1
|
Plakhova TV, Vyshegorodtseva MA, Seregina IF, Svetogorov RD, Trigub AL, Kozlov DA, Egorov AV, Shaulskaya MD, Tsymbarenko DM, Romanchuk AY, Ivanov VK, Kalmykov SN. Unexpected nanoscale CeO 2 structural transformations induced by ecologically relevant phosphate species. CHEMOSPHERE 2024; 368:143664. [PMID: 39489308 DOI: 10.1016/j.chemosphere.2024.143664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
In the present study, the dissolution and microstructural transformation of CeO2 nanoparticles (NPs) in a phosphate-containing milieu were investigated. The dissolution behaviour of 2Â nm and 5Â nm CeO2 NPs in phosphate buffer solutions was found to differ markedly from that observed in 0.01Â M NaClO4. Through synchrotron X-ray diffraction analysis and X-ray absorption spectroscopy, the interaction between CeO2 NPs and phosphate species was examined, revealing the transformation of the oxide into sodium-cerium double phosphate, with cerium predominantly existing in the Ce(IV) state. According to scanning and transmission electron microscopy observations, thus formed Na-Ce(IV) phosphate consists of spindle-like aggregates of nanocrystalline rods, presumably formed during phosphate anions sorption on the initial CeO2 surface. Pair distribution function analysis revealed that Na-Ce(IV) phosphate has a three-dimensional framework crystal structure, similar to NaTh2(PO4)3, as reported earlier, with large channels along the c-axis containing disordered sodium atoms. This study represents the first detailed analysis of phosphate-induced speciation and microstructural transformation of CeO2 NPs, resulting in the formation of Ce(IV) phosphate. Similar processes may occur in natural ecosystems upon the introduction of CeO2 NPs.
Collapse
Affiliation(s)
- Tatiana V Plakhova
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1/3, 119991, Moscow, Russia.
| | - Maria A Vyshegorodtseva
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1/3, 119991, Moscow, Russia.
| | - Irina F Seregina
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1/3, 119991, Moscow, Russia.
| | - Roman D Svetogorov
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1/3, 119991, Moscow, Russia; National Research Centre «Kurchatov Institute», Akademika Kurchatova pl. 1, 123182, Moscow, Russia.
| | - Alexander L Trigub
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1/3, 119991, Moscow, Russia; National Research Centre «Kurchatov Institute», Akademika Kurchatova pl. 1, 123182, Moscow, Russia.
| | - Daniil A Kozlov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninskii prosp. 31, 117901, Moscow, Russia.
| | - Alexander V Egorov
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1/3, 119991, Moscow, Russia.
| | - Maria D Shaulskaya
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1/3, 119991, Moscow, Russia.
| | - Dmitry M Tsymbarenko
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1/3, 119991, Moscow, Russia.
| | - Anna Yu Romanchuk
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1/3, 119991, Moscow, Russia.
| | - Vladimir K Ivanov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninskii prosp. 31, 117901, Moscow, Russia.
| | - Stepan N Kalmykov
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1/3, 119991, Moscow, Russia.
| |
Collapse
|
2
|
Zhang L, Cao K, Xie J, Liang X, Gong H, Luo Q, Luo H. Aβ 42 and ROS dual-targeted multifunctional nanocomposite for combination therapy of Alzheimer's disease. J Nanobiotechnology 2024; 22:278. [PMID: 38783363 PMCID: PMC11112798 DOI: 10.1186/s12951-024-02543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Amyloid-β (Aβ) readily misfolds into neurotoxic aggregates, generating high levels of reactive oxygen species (ROS), leading to progressive oxidative damage and ultimately cell death. Therefore, simultaneous inhibition of Aβ aggregation and scavenging of ROS may be a promising therapeutic strategy to alleviate Alzheimer's disease pathology. Based on the previously developed antibody 1F12 that targets all forms of Aβ42, we developed an Aβ42 and ROS dual-targeting nanocomposite using biodegradable mesoporous silica nanoparticles as carriers to load ultra-small cerium oxide nanocrystals (bMSNs@Ce-1F12). By modifying the brain-targeted rabies virus glycoprotein 29 (RVG29-bMSNs@Ce-1F12), this intelligent nanocomposite can efficiently target brain Aβ-rich regions. Combined with peripheral and central nervous system treatments, RVG29-bMSNs@Ce-1F12 can significantly alleviate AD symptoms by inhibiting Aβ42 misfolding, accelerating Aβ42 clearance, and scavenging ROS. Furthermore, this synergistic effect of ROS scavenging and Aβ clearance exhibited by this Aβ42 and ROS dual-targeted strategy also reduced the burden of hyperphosphorylated tau, alleviated glial cell activation, and ultimately improved cognitive function in APP/PS1 mice. Our findings indicate that RVG29-bMSNs@Ce-1F12 is a promising nanodrug that can facilitate multi-target treatment of AD.
