomotor activity of zebrafish larvae was significantly decreased with increasing algae concentration. The levels of both acetylcholinesterase (AChE) and dopamine (DA) were decreased, accompanied by a decline in ache, chrna7 and manf and a compensatory increase in nr4a2b transcription. Furthermore, the expression of nine marker genes for nervous system function or development, namely, elavl3, gap43, gfap, mbp, nestin, ngn1, nkx2.2a, shha and syn2a, similarly decreased after algal exposure. These results demonstrated that Microcystis aeruginosa exposure affected cholinergic and dopaminergic neurotransmitter systems, the transcription of key nervous system genes, and consequently the activity level of larval zebrafish. Importantly, discrepancies in the neurotoxic effects observed in this study and in previous reports that were based on exposure to pure cyanotoxin highlight the necessity for further investigation of cyanobacterial bloom mixtures when assessing the ecotoxicity of cyanobacteria.
Collapse
Affiliation(s)
- Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Guangfu Liu
- Department of Food Science and Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
35
|
Liang X, Feswick A, Simmons D, Martyniuk CJ. Reprint of: Environmental toxicology and omics: A question of sex. J Proteomics 2018:S1874-3919(18)30113-1. [PMID: 29650353 DOI: 10.1016/j.jprot.2018.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular initiating events and downstream transcriptional/proteomic responses provide valuable information for adverse outcome pathways, which can be used predict the effects of chemicals on physiological systems. There has been a paucity of research that addresses sex-specific expression profiling in toxicology and due to cost, time, and logistic considerations, sex as a variable has not been widely considered. In response to this deficiency, federal agencies in the United States, Canada, and Europe have highlighted the importance of including sex as a variable in scientific investigations. Using case studies from both aquatic and mammalian toxicology, we report that there can be less than ~20-25% consensus in how the transcriptome and proteome of each sex responds to chemicals. Chemicals that have been shown to elicit sex-specific responses in the transcriptome or proteome include pharmaceuticals, anti-fouling agents, anticorrosive agents, and fungicides, among others. Sex-specific responses in the transcriptome and proteome are not isolated to whole animals, as investigations demonstrate that primary cell cultures isolated from each sex responds differently to toxicants. This signifies that sex is important, even in cell lines. Sex has significant implications for predictive toxicology, and both male and female data are required to improve robustness of adverse outcome pathways. BIOLOGICAL SIGNIFICANCE Clinical toxicology recognizes that sex is an important variable, as pharmacokinetics (ADME; absorption, distribution, metabolism, and excretion) can differ between females and males. However, few studies in toxicology have explored the implication of sex in relation to the transcriptome and proteome of whole organisms. High-throughput molecular approaches are becoming more frequently applied in toxicity screens (e.g. pre-clinical experiments, fish embryos, cell lines, synthetic tissues) and such data are expected to build upon reporter-based cell assays (e.g. receptor activation, enzyme inhibition) used in toxicant screening programs (i.e. Tox21, ToxCast, REACH). Thus, computational models can more accurately predict the diversity of adverse effects that can occur from chemical exposure within the biological system. Our studies and those synthesized from the literature suggest that the transcriptome and proteome of females and males respond quite differentially to chemicals. This has significant implications for predicting adverse effects in one sex when using molecular data generated in the other sex. While molecular initiating events are not expected to differ dramatically between females and males (i.e. an estrogen binds estrogen receptors in both sexes), it is important to acknowledge that the downstream transcriptomic and proteomic responses can differ based upon the presence/absence of co-regulators and inherent sex-specific variability in regulation of transcriptional and translational machinery. Transcriptomic and proteomic studies also reveal that cell processes affected by chemicals can differ due to sex, and this can undoubtedly lead to sex-specific physiological responses.
