1
|
Zhang S, Dong B, Zhao D, Yang J, Sun X, Yan L. Corrosion of carbon steel by Pseudomonas stutzeri CQ-Z5 in simulated oilfield water. Bioelectrochemistry 2025; 162:108846. [PMID: 39586224 DOI: 10.1016/j.bioelechem.2024.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/27/2024]
Abstract
Carbon steel, an important infrastructure material in the petroleum industry, experiences serious damage due to Microbially Influenced Corrosion (MIC) with untold economic impact. Pseudomonas stutzeri CQ-Z5 with solid biofilm formation and organic acid-producing ability was isolated from Changqing oilfield produced water. The corrosion behavior and mechanism of 20# carbon steel by P. stutzeri CQ-Z5 were explored in a simulated oilfield product water circulating device. Bacteria inoculation can hasten steel corrosion, the maximum corrosion rate reached 1.84 mm y-1. Pitting corrosion on rust layer was observed using SEM, and CLSM monitored the change in biofilm thickness. XRD displayed that oxides were the primary corrosion products, including Fe2O3, Fe3O4, and FeOOH. Analysis of contributions of corrosion types indicated that biofilm corrosion contributes 72 % to total corrosion, far higher than those of ion erosion and organic acid decay. Many genes involved in iron metabolism, biofilm synthesis, and organic acid production were annotated in the genome of P. stutzeri CQ-Z5. Accordingly, a hypothetical corrosion mechanism model of P. stutzeri CQ-Z5 for carbon steel involvement of initial ion erosion, then biofilm corrosion and organic acid decay was proposed. The work helped prevent carbon steel corrosion and improve corrosion mitigation strategies.
Collapse
Affiliation(s)
- Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Boyu Dong
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Dan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Jiani Yang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Xiufen Sun
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China; Key Laboratory of Low‑carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China; Engineering Research Center of Processing and Utilization of Grain By-products, Ministry of Education, Daqing, Heilongjiang, 163319, China.
| |
Collapse
|
2
|
Sun H, Ju X, Wang H, Ma X, Shi B. Ammonia nitrogen affects bacterial virulence and conditional pathogenic bacterial growth by regulating biofilm microbial metabolism and EPS secretion in laboratory scale distribution systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178150. [PMID: 39705953 DOI: 10.1016/j.scitotenv.2024.178150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
The control of conditional pathogenic bacteria and inhibition of their virulence factors (VFs) in drinking water distribution systems (DWDSs) is vital for drinking water safety. This study adopted two groups of DWDSs to investigate how ammonia nitrogen affects bacterial VFs and conditional pathogenic bacterial growth in biofilms. Our results indicated that Acidimicrobium (95,916.62 ± 119.24 TPM), Limnohabitans (30,338.81 ± 139.14 TPM), and Sediminibacterium (10,658.01 ± 48.94 TPM) were predominant in the biofilm bacterial community of DWDSs with NH3-N addition. Under these conditions, the abundances of various bacterial metabolites, such as L-glutamate (1.45-fold), 2-oxoglutarate (1.24-fold), pyruvate (2.10-fold), and adenosine monophosphate (AMP, 5.29-fold), were significantly upregulated, which suggested the upregulation of amino acid, carbohydrate, nucleotide, lipid, pyrimidine and purine metabolism. These metabolic pathways accelerated extracellular polymeric substance (EPS) secretion. The protein concentration in EPS also increased to 187.59 ± 0.58 μg/cm2. The increased EPS secretion promoted the amide I CO group of the EPS protein to interact with the surface of the DWDSs, thus enhancing the ability of bacteria (especially conditional pathogenic bacteria) to adhere to the pipe surface to form biofilms. Due to EPS protection, the abundance of the adherence subtype of VFs and the plate counts of Pseudomonas aeruginosa increased to 5912.8 ± 21.89 TPM and 655.78 ± 27.10 CFU/cm2, respectively. Therefore, NH3-N in DWDSs increased bacterial VFs levels and promoted the growth of some conditional pathogenic bacteria by regulating biofilm microbial metabolic pathways and EPS secretion, ultimately impacting the interaction between EPS and the pipe surface.
Collapse
Affiliation(s)
- Huifang Sun
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Xiurong Ju
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, Shanxi, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xu Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Wang H, Tao X, Yin H, Xing X, Shi B. The perfluorooctanoic acid accumulation and release from pipelines promoted growth of bacterial communities and opportunistic pathogens with different antibiotic resistance genes in drinking water. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135600. [PMID: 39180999 DOI: 10.1016/j.jhazmat.2024.135600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The spread of opportunistic pathogens (OPs) and antibiotic resistance genes (ARGs) through drinking water has already caused serious human health issues. There is also an urgent need to know the effects of perfluorooctanoic acid (PFOA) on OPs with different ARGs in drinking water. Our results suggested that PFOA accumulation and release from the pipelines induced its concentration in pipelines effluents increase from 0.03 ± 0.01 μg/L to 0.70 ± 0.01 μg/L after 6 months accumulation. The PFOA also promoted the growth of Hyphomicrobium, Microbacterium, and Bradyrhizobium. In addition, PFOA accumulation and release from the pipelines enhanced the metabolism and tricarboxylic acid (TCA) cycle processes, resulting in more extracellular polymeric substances (EPS) production. Due to EPS protection, Pseudomonas aeruginosa and Legionella pneumophila increased to (7.20 ± 0.09) × 104 gene copies/mL, and (8.85 ± 0.11) × 102 gene copies/mL, respectively. Moreover, PFOA also enhanced the transfer potential of different ARGs, including emrB, mdtB, mdtC, mexF, and macB. The main bacterial community composition and the main OPs positively correlated with the main ARGs and mobile genetic elements (MGE)-ARGs significantly. Therefore, PFOA promoted the propagation of OPs with different ARGs. These results are meaningful for controlling the microbial risk caused by the OPs with ARGs and MGE-ARGs in drinking water.
Collapse
Affiliation(s)
- Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiangkai Tao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hong Yin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xueci Xing
- Key Laboratory for Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Kim T, Zhao X, Hozalski RM, LaPara TM. Residual disinfectant effectively suppresses Legionella species in drinking water distribution systems supplied by surface water in Minnesota, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173317. [PMID: 38788954 DOI: 10.1016/j.scitotenv.2024.173317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Seven public water systems in Minnesota, USA were analyzed from one to five times over a two-year period to assess temporal changes in the concentrations of total bacteria, Legionella spp., and Legionella pneumophila from source (i.e., raw water) through the water treatment process to the end water user. Bacterial biomass was collected by filtering large volumes of raw water (12 to 425 L, median: 38 L) or finished and tap water (27 to 1205 L, median: 448 L) using ultrafiltration membrane modules. Quantitative PCR (qPCR) was then used to enumerate all bacteria (16S rRNA gene fragments), all Legionella spp. (ssrA), and Legionella pneumophila (mip). Total coliforms, Escherichia coli, and L. pneumophila also were quantified in the water samples via cultivation. Median concentrations of total bacteria and Legionella spp. (ssrA) in raw water (8.5 and 4.3 log copies/L, respectively) decreased by about 2 log units during water treatment. The concentration of Legionella spp. (ssrA) in water collected from distribution systems inversely correlated with the total chlorine concentration for chloraminated systems significantly (p = 0.03). Although only 8 samples were collected from drinking water distribution systems using free chlorine as a residual disinfectant, these samples had significantly lower concentrations of Legionella spp. (ssrA) than samples collected from the chloraminated systems (p = 5 × 10-4). There was considerable incongruity between the results obtained via cultivation-independent (qPCR) and cultivation-dependent assays. Numerous samples were positive for L. pneumophila via cultivation, none of which tested positive for L. pneumophilia (mip) via qPCR. Conversely, a single sample tested positive for L. pneumophilia (mip) via qPCR, but this sample tested negative for L. pneumophilia via cultivation. Overall, the results suggest that conventional treatment is effective at reducing, but not eliminating, Legionella spp. from surface water supplies and that residual disinfection is effective at suppressing these organisms within drinking water distribution systems.
