1
|
Chen J, Wang R, Wang C, Wang P, Gao H, Hu Y, Nie Q, Zhang S. Enhanced microbial degradation of hexabromocyclododecane in riparian sediments through regulating flooding regimes. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137406. [PMID: 40098214 DOI: 10.1016/j.jhazmat.2025.137406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 03/19/2025]
Abstract
Hexabromocyclododecane (HBCD), a persistent halogenated organic pollutant, has been commonly detected in river sediments, especially in riparian zones, but strategies for promoting its microbial degradation remain insufficiently explored. This study hypothesized that regulating the flooding regime of sediments could accelerate microbial degradation of HBCD in riparian zones and evaluated the underlying mechanisms. Results showed that, compared with high-frequency flooding-drying or no alternations, the low-frequency flooding-drying alternation (6 weeks of flooding and 6 weeks of drying, 6F:6D) significantly promoted microbial degradation of HBCD. This may be due to changes in sediment redox potential under the 6F:6D regime, facilitating the sequential reductive debromination and aerobic degradation process of HBCD. The abundances of organohalide-respiring bacteria (Dehalococcoides spp. and Dehalogenimonas spp.) were always high in the 6F:6D regime, irrespective of flooding or drying periods. Furthermore, the complex bacterial co-occurrence patterns, specific ecological clusters, and potential keystone species including the genera Methylibium, Nitrospira, and Dehalococcoides, may play important degradative roles of HBCD in the 6F:6D regime. Overall, microbial degradation of HBCD can be promoted under low-frequency flooding-drying alternation regulated by hydraulic structures, providing an effective and eco-friendly strategy for ecological restoration.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Rong Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Yu Hu
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Qihao Nie
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Shunqing Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
2
|
He K, Lan J, Wang Y, Hao C. Multi-isotopes ( 18O, 34S, 15N, and 13C) reveal the enrichment mechanism of antimony in high-antimony groundwater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:321. [PMID: 39985611 DOI: 10.1007/s10661-025-13770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
Multi-isotopes can be effectively utilized to offer new insights into heavy-metal oxidation dynamics and variations in redox conditions. Therefore, hydrochemical data and isotopic characteristics (δ18OH2O, δD, δ34SSO4, δ18OSO4, δ15NNO3, δ18ONO3, δ13CDOC and δ13CDIC) were determined the oxidation mechanism of Sb(III) to Sb(V) in D3x4 groundwater. The results showed the concentration of Sb in D3x4 groundwater ranges from 0.005 to 20.700 mg/L, with an average of 2.300 mg/L, and Sb(V) represented the dominant form present within D3x4 groundwater. The δ34S、δ15N values in D3x4 groundwater ranges from -4.20‰ to 6.30‰, 1.20‰ to 22.70‰, respectively. the δ13CDOC and δ13CDIC content in D3x4 groundwater vary in the ranges of -26.97‰ to -16.70‰ and -17.84‰ to -2.30‰, respectively. Stibnite oxidation significantly influenced the enrichment of Sb(V) and SO42-, while microbial nitrification notably contributed to elevated NO3- levels in high-Sb groundwater by converting Sb(III) to Sb(V). The presence of redox-active moieties in DOM facilitated electron transfer for promoting Sb(III) oxidation rate during the stibnite oxidation process. Additionally, microbial oxidative degradation of DOM can promote Sb(V) enrichment, with carbon serving as an energy source for nitrification, facilitated this process and enhances the oxidation rate of Sb(III) to Sb(V). These findings contribute to a more comprehensive understanding of the geochemical behavior of antimony in groundwater and enhance our knowledge regarding Sb(III) oxidation mechanism in oxygenated groundwater.
Collapse
Affiliation(s)
- Kaikai He
- North China Institute of Science and Technology, Xueyuan Street 467 Sanhe, Yanjiao, Hebei, 065201, People's Republic of China
| | - Jianmei Lan
- Hunan Center of Natural Resources Affairs, Changsha, 410004, Hunan, China
| | - Yantang Wang
- North China Institute of Science and Technology, Xueyuan Street 467 Sanhe, Yanjiao, Hebei, 065201, People's Republic of China
| | - Chunming Hao
- North China Institute of Science and Technology, Xueyuan Street 467 Sanhe, Yanjiao, Hebei, 065201, People's Republic of China.
- Hunan Center of Natural Resources Affairs, Changsha, 410004, Hunan, China.
- Key Laboratory of Natural Resource Coupling Process and Effects, Beijing, 100055, China.
| |
Collapse
|
3
|
Gao Y, Li J, Wang S, Jia J, Wu F, Yu G. Global inland water greenhouse gas (GHG) geographical patterns and escape mechanisms under different water level. WATER RESEARCH 2025; 269:122808. [PMID: 39571522 DOI: 10.1016/j.watres.2024.122808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/11/2024]
Abstract
Inland water ecosystems are unique, whereby water level changes can lead to variance in greenhouse gas (GHG) emissions. The GHG circulation intensity of inland waterbodies is high, so different water depths affect the temperature sensitivity of greenhouse gases, and have different cooling effects on CO2 storage and warming effects on CH4 emissions, being a typical GHG conversion channel. This study systematically reveals geographical GHG emission patterns from inland waterbodies and GHG impact mechanisms from regional waterbodies. Special emphasis is also paid to compounded environmental impact changes on GHG emissions under water level regulations. Additionally, we explore how increases in primary productivity can convert aquatic ecosystems from CO2 sources to CO2 sinks. However, GHG formation and emissions under ecological reservoir water level fluctuations in flood-ebb zones, intertidal tidal zones, wetlands, and lacustrine systems remain uncertain compared with those under natural hydrological conditions. Therefore, mechanisms that control GHG exchange and production processes under water level changes must first be determined, especially regarding post flood hydrological-based drying effects on GHG flux at the water-air interface. Finally, we recommend instituting environmental management and water-level control measures to reduce GHG emissions, which are favorable for minimizing GHG flux while protecting ecosystem functions and biodiversity.
Collapse
Affiliation(s)
- Yang Gao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Jiajia Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shuoyue Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Junjie Jia
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fan Wu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
4
|
Zhao Z, He X, Chen S, Ning L, Chen K, Wang Y. Quantifying the environmental fate and source of nitrate contamination using dual-isotope tracing coupled with nitrogen cascade model on the basin scale. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136594. [PMID: 39579703 DOI: 10.1016/j.jhazmat.2024.136594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Nitrate (NO3-) contamination in riverine networks has threatened the environment and human health. Clarifying the NO3- source and environmental fate within the basin under different underlying surfaces is essential for water body protection, especially China's two mother rivers. A series of combination methods were established i.e., field survey, index measurements, isotope-tracing techniques, and material flow analysis in four typical basins to investigate the spatiotemporal variation and source of NO3- pollution and nitrogen cascade characteristics. The dual-isotope coupled with MixSIAR model revealed that manure and sewage were the major NO3- source in the irrigation basin (WY, 76.7 %), hilly mountainous basin (YC, 52.3 %), and plateau lake basin (DC, 48.7 %). However, for the plain-river network basin (CZ), soil leachate was the main source (55.5 %). In terms of the N losses to water within agri-environment system, livestock-breeding system in three basins made the biggest contribution among the systems, WY (77.3 %), YC (47.3 %), and DC (41.8 %). While in CZ, about 34.4 % of N was delivered from the crop-production system. The N cascade model verified the results of isotope-tracing techniques for each basin. The study provides new insight into NO3--tracing combining hydrogeochemical indicators, isotopic-tracing techniques, and material flow analysis and guides strategies for mitigating the negative impacts of NO3- pollution on aquatic environments on basin scale.
Collapse
Affiliation(s)
- Zihan Zhao
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Xinghua He
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Sidi Chen
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Letian Ning
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Kexin Chen
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Yanhua Wang
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China; Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
5
|
Peng J, Lan T, Wang J, Xia P, Zheng H. Integrating river transport processes and seasonal dynamics to assess watershed nitrogen export risk. ENVIRONMENT INTERNATIONAL 2025; 195:109194. [PMID: 39700685 DOI: 10.1016/j.envint.2024.109194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
Excessive nitrogen exported to water bodies affects the balance of ecosystem and poses a threat to human health. Although the concept of water purification service helps quantify nitrogen export, the impact of river transport remains unclear. This study focused on nitrogen as a pollutant by utilizing the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model to assess nitrogen export in the Dongting Lake Basin, taking into account both the processes of sub-basin nitrogen export and river transport. Additionally, the monthly variations within the year were further explored, together with the identification of the priority area of returning cropland to forest land. The results showed that in 2021, the total nitrogen load outside the Dongting Lake was 11.34 × 108 kg·year-1, with the sub-basins retaining a total of 9.02 × 108 kg·year-1, accounting for 79.57 % of the total nitrogen load. Notably, the total nitrogen retention by the river made up 16.87 % of the total nitrogen retention, up to 1.83 × 108 kg·year-1. In view of monthly variation, water purification service based on the entire process was higher in winter and late autumn, and lower in summer and early autumn. The priority areas for ecological project were mainly distributed around the Dongting Lake, achieving an improvement of 58.15 % in water purification service with approximately 7.02 % of the total returnable cropland. This study proposed a new approach of water purification service assessment through integrating river transport processes and seasonal dynamics, aiming to assess watershed nitrogen export risk more accurately.
Collapse
Affiliation(s)
- Jian Peng
- Technology Innovation Center for Integrated Ecosystem Restoration and Sustainable Utilization, Ministry of Natural Resources, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Tianhan Lan
- Technology Innovation Center for Integrated Ecosystem Restoration and Sustainable Utilization, Ministry of Natural Resources, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jiabin Wang
- Key Laboratory of Earth Surface System and Human-Earth Relations, Ministry of Natural Resources, School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Pei Xia
- Technology Innovation Center for Integrated Ecosystem Restoration and Sustainable Utilization, Ministry of Natural Resources, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Huining Zheng
- Technology Innovation Center for Integrated Ecosystem Restoration and Sustainable Utilization, Ministry of Natural Resources, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Wang G, Gu L, Bohu T, He B, Zhang H, Lv X, Hao Z, Liu M, Zhou S, Wang L. Deciphering microbial assembly and coexistence in rivers subjected to long-term reclaimed water replenishment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125299. [PMID: 39537090 DOI: 10.1016/j.envpol.2024.125299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/29/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Reclaimed water recharge into rivers is an important supplementary approach to address water resource shortage in arid and semi-arid areas worldwide. However, the ecology impacts of reclaimed water recharge on the rivers are still unknown, especially for the microbial assemble and species coexistence in different seasons. Here, the evolution of microbiome and its response to different reasons in the Jialu River, which was subjected to long-term reclaimed water recharge, is investigated by using 16S rRNA gene sequencing and multivariate statistical methods. The results indicated that microbial communities exhibited significant temporal heterogeneity across different periods and were negatively correlated with river discharge. Their assembly was primarily influenced by stochastic processes such as dispersal limitation and drift. As the transition occurred from the dry season to the normal season, the role of drift diminished, while the deterministic effects of dispersal limitation and niche selection intensified. The relationships among planktonic bacterial species were primarily positive (cooperative), and the complexity and positive correlations within the ecological network showed a trend of first decreasing and then increasing with the change of seasons. Temperature, dissolved oxygen, and ammonia nitrogen were the main driving forces influencing the structure of microbial communities. In summary, these findings provided insights into the impact of seasonal variations on the microbial community patterns in reclaimed water-supplemented river ecosystems.
Collapse
Affiliation(s)
- Gelin Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China; Xiong'an Institute of Innovation, Chinese Academy of Sciences, Baoding, 071000, China
| | - Likun Gu
- Henan Institute of Engineering, Zhengzhou, 450000, China
| | - Tsing Bohu
- Xiong'an Institute of Innovation, Chinese Academy of Sciences, Baoding, 071000, China
| | - Bing He
- Zhengzhou Ecological Environment Monitoring Center, Zhengzhou, 450007, China
| | - Hui Zhang
- Yellow River Institute of Ecological Environment Science, Zhengzhou, 450000, China
| | - Xiaoyan Lv
- Zhengzhou University Multi-Functional Design and Research Academy Co. Ltd, Zhengzhou, 450000, China
| | - Ziyao Hao
- Zhengzhou University Multi-Functional Design and Research Academy Co. Ltd, Zhengzhou, 450000, China
| | - Mengshuo Liu
- School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shilei Zhou
- Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Li Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
7
|
Zhang X, Liu Z, Xin Z, Zhang C, Song C. Tracing nitrogen sources and transformation characteristics in a large basin with spatially heterogeneous pollution distribution. ENVIRONMENTAL RESEARCH 2024; 262:119859. [PMID: 39208978 DOI: 10.1016/j.envres.2024.119859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
This study used dual stable isotopes to examine nitrate sources and geographical distribution in the Liao River Basin (LRB), one of China's seven major river basins. During a normal hydrological season in April 2021, water samples were taken from the main streams of the Liao River (MLR), Shuangtaizi River (STR), Hun River (HR), Taizi River (TZR), and Daliao River (DLR). Monitoring results indicated that 93% of the water samples had a total nitrogen level exceeding the Class IV limit (1.5 mg/L) of the 'Environmental Quality Standards (EQS) for surface water', indicating a serious nitrogen pollution status. 71.3% of the total nitrogen on average was in the form of nitrate. The scatterplots of δD-H2O and δ18O-H2O showed that water in TZR and DLR were mainly affected by precipitation, while MLR, STR and HR were additionally impacted by evaporation and groundwater. The overall δ15N and δ18O of NO3- varied from 7.7‰ to 17.9‰ and 0.6‰-11.2‰, respectively. The correlations between δ15N-NO3- and δ18O-NO3-, along with attribution results from the Bayesian isotopic mixing model, indicated a predominant role of manure/sewage (MS) pollution in affecting river nitrate, accounting for 78% of total nitrate in MLR and 72% in DLR. A positive correlation between δ15N-NO3- and δ18O-NO3- in MLR indicated the occurrence of denitrification process. Overall, attribution results showed that the primary nitrate sources varied in different river systems within such a large basin, mainly due to spatially varied land use and human activities. Tailored nitrogen management strategies should be implemented to address the main anthropogenic pressures.