Collapse
Affiliation(s)
- Xuefang Liang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - April Feswick
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Denina Simmons
- Department of Chemistry, McMaster University, Hamilton, Ontario, Canada
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
36
|
Le Manach S, Sotton B, Huet H, Duval C, Paris A, Marie A, Yépremian C, Catherine A, Mathéron L, Vinh J, Edery M, Marie B. Physiological effects caused by microcystin-producing and non-microcystin producing Microcystis aeruginosa on medaka fish: A proteomic and metabolomic study on liver. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:523-537. [PMID: 29220784 DOI: 10.1016/j.envpol.2017.11.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 10/10/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
Cyanobacterial blooms have become a common phenomenon in eutrophic freshwater ecosystems worldwide. Microcystis is an important bloom-forming and toxin-producing genus in continental aquatic ecosystems, which poses a potential risk to Human populations as well as on aquatic organisms. Microcystis is known to produce along with various bioactive peptides, the microcystins (MCs) that have attracted more attention notably due to their high hepatotoxicity. To better understand the effects of cyanobacterial blooms on fish, medaka fish (Oryzias latipes) were sub-chronically exposed to either non-MC-producing or MC-producing living strains and, for this latter, to its subsequent MC-extract of Microcystis aeruginosa. Toxicological effects on liver have been evaluated through the combined approach of histopathology and 'omics' (i.e. proteomics and metabolomics). All treatments induce sex-dependent effects at both cellular and molecular levels. Moreover, the modalities of exposure appear to induce differential responses as the direct exposure to the cyanobacterial strains induce more acute effects than the MC-extract treatment. Our histopathological observations indicate that both non-MC-producing and MC-producing strains induce cellular impairments. Both proteomic and metabolomic analyses exhibit various biological disruptions in the liver of females and males exposed to strain and extract treatments. These results support the hypothesis that M. aeruginosa is able to produce bioactive peptides, other than MCs, which can induce toxicological effects in fish liver. Moreover, they highlight the importance of considering cyanobacterial cells as a whole to assess the realistic environmental risk of cyanobacteria on fish.
Collapse
Affiliation(s)
- Séverine Le Manach
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France.
| | - Benoit Sotton
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Hélène Huet
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France; Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, BioPôle Alfort, F-94704 Maisons-Alfort Cedex, France
| | - Charlotte Duval
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Alain Paris
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Arul Marie
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Claude Yépremian
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Arnaud Catherine
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Lucrèce Mathéron
- Institut de Biologie Paris Seine/FR 3631, Plateforme Spectrométrie de masse et Protéomique, Institut de Biologie Intégrative IFR 83, Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Joelle Vinh
- USR 3149 ESPCI/CNRS SMPB, Laboratory of Biological Mass Spectrometry and Proteomics, ESPCI Paris, PSL Research University, Paris, France
| | - Marc Edery
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Benjamin Marie
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France.
| |
Collapse
|
37
|
Liang X, Feswick A, Simmons D, Martyniuk CJ. Environmental toxicology and omics: A question of sex. J Proteomics 2018; 172:152-164. [DOI: 10.1016/j.jprot.2017.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 12/26/2022]
|
38
|
Li H, Yuan S, Su G, Li M, Wang Q, Zhu G, Letcher RJ, Li Y, Han Z, Liu C. Whole-Life-Stage Characterization in the Basic Biology of Daphnia magna and Effects of TDCIPP on Growth, Reproduction, Survival, and Transcription of Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13967-13975. [PMID: 29115819 DOI: 10.1021/acs.est.7b04569] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Toxicity tests of chemicals have mainly focused on the partial life-cycle evaluation of model animals. Limited information is available for the evaluation of effects of chemicals from a whole-life-stage exposure perspective. The objective of this study was to perform a whole-life-stage characterization in the basic biology of Daphnia magna (D. magna) and evaluate the effects of a known organophosphate ester (OPE) contaminant, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), on growth, reproduction, survival, and transcription of genes. The whole-life-stage characterization in growth, reproduction, and survival of D. magna was conducted, and representative sampling time points for the three developmental stages were identified (day 6, day 32, and day 62). Transcriptomic profiles for these three stages were compared, and stage-specific PCR arrays of D. magna were developed. The whole-life-stage exposure to environmentally relevant or greater concentrations of TDCIPP significantly inhibited growth and reproduction of D. magna and decreased survival at the later stage of the exposure experiment (≥32 days). Such adverse effects were not observed in the early stage of the exposure (<32 days), suggesting that short-term toxicity tests, such as the standard 21-day test, might underestimate the environmental risk of TDCIPP. Furthermore, expressions of genes selected at day 6, day 32, and day 62 were significantly changed after TDCIPP exposure, and the changes in the expressions of partial genes were correlated to the inhibitory effects on growth, reproduction, and survival.