Collapse
Affiliation(s)
- Taegyu Kim
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota Twin-Cities, 500 Pillsbury Drive S.E., Minneapolis, MN, USA
| | - Xiaotian Zhao
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota Twin-Cities, 500 Pillsbury Drive S.E., Minneapolis, MN, USA
| | - Raymond M Hozalski
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota Twin-Cities, 500 Pillsbury Drive S.E., Minneapolis, MN, USA; Biotechnology Institute, University of Minnesota Twin Cities, 1479 Gortner Ave, St. Paul, MN, USA
| | - Timothy M LaPara
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota Twin-Cities, 500 Pillsbury Drive S.E., Minneapolis, MN, USA; Biotechnology Institute, University of Minnesota Twin Cities, 1479 Gortner Ave, St. Paul, MN, USA.
| |
Collapse
|
5
|
Xu W, Yu F, Addison O, Zhang B, Guan F, Zhang R, Hou B, Sand W. Microbial corrosion of metallic biomaterials in the oral environment. Acta Biomater 2024; 184:22-36. [PMID: 38942189 DOI: 10.1016/j.actbio.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
A wide variety of microorganisms have been closely linked to metal corrosion in the form of adherent surface biofilms. Biofilms allow the development and maintenance of locally corrosive environments and/or permit direct corrosion including pitting corrosion. The presence of numerous genetically distinct microorganisms in the oral environment poses a threat to the integrity and durability of the surface of metallic prostheses and implants used in routine dentistry. However, the association between oral microorganisms and specific corrosion mechanisms is not clear. It is of practical importance to understand how microbial corrosion occurs and the associated risks to metallic materials in the oral environment. This knowledge is also important for researchers and clinicians who are increasingly concerned about the biological activity of the released corrosion products. Accordingly, the main goal was to comprehensively review the current literature regarding oral microbiologically influenced corrosion (MIC) including characteristics of biofilms and of the oral environment, MIC mechanisms, corrosion behavior in the presence of oral microorganisms and potentially mitigating technologies. Findings included that oral MIC has been ascribed mostly to aggressive metabolites secreted during microbial metabolism (metabolite-mediated MIC). However, from a thermodynamic point of view, extracellular electron transfer mechanisms (EET-MIC) through pili or electron transfer compounds cannot be ruled out. Various MIC mitigating methods have been demonstrated to be effective in short term, but long term evaluations are necessary before clinical applications can be considered. Currently most in-vitro studies fail to simulate the complexity of intraoral physiological conditions which may either reduce or exacerbate corrosion risk, which must be addressed in future studies. STATEMENT OF SIGNIFICANCE: A thorough analysis on literature regarding oral MIC (microbiologically influenced corrosion) of biomedical metallic materials has been carried out, including characteristics of oral environment, MIC mechanisms, corrosion behaviors in the presence of typical oral microorganisms and potential mitigating methods (materials design and surface design). There is currently a lack of mechanistic understanding of oral MIC which is very important not only to corrosion researchers but also to dentists and clinicians. This paper discusses the significance of biofilms from a biocorrosion perspective and summarizes several aspects of MIC mechanisms which could be caused by oral microorganisms. Oral MIC has been closely associated with not only the materials research but also the dental/clinical research fields in this work.
Collapse
Affiliation(s)
- Weichen Xu
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China.
| | - Fei Yu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, 308 Ningxia Road, Qingdao 266021, China.
| | - Owen Addison
- Centre for Oral Clinical Translational Science, Faculty of Dentistry Oral and Craniofacial Sciences, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Binbin Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Fang Guan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Ruiyong Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Baorong Hou
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Wolfgang Sand
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Biofilm Centre, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
6
|
Ren A, Yao M, Fang J, Dai Z, Li X, van der Meer W, Medema G, Rose JB, Liu G. Bacterial communities of planktonic bacteria and mature biofilm in service lines and premise plumbing of a Megacity: Composition, Diversity, and influencing factors. ENVIRONMENT INTERNATIONAL 2024; 185:108538. [PMID: 38422875 DOI: 10.1016/j.envint.2024.108538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Although simulated studies have provided valuable knowledge regarding the communities of planktonic bacteria and biofilms, the lack of systematic field studies have hampered the understanding of microbiology in real-world service lines and premise plumbing. In this study, the bacterial communities of water and biofilm were explored, with a special focus on the lifetime development of biofilm communities and their key influencing factors. The 16S rRNA gene sequencing results showed that both the planktonic bacteria and biofilm were dominated by Proteobacteria. Among the 15,084 observed amplicon sequence variants (ASVs), the 33 core ASVs covered 72.8 %, while the 12 shared core ASVs accounted for 62.2 % of the total sequences. Remarkably, it was found that the species richness and diversity of biofilm communities correlated with pipe age. The relative abundance of ASV2 (f_Sphingomonadaceae) was lower for pipe ages 40-50 years (7.9 %) than for pipe ages 10-20 years (59.3 %), while the relative abundance of ASV10 (f_Hyphomonadaceae) was higher for pipe ages 40-50 years (19.5 %) than its presence at pipe ages 20-30 years (1.9 %). The community of the premise plumbing biofilm had significantly higher species richness and diversity than that of the service line, while the steel-plastics composite pipe interior lined with polyethylene (S-PE) harbored significantly more diverse biofilm than the galvanized steel pipes (S-Zn). Interestingly, S-PE was enriched with ASV27 (g_Mycobacterium), while S-Zn pipes were enriched with ASV13 (g_Pseudomonas). Moreover, the network analysis showed that five rare ASVs, not core ASVs, were keystone members in biofilm communities, indicating the importance of rare members in the function and stability of biofilm communities. This manuscript provides novel insights into real-world service lines and premise plumbing microbiology, regarding lifetime dynamics (pipe age 10-50 years), and the influences of pipe types (premise plumbing vs. service line) and pipe materials (S-Zn vs. S-PE).
Collapse
Affiliation(s)
- Anran Ren
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands; University of Chinese Academy of Sciences, Beijing, China
| | - Mingchen Yao
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands; University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxing Fang
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Science and Technology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
| | - Zihan Dai
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Xiaoming Li
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Walter van der Meer
- Science and Technology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands; Oasen Drinkwater, PO Box 122, 2800 AC, Gouda, The Netherlands
| | - Gertjan Medema
- Oasen Drinkwater, PO Box 122, 2800 AC, Gouda, The Netherlands; KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands; Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA
| | - Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Hadiuzzaman M, Mirza N, Brown SP, Ladner DA, Salehi M. Lead (Pb) deposition onto new and biofilm-laden potable water pipes. CHEMOSPHERE 2023; 342:140135. [PMID: 37690561 DOI: 10.1016/j.chemosphere.2023.140135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Heavy metals' interactions with plumbing materials are complicated due to the differential formation of biofilms within pipes that can modulate, transform, and/or sequester heavy metals. This research aims to elucidate the mechanistic role of biofilm presence on Lead (Pb) accumulation onto crosslinked polyethylene (PEX-A), high-density polyethylene (HDPE), and copper potable water pipes. For this purpose, biofilms were grown on new pipes for three months. Five-day Pb exposure experiments were conducted to examine the kinetics of Pb accumulation onto the new and biofilm-laden pipes. Additionally, the influence of Pb initial concentration on the rate of its accumulation onto the pipes was examined. The results revealed greater biofilm biomass on the PEX-A pipes compared to the copper and HDPE pipes. More negative zeta potential was found for the biofilm-laden plastic pipes compared to the new plastic pipes. After five days of Pb exposure under stagnant conditions, the biofilm-laden PEX-A (980 μg m-2) and HDPE (1170 μg m-2) pipes accumulated more than three times the Pb surface loading compared to the new PEX-A (265 μg m-2) and HDPE pipes (329 μg m-2), respectively. However, under flow conditions, Pb accumulation on biofilm-laden plastic pipes was lower than on the new pipes. Moreover, with increasing the initial Pb concentration, greater rates of Pb surface accumulation were found for the biofilm-laden pipes compared to the new pipes under stagnant conditions. First-order kinetics model best described the Pb accumulation onto both new and biofilm-laden water pipes under both stagnant and flow conditions.
Collapse
Affiliation(s)
- Md Hadiuzzaman
- Department of Civil Engineering, The University of Memphis, Memphis, TN, USA
| | - Nahreen Mirza
- Department of Biological Sciences, The University of Memphis, Memphis, TN, USA
| | - Shawn P Brown
- Department of Biological Sciences, The University of Memphis, Memphis, TN, USA
| | - David A Ladner
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, USA
| | - Maryam Salehi
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
8
|
Song Y, Finkelstein R, Rhoads W, Edwards MA, Pruden A. Shotgun Metagenomics Reveals Impacts of Copper and Water Heater Anodes on Pathogens and Microbiomes in Hot Water Plumbing Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13612-13624. [PMID: 37643149 PMCID: PMC10501123 DOI: 10.1021/acs.est.3c03568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
Hot water building plumbing systems are vulnerable to the proliferation of opportunistic pathogens (OPs), including Legionella pneumophila and Mycobacterium avium. Implementation of copper as a disinfectant could help reduce OPs, but a mechanistic understanding of the effects on the microbial community under real-world plumbing conditions is lacking. Here, we carried out a controlled pilot-scale study of hot water systems and applied shotgun metagenomic sequencing to examine the effects of copper dose (0-2 mg/L), orthophosphate corrosion control agent, and water heater anode materials (aluminum vs magnesium vs powered anode) on the bulk water and biofilm microbiome composition. Metagenomic analysis revealed that, even though a copper dose of 1.2 mg/L was required to reduce Legionella and Mycobacterium numbers, lower doses (e.g., ≤0.6 mg/L) measurably impacted the broader microbial community, indicating that the OP strains colonizing these systems were highly copper tolerant. Orthophosphate addition reduced bioavailability of copper, both to OPs and to the broader microbiome. Functional gene analysis indicated that both membrane damage and interruption of nucleic acid replication are likely at play in copper inactivation mechanisms. This study identifies key factors (e.g., orthophosphate, copper resistance, and anode materials) that can confound the efficacy of copper for controlling OPs in hot water plumbing.