Collapse
Affiliation(s)
- Xiaojing Zhang
- School of Infrastruct Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhihong Liu
- School of Infrastruct Engineering, Dalian University of Technology, Dalian, 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo, 315000, China
| | - Zhuohang Xin
- School of Infrastruct Engineering, Dalian University of Technology, Dalian, 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo, 315000, China.
| | - Chi Zhang
- School of Infrastruct Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Changchun Song
- School of Infrastruct Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
8
|
Hu X, Cao S, Wen M, Zhang Y, Zhao Y, Liu Y, Kong X, Li Y. Exploration of nitrogen sources and transformation processes in eutrophic estuarine zones based on DOM and stable isotope compositions. MARINE POLLUTION BULLETIN 2024; 209:117256. [PMID: 39547070 DOI: 10.1016/j.marpolbul.2024.117256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/05/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024]
Abstract
Our study examines nitrogen sources and transformations in Xiamen Bay, where eutrophication has increased due to higher nitrogen levels. By analyzing dissolved organic matter (DOM) and nitrate stable isotopes (δ15N-NO3-and δ18O-NO3-), the study finds that nitrate in low salinity areas is influenced by freshwater-seawater mixing and biogeochemical processes, while in high salinity areas, it is mainly affected by physical mixing. Bayesian mixing model (MixSIAR) results show that the primary nitrate sources are fecal matter and sewage, followed by atmospheric deposition. During the high flow period, DOM may facilitate nitrogen transformation and release through processes such as degradation or mineralization. In contrast, during the low flow period, the system is mainly influenced by the physical mixing of saline and freshwater. Studies have shown that DOM can indicate the biogeochemical intensity in water bodies, further identifying the main factors influencing the distribution and transformation processes of nitrate content, providing a basis for mitigating eutrophication in estuarine areas.
Collapse
Affiliation(s)
- Xiujian Hu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China
| | - Shengwei Cao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China.
| | - Mengtuo Wen
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yuanjing Zhang
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China
| | - Yuewen Zhao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China
| | - Yaci Liu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China
| | - Xiangke Kong
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China
| | - Yasong Li
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China
| |
Collapse
|
9
|
Fan H, Zhang W, Wu L, Zhang D, Ye C, Wang D, Jiang H, Zhang Q. Soil nitrogen biogeochemistry and hydrological characteristics shape the nitrate levels in a river. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 47:4. [PMID: 39607576 DOI: 10.1007/s10653-024-02319-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/26/2024] [Indexed: 11/29/2024]
Abstract
The high levels of nitrate (NO3-) in the surface water have contributed to eutrophication and other eco-environmental damages worldwide. Although the excessive NO3- concentrations in rivers were often attributed to anthropogenic activities, some undisturbed or slightly disturbed rivers also had high NO3- levels. This study utilized multi-pronged approaches (i.e., river natural abundance isotopes, 15N-labeling techniques, and qPCR) to provide a comprehensive explanation of the reason for the high NO3- levels in a river draining forest-dominated terrene. The river natural abundance isotopes (δ15N/δ18O-NO3-) indicated that the soil source (i.e., soil organic nitrogen-SON and chemical fertilizer-CF) were the primary contributors to the NO3-, and the NO3- removal was probably prevalent in the basin scale. The 15N-labeling techniques quantitatively showed that denitrification and anammox were stronger than nitrification in the soils and sediments. Structural equation models suggested that nitrification in the soils was regulated by NH4+-N contents, which, in turn, were closely related to fertilization in spring. Denitrification and anammox were largely controlled by elevation and functional gene abundances (i.e., nirK and hzsB, respectively). The hydrological isotopes (i.e., δD/δ18O-H2O) indicated that the transport of NO3- from soil to the river was related to the intensity of runoff leaching to the soil, In contrast, the riverine NH4+ was largely from point sources; thus, increasing runoff led to a dilution effect. This study clearly showed that soil biogeochemistry and hydrological condition of a river basin jointly shaped the high NO3- levels in the almost undisturbed river.
Collapse
Affiliation(s)
- Hekai Fan
- School of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Wenshi Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Li Wu
- School of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Dong Zhang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Chen Ye
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Dezhi Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Hao Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China.
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
10
|
Li Y, Zhang M, Liu X, Zhang L, Chen F. Trophic homogeneity due to seasonal variation in nitrogen in shallow subtropical lakes. WATER RESEARCH 2024; 266:122321. [PMID: 39217645 DOI: 10.1016/j.watres.2024.122321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Lakes play a crucial role in the nitrogen (N) cycle, and eutrophication disrupts the balance of the nitrogen cycle within lakes, including both the N removal process and the N supplement process. However, the mechanisms by which different nutrient levels affect seasonal nitrogen variations in the water columns are not clear, especially for long-term and large- scale studies. In this study, we used 206 independent spatial samples from a total of 108 subtropical shallow lakes from four surveys in the middle and lower reaches of the Yangtze River, as well as time-case study data from Lake Taihu and Lake Donghu of up to 23 and 14 years, respectively, to analyze the changes in summer TN compared to spring (delta TN). Delta TN was significantly negatively correlated with initial spring TN concentrations, with similar trends observed in both space and time. Furthermore, the slopes of spring TN vs. delta TN varied little across lakes in both time and space, suggesting a consistent relationship between initial spring TN and summer TN changes. When initial TN or TN: TP ratio was low, N fixation by algae played a significant role in compensating for summer N removal, thus mitigating summer N reductions; when TN was high or TN: TP ratio was high, ammonia stress reduced the compensatory effect of algae and denitrification played a significant role in summer N removal, thus increasing summer N reductions. Our study suggested that no matter what the initial conditions are, lakes tend to evolve towards a common nutrient status through biological regulation.
Collapse
Affiliation(s)
- Yun Li
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Min Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Xia Liu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Lu Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Feizhou Chen
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
11
|
Chen R, Shen W, Tong C, Guo J, Yang L, Ma X, Xin H, Yao Y, Wang L. Contrasting nitrogen transport patterns in subtropical basins revealed by combined multiple isotopic analyzes and hydrological simulations. WATER RESEARCH 2024; 262:122058. [PMID: 39013261 DOI: 10.1016/j.watres.2024.122058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
Although enhancing the knowledge of nitrogen (N) dynamics in aquatic systems is crucial for basin N management, there is still a lack of theories on the patterns of basin N sources and transport because of the intricate influence of human activities, climatic conditions, landscape patterns, and topography on the trajectory of basin N. To shed new light on the patterns of basin N sources and transport in the Chinese subtropical monsoon region, this study provides a comprehensive approach combining multiple isotopes and hydrological model based on monthly records of hydro-chemistry and isotopes (18O-NO3- /15N-NO-3 and 18O-H2O /2H-H2O) for river water, groundwater and rainfall in three basins over multiple years. Our observations of hydro-chemistry showed that fluvial N levels in highly urbanized basins (3.05 ± 1.42 mg·L-1) were the highest and were characterized by higher levels in the dry season. In the agricultural basin, fluvial N levels in February and March were approximately 1.9 times higher than those in the other months. The fluvial N load was higher in agricultural basins (0.624-0.728 T N km -2 y -1) than in urban basins (0.558 T N km -2 y -1), primarily because of variations in sewage treatment rates and fertilizer application. In highly urbanized basin, manure and sewage (46.9 %) were the dominant sources of fluvial N, which were discharged into rivers after treatment. In the plain agricultural basin, a substantial portion of diffused residential sewage leaches into aquifers and is stored. In the hilly agro-forest mixed basin, the high baseflow coefficient (75.8 %) and the key role of groundwater N, mainly from soil N (27.3 %), chemical fertilizers (20.2 %), manure and sewage (46.6 %), to fluvial N (26.5 %) indicated that a high proportion of the N sources leached into the aquifer and were then transported to rivers. For the first time, this study integrated multiple methods to substantiate the proposed typical patterns of N sources and transport within the basins. These findings have significant implications for tailored basin-specific N management strategies.
Collapse
Affiliation(s)
- Ruidong Chen
- School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu province, 210023, PR China
| | - Wanqi Shen
- School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu province, 210023, PR China
| | - Chengwei Tong
- School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu province, 210023, PR China
| | - Jiaxun Guo
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Long Yang
- School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu province, 210023, PR China
| | - Xiaoxue Ma
- College of Urban Resources and Environment, Jiangsu Second Normal University, Nanjing, 210013, PR China
| | - Huarong Xin
- Jiangsu Province Hydrology and Water Resources Investigation Bureau, Nanjing, Jiangsu province, 210029, PR China
| | - Yunlong Yao
- Jiangsu Province Hydrology and Water Resources Investigation Bureau, Nanjing, Jiangsu province, 210029, PR China
| | - Lachun Wang
- School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu province, 210023, PR China.
| |
Collapse
|
12
|
Zhang J, Pei Y, Yi Q, Chen Y, Zhang T, Shi W. Particulate and water-mobilizable phosphorus from a watershed with a plain river network contributes equal amounts of algal available phosphorus to its downstream lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173047. [PMID: 38723957 DOI: 10.1016/j.scitotenv.2024.173047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
This research was designed to estimate the contributions of phosphorus (P) in different factions from an upstream plain river network to algal growth in a downstream shallow eutrophic lake, Taihu Lake, in China. During three flow regimes, the P fractions in multiple phases (particulate, colloidal and dissolved phases) and their algal availabilities were assessed via bioassays with Dolichospermum flos-aquae as the test organism. The P partitioning patterns among multiple phases were strongly affected by the concentration of total suspended solids (TSS) that changed with the river flow regime, with stronger disturbance of sediments at lower water levels (low flow) and weaker disturbance of sediments at higher water levels (high flow) in the plain river network. The median TSS concentration across the river network decreased from 157.4 mg/L during low flow to 31.8 mg/L during high flow, and the median particulate P concentration decreased from 0.132 mg/L to 0.093 mg/L. The particulate P contributed equally to the amount of algal available P (AAP) as did the water-mobilizable P (colloidal plus dissolved phase) in the rivers flowing into Taihu Lake. The annual average concentrations of particulate algal available P (P-AAP), colloidal algal available P (C-AAP) and dissolved algal available P (D-AAP) were estimated to be 0.032 mg/L, 0.012 mg/L and 0.019 mg/L, respectively, during 2012-2018, accounting for 50.8 %, 19.0 % and 30.2 %, respectively, of the total AAP. At the watershed scale, controlling P drainage from downstream urbanized areas should be emphasized. Additionally, controlling sediment resuspension or reducing the TSS concentration in the inflowing rivers is important for decreasing the particulate P flux to downstream lakes.
Collapse
Affiliation(s)
- Jin Zhang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Yu Pei
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Qitao Yi
- School of Civil Engineering, Yantai University, Yantai 264005, China.
| | - Yihan Chen
- School of Civil Engineering, Yantai University, Yantai 264005, China; School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Tao Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Wenqing Shi
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
13
|
Chen W, Zhang X, Wu N, Yuan C, Liu Y, Yang Y, Chen Z, Dahlgren RA, Zhang M, Ji X. Sources and transformations of riverine nitrogen across a coastal-plain river network of eastern China: New insights from multiple stable isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171671. [PMID: 38479520 DOI: 10.1016/j.scitotenv.2024.171671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/10/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Riverine nitrogen pollution is ubiquitous and attracts considerable global attention. Nitrate is commonly the dominant total nitrogen (TN) constituent in surface and ground waters; thus, stable isotopes of nitrate (δ15N/δ18O-NO3-) are widely used to differentiate nitrate sources. However, δ15N/δ18O-NO3- approach fails to present a holistic perspective of nitrogen pollution for many coastal-plain river networks because diverse nitrogen species contribute to high TN loads. In this study, multiple isotopes, namely, δ15N/δ18O-NO3-, δ18O-H2O, δ15N-NH4+, δ15N-PN, and δ15Nbulk/δ18O/SP-N2O in the Wen-Rui Tang River, a typical coastal-plain river network of Eastern China, were investigated to identify transformation processes and sources of nitrogen. Then, a stable isotope analysis in R (SIAR) model-TN source apportionment method was developed to quantify the contributions of different nitrogen sources to riverine TN loads. Results showed that nitrogen pollution in the river network was serious with TN concentrations ranging from 1.71 to 8.09 mg/L (mean ± SD: 3.77 ± 1.39 mg/L). Ammonium, nitrate, and suspended particulate nitrogen were the most prominent nitrogen components during the study period, constituting 45.4 %, 28.9 %, and 19.9 % of TN, respectively. Multiple hydrochemical and isotopic analysis identified nitrification as the dominant N cycling process. Biological assimilation and denitrification were minor N cycling processes, whereas ammonia volatilization was deemed negligible. Isotopic evidence and SIAR modeling revealed municipal sewage was the dominant contributor to nitrogen pollution. Based on quantitative estimates from the SIAR model, nitrogen source contributions to the Wen-Rui Tang River watershed followed: municipal sewage (40.6 %) ≈ soil nitrogen (39.5 %) > nitrogen fertilizer (9.7 %) > atmospheric deposition (2.8 %) during wet season; and municipal sewage (59.1 %) > soil nitrogen (30.4 %) > nitrogen fertilizer (4.1 %) > atmospheric deposition (1.0 %) during dry season. This study provides a deeper understanding of nitrogen dynamics in eutrophic coastal-plain river networks, which informs strategies for efficient control and remediation of riverine nitrogen pollution.