Collapse
Affiliation(s)
- Han Li
- College of Fisheries, Huazhong Agricultural University , Wuhan 430070, China
| | - Siliang Yuan
- College of Fisheries, Huazhong Agricultural University , Wuhan 430070, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology , Nanjing 210094, China
| | - Meng Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University , Hangzhou 310058, China
| | - Qiangwei Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University , Hangzhou 310058, China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University , Hangzhou 310058, China
| | - Robert J Letcher
- Departments of Chemistry and Biology, Carleton University , Ottawa, Ontario K1S 5B6, Canada
| | - Yufei Li
- China Rural Technology Development Centre, Ministry of Science and Technology of PR China , Beijing 100045, China
| | - Zhihua Han
- Nanjing Institute of Environmental Science, MEP, Nanjing 210042, Jiangsu, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University , Wuhan 430070, China
- Collaborative Innovation Centre for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China
| |
Collapse
|
39
|
Sotton B, Paris A, Le Manach S, Blond A, Lacroix G, Millot A, Duval C, Qiao Q, Catherine A, Marie B. Global metabolome changes induced by cyanobacterial blooms in three representative fish species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 590-591:333-342. [PMID: 28283295 DOI: 10.1016/j.scitotenv.2017.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 06/06/2023]
Abstract
Cyanobacterial blooms induce important ecological constraints for aquatic organisms and strongly impact the functioning of aquatic ecosystems. In the past decades, the effects of the cyanobacterial secondary metabolites, so called cyanotoxins, have been extensively studied in fish. However, many of these studies have used targeted approaches on specific molecules, which are thought to react to the presence of these specific cyanobacterial compounds. Since a few years, untargeted metabolomic approaches provide a unique opportunity to evaluate the global response of hundreds of metabolites at a glance. In this way, our study provides the first utilization of metabolomic analyses in order to identify the response of fish exposed to bloom-forming cyanobacteria. Three relevant fish species of peri-urban lakes of the European temperate regions were exposed for 96h either to a microcystin (MC)-producing or to a non-MC-producing strain of Microcystis aeruginosa and metabolome changes were characterized in the liver of fish. The results suggest that a short-term exposure to those cyanobacterial biomasses induces metabolome changes without any response specificity linked to the fish species considered. Candidate metabolites are involved in energy metabolism and antioxidative response, which could potentially traduce a stress response of fish submitted to cyanobacteria. These results are in agreement with the already known information and could additionally bring new insights about the molecular interactions between cyanobacteria and fish.
Collapse
Affiliation(s)
- Benoît Sotton
- UMR 7245 MNHN/CNRS Molécules de communication et adaptation des microorganismes, équipe Cyanobactéries, Cyanotoxines et Environnement, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France..
| | - Alain Paris
- UMR 7245 MNHN/CNRS Molécules de communication et adaptation des microorganismes, équipe Cyanobactéries, Cyanotoxines et Environnement, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Séverine Le Manach
- UMR 7245 MNHN/CNRS Molécules de communication et adaptation des microorganismes, équipe Cyanobactéries, Cyanotoxines et Environnement, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Alain Blond
- UMR 7245 MNHN/CNRS Molécules de communication et adaptation des microorganismes, équipe Cyanobactéries, Cyanotoxines et Environnement, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Gérard Lacroix
- UMR iEES Paris (CNRS, UPMC, INRA, IRD, AgroParisTech, UPEC), Institute of Ecology and Environmental Sciences - Paris, Université Pierre et Marie Curie, Paris, France; UMS 3194 - CEREEP Ecotron IDF (CNRS, ENS), Ecole Normale Supérieure, Saint-Pierre-Lès-Nemours, France
| | - Alexis Millot
- UMS 3194 - CEREEP Ecotron IDF (CNRS, ENS), Ecole Normale Supérieure, Saint-Pierre-Lès-Nemours, France
| | - Charlotte Duval
- UMR 7245 MNHN/CNRS Molécules de communication et adaptation des microorganismes, équipe Cyanobactéries, Cyanotoxines et Environnement, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Qin Qiao
- UMR 7245 MNHN/CNRS Molécules de communication et adaptation des microorganismes, équipe Cyanobactéries, Cyanotoxines et Environnement, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Arnaud Catherine
- UMR 7245 MNHN/CNRS Molécules de communication et adaptation des microorganismes, équipe Cyanobactéries, Cyanotoxines et Environnement, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Benjamin Marie
- UMR 7245 MNHN/CNRS Molécules de communication et adaptation des microorganismes, équipe Cyanobactéries, Cyanotoxines et Environnement, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France..