Collapse
Affiliation(s)
- Yang Song
- Civil
and Environmental Engineering, Virginia
Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
- Utilities
Department, Town of Cary, 316 N. Academy St., Cary, North Carolina 27512, United States
| | - Rachel Finkelstein
- Civil
and Environmental Engineering, Virginia
Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
- AECOM, 3101 Wilson Boulevard, Arlington, Virginia 22201, United States
| | - William Rhoads
- Civil
and Environmental Engineering, Virginia
Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
- Black
& Veatch, 8400 Ward
Pkwy, Kansas City, Missouri 64114, United States
| | - Marc A. Edwards
- Civil
and Environmental Engineering, Virginia
Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- Civil
and Environmental Engineering, Virginia
Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| |
Collapse
|
9
|
Song Y, Pruden A, Rhoads WJ, Edwards MA. Pilot-scale assessment reveals effects of anode type and orthophosphate in governing antimicrobial capacity of copper for Legionella pneumophila control. WATER RESEARCH 2023; 242:120178. [PMID: 37307684 DOI: 10.1016/j.watres.2023.120178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/07/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
Copper (Cu) is sometimes applied as an antimicrobial for controlling Legionella in hot water plumbing systems, but its efficacy is inconsistent. Here we examined the effects of Cu (0 - 2 mg/L), orthophosphate corrosion inhibitor (0 or 3 mg/L as phosphate), and water heater anodes (aluminum, magnesium, and powered anodes) on both bulk water and biofilm-associated L. pneumophila in pilot-scale water heater systems. Soluble, but not total, Cu was a good predictor of antimicrobial capacity of Cu. Even after months of exposure to very high Cu levels (>1.2 mg/L) and low pH (<7), which increases solubility and enhances bioavailability of Cu, culturable L. pneumophila was only reduced by ∼1-log. Cu antimicrobial capacity was shown to be limited by various factors, including binding of Cu ions by aluminum hydroxide precipitates released from corrosion of aluminum anodes, higher pH due to magnesium anode corrosion, and high Cu tolerance of the outbreak-associated L. pneumophila strain that was inoculated into the systems. L. pneumophila numbers were also higher in several instances when Cu was dosed together with orthophosphate (e.g., with an Al anode), revealing at least one scenario where high levels of total Cu appeared to stimulate Legionella. The controlled, pilot-scale nature of this study provides new understanding of the limitations of Cu as an antimicrobial in real-world plumbing systems.
Collapse
Affiliation(s)
- Yang Song
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA, 24061; Utilities Department, Town of Cary, 316 N. Academy St., Cary, NC, 27512.
| | - Amy Pruden
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA, 24061
| | - William J Rhoads
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA, 24061; Black & Veatch, 8400 Ward Pkwy, Kansas City, MO, 64114
| | - Marc A Edwards
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA, 24061.
| |
Collapse
|
10
|
Logan-Jackson AR, Batista MD, Healy W, Ullah T, Whelton AJ, Bartrand TA, Proctor C. A Critical Review on the Factors that Influence Opportunistic Premise Plumbing Pathogens: From Building Entry to Fixtures in Residences. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6360-6372. [PMID: 37036108 DOI: 10.1021/acs.est.2c04277] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Residential buildings provide unique conditions for opportunistic premise plumbing pathogen (OPPP) exposure via aerosolized water droplets produced by showerheads, faucets, and tubs. The objective of this review was to critically evaluate the existing literature that assessed the impact of potentially enhancing conditions to OPPP occurrence associated with residential plumbing and to point out knowledge gaps. Comprehensive studies on the topic were found to be lacking. Major knowledge gaps identified include the assessment of OPPP growth in the residential plumbing, from building entry to fixtures, and evaluation of the extent of the impact of typical residential plumbing design (e.g., trunk and branch and manifold), components (e.g., valves and fixtures), water heater types and temperature setting of operation, and common pipe materials (copper, PEX, and PVC/CPVC). In addition, impacts of the current plumbing code requirements on OPPP responses have not been assessed by any study and a lack of guidelines for OPPP risk management in residences was identified. Finally, the research required to expand knowledge on OPPP amplification in residences was discussed.
Collapse
Affiliation(s)
- Alshae' R Logan-Jackson
- Building Energy and Environment Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Marylia Duarte Batista
- Building Energy and Environment Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - William Healy
- Building Energy and Environment Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Tania Ullah
- Building Energy and Environment Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Andrew J Whelton
- Lyles School of Civil Engineering, Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Timothy A Bartrand
- Environmental Science, Policy, and Research Institute, Bala Cynwyd, Pennsylvania 19004, United States
| | - Caitlin Proctor
- Agricultural and Biological Engineering, Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
11
|
Gea-Izquierdo E, Gil-de-Miguel Á, Rodríguez-Caravaca G. Legionella pneumophila Risk from Air–Water Cooling Units Regarding Pipe Material and Type of Water. Microorganisms 2023; 11:microorganisms11030638. [PMID: 36985212 PMCID: PMC10053303 DOI: 10.3390/microorganisms11030638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Legionellosis is a respiratory disease related to environmental health. There have been manifold studies of pipe materials, risk installations and legionellosis without considering the type of transferred water. The objective of this study was to determine the potential development of the causative agent Legionella pneumophila regarding air–water cooling units, legislative compliance, pipe material and type of water. Forty-four hotel units in Andalusia (Spain) were analysed with respect to compliance with Spanish health legislation for the prevention of legionellosis. The chi-square test was used to explain the relationship between material–water and legislative compliance, and a biplot of the first two factors was generated. Multiple correspondence analysis (MCA) was performed on the type of equipment, legislative compliance, pipe material and type of water, and graphs of cases were constructed by adding confidence ellipses by categories of the variables. Pipe material–type of water (p value = 0.29; p < 0.05) and legislative compliance were not associated (p value = 0.15; p < 0.05). Iron, stainless steel, and recycled and well water contributed the most to the biplot. MCA showed a global pattern in which lead, iron and polyethylene were well represented. Confidence ellipses around categories indicated significant differences among categories. Compliance with Spanish health legislation regarding the prevention and control of legionellosis linked to pipe material and type of water was not observed.
Collapse
Affiliation(s)
- Enrique Gea-Izquierdo
- Preventive Medicine and Public Health, Rey Juan Carlos University, 28922 Madrid, Spain
- Maria Zambrano Program, European Union, Spain
- Correspondence:
| | - Ángel Gil-de-Miguel
- Preventive Medicine and Public Health, Rey Juan Carlos University, 28922 Madrid, Spain
- CIBER of Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Gil Rodríguez-Caravaca
- Preventive Medicine and Public Health, Rey Juan Carlos University, 28922 Madrid, Spain
- Department of Preventive Medicine, Hospital Universitario Fundación Alcorcón, Universidad Rey Juan Carlos, 28922 Madrid, Spain
| |
Collapse
|
12
|
Molina JJ, Bennassar M, Palacio E, Crespi S. Impact of prolonged hotel closures during the COVID-19 pandemic on Legionella infection risks. Front Microbiol 2023; 14:1136668. [PMID: 36910223 PMCID: PMC9998907 DOI: 10.3389/fmicb.2023.1136668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/10/2023] [Indexed: 03/14/2023] Open
Abstract
In general, it is accepted that water stagnation and lack or poor maintenance in buildings are risk factors for Legionella growth. Then, in theory, the prolonged hotel closures due to the COVID-19 pandemic may have increased the risk of Legionella infections. However, there are very few field studies comparing the level of Legionella colonization in buildings before the pandemic and the new situation created after the lockdown. The objective of this study was to analyze these differences in a group of hotels that experienced prolonged closures in 2020 due to the COVID-19 pandemic. We have studied the Legionella spp. results, analyzed by standard culture, from the domestic water distribution systems of 73 hotels that experienced closures (from 1 to >4 months) during 2020, immediately after the reopening. The results were compared with those obtained in similar samplings of 2019. For the comparative analysis, we divided the hotels in two groups: Group A that have suffered closures for ≤3 months and Group B that remained closed for more than 3 months, both in relation to the opening period of 2019. In the Group B (36 sites), the frequency of positive samples in the hot water system increased from 6.7% in 2019 to 14.0% in 2020 (p < 0.05). In the Group A (37 sites), no significant differences were observed. No statistically significant differences were observed in terms of positive sites (defined as hotels with at least 1 positive sample), Legionella spp. concentrations and prevalence of Legionella pneumophila sg1 between the samplings of the two periods studied. The results suggest that hotels that suffered the longest prolonged closures (> 3 months) could have carried a higher risk of exposure to Legionella in the domestic hot water system. These findings highlight the importance of adequate preopening cleaning and disinfection procedures for hotel water systems, and the convenience of considering the most effective disinfection methods especially for hot water systems and after prolonged closure periods.