Collapse
Affiliation(s)
- Wenli Chen
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaohan Zhang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Nianting Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Can Yuan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yinli Liu
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Yue Yang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Southern Zhejiang Water Research Institute, Wenzhou 325035, China
| | - Zheng Chen
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, California 95616, USA
| | - Minghua Zhang
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Southern Zhejiang Water Research Institute, Wenzhou 325035, China; Department of Land, Air and Water Resources, University of California, Davis, California 95616, USA
| | - Xiaoliang Ji
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
14
|
Lin C, Du R, Guo F. Implication of self-organizing map, stable isotopes combined with MixSIAR model for accurate nitrogen control in a well-protected reservoir. ENVIRONMENTAL RESEARCH 2024; 248:118335. [PMID: 38295982 DOI: 10.1016/j.envres.2024.118335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Nitrogen pollution and eutrophication in reservoirs is a global environmental geochemical concern. Occasional algal blooms still exist in reservoirs that have undergone pollution treatment. The lack of quantitative evidence of nitrogen sources and fate limits long-term stable ecological safety management. This work applied an approach integrated zonal mapping, stable isotopes (δ18OH2O, δ15Nnitrate, δ18Onitrate, and δ13C-DIC) and a Bayesian isotope model to analyze regional and seasonal differences in the contribution and sources of nitrogen to a well-protected reservoir. The values of δ18Onitrate and the positive relationship between NO3- and δ13C-DIC suggested that nitrification was the primary NO3- production in the rivers. While Denitrification was present at only a few sites. Results of the MixSIAR model coupled the NO3-/Cl- indicator revealed that the domestic sewage contributed high riverine NO3- loading (68.6 ± 10.6 %) in the dry season. In the wet season, the main nitrate sources of upper watershed were ammonia and carbamide fertilizers (47.5 % and 40.3 %). While the domestic sewage was still the major contributor of downstream region (a dense residential area), indicating possible problems with rainwater and sewage drainage networks. The results implied that the colleting and treatment of sewages were the priority in downstream region, and non-point source pollution control and wastewater treatment plant upgrading were essential to control nitrate pollution in the two upstream regions. These findings provide new insights into precise nitrogen pollution traceability and identification of treatment priorities in the sub-region, and promote the management other well-protected watershed in similar need of further nitrogen contamination control.
Collapse
Affiliation(s)
- Changkun Lin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ronghua Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fei Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
15
|
Ding K, Zhang Y, Zhang H, Yu C, Li X, Zhang M, Zhang Z, Yang Y. Tracing nitrate origins and transformation processes in groundwater of the Hohhot Basin's Piedmont strong runoff zone through dual isotopes and hydro-chemical analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170799. [PMID: 38336049 DOI: 10.1016/j.scitotenv.2024.170799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Nitrate, which poses a serious threat to the drinking water supply, is one of the most prevalent anthropogenic groundwater contaminants worldwide. With the development of the chemical industry, the nitrate pollution of groundwater in the Piedmont strong runoff zone of the Hohhot Basin, which is the main groundwater extraction area, is becoming increasingly severe. The special hydrogeological and complex pollution conditions in the study area make it difficult to identify nitrate sources and transformation processes. In order to identify the results more accurately, this study combined water chemistry, multivariate statistical analysis and isotope tracer methods to determine the sources and transformation processes of nitrate in the study area. The results showed that the groundwater in the eastern part of the study area (ESA) was clearly affected by anthropogenic activities, and its nitrate was mainly from nitrification of ammonia in industrial wastewater, nitrate in industrial wastewater (the sum of the two contributions was 62.2 %), and nitrate in manure (20.5 %). The hydrogeochemical characteristics of groundwater in the western part of the study area (WSA) are the same as those of natural groundwater in the Piedmont strong-runoff zone. The nitrate in groundwater in the WSA was mainly derived from soil nitrogen (63.8 %) and ammonia fertilizer (28.8 %). Nitrification and denitrification occurred only locally in the aquifer of the study area and were more pronounced in the ESA. Meanwhile, the transformation processes of nitrate in groundwater in the ESA and WSA was significantly influenced by contamination with chlorinated hydrocarbon volatile organic compounds and hydrogeological conditions, respectively. These findings provide a scientific basis for the development of groundwater pollution prevention measures in the study area and guide the traceability of nitrate in groundwater in areas with similar hydrogeological and pollution conditions.
Collapse
Affiliation(s)
- Kaifang Ding
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Groundwater Science and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Yilong Zhang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Groundwater Science and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China
| | - Hengxing Zhang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Groundwater Science and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China.
| | - Chu Yu
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Groundwater Science and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China
| | - Xiaohan Li
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Groundwater Science and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China
| | - Min Zhang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Groundwater Science and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China
| | - Zepeng Zhang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Groundwater Science and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China
| | - Ye Yang
- School of Resource and Environmental Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| |
Collapse
|
16
|
Zhou Z, Yan R, Liu X, Xu Z, Zhang J, Yi Q. Suspended particulate matter <2.5 μm (SPM 2.5) in shallow lakes: Sedimentation resistance and bioavailable phosphorus enrichment after sediment resuspension. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168780. [PMID: 38007111 DOI: 10.1016/j.scitotenv.2023.168780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Resuspended particulate matter in shallow lakes contributes remarkable phosphorus (P) concentrations to the water column that potentially support algal/cyanobacterial growth. However, only fine particulate matter can be retained in the water column for a long time after sediment resuspension events. The size at which fine particulate matter has ecological implications remains undefined. This research defined suspended particulate matter with a median grain size <2.5 μm (SPM2.5) in shallow lakes, which resists sedimentation and enriches bioavailable P. The relationship between the size of suspended particulate matter (SPM) and water disturbance was characterized by conducting a lab-scale jar test with sediments in a shallow lake. The sedimentation of completely resuspended particulate matter occurred under a series of turbulence shear rates (G) ranging from 0 to 50 s-1. When G was larger than 20 s-1, the SPM had a median grain size (D50) ranging from 9 μm to 11 μm for the three samples. When G was <10 s-1, only SPM <2.5 μm remained in suspension. The SPM larger than 2.5 μm settled when G was between 10 s-1 and 20 s-1, and the SPM remained in complete suspension when G was larger than 20 s-1. Furthermore, P fractionation was conducted on different size-grouped particles that were sorted using gravity sedimentation. The concentration of iron/aluminium bound-P (Fe/Al-P) decreased exponentially as the particle size increased. The concentration of Fe/Al-P in SPM2.5 ranged from 902.8 mg/kg to 1212.1 mg/kg, accounting for over 80 % of extractable total phosphorus. SPM2.5 contributed a remarkable amount of bioavailable P to the algal/cyanobacterial biomass in the shallow lake with frequent sediment resuspension.
Collapse
Affiliation(s)
- Zhaona Zhou
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Rong Yan
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Xiao Liu
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Ziying Xu
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Jin Zhang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Qitao Yi
- School of Civil Engineering, Yantai University, Yantai 264005, China.
| |
Collapse
|
17
|
Gong X, Xiong L, Xing J, Deng Y, Qihui S, Sun J, Qin Y, Zhao Z, Zhang L. Implications on freshwater lake-river ecosystem protection suggested by organic micropollutant (OMP) priority list. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132580. [PMID: 37738851 DOI: 10.1016/j.jhazmat.2023.132580] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Lake-river complex systems represent interconnected ecosystems wherein inflow rivers significantly influence the migration of terrigenous contaminants, particularly organic micropollutants (OMPs), into lakes. Given the extensive array of OMPs, screening for those with the highest potential hazard is crucial for safeguarding freshwater lake-river ecosystems. In this study, an optimized multi-criteria scoring method was applied to prioritize OMPs. Flux estimation was then performed to identify the contamination load contributed by the Le'an River to Poyang Lake. Higher concentrations of phthalate esters (PAEs) were detected in the lake-river system, ranging from 1154.5 to 22,732.8 ng/L, followed by antibiotics and polycyclic aromatic hydrocarbons (PAHs), while historical pollutant residues were comparably lower. Based on the prioritization methodology, 27 compounds, encompassing eight PAEs, six organochlorine pesticides (OCPs), six polychlorinated biphenyls (PCBs), five PAHs and two antibiotics, emerged as priority pollutants. Multiple risk assessments revealed that priority PAEs posed relatively high ecological and human health risks; concurrently, the annual fluxes of individual priority PAEs into the lake all exceeded 1000 kg, with DBP, DEHP and BBP fluxes reaching 18,352, 10,429, and 7825 kg, respectively. This research offers valuable insights stemming from OMP prioritization to aid in the conservation of freshwater lake ecosystems, particularly concerning lake-river system integrity.
Collapse
Affiliation(s)
- Xionghu Gong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Lili Xiong
- Jiangxi Hydrological Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Jiusheng Xing
- Jiangxi Hydrological Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Yanqing Deng
- Jiangxi Hydrological Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Su Qihui
- Xinjiang and Raohe Hydrology and Water Resources Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Jing Sun
- Xinjiang and Raohe Hydrology and Water Resources Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Yu Qin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Zhonghua Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
18
|
Li S, Luo Z, Wang S, Nan Q, Ji G. Denitrification fractionates N and O isotopes of nitrate following a ratio independent of carbon sources in freshwaters. Environ Microbiol 2023; 25:2404-2415. [PMID: 37503781 DOI: 10.1111/1462-2920.16468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
The stable isotope technique has been used in tracking nitrogen cycling processes, but the isotopic characteristics are influenced by environmental conditions. To better understand the variability of nitrate isotopes in nature, we investigated the influence of organic carbon sources on isotope fractionation characteristics during microbial denitrification. Denitrifying cultures were inoculated with freshwater samples and enriched with five forms of organic compounds, that is, acetate, citrate, glucose, cellobiose, and leucine. Though the isotope enrichment factors of nitrogen and oxygen (15 ε and 18 ε) changed with carbon sources, 18 ε/15 ε always followed a proportionality near 1. Genome-centred metagenomics revealed the enrichment of a few populations, such as Pseudomonas, Enterobacter, and Atlantibacter, most of which contained both NapA- and NarG-type nitrate reductases. Metatranscriptome showed that both NapA and NarG were expressed but to different extents in the enrichments. Furthermore, isotopic data collected from a deep reservoir was analysed. The results showed δ18 O- and δ15 N-nitrate did not correlate in the surface water where nitrification was active, but 18 ε/15 ε followed a proportionality of 1.05 ± 011 in deeper waters (≥ 12 m) where denitrification controlled the nitrate isotope. The independence of 18 ε/15 ε from carbon sources provides an opportunity to determine heterotrophic denitrification and helps the interpretation of nitrate isotopes in freshwaters.
Collapse
Affiliation(s)
- Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Zhongxin Luo
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
- China Institute of Water Resources and Hydropower Research, Beijing, China
- National Research Center for Sustainable Hydropower Development, Beijing, China
| | - Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
| | - Qiong Nan
- Institute of Environment Pollution Control and Treatment, College of Environment and Resource Science, Zhejiang University, Hangzhou, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
| |
Collapse
|
19
|
Zaryab A, Farahmand A, Mack TJ. Identification and apportionment of groundwater nitrate sources in Chakari Plain (Afghanistan). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7813-7827. [PMID: 37462844 DOI: 10.1007/s10653-023-01684-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/06/2023] [Indexed: 10/29/2023]
Abstract
The Chakari alluvial aquifer is the primary source of water for human, animal, and irrigation applications. In this study, the geochemistry of major ions and stable isotope ratios (δ2H-H2O, δ18O-H2O, δ15N-NO3̄, and δ18O-NO3̄) of groundwater and river water samples from the Chakari Plain were analyzed to better understand characteristics of nitrate. Herein, we employed nitrate isotopic ratios and BSIMM modeling to quantify the proportional contributions of major sources of nitrate pollution in the Chakari Plain. The cross-plot diagram of δ15N-NO3̄ against δ18O-NO3̄ suggests that manure and sewage are the main source of nitrate in the plain. Nitrification is the primary biogeochemical process, whereas denitrification did not have a significant influence on biogeochemical nitrogen dynamics in the plain. The results of this study revealed that the natural attenuation of nitrate in groundwater of Chakari aquifer is negligible. The BSIMM results indicate that nitrate originated mainly from sewage and manure (S&M, 75‰), followed by soil nitrogen (SN, 13‰), and chemical fertilizers (CF, 9.5‰). Large uncertainties were shown in the UI90 values for S&M (0.6) and SN (0.47), whereas moderate uncertainty was exhibited in the UI90 value for CF (0.29). The findings provide useful insights for decision makers to verify groundwater pollution and develop a sustainable groundwater management strategy.
Collapse
Affiliation(s)
- Abdulhalim Zaryab
- Engineering Geology and Hydrogeology, Faculty of Geology and Mines, Kabul Polytechnic University, Kabul, Afghanistan.