| |
Collapse
|
40
|
Metabolic changes in Medaka fish induced by cyanobacterial exposures in mesocosms: an integrative approach combining proteomic and metabolomic analyses. Sci Rep 2017. [PMID: 28642462 PMCID: PMC5481417 DOI: 10.1038/s41598-017-04423-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cyanobacterial blooms pose serious threats to aquatic organisms and strongly impact the functioning of aquatic ecosystems. Due to their ability to produce a wide range of potentially bioactive secondary metabolites, so called cyanotoxins, cyanobacteria have been extensively studied in the past decades. Proteomic and metabolomic analyses provide a unique opportunity to evaluate the global response of hundreds of proteins and metabolites at a glance. In this study, we provide the first combined utilization of these methods targeted to identify the response of fish to bloom-forming cyanobacteria. Medaka fish (Oryzias latipes) were exposed for 96 hours either to a MC-producing or to a non-MC-producing strain of Microcystis aeruginosa and cellular, proteome and metabolome changes following exposure to cyanobacteria were characterized in the fish livers. The results suggest that a short-term exposure to cyanobacteria, producing or not MCs, induces sex-dependent molecular changes in medaka fish, without causing any cellular alterations. Globally, molecular entities involved in stress response, lipid metabolism and developmental processes exhibit the most contrasted changes following a cyanobacterial exposure. Moreover, it appears that proteomic and metabolomic analyses are useful tools to verify previous information and to additionally bring new horizons concerning molecular effects of cyanobacteria on fish.
Collapse
|
41
|
Yuan LL, Pollard AI. Using National-Scale Data To Develop Nutrient-Microcystin Relationships That Guide Management Decisions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6972-6980. [PMID: 28561562 DOI: 10.1021/acs.est.7b01410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Quantitative models that predict cyanotoxin concentrations in lakes and reservoirs from nutrient concentrations would facilitate management of these resources for recreation and as sources of drinking water. Development of these models from field data has been hampered by the high proportion of samples in which cyanotoxin concentrations are below detection limits and by the high variability of cyanotoxin concentrations within individual lakes. Here, we describe a national-scale hierarchical Bayesian model that addresses these issues and that predicts microcystin concentrations from summer mean total nitrogen and total phosphorus concentrations. This model accounts for 69% of the variance in mean microcystin concentrations in lakes and reservoirs of the conterminous United States. Mean microcystin concentrations were more strongly associated with differences in total nitrogen than total phosphorus. A general approach for assessing this and similar types of models for their utility for guiding management decisions is also described.