Collapse
Affiliation(s)
- Jhon J. Molina
- Environmental Health and Laboratory Services, Biolinea Int., Palma, Spain
- Environmental Analytical Chemistry Laboratory, Department of Chemistry, University of the Balearic Islands, Palma, Spain
| | | | - Edwin Palacio
- Environmental Analytical Chemistry Laboratory, Department of Chemistry, University of the Balearic Islands, Palma, Spain
| | - Sebastian Crespi
- Environmental Health and Laboratory Services, Biolinea Int., Palma, Spain
| |
Collapse
|
13
|
Cavallaro A, Rhoads WJ, Huwiler SG, Stachler E, Hammes F. Potential probiotic approaches to control Legionella in engineered aquatic ecosystems. FEMS Microbiol Ecol 2022; 98:6604835. [PMID: 35679082 PMCID: PMC9333994 DOI: 10.1093/femsec/fiac071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022] Open
Abstract
Opportunistic pathogens belonging to the genus Legionella are among the most reported waterborne-associated pathogens in industrialized countries. Legionella colonize a variety of engineered aquatic ecosystems and persist in biofilms where they interact with a multitude of other resident microorganisms. In this review, we assess how some of these interactions could be used to develop a biological-driven “probiotic” control approach against Legionella. We focus on: (i) mechanisms limiting the ability of Legionella to establish and replicate within some of their natural protozoan hosts; (ii) exploitative and interference competitive interactions between Legionella and other microorganisms; and (iii) the potential of predatory bacteria and phages against Legionella. This field is still emergent, and we therefore specifically highlight research for future investigations, and propose perspectives on the feasibility and public acceptance of a potential probiotic approach.
Collapse
Affiliation(s)
- Alessio Cavallaro
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.,Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - William J Rhoads
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Simona G Huwiler
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Elyse Stachler
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Frederik Hammes
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
14
|
Investigation of Conditions for Capture of Live Legionella pneumophila with Polyclonal and Recombinant Antibodies. BIOSENSORS 2022; 12:bios12060380. [PMID: 35735528 PMCID: PMC9221320 DOI: 10.3390/bios12060380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
Abstract
Since Legionella pneumophila has caused punctual epidemics through various water systems, the need for a biosensor for fast and accurate detection of pathogenic bacteria in industrial and environmental water has increased. In this report, we evaluated conditions for the capture of live L. pneumophila on a surface by polyclonal antibodies (pAb) and recombinant antibodies (recAb) targeting the bacterial lipopolysaccharide. Using immunoassay and PCR quantification, we demonstrated that, when exposed to live L. pneumophila in PBS or in a mixture containing other non-target bacteria, recAb captured one third fewer L. pneumophila than pAb, but with a 40% lower standard deviation, even when using the same batch of pAb. The presence of other bacteria did not interfere with capture nor increase background by either Ab. Increased reproducibility, as manifested by low standard deviation, is a characteristic that is coveted for biosensing. Hence, the recAb provided a better choice for immune adhesion in biosensors even though it was slightly less sensitive than pAb. Polyclonal or recombinant antibodies can specifically capture large targets such as whole bacteria, and this opens the door to multiple biosensor approaches where any of the components of the bacteria can then be measured for detection or characterisation.
Collapse
|
15
|
Scanlon MM, Gordon JL, Tonozzi AA, Griffin SC. Reducing the Risk of Healthcare Associated Infections from Legionella and Other Waterborne Pathogens Using a Water Management for Construction (WMC) Infection Control Risk Assessment (ICRA) Tool. Infect Dis Rep 2022; 14:341-359. [PMID: 35645218 PMCID: PMC9149880 DOI: 10.3390/idr14030039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Construction activities in healthcare settings potentially expose building occupants to waterborne pathogens including Legionella and have been associated with morbidity and mortality. A Water Management for Construction—Infection Control Risk Assessment (WMC-ICRA) tool was developed addressing gaps in building water management programs. This enables healthcare organizations to meet the requirements of ANSI/ASHRAE Standard 188 referenced in numerous guidelines and regulations. A WMC-ICRA was modeled after the ICRA required for prevention and control of airborne pathogens to reduce the risk of healthcare associated infections. The tool allows users to evaluate risk from waterborne pathogen exposure by analyzing construction activities by project category and building occupant risk group. The users then select an appropriate level of risk mitigation measures. Technical aspects (e.g., water age/stagnation, flushing, filtration, disinfection, validation testing), are presented to assist with implementation. An exemplar WMC-ICRA tool is presented as ready for implementation by infection prevention and allied professionals, addressing current gaps in water management, morbidity/mortality risk, and regulatory compliance. To reduce exposure to waterborne pathogens in healthcare settings and improve regulatory compliance, organizations should examine the WMC-ICRA tool, customize it for organization-specific needs, while formulating an organizational policy to implement during all construction activities.
Collapse
Affiliation(s)
- Molly M. Scanlon
- Standards and Research, Phigenics, LLC, 3S701 West Avenue, Suite 100, Warrenville, IL 60555, USA
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, USA;
- Correspondence: ; Tel.: +1-844-850-4087
| | | | | | - Stephanie C. Griffin
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, USA;
| |
Collapse
|
16
|
Proctor C, Garner E, Hamilton KA, Ashbolt NJ, Caverly LJ, Falkinham JO, Haas CN, Prevost M, Prevots DR, Pruden A, Raskin L, Stout J, Haig SJ. Tenets of a holistic approach to drinking water-associated pathogen research, management, and communication. WATER RESEARCH 2022; 211:117997. [PMID: 34999316 PMCID: PMC8821414 DOI: 10.1016/j.watres.2021.117997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 05/10/2023]
Abstract
In recent years, drinking water-associated pathogens that can cause infections in immunocompromised or otherwise susceptible individuals (henceforth referred to as DWPI), sometimes referred to as opportunistic pathogens or opportunistic premise plumbing pathogens, have received considerable attention. DWPI research has largely been conducted by experts focusing on specific microorganisms or within silos of expertise. The resulting mitigation approaches optimized for a single microorganism may have unintended consequences and trade-offs for other DWPI or other interests (e.g., energy costs and conservation). For example, the ecological and epidemiological issues characteristic of Legionella pneumophila diverge from those relevant for Mycobacterium avium and other nontuberculous mycobacteria. Recent advances in understanding DWPI as part of a complex microbial ecosystem inhabiting drinking water systems continues to reveal additional challenges: namely, how can all microorganisms of concern be managed simultaneously? In order to protect public health, we must take a more holistic approach in all aspects of the field, including basic research, monitoring methods, risk-based mitigation techniques, and policy. A holistic approach will (i) target multiple microorganisms simultaneously, (ii) involve experts across several disciplines, and (iii) communicate results across disciplines and more broadly, proactively addressing source water-to-customer system management.
Collapse
Affiliation(s)
- Caitlin Proctor
- Department of Agricultural and Biological Engineering, Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, USA
| | - Emily Garner
- Wadsworth Department of Civil & Environmental Engineering, West Virginia University, Morgantown, WV, USA
| | - Kerry A Hamilton
- School of Sustainable Engineering and the Built Environment and The Biodesign Centre for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Nicholas J Ashbolt
- Faculty of Science and Engineering, Southern Cross University, Gold Coast. Queensland, Australia
| | - Lindsay J Caverly
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Charles N Haas
- Department of Civil, Architectural & Environmental Engineering, Drexel University, Philadelphia, PA, USA
| | - Michele Prevost
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - D Rebecca Prevots
- Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy Pruden
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA USA
| | - Lutgarde Raskin
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Janet Stout
- Department of Civil & Environmental Engineering, University of Pittsburgh, and Special Pathogens Laboratory, Pittsburgh, PA, USA
| | - Sarah-Jane Haig
- Department of Civil & Environmental Engineering, and Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Ahamed T, Brown SP, Salehi M. Investigate the role of biofilm and water chemistry on lead deposition onto and release from polyethylene: An implication for potable water pipes. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123253. [PMID: 32947746 DOI: 10.1016/j.jhazmat.2020.123253] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
In this study, the influence of biofilm presence and water chemistry conditions on lead (Pb) deposition onto low density polyethylene (LDPE) surface was examined. The results demonstrated that biofilm presence on LDPE surfaces strongly and significantly enhanced Pb uptake, with the 13-fold greater equilibrium Pb surface loading when biofilm was present (1602 μg/m2) compared to the condition when it was absent (124 μg/m2). The kinetics of Pb adsorption onto LDPE surface when biofilm was present is best described by Pseudo 2nd order kinetic model. Pb adsorption onto new LDPE surfaces was significantly reduced from 1101 μg/m2 to 134 μg/m2 with increased aqueous solution's ionic strength from 3 × 10-6 M to 0.0072 M. The presence of chlorine residual (2 mg/L) significantly reduced Pb adsorption onto LDPE surfaces by possible oxidation of Pb2+ to Pb4+ species. The kinetics of Pb release from LDPE surfaces was investigated under static and dynamic conditions through immediate exposure of Pb accumulated LDPE pellets to the synthetic water at pH 5.0 and 7.8. The results demonstrated a greater Pb release (86 %) at pH 5.0 compared to the pH 7.8 (58 %). An enhanced Pb release into the contact water was found under dynamic conditions compared to static conditions.