- Highland Groundwater Research Group, Kabul, Afghanistan.
| | - Asadullah Farahmand
- Department of Hydrogeology, Ministry of Energy and Water, Kabul, Afghanistan
| | | |
Collapse
|
20
|
Zhang X, Mahmoud SH, Wang H, Gao L, Langford M, Zhang W. Predicting stormwater nitrogen loads from a cold-region urban catchment in year 2050 under the impacts of climate change and urban densification. WATER RESEARCH 2023; 245:120576. [PMID: 37713797 DOI: 10.1016/j.watres.2023.120576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/18/2023] [Accepted: 09/03/2023] [Indexed: 09/17/2023]
Abstract
Urban stormwater is a primary source of pollution for receiving water, but there is a shortage of studies on pollutant loads from urban catchments in cold regions. In this study, we coupled a build-up and wash-off model (in Mike Urban) with a climate change model to assess the impacts of climate change and urban densification on stormwater nitrogen loads (TN, TKN, NOx-N, and TAN) in an urban catchment in Canada. We calibrated and validated the Mike Urban model against observed event mean concentrations and nitrogen loads from 2010 to 2016. Results show that the nitrogen loads were mainly governed by rainfall intensity, rainfall duration, and antecedent dry days. Future precipitation data were downscaled using the Global Climate Models (GCMs), and three different Representative Concentration Pathways (RCP 2.5, RCP 4.5, and RCP 8.5) were used. Modeling results show that the TN, TKN, NOx-N, and TAN loads in 2050 will increase by 28.5 - 45.2% from May to September under RCP 2.5 compared to those from 2010 to 2016, by 34.6 - 49.9% under RCP 4.5, and by 39.4 - 53.5% under RCP 8.5. The increase of our projected TN load (from 1.33 to 2.93 kg·N/ha) is similar or slightly higher than the limited studies in other urban catchments. This study provides a reference for predicting stormwater nitrogen loads in urban catchments in cold regions.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Dept. of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada T6G 1H9
| | - Shereif H Mahmoud
- Dept. of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada T6G 1H9
| | - Hua Wang
- College of Environment, Hohai University, Nanjing 210098, China
| | - Li Gao
- Institute for Sustainable Industries and Liveable Cities, Victoria University, PO Box 14428, Melbourne, Victoria, 8001, Australia
| | - Mathew Langford
- Dept. of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada T6G 1H9
| | - Wenming Zhang
- Dept. of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada T6G 1H9.
| |
Collapse
|
21
|
Cao S, Li Y, Hao Q, Liu C, Zhu Y, Li Z, Yuan R. Spatio-temporal analysis of the sources and transformations of anthropogenic nitrogen in a highly degraded coastal basin in Southeast China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86202-86217. [PMID: 37402913 DOI: 10.1007/s11356-023-28360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/17/2023] [Indexed: 07/06/2023]
Abstract
Nitrogen transport from terrestrial to aquatic environments could cause water quality deterioration and eutrophication. By sampling in the high- and low-flow periods in a highly disturbed coastal basin of Southeast China, hydrochemical characteristics, nitrate stable isotope composition, estimation of potential nitrogen source input fluxes, and the Bayesian mixing model were combined to determine the sources and transformation of nitrogen. Nitrate was the main form of nitrogen. Nitrification, nitrate assimilation, and NH4+ volatilization were the main nitrogen transformation processes, whereas denitrification was limited due to the high flow rate and unsuitable physicochemical properties. For both sampling periods, non-point source pollution from the upper to the middle reaches was the main source of nitrogen, especially in the high-flow period. In addition to synthetic fertilizer, atmospheric deposition and sewage and manure input were also major nitrate sources in the low-flow period. Hydrological condition was the main factor determining nitrate transformation in this coastal basin, despite the high degree of urbanization and the high volume of sewage discharge in the middle to the lower reaches. The findings of this study highlight that the control of agricultural non-point contamination sources is essential to pollution and eutrophication alleviation, especially for watersheds that receive high amounts of annual precipitation.
Collapse
Affiliation(s)
- Shengwei Cao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, 361021, Fujian, China
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, Hebei, China
| | - Yasong Li
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, 361021, Fujian, China.
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, Hebei, China.
| | - Qichen Hao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, 361021, Fujian, China
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, Hebei, China
| | - Chunlei Liu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, 361021, Fujian, China
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, Hebei, China
| | - Yuchen Zhu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, 361021, Fujian, China
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, Hebei, China
| | - Zhenghong Li
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, 361021, Fujian, China
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, Hebei, China
| | - Ruoxi Yuan
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, Hebei, China
| |
Collapse
|
22
|
Feng B, Zhong Y, He J, Sha X, Fang L, Xu Z, Qi Y. Nitrogen sources and conversion processes in shallow groundwater around a plain lake (Northwest China): Evidenced by multiple isotopes and water chemistry. CHEMOSPHERE 2023:139322. [PMID: 37356584 DOI: 10.1016/j.chemosphere.2023.139322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
The groundwater quality is severely impacted by Nitrate (NO3--N) pollution worldwide. Effective lake quality management depends on understanding the origin and fate of nitrogen (N) in the groundwater around lakes. This study combined data for multiple stable isotopes (δ2H-H2O and δ18O-H2O, δ15N-NO3 and δ18O-NO3) and hydrochemistry with the hydrodynamic monitoring profile and a Bayesian isotope mixing (MixSIAR) model to clarify the sources and transformation of N within shallow groundwater around Shahu Lake in the arid area plain of Northwest China. In May 2022, multiple water samples were collected from aquifers (n = 33), drainage water (n = 1), channel water (n = 1), and lake water (n = 7). The results showed that 57% of groundwater samples had high NO3--N concentrations exceeding the World Health Organisation threshold for drinking water (10 mg/L). The high variation in δ15N-NO3 (from -9.21‰ to +27.57‰) and δ18O-NO3 (from -8.32‰ to +19.04‰) revealed multiple N sources and conversion processes. According to nitrate isotopes and the MixSIAR model, N fertilizer, soil organic N and manure, and sewage are the main sources of nitrogen in groundwater and lake water, which account for 40.61%, 35.86%, and 21.55% of groundwater NO3--N, respectively, and 35.07%, 34.43%, and 27.49% of lake water NO3--N. Hydrodynamic monitoring combined with water isotopes showed that upper groundwater (5-10 m) within 1.22 km of the adjacent lake shore strongly interacted with the lake. In groundwater, nitrification predominated, while local denitrification remained a possibility. In conclusion, this research offers a comprehensive approach to determining the sources and conversion of N in contaminated groundwater.
Collapse
Affiliation(s)
- Bo Feng
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Yanxia Zhong
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China; Breeding Base for State Key Lab. of Land Degradation and Ecological Restoration in Northwestern China, Yinchuan, Ningxia, 750021, China; Key Lab. for Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Yinchuan, Ningxia, 750021, China.
| | - Jing He
- Breeding Base for State Key Lab. of Land Degradation and Ecological Restoration in Northwestern China, Yinchuan, Ningxia, 750021, China; Key Lab. for Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Yinchuan, Ningxia, 750021, China; School of Ecology and Environment, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Xiaohua Sha
- Ningxia Vocational Technical College of Industry and Commerce, Yinchuan, Ningxia, 750021, China
| | - Lei Fang
- Hydrology Environmental Geological Survey Institute of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, 750021, China
| | - Zhaoxiang Xu
- Hydrology Environmental Geological Survey Institute of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, 750021, China
| | - Yarong Qi
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China
| |
Collapse
|
23
|
Chen R, Hu Q, Shen W, Guo J, Yang L, Yuan Q, Lu X, Wang L. Identification of nitrate sources of groundwater and rivers in complex urban environments based on isotopic and hydro-chemical evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162026. [PMID: 36754334 DOI: 10.1016/j.scitotenv.2023.162026] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Groundwater and rivers in Chinese cities suffer from severe nitrate pollution. The accurate identification of nitrate sources throughout aquatic systems is key to the water nitrate pollution management. This study investigated nitrogen components of groundwater for twelve years and analyzed the sources of nitrate in the aquatic system based on dual isotopes (δ15N-NO3- and δ18O-NO3-) in the city of Nanjing, a core city of the Yangtze River Delta region, China. Our results showed that the ratio of nitrate to the sum of ammonia and nitrate in groundwater show an increasing trend during 2010-2021. The nitrate concentration was positively correlated with the proportion of cultivated land and negatively correlated with the proportion of forest land in the buffer zone. The relationship between Cl- and NO3-/ Cl- showed that agriculture and sewage sources increased during 2010-2015, sewage sources increased during 2016-2018, agriculture sources increased during 2019-2021. Manure and sewage were the primary sources of groundwater nitrate (72 %). There was no significant difference between the developed land (78 %), cultivated land (69 %), and aquaculture area (72 %). This indicates that dense population and intensive aquaculture in the suburbs have a significant impact on nitrate pollution. The contributions of manure and sewage to the fluvial nitrate sources in the lower reaches of the Qinhuai River Basin were 61 %. The non-point sources, including groundwater N (39 %) and soil N (35 %), were 74 % over the upper reaches. This study highlights the necessity of developing different N pollution management strategies for different parts of highly urbanized watersheds and considers groundwater restoration and soil nitrogen management as momentous, long-term tasks.
Collapse
Affiliation(s)
- Ruidong Chen
- School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu province 210023, China
| | - Qihang Hu
- School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu province 210023, China
| | - Wanqi Shen
- School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu province 210023, China
| | - Jiaxun Guo
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Long Yang
- School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu province 210023, China
| | - Qiqi Yuan
- School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu province 210023, China
| | - Xiaoming Lu
- Jiangsu Province Hydrology and Water Resources Investigation Bureau, Nanjing, Jiangsu province 210029, China
| | - Lachun Wang
- School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu province 210023, China.
| |
Collapse
|
24
|
Chen Y, Chen J, Xia R, Li W, Zhang Y, Zhang K, Tong S, Jia R, Hu Q, Wang L, Zhang X. Phosphorus - The main limiting factor in riverine ecosystems in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161613. [PMID: 36646215 DOI: 10.1016/j.scitotenv.2023.161613] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
River receive substantial nutrient inputs, and serve as the main channel for nitrogen and phosphorus to enter the lake, their nutrient control is of great significance to the alleviation of lake eutrophication. While nutrient limitation affects the primary productivity of water ecosystems and the biodiversity of aquatic communities, identifying the limiting factors in riverine ecosystems across China remains elusive. Here, we explore which nutrients have a stronger effect on nutritional balance and aquatic ecosystems in China's rivers based on the total nitrogen (TN) and total phosphorus (TP) observations from 1412 sampling sites in 2018. This study supports the following three main conclusions. Though the percentages of the sites with TN or TP exceeding the limits varied as per different mesotrophic targets, and TP (53.7 %) contributed more to nutrient enrichment than TN (46.3 %). In addition, the spatial distribution characteristics of river nutrients were high in the north (arid zone) and low in the south (humid zone) in China. According to four classification criteria of N:P ratio, 70.8 % of the sampling sites were attributed to phosphorus limiting, much higher than the sites with nitrogen limiting (4.1 %). TN and TP have a synergistic effect on river nutrients, while TP has a stronger regulation framework. Our results reveal that the nutrients in China's rivers are mainly phosphorus limiting, which implies that phosphorus-oriented best management practices are more likely to maintain the nutrient balance of rivers towards healthy aquatic ecosystems. Synopsis: Phosphorus is the key factor that affecting the stability and nutrient balance of riverine ecosystem.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jie Chen
- State Key Laboratory of Water Resource and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
| | - Rui Xia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Wenpan Li
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Yuan Zhang
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangdong 510006, China
| | - Kai Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shanlin Tong
- State Key Laboratory of Water Resource and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
| | - Ruining Jia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Northwest University, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Qiang Hu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Xiaojiao Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
25
|
Ding Y, Yi Q, Jia Q, Zhang J, Zhou Z, Liu X. Quantifying phosphorus levels in water columns equilibrated with sediment particles in shallow lakes: From algae/cyanobacteria-available phosphorus pools to pH response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161694. [PMID: 36690114 DOI: 10.1016/j.scitotenv.2023.161694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/17/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Sediment phosphorus (P) release in shallow eutrophic lakes is a major contributor of P to algal blooms. This research proposes an innovative notion in which the P diffusive fluxes at the sediment-water interface (SWI) of shallow lakes are controlled by the P adsorption-desorption equilibria, with pH as the major regulating factor. The P equilibrium concentration (Ce) at SWI was conceptualized into a dependent variable responding to two factor-dependent variables, the algae/cyanobacteria-available P pools of the SWI and the pH in the water column, resulting in the empirical equation Ce(pH) = Cm/[1 + e-k(pH-pH1/2)]. Cm is the maximum P equilibrium concentration when all algae/cyanobacteria-available P in sediments is released, and the value relies on the thickness of the oxygen and pH transition layer that contains iron/aluminium (hydr)oxide-adsorbed P. The parameters in the empirical equation are accessible from P desorption tests conducted on a set of sediment samples with different P pollution levels. This research provides a quantitative approach for determining the sediment P criteria of shallow lakes, with sediment iron/aluminium (hydr)oxide-adsorbed P and water depth as two main indicators with ecological implications. A decrease in water depth would proportionally increase the P concentration at a similar sediment P releasing flux and increase algae/cyanobacteria-available P pools that are ready to equilibrate with the water column by increasing hydrodynamic disturbance of the SWI.
Collapse
Affiliation(s)
- Yuxin Ding
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Qitao Yi
- School of Civil Engineering, Yantai University, Yantai 264005, China.
| | - Qirui Jia
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Jin Zhang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Zhaona Zhou
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Xiao Liu
- School of Civil Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
26
|
Li X, Xu YJ, Ni M, Wang C, Li S. Riverine nitrate source and transformation as affected by land use and land cover. ENVIRONMENTAL RESEARCH 2023; 222:115380. [PMID: 36716803 DOI: 10.1016/j.envres.2023.115380] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
A mixed land use/land cover (LULC) catchment increases the complexity of sources and transformations of nitrate in rivers. Spatial paucity of sampling particularly low-resolution sampling in tributaries can result in a bias for identifying nitrate sources and transformations. In this study, high spatial resolution sampling campaigns covering mainstream and tributaries in combination with hydro-chemical parameters and dual isotopes of nitrate were performed to reveal spatio-temporal variations of nitrate sources and transformations in a river draining a mixed LULC catchment. This study suggested that point sources dominated the nitrate in the summer and winter, while non-point sources dominated the nitrate in the spring and autumn. A positive correlation was observed between proportions from sewage and land use index (LUI). However, negative correlations between soil nitrogen/nitrogen fertilizer and LUI were observed. With an increase of urban areas, the increased contribution from domestic sewage resulted in an increase of NO3- concentrations in rivers. Both urban and agricultural inputs should be considered in nitrate pollution management in a mixed LULC catchment. We concluded that the seasonal variations of nitrate sources were mainly affected by flow velocity conditions and agricultural activities, while spatial variations were mainly affected by LULC. In addition, we found a novel underestimation of dominated sources from Bayesian model because of mixing effect of isotope values from the tributaries to mainstream, however, high spatial resolution sampling can make up for this shortcoming. δ15N and δ18O values of nitrate indicated that nitrate originated from nitrification in soils. The nitrate concentrations and correlation between δ15N and 1/[NO3-] suggested little contribution of nitrate removal by denitrification. Thus, the nitrate reduction in the Yuehe River basin needs to be strengthened. The study provides new implications for estimation of nitrate sources and transformations and basis for nitrate reduction in the river with mixed LULC catchment.