Collapse
Affiliation(s)
- Lester L Yuan
- Office of Water, U.S. Environmental Protection Agency , 1200 Pennsylvania Avenue, Washington, D.C. 20460, United States
| | - Amina I Pollard
- Office of Water, U.S. Environmental Protection Agency , 1200 Pennsylvania Avenue, Washington, D.C. 20460, United States
| |
Collapse
|
42
|
Chen L, Hu Y, He J, Chen J, Giesy JP, Xie P. Responses of the Proteome and Metabolome in Livers of Zebrafish Exposed Chronically to Environmentally Relevant Concentrations of Microcystin-LR. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:596-607. [PMID: 28005350 DOI: 10.1021/acs.est.6b03990] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, for the first time, changes in expressions of proteins and profiles of metabolites in liver of the small, freshwater fish [Formula: see text] (zebrafish) were investigated after long-term exposure to environmentally relevant concentrations of microcystin-LR (MC-LR). Male zebrafish were exposed via water to 1 or 10 μg MC-LR/L for 90 days, and iTRAQ-based proteomics and 1H NMR-based metabolomics were employed. Histopathological observations showed that MC-LR caused damage to liver, and the effects were more pronounced in fish exposed to 10 μg MC-LR/L. Metabolomic analysis also showed alterations of hepatic function, which included changes in a number of metabolic pathways, including small molecules involved in energy, glucose, lipids, and amino acids metabolism. Concentrations of lactate were significantly greater in individuals exposed to MC-LR than in unexposed controls. This indicated a shift toward anaerobic metabolism, which was confirmed by impaired respiration in mitochondria. Proteomics revealed that MC-LR significantly influenced multiple proteins, including those involved in folding of proteins and metabolism. Endoplasmic reticulum stress contributed to disturbance of metabolism of lipids in liver of zebrafish exposed to MC-LR. Identification of proteins and metabolites in liver of zebrafish responsive to MC-LR provides insights into mechanisms of chronic toxicity of MCs.
Collapse
Affiliation(s)
- Liang Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yufei Hu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jun He
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
- School of Biological Sciences, University of Hong Kong , Hong Kong SAR, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210089, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| |
Collapse
|
43
|
Qiao Q, Le Manach S, Huet H, Duvernois-Berthet E, Chaouch S, Duval C, Sotton B, Ponger L, Marie A, Mathéron L, Lennon S, Bolbach G, Djediat C, Bernard C, Edery M, Marie B. An integrated omic analysis of hepatic alteration in medaka fish chronically exposed to cyanotoxins with possible mechanisms of reproductive toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:119-131. [PMID: 27814527 DOI: 10.1016/j.envpol.2016.10.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/27/2016] [Accepted: 10/09/2016] [Indexed: 05/22/2023]
Abstract
Cyanobacterial blooms threaten human health as well as the population of other living organisms in the aquatic environment, particularly due to the production of natural toxic components, the cyanotoxin. So far, the most studied cyanotoxins are microcystins (MCs). In this study, the hepatic alterations at histological, proteome and transcriptome levels were evaluated in female and male medaka fish chronically exposed to 1 and 5 μg L-1 microcystin-LR (MC-LR) and to the extract of MC-producing Microcystis aeruginosa PCC 7820 (5 μg L-1 of equivalent MC-LR) by balneation for 28 days, aiming at enhancing our understanding of the potential reproductive toxicity of cyanotoxins in aquatic vertebrate models. Indeed, both MC and Microcystis extract adversely affect reproductive parameters including fecundity and egg hatchability. The liver of toxin treated female fish present glycogen storage loss and cellular damages. The quantitative proteomics analysis revealed that the quantities of 225 hepatic proteins are dysregulated. In particular, a notable decrease in protein quantities of vitellogenin and choriogenin was observed, which could explain the decrease in reproductive output. Liver transcriptome analysis through Illumina RNA-seq reveals that over 100-400 genes are differentially expressed under 5 μg L-1 MC-LR and Microcystis extract treatments, respectively. Ingenuity pathway analysis of the omic data attests that various metabolic pathways, such as energy production, protein biosynthesis and lipid metabolism, are disturbed by both MC-LR and the Microcystis extract, which could provoke the observed reproductive impairment. The transcriptomics analysis also constitutes the first report of the impairment of circadian rhythm-related gene induced by MCs. This study contributes to a better understanding of the potential consequences of chronic exposure of fish to environmental concentrations of cyanotoxins, suggesting that Microcystis extract could impact a wider range of biological pathways, compared with pure MC-LR, and even 1 μg L-1 MC-LR potentially induces a health risk for aquatic organisms.