Collapse
Affiliation(s)
- Tanvir Ahamed
- Department of Civil Engineering, The University of Memphis, Memphis, TN, USA
| | - Shawn P Brown
- Department of Biological Sciences, The University of Memphis, Memphis, TN, USA
| | - Maryam Salehi
- Department of Civil Engineering, The University of Memphis, Memphis, TN, USA.
| |
Collapse
|
18
|
Cullom AC, Martin RL, Song Y, Williams K, Williams A, Pruden A, Edwards MA. Critical Review: Propensity of Premise Plumbing Pipe Materials to Enhance or Diminish Growth of Legionella and Other Opportunistic Pathogens. Pathogens 2020; 9:E957. [PMID: 33212943 PMCID: PMC7698398 DOI: 10.3390/pathogens9110957] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Growth of Legionella pneumophila and other opportunistic pathogens (OPs) in drinking water premise plumbing poses an increasing public health concern. Premise plumbing is constructed of a variety of materials, creating complex environments that vary chemically, microbiologically, spatially, and temporally in a manner likely to influence survival and growth of OPs. Here we systematically review the literature to critically examine the varied effects of common metallic (copper, iron) and plastic (PVC, cross-linked polyethylene (PEX)) pipe materials on factors influencing OP growth in drinking water, including nutrient availability, disinfectant levels, and the composition of the broader microbiome. Plastic pipes can leach organic carbon, but demonstrate a lower disinfectant demand and fewer water chemistry interactions. Iron pipes may provide OPs with nutrients directly or indirectly, exhibiting a high disinfectant demand and potential to form scales with high surface areas suitable for biofilm colonization. While copper pipes are known for their antimicrobial properties, evidence of their efficacy for OP control is inconsistent. Under some circumstances, copper's interactions with premise plumbing water chemistry and resident microbes can encourage growth of OPs. Plumbing design, configuration, and operation can be manipulated to control such interactions and health outcomes. Influences of pipe materials on OP physiology should also be considered, including the possibility of influencing virulence and antibiotic resistance. In conclusion, all known pipe materials have a potential to either stimulate or inhibit OP growth, depending on the circumstances. This review delineates some of these circumstances and informs future research and guidance towards effective deployment of pipe materials for control of OPs.
Collapse
Affiliation(s)
- Abraham C. Cullom
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| | - Rebekah L. Martin
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
- Civil and Environmental Engineering, Virginia Military Institute, Lexington, VA 24450, USA
| | - Yang Song
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| | | | - Amanda Williams
- c/o Marc Edwards, Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA;
| | - Amy Pruden
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| | - Marc A. Edwards
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| |
Collapse
|
19
|
Xue J, Zhang B, Lamori J, Shah K, Zabaleta J, Garai J, Taylor CM, Sherchan SP. Molecular detection of opportunistic pathogens and insights into microbial diversity in private well water and premise plumbing. JOURNAL OF WATER AND HEALTH 2020; 18:820-834. [PMID: 33095203 PMCID: PMC9115838 DOI: 10.2166/wh.2020.271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Private well water systems in rural areas that are improperly maintained will result in poor drinking water quality, loss of water supply, and pose human health risk. The purpose of this study was to investigate the occurrence of fecal indicator bacteria (FIB) and opportunistic pathogens in private well water in rural areas surrounding New Orleans, Louisiana. Our results confirmed the ubiquitous nature of Legionella (86.7%) and mycobacteria (68.1%) in private well water in the study area, with gene concentration ranged from 0.60 to 5.53 and 0.67 to 5.95 Log10 of GC/100 mL, respectively. Naegleria fowleri target sequence was detected in 16.8% and Escherichia coli was detected in 43.4% of the water samples. Total coliform, as well as Legionella and mycobacteria genetic markers' concentrations were significantly reduced by 3-minute flushing. Next-generation sequencing (NGS) data indicated that the abundance of bacterial species was significantly increased in water collected in kitchens compared with samples from wells directly. This study provided integrated knowledge on the persistence of pathogenic organisms in private well water. Further study is needed to explore the presence of clinical species of those opportunistic pathogens in private well water systems to elucidate the health risk.
Collapse
Affiliation(s)
- Jia Xue
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, 70112, USA E-mail:
| | - Bowen Zhang
- Department of Natural Resources and Environmental Management, Ball State University, Muncie, Indiana, 47306, USA
| | - Jennifer Lamori
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, 70112, USA E-mail:
| | - Kinjal Shah
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, 70112, USA E-mail:
| | - Jovanny Zabaleta
- Department of Pediatrics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, Louisiana, 70112, USA
| | - Jone Garai
- Department of Pediatrics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, Louisiana, 70112, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology & Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, 70112, USA
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, 70112, USA E-mail:
| |
Collapse
|
20
|
Martin RL, Harrison K, Proctor CR, Martin A, Williams K, Pruden A, Edwards MA. Chlorine Disinfection of Legionella spp., L. pneumophila, and Acanthamoeba under Warm Water Premise Plumbing Conditions. Microorganisms 2020; 8:E1452. [PMID: 32971988 PMCID: PMC7563980 DOI: 10.3390/microorganisms8091452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 11/30/2022] Open
Abstract
Premise plumbing conditions can contribute to low chlorine or chloramine disinfectant residuals and reactions that encourage opportunistic pathogen growth and create risk of Legionnaires' Disease outbreaks. This bench-scale study investigated the growth of Legionella spp. and Acanthamoeba in direct contact with premise plumbing materials-glass-only control, cross-linked polyethylene (PEX) pipe, magnesium anode rods, iron pipe, iron oxide, pH 10, or a combination of factors. Simulated glass water heaters (SGWHs) were colonized by Legionella pneumophila and exposed to a sequence of 0, 0.1, 0.25, and 0.5 mg/L chlorine or chloramine, at two levels of total organic carbon (TOC), over 8 weeks. Legionella pneumophila thrived in the presence of the magnesium anode by itself and or combination with other factors. In most cases, 0.5 mg/L Cl2 caused a significant rapid reduction of L. pneumophila, Legionella spp., or total bacteria (16S rRNA) gene copy numbers, but at higher TOC (>1.0 mg C/L), a chlorine residual of 0.5 mg/L Cl2 was not effective. Notably, Acanthamoeba was not significantly reduced by the 0.5 mg/L chlorine dose.
Collapse
Affiliation(s)
- Rebekah L. Martin
- Department of Civil and Environmental Engineering, Virginia Military Institute, Lexington, VA 24450, USA;
| | - Kara Harrison
- Internal Medicine Residency Program, University of Virginia, Charlottesville, VA 22904, USA;
| | - Caitlin R. Proctor
- Department of Environmental and Ecological Engineering, Department of Civil Engineering, Department of Materials Engineering, Department of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Amanda Martin
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24450, USA; (A.M.); (K.W.); (A.P.)
| | - Krista Williams
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24450, USA; (A.M.); (K.W.); (A.P.)
| | - Amy Pruden
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24450, USA; (A.M.); (K.W.); (A.P.)
| | - Marc A. Edwards
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24450, USA; (A.M.); (K.W.); (A.P.)
| |
Collapse
|
21
|
Spencer MS, Cullom AC, Rhoads WJ, Pruden A, Edwards MA. Replicable simulation of distal hot water premise plumbing using convectively-mixed pipe reactors. PLoS One 2020; 15:e0238385. [PMID: 32936810 PMCID: PMC7494094 DOI: 10.1371/journal.pone.0238385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/14/2020] [Indexed: 11/18/2022] Open
Abstract
A lack of replicable test systems that realistically simulate hot water premise plumbing conditions at the laboratory-scale is an obstacle to identifying key factors that support growth of opportunistic pathogens (OPs) and opportunities to stem disease transmission. Here we developed the convectively-mixed pipe reactor (CMPR) as a simple reproducible system, consisting of off-the-shelf plumbing materials, that self-mixes through natural convective currents and enables testing of multiple, replicated, and realistic premise plumbing conditions in parallel. A 10-week validation study was conducted, comparing three pipe materials (PVC, PVC-copper, and PVC-iron; n = 18 each) to stagnant control pipes without convective mixing (n = 3 each). Replicate CMPRs were found to yield consistent water chemistry as a function of pipe material, with differences becoming less discernable by week 9. Temperature, an overarching factor known to control OP growth, was consistently maintained across all 54 CMPRs, with a coefficient of variation <2%. Dissolved oxygen (DO) remained lower in PVC-iron (1.96 ± 0.29 mg/L) than in PVC (5.71 ± 0.22 mg/L) or PVC-copper (5.90 ± 0.38 mg/L) CMPRs as expected due to corrosion. Further, DO in PVC-iron CMPRs was 33% of that observed in corresponding stagnant pipes (6.03 ± 0.33 mg/L), demonstrating the important role of internal convective mixing in stimulating corrosion and microbiological respiration. 16S rRNA gene amplicon sequencing indicated that both bulk water (Padonis = 0.001, R2 = 0.222, Pbetadis = 0.785) and biofilm (Padonis = 0.001, R2 = 0.119, Pbetadis = 0.827) microbial communities differed between CMPR versus stagnant pipes, consistent with creation of a distinct ecological niche. Overall, CMPRs can provide a more realistic simulation of certain aspects of premise plumbing than reactors commonly applied in prior research, at a fraction of the cost, space, and water demand of large pilot-scale rigs.