Collapse
Affiliation(s)
- Xing Li
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Y Jun Xu
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA; Coastal Studies Institute, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Maofei Ni
- College of Eco-environmental Engineering, Guizhou Minzu University, Guiyang, China
| | - Chunlin Wang
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Siyue Li
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
27
|
Zhang J, Buyang S, Yi Q, Deng P, Huang W, Chen C, Shi W. Connecting sources, fractions and algal availability of sediment phosphorus in shallow lakes: An approach to the criteria for sediment phosphorus concentrations. J Environ Sci (China) 2023; 125:798-810. [PMID: 36375961 DOI: 10.1016/j.jes.2022.03.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/16/2023]
Abstract
Although point and nonpoint sources contribute roughly equal nutrient loads to lakes, their relative role in supporting algae growth has not been clarified. In this research, we have established a quantitative relationship between algae-available phosphorus (P) and P chemical fractions in sediments; the latter indicates the relative contribution of point versus nonpoint sources. Surface sediments from three large shallow lakes in eastern China, namely, the Chaohu, Taihu and Hongzehu Lakes, were sampled to assess their algae-available P and chemically extracted P fractions. The algae-available P primarily comes from iron/aluminium (hydr)oxide-bound P (Fe/Al-bound P), 45% of which is algae-available P. The ratio of Fe/Al-bound P to calcium compound-bound P (Ca-bound P) indicated the relative contribution of point to nonpoint sources, with the point sources contributing the majority of increased Fe/Al-bound P in sediments. Therefore, the reduction of point sources from urbanized areas, rather than nonpoint sources from agricultural areas that primarily contribute to the Ca-bound P fraction, should be prioritized to alleviate cyanobacterial algal blooms (CyanoHABs) in shallow lakes with sediment P as a potential source to support algae growth. With these important results, we proposed a conceptual model for "P-pumping suction" from sediments to algae to aid in the development of the criteria for sediment P concentrations in shallow lakes.
Collapse
Affiliation(s)
- Jin Zhang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Shijiao Buyang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Qitao Yi
- School of Civil Engineering, Yantai University, Yantai 264005, China.
| | - Peiyao Deng
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Wei Huang
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Cheng Chen
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China
| | - Wenqing Shi
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
28
|
Zhu Z, Li X, Bu Q, Yan Q, Wen L, Chen X, Li X, Yan M, Jiang L, Chen G, Li S, Gao X, Zeng G, Liang J. Land-Water Transport and Sources of Nitrogen Pollution Affecting the Structure and Function of Riverine Microbial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2726-2738. [PMID: 36746765 DOI: 10.1021/acs.est.2c04705] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The characterization of variations in riverine microbiota that stem from contaminant sources and transport modes is important for understanding biogeochemical processes. However, the association between complex anthropogenic nitrogen pollution and bacteria has not been extensively investigated owing to the difficulties faced while determining the distribution of nitrogen contaminants in watersheds. Here, we employed the Soil and Water Assessment Tool alongside microbiological analysis to explore microbial characteristics and their responses to complex nitrogen pollution patterns. Significant variations in microbial communities were observed in sub-basins with distinct land-water pollution transport modes. Point source-dominated areas (PSDAs) exhibited reduced microbial diversity, high number of denitrification groups, and increased nitrogen cycling compared with others. The negative relative deviations (-3.38) between the measured and simulated nitrate concentrations in PSDAs indicated that nitrate removal was more effective in PSDAs. Pollution sources were also closely associated with microbiota. Effluents from concentrated animal feeding operations were the primary factors relating to the microbiota compositions in PSDAs and balanced areas. In nonpoint source-dominated areas, contaminants from septic tanks become the most relevant sources to microbial community structures. Overall, this study expands our knowledge regarding microbial biogeochemistry in catchments and beyond by linking specific nitrogen pollution scenarios to microorganisms.
Collapse
Affiliation(s)
- Ziqian Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Qiurong Bu
- National Engineering Research Centre of Advanced Technologies and Equipment for Water Environmental Pollution Monitoring, Changsha 410205, P. R. China
| | - Qingcheng Yan
- National Engineering Research Centre of Advanced Technologies and Equipment for Water Environmental Pollution Monitoring, Changsha 410205, P. R. China
| | - Liqun Wen
- National Engineering Research Centre of Advanced Technologies and Equipment for Water Environmental Pollution Monitoring, Changsha 410205, P. R. China
| | - Xiaolei Chen
- National Engineering Research Centre of Advanced Technologies and Equipment for Water Environmental Pollution Monitoring, Changsha 410205, P. R. China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Gaojie Chen
- School of Mathematics, Hunan University, Changsha 410082, P. R. China
| | - Shuai Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Xiang Gao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| |
Collapse
|
29
|
Rempfert KR, Nothaft DB, Kraus EA, Asamoto CK, Evans RD, Spear JR, Matter JM, Kopf SH, Templeton AS. Subsurface biogeochemical cycling of nitrogen in the actively serpentinizing Samail Ophiolite, Oman. Front Microbiol 2023; 14:1139633. [PMID: 37152731 PMCID: PMC10160414 DOI: 10.3389/fmicb.2023.1139633] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/15/2023] [Indexed: 05/09/2023] Open
Abstract
Nitrogen (N) is an essential element for life. N compounds such as ammonium ( NH 4 + ) may act as electron donors, while nitrate ( NO 3 - ) and nitrite ( NO 2 - ) may serve as electron acceptors to support energy metabolism. However, little is known regarding the availability and forms of N in subsurface ecosystems, particularly in serpentinite-hosted settings where hydrogen (H2) generated through water-rock reactions promotes habitable conditions for microbial life. Here, we analyzed N and oxygen (O) isotope composition to investigate the source, abundance, and cycling of N species within the Samail Ophiolite of Oman. The dominant dissolved N species was dependent on the fluid type, with Mg2+- HCO 3 - type fluids comprised mostly of NO 3 - , and Ca2+-OH- fluids comprised primarily of ammonia (NH3). We infer that fixed N is introduced to the serpentinite aquifer as NO 3 - . High concentrations of NO 3 - (>100 μM) with a relict meteoric oxygen isotopic composition (δ18O ~ 22‰, Δ17O ~ 6‰) were observed in shallow aquifer fluids, indicative of NO 3 - sourced from atmospheric deposition (rainwater NO 3 - : δ18O of 53.7‰, Δ17O of 16.8‰) mixed with NO 3 - produced in situ through nitrification (estimated endmember δ18O and Δ17O of ~0‰). Conversely, highly reacted hyperalkaline fluids had high concentrations of NH3 (>100 μM) with little NO 3 - detectable. We interpret that NH3 in hyperalkaline fluids is a product of NO 3 - reduction. The proportionality of the O and N isotope fractionation (18ε / 15ε) measured in Samail Ophiolite NO 3 - was close to unity (18ε / 15ε ~ 1), which is consistent with dissimilatory NO 3 - reduction with a membrane-bound reductase (NarG); however, abiotic reduction processes may also be occurring. The presence of genes commonly involved in N reduction processes (narG, napA, nrfA) in the metagenomes of biomass sourced from aquifer fluids supports potential biological involvement in the consumption of NO 3 - . Production of NH 4 + as the end-product of NO 3 - reduction via dissimilatory nitrate reduction to ammonium (DNRA) could retain N in the subsurface and fuel nitrification in the oxygenated near surface. Elevated bioavailable N in all sampled fluids indicates that N is not likely limiting as a nutrient in serpentinites of the Samail Ophiolite.
Collapse
Affiliation(s)
- Kaitlin R. Rempfert
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
- *Correspondence: Kaitlin R. Rempfert
| | - Daniel B. Nothaft
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - Emily A. Kraus
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Ciara K. Asamoto
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - R. Dave Evans
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO, United States
| | - Juerg M. Matter
- National Oceanography Centre, University of Southampton, Southampton, United Kingdom
| | - Sebastian H. Kopf
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - Alexis S. Templeton
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
- Alexis S. Templeton
| |
Collapse
|
30
|
Chen X, Wang Y, Jiang L, Huang X, Huang D, Dai W, Cai Z, Wang D. Water quality status response to multiple anthropogenic activities in urban river. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3440-3452. [PMID: 35945324 DOI: 10.1007/s11356-022-22378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Water quality evaluation and degrading factors identification are crucial for predicting water quality evolution trends in an urban river. However, under the coupling of multiple factors, these targets face great challenges. The water quality status response to multiple anthropogenic activities in an urban river was evaluated and predicted based on comprehensive assessment methods and random forest (RF) model. We found that the distribution of each physicochemical parameter exhibits an obvious spatial clustering. The mean pollution level and trophic status of the urban river are medium pollution (water quality index = 59.79; Nemerow's pollution index = 2.00) and light eutrophication (trophic level index = 57.30). The water quality status is sensitive to anthropogenic activities, showing the following order of TLI and NPI values: residential district > industrial district > agricultural district and downtown > suburbs > countryside. According to the redundancy analysis, constructed land (F = 15.90, p < 0.01) and domestic sewage (F = 14.20, p < 0.01) evinced as the crucial factors that aggravated the water quality pollution level. Based on the simulation results of the RF model (variation explained = 94.91%; R2 = 0.978), improving domestic sewage treatment standards is the most effective measure to improve the water quality (increased by 40.3-49.3%) in residential and industrial districts. While in a suburban district, improving the domestic sewage collection rate has more effectively (23%) than those in the residential and industrial districts. Conclusively, reducing exogenous pollution input and improving domestic sewage treatment standards are vital to urban river restoration. Clinical trial registration Not applicable.
Collapse
Affiliation(s)
- Xi Chen
- School of Geographical Information and Tourism, Chuzhou University, Chuzhou, 239000, China
- Anhui Province Key Laboratory of Physical Geographic Environment, Chuzhou, 239000, China
| | - Yanhua Wang
- School of Geography, Nanjing Normal University, Nanjing, 20023, China
| | - Ling Jiang
- School of Geographical Information and Tourism, Chuzhou University, Chuzhou, 239000, China.
- Anhui Province Key Laboratory of Physical Geographic Environment, Chuzhou, 239000, China.
- Anhui Engineering Laboratory of Geo-information Smart Sensing and Services, Chuzhou, 239000, China.
| | - Xiaoli Huang
- School of Geographical Information and Tourism, Chuzhou University, Chuzhou, 239000, China
- Anhui Province Key Laboratory of Physical Geographic Environment, Chuzhou, 239000, China
- Anhui Engineering Laboratory of Geo-information Smart Sensing and Services, Chuzhou, 239000, China
| | - Danni Huang
- School of Geographical Information and Tourism, Chuzhou University, Chuzhou, 239000, China
| | - Wen Dai
- School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zucong Cai
- School of Geography, Nanjing Normal University, Nanjing, 20023, China
| | - Dong Wang
- School of Geographical Information and Tourism, Chuzhou University, Chuzhou, 239000, China
| |
Collapse
|
31
|
Wang Z, Chen Q, Zhang J, Zou Y, Huang Y, Yan H, Xu Z, Yan D, Li T, Liu C. Insights into antibiotic stewardship of lake-rivers-basin complex systems for resistance risk control. WATER RESEARCH 2023; 228:119358. [PMID: 36402058 DOI: 10.1016/j.watres.2022.119358] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/29/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic stewardship is hindered by a lack of consideration for complicated environmental fate of antibiotics and their role in resistance development, while the current methodology of eco-toxicological risk assessment has not been fully protective against their potential to select for antibiotic resistance. To address this problem, we established a novel methodologic framework to perform comprehensive environmental risk assessment of antibiotics in terms of resistance development, which was based on selection effect, phenotype resistance level, heteroresistance frequency, as well as prevalence and stability of antibiotic resistance genes. We tracked the contribution of antibiotic load reduction to the mitigation of environmental risk of resistance development by fate and transport modeling. The method was instantiated in a lake-river network-basin complex system, taking the Taihu Basin as a case study. Overall, antibiotic load posed no eco-toxicological risk but an average medium-level environmental risk for resistance development in Taihu Lake. The effect of antibiotic load on resistance risk was both seasonal-dependent and category-dependent, while quinolones posed the greatest environmental risk for resistance development. Mass-flow analysis indicated that temporal-spatial variation in hydrological regime and antibiotic fate together exerted a significant effect on antibiotic load in the system. By apportioning antibiotic load to riverine influx, we identified the hotspots for load reduction and predicted the beneficial response of resistance risk under load-reduction scenarios. Our study proposed a risk-oriented strategy of basin-scaled antibiotic load reduction for environmental risk control of resistance development.