Collapse
Affiliation(s)
- Qin Qiao
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France.
| | - Séverine Le Manach
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France
| | - Hélène Huet
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France; Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, BioPôle Alfort, 94700 Maisons-Alfort, France
| | - Evelyne Duvernois-Berthet
- UMR 7221 CNRS/MNHN, Évolution des Régulations Endocriniennes, Sorbonne Universités, Muséum Nationale d'Histoire Naturelle, Paris, France
| | - Soraya Chaouch
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France
| | - Charlotte Duval
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France
| | - Benoit Sotton
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France
| | - Loïc Ponger
- UMR 7196 MNHN/CNRS, INSERM U1154, Sorbonne Universités, Museum National d'Histoire Naturelle, Paris, France
| | - Arul Marie
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France
| | - Lucrèce Mathéron
- Institut de Biologie Paris Seine/FR 3631, Plateforme Spectrométrie de masse et Protéomique, Institut de Biologie Intégrative IFR 83, Sorbonne Universités, Université Pierre et Marie Curie, 75005 Paris, France
| | | | - Gérard Bolbach
- Institut de Biologie Paris Seine/FR 3631, Plateforme Spectrométrie de masse et Protéomique, Institut de Biologie Intégrative IFR 83, Sorbonne Universités, Université Pierre et Marie Curie, 75005 Paris, France
| | - Chakib Djediat
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France
| | - Cécile Bernard
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France
| | - Marc Edery
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France
| | - Benjamin Marie
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France.
| |
Collapse
|
44
|
Qiao Q, Le Manach S, Sotton B, Huet H, Duvernois-Berthet E, Paris A, Duval C, Ponger L, Marie A, Blond A, Mathéron L, Vinh J, Bolbach G, Djediat C, Bernard C, Edery M, Marie B. Deep sexual dimorphism in adult medaka fish liver highlighted by multi-omic approach. Sci Rep 2016; 6:32459. [PMID: 27561897 PMCID: PMC5000296 DOI: 10.1038/srep32459] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/09/2016] [Indexed: 02/05/2023] Open
Abstract
Sexual dimorphism describes the features that discriminate between the two sexes at various biological levels. Especially, during the reproductive phase, the liver is one of the most sexually dimorphic organs, because of different metabolic demands between the two sexes. The liver is a key organ that plays fundamental roles in various physiological processes, including digestion, energetic metabolism, xenobiotic detoxification, biosynthesis of serum proteins, and also in endocrine or immune response. The sex-dimorphism of the liver is particularly obvious in oviparous animals, as the female liver is the main organ for the synthesis of oocyte constituents. In this work, we are interested in identifying molecular sexual dimorphism in the liver of adult medaka fish and their sex-variation in response to hepatotoxic exposures. By developing an integrative approach combining histology and different high-throughput omic investigations (metabolomics, proteomics and transcriptomics), we were able to globally depict the strong sexual dimorphism that concerns various cellular and molecular processes of hepatocytes comprising protein synthesis, amino acid, lipid and polysaccharide metabolism, along with steroidogenesis and detoxification. The results of this work imply noticeable repercussions on the biology of oviparous organisms environmentally exposed to chemical or toxin issues.
Collapse
Affiliation(s)
- Qin Qiao
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Séverine Le Manach
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Benoit Sotton
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Hélène Huet
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France.,Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, BioPôle Alfort, Maisons-Alfort, France
| | - Evelyne Duvernois-Berthet
- UMR 7221 CNRS/MNHN, Évolution des Régulations Endocriniennes, Sorbonne Universités, Muséum Nationale d'Histoire Naturelle, Paris, France
| | - Alain Paris
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Charlotte Duval
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Loïc Ponger
- UMR 7196 MNHN/CNRS, INSERM U1154, Sorbonne Universités, Museum National d'Histoire Naturelle, Paris, France
| | - Arul Marie
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Alain Blond
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Lucrèce Mathéron
- Institut de Biologie Paris Seine/FR 3631, Plateforme Spectrométrie de masse et Protéomique, Institut de Biologie Intégrative IFR 83, Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Joelle Vinh
- USR 3149 ESPCI/CNRS SMPB, Laboratory of Biological Mass Spectrometry and Proteomics, ESPCI Paris, PSL Research University, Paris, France
| | - Gérard Bolbach
- Institut de Biologie Paris Seine/FR 3631, Plateforme Spectrométrie de masse et Protéomique, Institut de Biologie Intégrative IFR 83, Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Chakib Djediat
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Cécile Bernard
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Marc Edery
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Benjamin Marie
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|