Collapse
Affiliation(s)
- M. Storme Spencer
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States of America
| | - Abraham C. Cullom
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States of America
| | - William J. Rhoads
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States of America
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States of America
| | - Marc A. Edwards
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States of America
- * E-mail:
| |
Collapse
|
22
|
van der Kooij D, Veenendaal HR, Italiaander R. Corroding copper and steel exposed to intermittently flowing tap water promote biofilm formation and growth of Legionella pneumophila. WATER RESEARCH 2020; 183:115951. [PMID: 32673893 DOI: 10.1016/j.watres.2020.115951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
The information about the impact of copper pipes on the growth of Legionella pneumophila in premise plumbing is controversial. For this reason, pipe segments of copper, stainless steel (SS), mild steel (MS), polyethylene, chlorinated polyvinylchloride (CPVC) and glass (controls) were exposed to intermittently flowing (20 min stagnation time) nonchlorinated tap water of 37 °C or 16 °C (ambient temperature) during six months to study the impact of metals on biofilm formation and growth of L. pneumophila. Biofilm concentrations (BfC, measured as ATP) on copper were 3 (at 37 °C) to 6 (at 16 °C) times higher than on SS. The maximum colony counts of L. pneumophila on the materials tested at 37 °C showed a quadratic relationship with the associated BfCs, with highest values on copper and MS. The average Cu concentration on the glass control of copper (glass-copper) was more than two log units lower than the Fe concentration on glass-MS, suggesting that copper released less corrosion by-products than MS. The release of corrosion by-products with attached biomass from MS most likely enhanced biofilm formation on glass-MS. Cloning and 16S RNA gene sequence analysis of the predominating biofilm bacteria revealed that an uncultured Xanthobacteraceae bacterium and Reyranella accounted for 75% of the bacterial community on copper at 37 °C. The nitrite-oxidizing Nitrospira moscoviensis, which can also utilize hydrogen (H2) and formate, accounted for >50% of the bacterial abundance in the biofilms on MS and glass-MS at 37 °C. The predominating presence of the strictly anaerobic non-fermentative Fe(III)-reducing Geobacter and the Fe(II)-oxidizing Gallionella on MS exposed to tap water of 16 °C indicated anoxic niches and the availability of H2, low molecular weight carboxylic acids (LMWCAs) and Fe(II) at the MS surface. LMWCAs likely also promoted bacterial growth on copper, but the release mechanisms from natural organic matter at the surface of corroding metals are unclear. The effects of water stagnation time and flow dynamics on biofilm formation on copper requires further investigation.
Collapse
Affiliation(s)
- Dick van der Kooij
- KWR Water Research Institute, PO Box 1072, 3430 BB, Nieuwegein, the Netherlands.
| | - Harm R Veenendaal
- KWR Water Research Institute, PO Box 1072, 3430 BB, Nieuwegein, the Netherlands.
| | - Ronald Italiaander
- KWR Water Research Institute, PO Box 1072, 3430 BB, Nieuwegein, the Netherlands.
| |
Collapse
|
23
|
Interactive Effects of Copper Pipe, Stagnation, Corrosion Control, and Disinfectant Residual Influenced Reduction of Legionella pneumophila during Simulations of the Flint Water Crisis. Pathogens 2020; 9:pathogens9090730. [PMID: 32899686 PMCID: PMC7559348 DOI: 10.3390/pathogens9090730] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 01/28/2023] Open
Abstract
Flint, MI experienced two outbreaks of Legionnaires' Disease (LD) during the summers of 2014 and 2015, coinciding with use of Flint River as a drinking water source without corrosion control. Using simulated distribution systems (SDSs) followed by stagnant simulated premise (i.e., building) plumbing reactors (SPPRs) containing cross-linked polyethylene (PEX) or copper pipe, we reproduced trends in water chemistry and Legionella proliferation observed in the field when Flint River versus Detroit water were used before, during, and after the outbreak. Specifically, due to high chlorine demand in the SDSs, SPPRs with treated Flint River water were chlorine deficient and had elevated L. pneumophila numbers in the PEX condition. SPPRs with Detroit water, which had lower chlorine demand and higher residual chlorine, lost all culturable L. pneumophila within two months. L. pneumophila also diminished more rapidly with time in Flint River SPPRs with copper pipe, presumably due to the bacteriostatic properties of elevated copper concentrations caused by lack of corrosion control and stagnation. This study confirms hypothesized mechanisms by which the switch in water chemistry, pipe materials, and different flow patterns in Flint premise plumbing may have contributed to observed LD outbreak patterns.
Collapse
|
24
|
The impact of metal pipe materials, corrosion products, and corrosion inhibitors on antibiotic resistance in drinking water distribution systems. Appl Microbiol Biotechnol 2020; 104:7673-7688. [DOI: 10.1007/s00253-020-10777-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 02/07/2023]
|
25
|
Paniagua AT, Paranjape K, Hu M, Bédard E, Faucher SP. Impact of temperature on Legionella pneumophila, its protozoan host cells, and the microbial diversity of the biofilm community of a pilot cooling tower. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136131. [PMID: 31931228 DOI: 10.1016/j.scitotenv.2019.136131] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Legionella pneumophila is a waterborne bacterium known for causing Legionnaires' Disease, a severe pneumonia. Cooling towers are a major source of outbreaks, since they provide ideal conditions for L. pneumophila growth and produce aerosols. In such systems, L. pneumophila typically grow inside protozoan hosts. Several abiotic factors such as water temperature, pipe material and disinfection regime affect the colonization of cooling towers by L. pneumophila. The local physical and biological factors promoting the growth of L. pneumophila in water systems and its spatial distribution are not well understood. Therefore, we built a lab-scale cooling tower to study the dynamics of L. pneumophila colonization in relationship to the resident microbiota and spatial distribution. The pilot was filled with water from an operating cooling tower harboring low levels of L. pneumophila. It was seeded with Vermamoeba vermiformis, a natural host of L. pneumophila, and then inoculated with L. pneumophila. After 92 days of operation, the pilot was disassembled, the water was collected, and biofilm was extracted from the pipes. The microbiome was studied using 16S rRNA and 18S rRNA genes amplicon sequencing. The communities of the water and of the biofilm were highly dissimilar. The relative abundance of Legionella in water samples reached up to 11% whereas abundance in the biofilm was extremely low (≤0.5%). In contrast, the host cells were mainly present in the biofilm. This suggests that L. pneumophila grows in host cells associated with biofilm and is then released back into the water following host cell lysis. In addition, water temperature shaped the bacterial and eukaryotic community of the biofilm, indicating that different parts of the systems may have different effects on Legionella growth.
Collapse
Affiliation(s)
- Adriana Torres Paniagua
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Kiran Paranjape
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Mengqi Hu
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Emilie Bédard
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada; Department of Civil Engineering, Polytechnique Montreal, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec H3C 3A7, Canada.
| | - Sébastien P Faucher
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada.
| |
Collapse
|
26
|
Paduano S, Marchesi I, Casali ME, Valeriani F, Frezza G, Vecchi E, Sircana L, Romano Spica V, Borella P, Bargellini A. Characterisation of Microbial Community Associated with Different Disinfection Treatments in Hospital hot Water Networks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2158. [PMID: 32213901 PMCID: PMC7143765 DOI: 10.3390/ijerph17062158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 12/16/2022]
Abstract
Many disinfection treatments can be adopted for controlling opportunistic pathogens in hospital water networks in order to reduce infection risk for immunocompromised patients. Each method has limits and strengths and it could determine modifications on bacterial community. The aim of our investigation was to study under real-life conditions the microbial community associated with different chemical (monochloramine, hydrogen peroxide, chlorine dioxide) and non-chemical (hyperthermia) treatments, continuously applied since many years in four hot water networks of the same hospital. Municipal cold water, untreated secondary, and treated hot water were analysed for microbiome characterization by 16S amplicon sequencing. Cold waters had a common microbial profile at genera level. The hot water bacterial profiles differed according to treatment. Our results confirm the effectiveness of disinfection strategies in our hospital for controlling potential pathogens such as Legionella, as the investigated genera containing opportunistic pathogens were absent or had relative abundances ≤1%, except for non-tuberculous mycobacteria, Sphingomonas, Ochrobactrum and Brevundimonas. Monitoring the microbial complexity of healthcare water networks through 16S amplicon sequencing is an innovative and effective approach useful for Public Health purpose in order to verify possible modifications of microbiota associated with disinfection treatments.