Collapse
Affiliation(s)
- Zhiyuan Wang
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Yangtze Institute for Conservation and Green Development, Hohai University, Nanjing 210098, China
| | - Qiuwen Chen
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Yangtze Institute for Conservation and Green Development, Hohai University, Nanjing 210098, China.
| | - Jianyun Zhang
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Yangtze Institute for Conservation and Green Development, Hohai University, Nanjing 210098, China.
| | - Yina Zou
- Yangtze Institute for Conservation and Green Development, Hohai University, Nanjing 210098, China
| | - Yu Huang
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China
| | - Hanlu Yan
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China
| | - Zhaoan Xu
- Monitoring Bureau of Hydrology and Water Resources of Taihu Basin, Wuxi 214100, China
| | - Dandan Yan
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China
| | - Tao Li
- Monitoring Bureau of Hydrology and Water Resources of Taihu Basin, Wuxi 214100, China
| | - Chao Liu
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China
| |
Collapse
|
32
|
Liu J, Yan T, Bai J, Shen Z. Integrating source apportionment and landscape patterns to capture nutrient variability across a typical urbanized watershed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116559. [PMID: 36283170 DOI: 10.1016/j.jenvman.2022.116559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Effective integrated watershed management requires models that can characterize the sources and transport processes of pollutants at the watershed with multiple landscape patterns. However, few studies have investigated the influence of landscape spatial configuration on pollutant transport processes. In this study, the SPARROW_TN and SPARROW_TP models were constructed by combining direct pollution source data and landscape pattern data to investigate the source composition and nutrient transport processes and to reveal the influence of landscape patterns on nutrient transport in the urbanized Beiyun River Watershed. The introduction of landscape metrics significantly improved the simulation results of both models, with R2 increasing from 0.89 to 0.85 to 0.93 and 0.91, respectively. Spatial variations existed in TN and TP loads and yields, as well as the source compositions. Pollution hotspots were effectively identified. Source apportionment showed that for the entire watershed, TN came from atmospheric nitrogen deposition (35.25%), untreated sewage (28.23%), agricultural sources (22.60%), and treated sewage (13.92%). In comparison, TP came from untreated sewage (44.94%), agricultural sources (40.22%), and treated sewage (11.51%). In addition, the largest patch index of grassland correlated positively with both TN and TP, whereas the largest shape index of buildup land and interspersion and juxtaposition index of forest were negatively correlated with TN and TP, respectively. The results of this study will provide insight into effective nutrient control measures that consider spatially varying nutrient sources and associated nutrient transport processes.
Collapse
Affiliation(s)
- Jin Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China; Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, School of Geographical Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Tiezhu Yan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China; Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Jianwen Bai
- College of Engineering, Jilin Normal University, Siping, 136000, China
| | - Zhenyao Shen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
33
|
Yang F, Guo J, Qi R, Yan C. Isotopic and hydrochemical analyses reveal nitrogen source variation and enhanced nitrification in a managed peri-urban watershed. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120534. [PMID: 36341828 DOI: 10.1016/j.envpol.2022.120534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Watershed management practices (WMPs) alter the sources and transformation of reactive nitrogen (N) in peri-urban watersheds, but a precise description of how WMPs impact N cycling is still lacking. In this study, four sampling campaigns were conducted in the wet and dry seasons of 2019 (before WMPs) and 2020 (after WMPs) to determine the spatiotemporal variations in nitrate isotopes (15N-NO3- and 18O-NO3-) and hydrochemical compositions in the Muli River watershed. The results showed that the WMPs could significantly reduce the N load in the middle and lower reaches, but substantial improvements were not observed in 2020. Manure and sewage (M&S, 36.2 ± 15.8-55.0 ± 19.4%) was the major source of nitrate (NO3-) in the stream water, followed by smaller-scale wastewater treatment plants (WWTPs, 14.0 ± 10.9-25.6 ± 11.5%). The WMPs were effective in controlling M&S, resulting in an approximately 16.7% (p < 0.01) lower M&S contribution during the dry season in 2020 compared to that in 2019. However, the smaller-scale WWTP input increased by approximately 5.4% (p < 0.01) after the WMPs. During the study period, the assimilation of NO3- by phytoplankton was important for NO3- loss, but the WMPs promoted nitrification in the watershed because of the elevated redox potential (Eh). Overall, the present study provides a better estimate of the variations in nitrogen sources and transformation in a peri-urban watershed after WMPs and provides an approach for developing timely nitrogen management solutions.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jianhua Guo
- Yellow River Institute of Hydraulic Research, Zhengzhou, 450003, China
| | - Ran Qi
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
34
|
Zhao Z, Zhang M, Chen Y, Ti C, Tian J, He X, Yu K, Zhu W, Yan X, Wang Y. Traceability of nitrate polluted hotspots in plain river networks of the Yangtze River delta by nitrogen and oxygen isotopes coupling bayesian model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120438. [PMID: 36265730 DOI: 10.1016/j.envpol.2022.120438] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 05/25/2023]
Abstract
The adverse effects of increased nitrate (NO3-) pollution especially from the non-point source on the hydrosphere and anthroposphere are becoming more prominent. The non-point-derived NO3- in the rivers supplying the upstream threatens the aquatic ecosystem of Taihu Lake. Here, dual-stable isotopes (δ15N and δ18O) of NO3- were applied to the Bayesian model (SIAR) for quantitative source identification of reactive nitrogen (Nr) in a mixed agricultural and urban region along the complex river network of the Yangze River delta. The results showed that the NO3- concentrations in the rivers ranged from 1.09 to 4.44 mg L-1 and decreased from the highly urbanized areas to the lakeside rural areas. The specific isotopic characteristics of four sources (atmospheric deposition, AD; chemical fertilizer, CF; manure and sewage, MS; and soil leachate, SL) by the SIAR isotope model indicated that the MS source made the greatest contribution (46.56%) to the total NO3- load, followed by SL (27.86%), CF (23.77%), and AD (1.81%). The highly urbanized areas and the hybrid areas, which contained a mix of industrialized, populated, and agricultural areas, were identified as hotspot areas with heavy Nr pollution, responsible for spatial patterns of δ15N-NO3- and δ18O-NO3-. These hotspot areas were characterized by a less well-developed sewage pipeline system with high Nr emissions from cash crops. The changes in wastewater treatment level, the agricultural production structure, and meteorological changes were the main factors of spatial variation of Nr concentration and source in the upstream Taihu Lake Basin. The variation in Nr concentration across Taihu Lake would respond to these anthropogenic-driven Nr loads. These findings suggest that MS was the predominant source had the strongest effect on the overall riverine NO3- source which was the primary problem that needed to be solved.
Collapse
Affiliation(s)
- Zihan Zhao
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Mingli Zhang
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Yan Chen
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Chaopu Ti
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jiaming Tian
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Xinghua He
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Kangkang Yu
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Wangyue Zhu
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yanhua Wang
- School of Geography, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China; Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
35
|
Zhou J, Hu M, Liu M, Yuan J, Ni M, Zhou Z, Chen D. Combining the multivariate statistics and dual stable isotopes methods for nitrogen source identification in coastal rivers of Hangzhou Bay, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82903-82916. [PMID: 35759093 PMCID: PMC9244199 DOI: 10.1007/s11356-022-21116-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Coastal rivers contributed the majority of anthropogenic nitrogen (N) loads to coastal waters, often resulting in eutrophication and hypoxia zones. Accurate N source identification is critical for optimizing coastal river N pollution control strategies. Based on a 2-year seasonal record of dual stable isotopes ([Formula: see text] and [Formula: see text]) and water quality parameters, this study combined the dual stable isotope-based MixSIAR model and the absolute principal component score-multiple linear regression (APCS-MLR) model to elucidate N dynamics and sources in two coastal rivers of Hangzhou Bay. Water quality/trophic level indices indicated light-to-moderate eutrophication status for the studied rivers. Spatio-temporal variability of water quality was associated with seasonal agricultural, aquaculture, and domestic activities, as well as the seasonal precipitation pattern. The APCS-MLR model identified soil + domestic wastewater (69.5%) and aquaculture tailwater (22.2%) as the major nitrogen pollution sources. The dual stable isotope-based MixSIAR model identified soil N, aquaculture tailwater, domestic wastewater, and atmospheric deposition N contributions of 35.3 ±21.1%, 29.7 ±17.2%, 27.9 ±14.5%, and 7.2 ±11.4% to riverine [Formula: see text] in the Cao'e River (CER) and 34.4 ±21.3%, 29.5 ±17.2%, 27.4 ±14.7%, and 8.7 ±12.8% in the Jiantang River (JTR), respectively. The APCS-MLR model and the dual stable isotope-based MixSIAR model showed consistent results for riverine N source identification. Combining these two methods for riverine N source identifications effectively distinguished the mix-source components from the APCS-MLR method and alleviated the high cost of stable isotope analysis, thereby providing reliable N source apportionment results with low requirements for water quality sampling and isotope analysis costs. This study highlights the importance of soil N management and aquaculture tailwater treatment in coastal river N pollution control.
Collapse
Affiliation(s)
- Jia Zhou
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Minpeng Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Mei Liu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Julin Yuan
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Meng Ni
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Zhiming Zhou
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Dingjiang Chen
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
36
|
Xu G, Fan H, Oliver DM, Dai Y, Li H, Shi Y, Long H, Xiong K, Zhao Z. Decoding river pollution trends and their landscape determinants in an ecologically fragile karst basin using a machine learning model. ENVIRONMENTAL RESEARCH 2022; 214:113843. [PMID: 35931190 DOI: 10.1016/j.envres.2022.113843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/27/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Karst watersheds accommodate high landscape complexity and are influenced by both human-induced and natural activity, which affects the formation and process of runoff, sediment connectivity and contaminant transport and alters natural hydrological and nutrient cycling. However, physical monitoring stations are costly and labor-intensive, which has confined the assessment of water quality impairments on spatial scale. The geographical characteristics of catchments are potential influencing factors of water quality, often overlooked in previous studies of highly heterogeneous karst landscape. To solve this problem, we developed a machining learning method and applied Extreme Gradient Boosting (XGBoost) to predict the spatial distribution of water quality in the world's most ecologically fragile karst watershed. We used the Shapley Addition interpretation (SHAP) to explain the potential determinants. Before this process, we first used the water quality damage index (WQI-DET) to evaluate the water quality impairment status and determined that CODMn, TN and TP were causing river water quality impairments in the WRB. Second, we selected 46 watershed features based on the three key processes (sources-mobilization-transport) which affect the temporal and spatial variation of river pollutants to predict water quality in unmonitored reaches and decipher the potential determinants of river impairments. The predicting range of CODMn spanned from 1.39 mg/L to 17.40 mg/L. The predictions of TP and TN ranged from 0.02 to 1.31 mg/L and 0.25-5.72 mg/L, respectively. In general, the XGBoost model performs well in predicting the concentration of water quality in the WRB. SHAP explained that pollutant levels may be driven by three factors: anthropogenic sources (agricultural pollution inputs), fragile soils (low organic carbon content and high soil permeability to water flow), and pollutant transport mechanisms (TWI, carbonate rocks). Our study provides key data to support decision-making for water quality restoration projects in the WRB and information to help bridge the science:policy gap.
Collapse
Affiliation(s)
- Guoyu Xu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongxiang Fan
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - David M Oliver
- Biological & Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Yibin Dai
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Hengpeng Li
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Yuejie Shi
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haifei Long
- Guizhou Provincial Bureau of Hydrological Resources, Guiyang, 550002, China
| | - Kangning Xiong
- School of Karst Science / State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, 550001, China
| | - Zhongming Zhao
- Department of Geography, King's College London, London, WC2R 2LS, UK
| |
Collapse
|
37
|
Dong J, Zhao X, Liu C, Huang Z, Qadeer A, Zhu Y, Wang H, Zheng B. Multi-isotope tracing nitrate dynamics and sources during thermal stratification in a deep reservoir. CHEMOSPHERE 2022; 307:135816. [PMID: 35948094 DOI: 10.1016/j.chemosphere.2022.135816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Excessive nitrate (NO3-) input to reservoirs is a global concern. However, the dynamics and sources of NO3- under thermal stratification in deep reservoirs were rarely explored. In this study, multi-stable isotopes (δ15N/δ18O-NO3-, δ15N-particulate nitrogen (PN), δ15N-dissolved total nitrogen (DTN), and δ2H/δ18O-H2O) and a Bayesian mixing model were applied to reveal the biogeochemical processes and sources of NO3- in a deep reservoir with obvious nitrogen pollution. The results showed that the reservoir was thermally stratified in July while vertically mixed in October. The distribution of δ2H-H2O suggested that riverine nitrogen migrated to the epilimnion and metalimnion during stratification in the reservoir. In the epilimnion and metalimnion, the significant reduction in NO3- concentration was related to the enhancement of assimilation by thermal stratification. Meanwhile, the positive linear correlations between δ18O-NO3- and δ18O-H2O suggested that in-reservoir nitrification occurred, with its depth confined above the hypolimnion. In the hypolimnion, denitrification processes were absent due to the aerobic environment. Overall, NO3- dynamics were mainly controlled by nitrogen inflow, in-reservoir nitrification, and assimilation during thermal stratification. The results of the Bayesian mixing model showed that manure and sewage, and soil nitrogen were the dominant NO3- sources of the reservoir. This study provides new insights and data to help manage and restore deep waters worldwide in tackling a similar situation of nitrogen contamination.
Collapse
Affiliation(s)
- Jing Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xingru Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Chengyou Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhifeng Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Abdul Qadeer
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yumeng Zhu
- Sichuan Academy of Environmental Sciences, Chengdu, 610041, China
| | - Hui Wang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Binghui Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
38
|
Xie H, Gao T, Wan N, Xiong Z, Dong J, Lin C, Lai X. Controls for multi-temporal patterns of riverine nitrogen and phosphorus export to lake: Implications for catchment management by high-frequency observations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115858. [PMID: 36056487 DOI: 10.1016/j.jenvman.2022.115858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Intensifying human activity coupled with climate change increase the transport of excess riverine nitrogen (N) and phosphorus (P) loading from catchment to lake, leading to eutrophication and harmful algal blooms worldwide. To improve understanding of multi-temporal patterns of riverine N and P export and their hydro-biogeochemical controls over both episodic events and long-term trend, we analyzed and interpreted high-frequency data of total nitrogen (TN), ammonia-nitrogen (NH4-N), and total phosphorus (TP) provided by an automatic water quality monitoring station in a typical agricultural catchment draining to Lake Chaohu, China. Mann-Kendall test revealed a significant decreasing trend of riverine N and P concentration most of the time during 2018-2020. At the sub-daily scale, intraday TN concentrations varied by more than 1 mg/L in 31.8% of the period. Monthly TN and TP concentrations were particularly high in December 2019, indicating combined effect of hydrologic (long dry antecedent period and subsequent intensive rainfall events) and anthropogenic controls (fertilization and agricultural drainage). Significantly higher TN concentrations in winter and TP concentrations in summer reflected coupled dominances of precipitation and temperature on hydrologic and biogeochemical processes. Rainfall events with very heavy intensity drove disproportionate N and P loads (more than 20% of the total export) in only 3.2% of the period. Moderate and very heavy events registered the highest TN and TP concentrations, respectively. Our results highlighted the importance of automatic water quality monitoring station to reveal dynamics of riverine N and P export, which may imply future nutrient loading abatement plans for lake-connected catchment.
Collapse
Affiliation(s)
- Hui Xie
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Tiantian Gao
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Nengsheng Wan
- Institute of Lake Ecology and Environment, Chaohu Lake Bureau of Anhui Province, Hefei, 238000, China
| | - Zhuyang Xiong
- Institute of Lake Ecology and Environment, Chaohu Lake Bureau of Anhui Province, Hefei, 238000, China
| | - Jianwei Dong
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Chen Lin
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xijun Lai
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
39
|
Li S, Diao M, Wang S, Zhu X, Dong X, Strous M, Ji G. Distinct oxygen isotope fractionations driven by different electron donors during microbial nitrate reduction in lake sediments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:812-821. [PMID: 35691702 DOI: 10.1111/1758-2229.13101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Microbial nitrate reduction can be driven by organic carbon oxidation, as well as by inorganic electron donors, such as reduced forms of sulfur and iron. An apparent inverse oxygen isotope fractionation effect was observed during nitrate reduction in sediment incubations from five sampling sites of a freshwater lake, Hongze Lake, China. Incubations with organic and inorganic electron donor additions were performed. Especially, the inverse oxygen isotope effect was intensified after glucose addition, whereas the incubations with sulfide and Fe2+ showed normal fractionation factors. Nitrate reductase encoding genes, napA and narG, were analysed with metagenomics. Higher napA/narG ratios were associated with higher oxygen fractionation factors. The most abundant clade (59%) of NapA in the incubation with glucose was affiliated with Rhodocyclales. In contrast, it only accounted for 8%-9% of NapA in the incubations with sulfide and Fe2+ . Differences in nitrate reductases might explain different oxygen isotope effects. Our findings also suggested that large variance of O-nitrate isotope fractionations might have to be considered in the interpretation of natural isotope records.
Collapse
Affiliation(s)
- Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Muhe Diao
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
| | - Xianfang Zhu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
| | - Xiaoli Dong
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
| |
Collapse
|
40
|
Liu S, Fu R, Liu Y, Suo C. Spatiotemporal variations of water quality and their driving forces in the Yangtze River Basin, China, from 2008 to 2020 based on multi-statistical analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69388-69401. [PMID: 35568786 DOI: 10.1007/s11356-022-20667-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Water quality deterioration is a prominent issue threatening water security worldwide. As the largest river in China, the Yangtze River Basin is facing severe water pollution due to intense human activities. Analyzing water quality trends and identifying the corresponding driver factors are important components of sustainable water quality management. Thus, spatiotemporal characteristics of the water quality from 2008 to 2020 were analyzed by using a Mann-Kendall test and rescaled range analysis (R/S). In addition, multi-statistical analyses were used to determine the main driving factors of variation in the permanganate index (CODMn), ammonia nitrogen (NH3-N) concentration, and total phosphorus (TP) concentration. The results showed that the mean concentrations of NH3-N and TP decreased from 0.31 to 0.16 mg/L and 0.16 to 0.07 mg/L, respectively, from 2008 to 2020, indicating that the water quality improved during this period. However, the concentration of CODMn did not reduce remarkably. Based on R/S analysis, the NH3-N concentration was predicted to continue to decrease from 2020 to 2033, whereas the CODMn concentration was forecast to increase, highlighting an issue of great concern. In terms of spatial distribution, water quality in the upstream was better than that of the mid-downstream. Multi-statistical analyses revealed that the temporal variation in water quality was predominantly influenced by tertiary industry (TI), the nitrogen fertilizer application rate (N-FAR), the phosphate fertilizer application rate (P-FAR), and the irrigation area of arable land (IAAL), with contribution rates of 15.92%, 14.65%, 3.46%, and 2.84%, respectively. The spatial distribution of CODMn was mainly influenced by TI, whereas that of TP was primarily determined by anthropogenic activity factors (e.g., N-FAR, P-FAR). This study provides deep insight into water quality evolution in the Yangtze River Basin that can guide water quality management in this region.
Collapse
Affiliation(s)
- Shasha Liu
- University of Science and Technology Beijing, Beijing, 100083, China.
| | - Rui Fu
- University of Science and Technology Beijing, Beijing, 100083, China
| | - Yun Liu
- China National Environmental Monitoring Center, Beijing, 100012, China
| | - Chengyu Suo
- University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
41
|
Zaryab A, Nassery HR, Knoeller K, Alijani F, Minet E. Determining nitrate pollution sources in the Kabul Plain aquifer (Afghanistan) using stable isotopes and Bayesian stable isotope mixing model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153749. [PMID: 35150690 DOI: 10.1016/j.scitotenv.2022.153749] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
The Kabul urban aquifer (Afghanistan), which is the main source of drinking water for Kabul city's inhabitants, is highly vulnerable to anthropogenic pollution. In this study, the geochemistry of major ions (including reactive nitrogen species such as NO3-, NO2-, and NH4+) and stable isotope ratios (δ15N-NO3-, δ18O-NO3-, δ18O-H2O, and δ2H-H2O) of surface and groundwater samples from the Kabul Plain were analyzed over two sampling periods (dry and wet seasons). A Bayesian stable isotope mixing model (BSIMM) was also employed to trace potential nitrate sources, transformation processes, and proportional contributions of nitrate sources in the Kabul aquifer. The plotting of δ15N-NO3- against δ18O-NO3̄ (δ15N-NO3- and δ18O-NO3- values ranged from +4.8 to +25.4‰ and from -11.7 to +18.6‰, respectively) suggests that NO3- primarily originated from the nitrification of sewage rather than artificial fertilizer. The plotting of δ15N-NO3- versus NO3-/Cl- ratios also supported the assumption that sewage is the dominant nitrate source. The results indicate that denitrification did not influence the NO3- isotopic composition in the Kabul aquifer. The BSIMM model suggests that nitrate in the dry season originated mainly from sewage (~81%), followed by soil organic N (10.5%), and chemical fertilizer (8.5%). In the wet season, sewage (~87.5%), soil organic N (6.7%), and chemical fertilizer (5.8%) were the main sources of NO3- in the Kabul aquifer. Effective land management measures should be taken to improve the sewage collection system in the Kabul Plain.
Collapse
Affiliation(s)
- Abdulhalim Zaryab
- Department of Minerals and Groundwater Resources, Faculty of Earth Sciences, Shahid Beheshti University, Evin Ave, Tehran, Iran; Engineering Geology and Hydrogeology, Faculty of Geology and Mines, Kabul Polytechnic University, District 5, Kabul, Afghanistan
| | - Hamid Reza Nassery
- Department of Minerals and Groundwater Resources, Faculty of Earth Sciences, Shahid Beheshti University, Evin Ave, Tehran, Iran.
| | - Kay Knoeller
- Department Catchment Hydrology, Helmholtz-Centre for Environmental Research - UFZ, D-06120 Halle, Germany
| | - Farshad Alijani
- Department of Minerals and Groundwater Resources, Faculty of Earth Sciences, Shahid Beheshti University, Evin Ave, Tehran, Iran
| | - Eddy Minet
- Environmental Protection Agency (EPA), Dublin, Ireland
| |
Collapse
|
42
|
Li B, Hu K, Lysenko V, Khan KY, Wang Y, Jiang Y, Guo Y. A scientometric analysis of agricultural pollution by using bibliometric software VoSViewer and Histcite™. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37882-37893. [PMID: 35067891 DOI: 10.1007/s11356-022-18491-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
While modern agriculture brings more food to people, it causes environmental pollution as well. Agricultural pollution has attracted extensive public attention. A lot of reviews on agricultural research were conducted from different research aspects, but there is a lack of work on analyzing the research trend from large volumes of publications in the field of agricultural pollution. In the present work, a scientometric analysis of agricultural pollution was conducted to fill the gap by using the software of VoSviewer and HistCite™. The datasets are collected from the core database of Web of Science from 1991 to 2019, totally 1338 records on the topic of agricultural pollutions. In most years (1996, 1999, 2002, 2006, 2009, 2011, and 2013), the total local citation score (TLCS) and total global citation score (TGCS) have coincident peaks. Zhang, Ju, and Zhu have the highest TLCS and TGCS. In terms of institutes, Chinese Acad Sci and China Agr Univ are the leading institutes in this field. The Univ Calif Davis, INRA, and USDA ARS have very high global impacts. From the research hot topics, the representative words include "soil," "agriculture," "contamination," "environment," "lead," and "balance." Representative words like "heavy-metals," "groundwater," "land-use," and "water" are emerging in the latter time period. Five leading research co-cited reference clusters are identified, including environment management, underground water, monitoring and alarming for the agriculture-environment standards, intrinsic mechanism to the circulatory system, and ecology system and land use. The recent trend is revealed from the bibliographical-coupling network, focusing on classical and old-fashion research, like pollution chemicals including N management, pesticides, and heavy metal. This work provides a holistic picture on the research in the field of agriculture pollution.
Collapse
Affiliation(s)
- Bin Li
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Kai Hu
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Vladimir Lysenko
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don , 344041, Russia
| | - Kiran Yasmin Khan
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yingkuan Wang
- Chinese Academy of Agricultural Engineering, Beijing, 100125, China.
| | - Yongnian Jiang
- Jiangsu Zhongnong IoT Technology Co., LTD, Yixing, 214200, China
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
43
|
Dong J, Yan D, Mo K, Chen Q, Zhang J, Chen Y, Wang Z. Antibiotics along an alpine river and in the receiving lake with a catchment dominated by grazing husbandry. J Environ Sci (China) 2022; 115:374-382. [PMID: 34969465 DOI: 10.1016/j.jes.2021.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 06/14/2023]
Abstract
The livestock breeding industries face overuse of antibiotics, which has been intensively studied in recent years. However, the occurrence and fate of antibiotics as well as their potential threats to the aquatic environments in alpine and arid regions remain unclear. This study investigated the relationship of the occurrence and concentrations of antibiotics between the Kaidu River and Bosten Lake in a typical alpine basin in China. Hot spots with antibiotic pollution source were explored. The antibiotic concentrations in river water and suspended sediment (SPS) were 2.20-99.4 ng/L and 1.03-176 ng/g. The dominant antibiotics were tetracyclines, sulphacetamide, and ofloxacin in river water and sulfonamides, clarithromycin, roxithromycin, and ofloxacin in SPS. The apparent differences in pollution sources and landscapes in different reaches led to the obvious spatial patterns of antibiotics in the Kaidu River. Higher partition coefficient of antibiotic between SPS and water phases for sulfonamides than tetracyclines was because that tetracyclines strongly responded to clay contents while sulfonamides significantly responded to organic carbon contents in SPS. There were significant differences in detected antibiotic categories between the river and the lake. Fluoroquinolones (especially ciprofloxacin and enrofloxacin) were detected in the lake while sulphacetamide was only detected in the river. Therefore, the surrounding husbandry and aquaculture around the Bosten Lake was an important antibiotic pollution source in addition to inputs from the Kaidu River. This research suggested that alpine lakes could be an important sink of antibiotics in alpine dry regions, and thus impose greater threats to the aquatic ecosystem.
Collapse
Affiliation(s)
- Jianwei Dong
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China; School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Dandan Yan
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Kangle Mo
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Qiuwen Chen
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China; Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China; Yangtze Institute for Conservation and Green Development, Nanjing 210029, China.
| | - Jianyun Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China; Yangtze Institute for Conservation and Green Development, Nanjing 210029, China
| | - Yuchen Chen
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Zhiyuan Wang
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China; Yangtze Institute for Conservation and Green Development, Nanjing 210029, China
| |
Collapse
|
44
|
Deng P, Yi Q, Zhang J, Wang C, Chen Y, Zhang T, Shi W. Phosphorous partitioning in sediments by particle size distribution in shallow lakes: From its mechanisms and patterns to its ecological implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152753. [PMID: 34979228 DOI: 10.1016/j.scitotenv.2021.152753] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/04/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
This study revealed a general pattern of P partitioning onto sediment particles that has ecological implications for shallow lakes. Six individual sediment samples from two large shallow lakes in eastern China were sieved into five sediment particle size classes ranging from 0.5 μm to 50 μm. These particle size groupings were subjected to P fractionation and P adsorption isotherm analyses as well as bioavailable P bioassays. A P-adding experiment was used to validate the initial P partitioning onto the sediment particles. Multiple lines of evidence revealed that P partitioning onto the particles was dependent on the amounts of P adsorbents or P-containing compounds in the sediments, such as iron and aluminum oxides, organic matter, and calcium compounds. An exponential equation, c(x) = cmaxexp(-kdx), was proposed to describe the relationship between the partitioning of bioavailable P and particle size. In the equation, cmax represents the maximum P concentration adsorbed by the finest particles, and kd is a constant reflecting the decrease in the P concentration with particle size (x).