Collapse
Affiliation(s)
- Stefania Paduano
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (I.M.); (M.E.C.); (G.F.); (P.B.)
| | - Isabella Marchesi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (I.M.); (M.E.C.); (G.F.); (P.B.)
| | - Maria Elisabetta Casali
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (I.M.); (M.E.C.); (G.F.); (P.B.)
- University Hospital Policlinico of Modena, 41124 Modena, Italy; (E.V.); (L.S.)
| | - Federica Valeriani
- Department of Movement, Human and Health Sciences, Public Health Unit, University of Rome ‘Foro Italico’, 00135 Rome, Italy; (F.V.); (V.R.S.)
| | - Giuseppina Frezza
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (I.M.); (M.E.C.); (G.F.); (P.B.)
| | - Elena Vecchi
- University Hospital Policlinico of Modena, 41124 Modena, Italy; (E.V.); (L.S.)
| | - Luca Sircana
- University Hospital Policlinico of Modena, 41124 Modena, Italy; (E.V.); (L.S.)
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, Public Health Unit, University of Rome ‘Foro Italico’, 00135 Rome, Italy; (F.V.); (V.R.S.)
| | - Paola Borella
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (I.M.); (M.E.C.); (G.F.); (P.B.)
| | - Annalisa Bargellini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (I.M.); (M.E.C.); (G.F.); (P.B.)
| |
Collapse
|
27
|
Abstract
Nitrification is a major issue that utilities must address if they utilize chloramines as a secondary disinfectant. Nitrification is the oxidation of free ammonia to nitrite which is then further oxidized to nitrate. Free ammonia is found in drinking water systems as a result of overfeeding at the water treatment plant (WTP) or as a result of the decomposition of monochloramine. Premise plumbing systems (i.e., the plumbing systems within buildings and homes) are characterized by irregular usage patterns, high water age, high temperature, and high surface-to-volume ratios. These characteristics create ideal conditions for increased chloramine decay, bacterial growth, and nitrification. This review discusses factors within premise plumbing that are likely to influence nitrification, and vice versa. Factors influencing, or influenced by, nitrification include the rate at which chloramine residual decays, microbial regrowth, corrosion of pipe materials, and water conservation practices. From a regulatory standpoint, the greatest impact of nitrification within premise plumbing is likely to be a result of increased lead levels during Lead and Copper Rule (LCR) sampling. Other drinking water regulations related to nitrifying parameters are monitored in a manner to reduce premise plumbing impacts. One way to potentially control nitrification in premise plumbing systems is through the development of building management plans.
Collapse
|
28
|
Carlson KM, Boczek LA, Chae S, Ryu H. Legionellosis and Recent Advances in Technologies for Legionella Control in Premise Plumbing Systems: A Review. WATER 2020; 12:1-676. [PMID: 32704396 PMCID: PMC7377215 DOI: 10.3390/w12030676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review discusses Legionella, among the most prolific and publicly well-known waterborne pathogens, and advances in potential treatment technologies. The number of cases associated with Legionella continues to rise, as does its public awareness. Currently, cases associated with premise plumbing account for the largest number of legionellosis cases in the United States. So, while it is important to understand Legionella as such, it is also important to investigate how to treat drinking water in premise plumbing for Legionella and other waterborne pathogens. While there are currently several methods recognized as potential means of inactivating waterborne pathogens, several shortcomings continue to plague its implementation. These methods are generally of two types. Firstly, there are chemical treatments such as chlorine, chlorine dioxide, monochloramine, ozone, and copper-silver ionization. Secondly, there are physical treatments such as thermal inactivation and media filtration. Their shortcomings range from being labor-intensive and costly to having negative health effects if not properly operated. Recently developed technologies including ultraviolet (UV) irradiation using light emitting diodes (LEDs) and innovative carbon nanotube (CNT) filters can better control waterborne pathogens by allowing for the simultaneous use of different treatment measures in plumbing systems.
Collapse
Affiliation(s)
- Kelsie M. Carlson
- United States Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, USA
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45268, USA
| | - Laura A. Boczek
- United States Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, USA
| | - Soryong Chae
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45268, USA
| | - Hodon Ryu
- United States Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, USA
| |
Collapse
|
29
|
Evaluation of Legionella pneumophila Decrease in Hot Water Network of Four Hospital Buildings after Installation of Electron Time Flow Taps. WATER 2020. [DOI: 10.3390/w12010210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Legionella spp. control is a critical issue in hospital with old water networks. Chemical disinfection methods are applied as a control measure over prolonged time periods, but Legionella may be resistant to chemical agents in pipeworks with low flow and frequent water stagnation. We evaluated Legionella spp. colonization in the hot water network of Italian hospitals after the installation of time flow taps (TFTs). In the period between 2017 and 2019, TFTs were installed in four hospital water networks. They were programmed in order to obtain a hot water flow of 192 L/day from each TFTs. A continuous chlorination system (chlorine dioxide) and a cold water pre-filtration device were applied in all the buildings. Before and after TFT installation, Legionella spp. was investigated at scheduled times. Before TFT installation, Legionella pneumophila was detected in all the hospitals with counts ranging from 2 × 102 to 1.4 × 105 CFU/L. After TFT installation, a loss in Legionella pneumophila culturability was always achieved in the period between 24 h and 15 days. Total chlorine concentration (Cl2) was detected in the range between 0.23 and 0.36 mg/L while temperature values were from 44.8 to 53.2 °C. TFTs together with chemical disinfection represent a method which improve water quality and disinfectant efficacy, reducing Legionella colonization in dead-end sections.
Collapse
|
30
|
Gomes IB, Simões LC, Simões M. Influence of surface copper content on Stenotrophomonas maltophilia biofilm control using chlorine and mechanical stress. BIOFOULING 2020; 36:1-13. [PMID: 31997661 DOI: 10.1080/08927014.2019.1708334] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
This work aimed to evaluate the action of materials with different copper content (0, 57, 96 and 100%) on biofilm formation and control by chlorination and mechanical stress. Stenotrophomonas maltophilia isolated from drinking water was used as a model microorganism and biofilms were developed in a rotating cylinder reactor using realism-based shear stress conditions. Biofilms were characterized phenotypically and exposed to three control strategies: 10 mg l-1 of free chlorine for 10 min, an increased shear stress (a fluid velocity of 1.5 m s-1 for 30s), and a combination of both treatments. These shock treatments were not effective in biofilm control. The benefits from the use of copper surfaces was found essentially in reducing the numbers of non-damaged cells. Copper materials demonstrated better performance in biofilm prevention than chlorine. In general, copper alloys may have a positive public health impact by reducing the number of non-damaged cells in the water delivered after chlorine exposure.
Collapse
Affiliation(s)
- I B Gomes
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - L C Simões
- CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - M Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
31
|
Totaro M, De Vita E, Mariotti T, Bisordi C, Giorgi S, Gallo A, Costa AL, Casini B, Valentini P, Privitera G, Baggiani A. Cost analysis for electron time-flow taps and point of use filters: a comparison of two methods for Legionnaires' disease prevention in hospital water networks. J Hosp Infect 2019; 103:231-232. [PMID: 31310790 DOI: 10.1016/j.jhin.2019.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
Affiliation(s)
- M Totaro
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - E De Vita
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - T Mariotti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - C Bisordi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - S Giorgi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - A Gallo
- Division of Public Health and Nutrition, Area of Pisa, Azienda USL Toscana Nord Ovest, Italy
| | - A L Costa
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - B Casini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - P Valentini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - G Privitera
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - A Baggiani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy.
| |
Collapse
|
32
|
Gomes IB, Simões LC, Simões M. The role of surface copper content on biofilm formation by drinking water bacteria. RSC Adv 2019; 9:32184-32196. [PMID: 35530774 PMCID: PMC9072912 DOI: 10.1039/c9ra05880j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/03/2019] [Indexed: 11/21/2022] Open
Abstract
Copper alloys demonstrated comparable or higher performance than elemental copper in biofilm control. The alloy containing 96% copper was the most promising surface in biofilm control and regrowth prevention.