Collapse
Affiliation(s)
- Peiyao Deng
- School of Civil Engineering, Yantai University, Yantai 264005, China; School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Qitao Yi
- School of Civil Engineering, Yantai University, Yantai 264005, China.
| | - Jin Zhang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Conghui Wang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Yihan Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Tao Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Wenqing Shi
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
45
|
Cui Z, Huang J, Gao J, Han J. Characterizing the impacts of macrophyte-dominated ponds on nitrogen sources and sinks by coupling multiscale models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152208. [PMID: 34896488 DOI: 10.1016/j.scitotenv.2021.152208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Macrophyte-dominated ponds, widely distributed in lowland areas, play an important role in nitrogen (N) retention for nonpoint source pollution. However, their impacts on N sources and sinks are scarcely quantified at a watershed scale. This study aimed to investigate N dynamics (sources, sinks, transport, etc.) of macrophyte-dominated ponds and their driving factors in a typical lowland artificial watershed (the Zhong River Watershed) in East China. For this purpose, an hourly-scale pond model (nitrogen dynamic model for macrophyte-dominated ponds, NDP-Pond) was developed, and coupled with a daily scale watershed model (Nitrogen Dynamic Polder model, NDP) to simulate N dynamics, and estimate N retention in macrophyte-dominated ponds. A comparison with the measured water level and total nitrogen (TN) revealed an acceptable model performance (coefficient of determination (R2) > 0.53) for these two models. Based on the N source/sink simulations, we found that 1) macrophyte-dominated ponds showed a large TN removal capacity with a rate of 55%, and a TN loading removal rate of 67 kg·ha-1·yr-1. 2) Denitrification was the main pathway for N removal with a contribution of 57.7%, followed by the uptake of macrophytes (35.8%) and sedimentation (6.5%). 3) The optimal coverage of macrophytes (Alternanthera philoxeroides) to enhance N removal is 2-4 kg·m-2. 4) During the macrophyte-growth period, the TN removal capacity of the pond was higher with a retention time of 1-10 days. Increasing the pond retention time would decrease the N removal efficiency. This study revealed the high value of coupling multiscale models to gain in-depth insights into N retention in macrophyte-dominated pond ecosystems.
Collapse
Affiliation(s)
- Zhen Cui
- Eco-Environmental Research Department, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jiacong Huang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Junfeng Gao
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jichao Han
- Xi'an Environmental Monitoring Station, No. 7 Jianye san Road, Changan District, Xi'an 710019, China
| |
Collapse
|
46
|
Lin Z, Liu J, Xiao Y, Yu C, Zhang J, Zhang T. Contribution of nitrogen sources to streams in mixed-use watershed varies seasonally in a temperate region. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:20357-20369. [PMID: 34735704 DOI: 10.1007/s11356-021-16930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
The Beiyun river flows through a hot spot region of Beijing-Tianjin-Hebei in China that serves a majority of occupants. However, the region experiences severe nitrate pollution, posing a threat to human health due to inadequate self-purification capacity. In that context, there is an urgent need to assess nitrate levels in this region. Herein, we used δ15N-NO3, δ18O-NO3 isotopes analysis, and stable isotope analysis model to evaluate the nitrate source apportionment in the Beiyun river. A meta-analysis was then used to compare the potential similarity of nitrate sources among the Beiyun riverine watershed and other watersheds. Results of nitrate source apportionment revealed that nitrate originated from the manure and sewage (contribution rate: 89.6%), soil nitrogen (5.9%), and nitrogen fertilizer (3.9%) in the wet season. While in the dry season, nitrate mainly originated from manure and sewage (91.6%). Furthermore, different land-use types exhibited distinct nitrate compositions. Nitrate in urban and suburban areas mostly was traced from manure and sewage (90.5% and 78.8%, respectively). Notably, the different nitrate contribution in the rural-urban fringe and plant-covered areas were manure and sewage (44.3% and 32.8%), soil nitrogen (26.9% and 35.7%), nitrogen fertilizer (23.5% and 29.4%), and atmospheric deposition (5.3% and 2.0%). Through a meta-analysis, we found nitrogen fertilizer, soil nitrogen, and manure and sewage as the main nitrate sources in the Beiyun riverine watershed or the other similar complexed watersheds in the temperate regions. Thus, this study provides a scientific basis for nitrate source apportionment and nitrate pollution preventive management in watersheds with complexed land-use types in temperate regions.
Collapse
Affiliation(s)
- Zuhong Lin
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Junchi Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, People's Republic of China
| | - Yong Xiao
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Chaojie Yu
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jinlan Zhang
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Tingting Zhang
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
47
|
Chen X, Wang Y, Sun T, Chen Y, Zhang M, Ye C. Evaluation and prediction of water quality in the dammed estuaries and rivers of Taihu Lake. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:12832-12844. [PMID: 33409997 DOI: 10.1007/s11356-020-12063-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Proper evaluation of water quality is pertinent to estuarine habitat restoration. Identifying the degrading factors of the water environment and predicting the trend of eutrophication are key to restore the habitat. Through trophic level index (TLI), water quality index (WQI), modified Nemerow pollution index (NPI), and the Random Forest (RF) model, water samples collected from various estuaries of Taihu Lake from 2017 to 2019 were evaluated. To predict the water quality development, four scenarios were set viz. S1: add or remove an ecological buffer, S2: increase or reduce the external nutrients, S3: open or close the dam/gate, and S4: increase or decrease the internal release. In Wuli Lake, the nutrient concentrations in the river regions were higher than in the lake regions, while a contrary trend was observed in Gonghu Bay. The estuarine water quality in the dry season (WQI = 40.91, NPI = 1.73) was merely worse than that in the wet season (WQI = 47.27, NPI = 1.67). On the other hand, the eutrophic status in the wet season (TLIWet = 57.93) was worse than that in the dry season (TLIDry = 57.23). The estuarine water quality of Taihu Lake has improved from 2017 to 2019 but still belongs to medium level. The principal component analysis (PCA) revealed that dam construction, land use types, unstable hydrodynamic conditions, and trumpet-shaped estuary were the main factors that aggravated the water quality degradation. The RF model has strong forecasting capabilities for estuarine water quality. When the estuaries are close to residential and industrial districts, controlling the surface runoff and improving sewage treatment efficiency are the most effective measures to improve the water quality. In the estuaries, the sediments are usually disturbed by the wind-waves. Conclusively, reducing sediment disturbance and internal contamination accumulation via biological and engineering measures is the key to estuarine restoration.
Collapse
Affiliation(s)
- Xi Chen
- School of Geography, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Yanhua Wang
- School of Geography, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
- Key Laboratory of Virtual Geographic Environment, (Nanjing Normal University), Ministry of Education, Nanjing, 210023, People's Republic of China.
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, People's Republic of China.
| | - Tian Sun
- School of Geography, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Yan Chen
- School of Geography, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Maoheng Zhang
- School of Geography, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Chun Ye
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| |
Collapse
|
48
|
Zhang J, Wang K, Yi Q, Zhang T, Shi W, Zhou X. Transport and partitioning of metals in river networks of a plain area with sedimentary resuspension and implications for downstream lakes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118668. [PMID: 34896398 DOI: 10.1016/j.envpol.2021.118668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
This study showed that metal transport and partitioning are primarily controlled by suspended solids with seasonal flow regimes in plain river networks with sedimentary resuspension. Eight metal species containing iron (Fe), manganese (Mn), cadmium (Cd), chrome (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn), in multiple phases of sediments, suspended solids (>0.7 μm), colloids (1 nm-0.7 μm) and dissolved phase (<1 nm) were analysed to characterize their temporal-spatial patterns, partitioning and transport on a watershed scale. Metal concentrations were associated with suspended solids in the water column and decreased from low flow to high flow. However, metal partitioning between particulate phase (suspended solids) and dissolvable phases (colloids and dissolved phase) was reversed and increased from low flow to high flow with decreased concentration of total suspended solids and median particle size. Partition coefficients (kp) showed differences among metal species, with higher values for Pb (354.3-649.0 L/g) and Cr (54.2-223.7 L/g) and lower values for Zn (2.5-25.2 L/g) and Cd (17.3-21.0 L/g). Metal concentrations in sediments increased by factors of 1.2-3.0 from upstream to downstream in watersheds impacted by urbanization. The behaviours of metals in rivers provide deeper insight into the ecological risks they pose for downstream lakes, where increased redox potential and organic matter may increase metal mobility due to algal blooms. Areas with heavy pollution of metals and the transport routines of metals in the river networks were also revealed in our research.
Collapse
Affiliation(s)
- Jin Zhang
- School of Civil Engineering, Yantai University, Yantai, 264005, China
| | - Kun Wang
- School of Civil Engineering, Yantai University, Yantai, 264005, China
| | - Qitao Yi
- School of Civil Engineering, Yantai University, Yantai, 264005, China.
| | - Tao Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Wenqing Shi
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
49
|
Shi JQ, Ou-Yang T, Yang SQ, Zhao L, Ji LL, Wu ZX. Transcriptomic responses to phosphorus in an invasive cyanobacterium, Raphidiopsis raciborskii: Implications for nutrient management. HARMFUL ALGAE 2022; 111:102150. [PMID: 35016763 DOI: 10.1016/j.hal.2021.102150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Phosphorus (P) is a vital macronutrient associated with the growth and proliferation of Raphidiopsis raciborskii, an invasive and notorious bloom-forming cyanobacterium. However, the molecular mechanisms involved in P acclimation remain largely unexplored for Raphidiopsis raciborskii. Here, transcriptome sequencing of Raphidiopsis raciborskii was conducted to reveal multifaceted mechanisms involved in mimicking dipotassium phosphate (DIP), β-glycerol phosphate (Gly), 2-aminoethylphosphonic acid (AEP), and P-free conditions (NP). Chlorophyll a fluorescence parameters showed significant differences in the NP and AEP groups compared with the DIP and Gly-groups. Expression levels of genes related to phosphate transportation and uptake, organic P utilization, nitrogen metabolism, urea cycling, carbon fixation, amino acid metabolism, environmental information, the ATP-synthesis process in glycolysis, the tricarboxylic acid (TCA) cycle, and the pentose phosphate pathway were remarkably upregulated, while those related to photosynthesis, phycobiliproteins, respiration, oxidative phosphorylation, sulfur metabolism, and genetic information were markedly downregulated in the NP group relative to the DIP group. However, the expression of genes involved in organic P utilization, the urea cycle, and genetic information in the Gly-group, and carbon-phosphorus lyase, genetic information and environmental information in the AEP group were significantly increased compared to the DIP group. Together, these results indicate that Raphidiopsis raciborskii exhibits the evolution of coordination of multiple metabolic pathways and certain key genes to adapt to ambient P changes, which implies that if P is reduced to control Raphidiopsis raciborskii bloom, there is a risk that external nutrients (such as nitrogen, amino acids, and urea) will stimulate the growth or metabolism of Raphidiopsis.
Collapse
Affiliation(s)
- Jun-Qiong Shi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, P. R. China
| | - Tian Ou-Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, P. R. China
| | - Song-Qi Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, P. R. China
| | - Lu Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, P. R. China
| | - Lu-Lu Ji
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, P. R. China
| | - Zhong-Xing Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
50
|
Ryu HS, Kang TW, Kim K, Nam TH, Han YU, Kim J, Kim MS, Lim H, Seo KA, Lee K, Yoon SH, Hwang SH, Na EH, Lee JH. Tracking nitrate sources in agricultural-urban watershed using dual stable isotope and Bayesian mixing model approach: Considering N transformation by Lagrangian sampling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113693. [PMID: 34547573 DOI: 10.1016/j.jenvman.2021.113693] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/16/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
A dual isotopes approach and the Bayesian isotope mixing model were applied to trace nitrogen pollution sources and to quantify their relative contribution to river water quality. We focused on two points to enhance the applicability of the method: 1) Direct measurement on the end-members to distinguish "sewage" and "manure" which used to be grouped in one pollution source as their isotope ranges overlap; 2) The Lagrangian sampling method was applied to consider the transport of nitrogen pollutants in a long river so that any fractionation process can be dealt with in the given Bayesian modeling framework. The results of the analysis confirmed the NO3- isotope composition in the river of interest to be within the range of NO3- with origins in "NH4+ in fertilizer", "Soil N", and "Manure and sewage" pollution. This suggests that nitrogen pollution is mostly attributed to anthropogenic sources. The δ18O NO3 value follows the range +2.5∼+15.0‰, implying that NO3- in the river is mainly derived from nitrification, and possible nitrification in groundwater or waterfront other than surface water. The ratio of the concentration of δ15N NO3 to that of δ18O NO3, and the corresponding regression equation indicates that the denitrification effect in surface water was insignificant during the study period. From the results of the contribution ratio of each source, improving the water quality of the discharge from the sewage treatment plants was proved to be the key factor to reduce nitrogen pollution in the river.
Collapse
Affiliation(s)
- Hui-Seong Ryu
- Nakdong River Environment Research Center, National Institute of Environmental Research, Daegu, 43008, Republic of Korea.
| | - Tae-Woo Kang
- Yeongsan River Environment Research Center, National Institute of Environmental Research, Gwangju, 61011, Republic of Korea.
| | - Kyunghyun Kim
- Watershed and Total Load Management Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea.
| | - Tae-Hui Nam
- Yeongsan River Environment Research Center, National Institute of Environmental Research, Gwangju, 61011, Republic of Korea.
| | - Yeong-Un Han
- Yeongsan River Environment Research Center, National Institute of Environmental Research, Gwangju, 61011, Republic of Korea.
| | - Jihyun Kim
- Yeongsan River Environment Research Center, National Institute of Environmental Research, Gwangju, 61011, Republic of Korea.
| | - Min-Seob Kim
- Environmental Measurement and Analysis Center, National Institute of Environmental Research, Incheon, 22689, Republic of Korea.
| | - Hyejung Lim
- Yeongsan River Environment Research Center, National Institute of Environmental Research, Gwangju, 61011, Republic of Korea.
| | - Kyung-Ae Seo
- Yeongsan River Environment Research Center, National Institute of Environmental Research, Gwangju, 61011, Republic of Korea.
| | - Kyounghee Lee
- Yeongsan River Environment Research Center, National Institute of Environmental Research, Gwangju, 61011, Republic of Korea.
| | - Suk-Hee Yoon
- Environmental Measurement and Analysis Center, National Institute of Environmental Research, Incheon, 22689, Republic of Korea.
| | - Soon Hong Hwang
- Yeongsan River Environment Research Center, National Institute of Environmental Research, Gwangju, 61011, Republic of Korea.
| | - Eun Hye Na
- Yeongsan River Environment Research Center, National Institute of Environmental Research, Gwangju, 61011, Republic of Korea.
| | - Jung Ho Lee
- Department of Biology Education, Daegu University, Kyeongsangbuk-do, 38453, Republic of Korea.
| |
Collapse
|