Collapse
Affiliation(s)
- I. B. Gomes
- LEPABE
- Department of Chemical Engineering
- Faculty of Engineering
- University of Porto
- 4200-465 Porto
| | - L. C. Simões
- LEPABE
- Department of Chemical Engineering
- Faculty of Engineering
- University of Porto
- 4200-465 Porto
| | - M. Simões
- LEPABE
- Department of Chemical Engineering
- Faculty of Engineering
- University of Porto
- 4200-465 Porto
| |
Collapse
|
33
|
Dai D, Rhoads WJ, Edwards MA, Pruden A. Shotgun Metagenomics Reveals Taxonomic and Functional Shifts in Hot Water Microbiome Due to Temperature Setting and Stagnation. Front Microbiol 2018; 9:2695. [PMID: 30542327 PMCID: PMC6277882 DOI: 10.3389/fmicb.2018.02695] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022] Open
Abstract
Hot water premise plumbing has emerged as a critical nexus of energy, water, and public health. The composition of hot water microbiomes is of special interest given daily human exposure to resident flora, especially opportunistic pathogens (OPs), which rely on complex microbial ecological interactions for their proliferation. Here, we applied shotgun metagenomic sequencing to characterize taxonomic and functional shifts in microbiomes as a function of water heater temperature setting, stagnation in distal pipes, and associated shifts in water chemistry. A cross-section of samples from controlled, replicated, pilot-scale hot water plumbing rigs representing different temperature settings (39, 42, and 51°C), stagnation periods (8 h vs. 7 days), and time-points, were analyzed. Temperature setting exhibited an overarching impact on taxonomic and functional gene composition. Further, distinct taxa were selectively enriched by specific temperature settings (e.g., Legionella at 39°C vs. Deinococcus at 51°C), while relative abundances of genes encoding corresponding cellular functions were highly consistent with expectations based on the taxa driving these shifts. Stagnation in distal taps diminished taxonomic and functional differences induced by heating the cold influent water to hot water in recirculating line. In distal taps relative to recirculating hot water, reads annotated as being involved in metabolism and growth decreased, while annotations corresponding to stress response (e.g., virulence disease and defense, and specifically antibiotic resistance) increased. Reads corresponding to OPs were readily identified by metagenomic analysis, with L. pneumophila reads in particular correlating remarkably well with gene copy numbers measured by quantitative polymerase chain reaction. Positive correlations between L. pneumophila reads and those of known protozoan hosts were also identified. Elevated proportions of genes encoding metal resistance and hydrogen metabolism were noted, which was consistent with elevated corrosion-induced metal concentrations and hydrogen generation. This study provided new insights into real-world factors influencing taxonomic and functional compositions of hot water microbiomes. Here metagenomics is demonstrated as an effective tool for screening for potential presence, and even quantities, of pathogens, while also providing diagnostic capabilities for assessing functional responses of microbiomes to various operational conditions. These findings can aid in informing future monitoring and intentional control of hot water microbiomes.
Collapse
Affiliation(s)
| | | | | | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
34
|
McGivney E, Jones KE, Weber B, Valentine AM, VanBriesen JM, Gregory KB. Quorum Sensing Signals Form Complexes with Ag + and Cu 2+ Cations. ACS Chem Biol 2018; 13:894-899. [PMID: 29508988 DOI: 10.1021/acschembio.7b01000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Quorum sensing (QS) regulates important bacterial behaviors such as virulent protein production and biofilm formation. QS requires that molecular signals are exchanged between cells, extracellularly, where environmental conditions influence signal stability. In this work, we present a novel complexation between metal cations (Ag+ and Cu2+) and a QS autoinducer signal, N-hexanoyl- L-homoserine lactone (HHL). The molecular interactions were investigated using mass spectrometery, attenuated total reflectance-Fourier transform infrared spectroscopy, and computational simulations. Results show that HHL forms predominantly 1:1 complexes with Ag+ ( Kd = 3.41 × 10-4 M) or Cu2+ ( Kd = 1.40 × 10-5 M), with the coordination chemistry occurring on the oxygen moieties. In vivo experiments with Chromobacterium violaceum CV026 show that sublethal concentrations of Ag+ and Cu2+ decreased HHL-regulated QS activity. Furthermore, when Ag+ was preincubated with HHL, Ag+ toxicity to CV026 decreased by an order of magnitude, suggesting HHL:metal complexes alter the bioavailability of the individual constituents.
Collapse
Affiliation(s)
- Eric McGivney
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Center for the Environmental Implications of NanoTechnology (CEINT), Durham, North Carolina, United States
| | | | - Bandrea Weber
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | | | - Jeanne M. VanBriesen
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Center for the Environmental Implications of NanoTechnology (CEINT), Durham, North Carolina, United States
| | - Kelvin B. Gregory
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Center for the Environmental Implications of NanoTechnology (CEINT), Durham, North Carolina, United States
| |
Collapse
|
35
|
Li XF, Mitch WA. Drinking Water Disinfection Byproducts (DBPs) and Human Health Effects: Multidisciplinary Challenges and Opportunities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1681-1689. [PMID: 29283253 DOI: 10.1021/acs.est.7b05440] [Citation(s) in RCA: 447] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
While drinking water disinfection has effectively prevented waterborne diseases, an unintended consequence is the generation of disinfection byproducts (DBPs). Epidemiological studies have consistently observed an association between consumption of chlorinated drinking water with an increased risk of bladder cancer. Out of the >600 DBPs identified, regulations focus on a few classes, such as trihalomethanes (THMs), whose concentrations were hypothesized to correlate with the DBPs driving the toxicity of disinfected waters. However, the DBPs responsible for the bladder cancer association remain unclear. Utilities are switching away from a reliance on chlorination of pristine drinking water supplies to the application of new disinfectant combinations to waters impaired by wastewater effluents and algal blooms. In light of these changes in disinfection practice, this article discusses new approaches being taken by analytical chemists, engineers, toxicologists and epidemiologists to characterize the DBP classes driving disinfected water toxicity, and suggests that DBP exposure should be measured using other DBP classes in addition to THMs.
Collapse
Affiliation(s)
- Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB T6G 2G3 Canada
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University , 473 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
36
|
Ji P, Rhoads WJ, Edwards MA, Pruden A. Effect of heat shock on hot water plumbing microbiota and Legionella pneumophila control. MICROBIOME 2018; 6:30. [PMID: 29426363 PMCID: PMC5807837 DOI: 10.1186/s40168-018-0406-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 01/18/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Heat shock is a potential control strategy for Legionella pneumophila in hot water plumbing systems. However, it is not consistently effective, with little understanding of its influence on the broader plumbing microbiome. Here, we employed a lab-scale recirculating hot water plumbing rig to compare the pre- and post-"heat shock" (i.e., 40 → 60 → 40 °C) microbiota at distal taps. In addition, we used a second plumbing rig to represent a well-managed system at 60 °C and conducted a "control" sampling at 60 °C, subsequently reducing the temperature to 40 °C to observe the effects on Legionella and the microbiota under a simulated "thermal disruption" scenario. RESULTS According to 16S rRNA gene amplicon sequencing, in the heat shock scenario, there was no significant difference or statistically significant, but small, difference in the microbial community composition at the distal taps pre- versus post-heat shock (both biofilm and water; weighted and unweighted UniFrac distance matrices). While heat shock did lead to decreased total bacteria numbers at distal taps, it did not measurably alter the richness or evenness of the microbiota. Quantitative PCR measurements demonstrated that L. pneumophila relative abundance at distal taps also was not significantly different at 2-month post-heat shock relative to the pre-heat shock condition, while relative abundance of Vermamoeba vermiformis, a known Legionella host, did increase. In the thermal disruption scenario, relative abundance of planktonic L. pneumophila (quantitative PCR data) increased to levels comparable to those observed in the heat shock scenario within 2 months of switching long-term operation at 60 to 40 °C. Overall, water use frequency and water heater temperature set point exhibited a stronger effect than one-time heat shock on the microbial composition and Legionella levels at distal taps. CONCLUSIONS While heat shock may be effective for instantaneous Legionella control and reduction in total bacteria numbers, water heater temperature set point and water use frequency are more promising factors for long-term Legionella and microbial community control, illustrating the importance of maintaining consistent elevated temperatures in the system relative to short-term heat shock.
Collapse
Affiliation(s)
- Pan Ji
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - William J Rhoads
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Marc A Edwards
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
37
|
Totaro M, Valentini P, Costa AL, Giorgi S, Casini B, Baggiani A. Rate of Legionella pneumophila colonization in hospital hot water network after time flow taps installation. J Hosp Infect 2017; 98:60-63. [PMID: 28890285 DOI: 10.1016/j.jhin.2017.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/30/2017] [Indexed: 11/17/2022]
Abstract
In hospital water systems legionellae may be resistant to disinfectants in pipework, which is a problem particularly in areas where there is low flow or stagnation of water. We evaluated legionella colonization of a water network of an Italian hospital after time flow taps (TFTs) installation in proximity to dead legs. The water volume flushed was 64 L/day from May 2016, and 192 L/day from December 2016. Before TFTs installation, Legionella pneumophila sg2-14 was detected in all points (4 × 104 ± 3.1 × 104 cfu/L). All sites remained positive (2.9 × 104 ± 1.9 × 104 cfu/L) through November 2016. From December 2016 legionella persisted in one point only (2 × 102 to 6.8 × 103 cfu/L). TFTs with chemical disinfection may reduce legionella colonization associated with dead legs.
Collapse
Affiliation(s)
- M Totaro
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - P Valentini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - A L Costa
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - S Giorgi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - B Casini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - A Baggiani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| |
Collapse
|