Collapse
Affiliation(s)
- Liding Zhang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Kai Cao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jun Xie
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Qingming Luo
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China.
| | - Haiming Luo
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China.
| |
Collapse
|
3
|
Insights on the Dynamics and Toxicity of Nanoparticles in Environmental Matrices. Bioinorg Chem Appl 2022; 2022:4348149. [PMID: 35959228 PMCID: PMC9357770 DOI: 10.1155/2022/4348149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 12/29/2022] Open
Abstract
The manufacturing rate of nanoparticles (10–100 nm) is steadily increasing due to their extensive applications in the fabrication of nanoproducts related to pharmaceuticals, cosmetics, medical devices, paints and pigments, energy storage etc. An increase in research related to nanotechnology is also a cause for the production and disposal of nanomaterials at the lab scale. As a result, contamination of environmental matrices with nanoparticles becomes inevitable, and the understanding of the risk of nanoecotoxicology is getting larger attention. In this context, focusing on the environmental hazards is essential. Hence, this manuscript aims to review the toxic effects of nanoparticles on soil, water, aquatic, and terrestrial organisms. The effects of toxicity on vertebrates, invertebrates, and plants and the source of exposure, environmental and biological dynamics, and the adverse effects of some nanoparticles are discussed.
Collapse
|
4
|
Jiang C, Liu S, Zhang T, Liu Q, Alvarez PJJ, Chen W. Current Methods and Prospects for Analysis and Characterization of Nanomaterials in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7426-7447. [PMID: 35584364 DOI: 10.1021/acs.est.1c08011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Analysis and characterization of naturally occurring and engineered nanomaterials in the environment are critical for understanding their environmental behaviors and defining real exposure scenarios for environmental risk assessment. However, this is challenging primarily due to the low concentration, structural heterogeneity, and dynamic transformation of nanomaterials in complex environmental matrices. In this critical review, we first summarize sample pretreatment methods developed for separation and preconcentration of nanomaterials from environmental samples, including natural waters, wastewater, soils, sediments, and biological media. Then, we review the state-of-the-art microscopic, spectroscopic, mass spectrometric, electrochemical, and size-fractionation methods for determination of mass and number abundance, as well as the morphological, compositional, and structural properties of nanomaterials, with discussion on their advantages and limitations. Despite recent advances in detecting and characterizing nanomaterials in the environment, challenges remain to improve the analytical sensitivity and resolution and to expand the method applications. It is important to develop methods for simultaneous determination of multifaceted nanomaterial properties for in situ analysis and characterization of nanomaterials under dynamic environmental conditions and for detection of nanoscale contaminants of emerging concern (e.g., nanoplastics and biological nanoparticles), which will greatly facilitate the standardization of nanomaterial analysis and characterization methods for environmental samples.
Collapse
Affiliation(s)
- Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Songlin Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| |
Collapse
|
5
|
Lord MS, Berret JF, Singh S, Vinu A, Karakoti AS. Redox Active Cerium Oxide Nanoparticles: Current Status and Burning Issues. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102342. [PMID: 34363314 DOI: 10.1002/smll.202102342] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Research on cerium oxide nanoparticles (nanoceria) has captivated the scientific community due to their unique physical and chemical properties, such as redox activity and oxygen buffering capacity, which made them available for many technical applications, including biomedical applications. The redox mimetic antioxidant properties of nanoceria have been effective in the treatment of many diseases caused by reactive oxygen species (ROS) and reactive nitrogen species. The mechanism of ROS scavenging activity of nanoceria is still elusive, and its redox activity is controversial due to mixed reports in the literature showing pro-oxidant and antioxidant activity. In light of its current research interest, it is critical to understand the behavior of nanoceria in the biological environment and provide answers to some of the critical and open issues. This review critically analyzes the status of research on the application of nanoceria to treat diseases caused by ROS. It reviews the proposed mechanism of action and shows the effect of surface coatings on its redox activity. It also discusses some of the crucial issues in deciphering the mechanism and redox activity of nanoceria and suggests areas of future research.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Jean Francois Berret
- Matière et systèmes complexes, Université de Paris, CNRS, Paris, 75013, France
| | - Sanjay Singh
- National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, College of Engineering Science and Environment, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Ajay S Karakoti
- Global Innovative Center for Advanced Nanomaterials, College of Engineering Science and Environment, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| |
Collapse
|
6
|
You G, Xu Y, Wang P, Wang C, Chen J, Hou J, Miao L, Gao Y, Li Y. Deciphering the effects of CeO 2 nanoparticles on Escherichia coli in the presence of ferrous and sulfide ions: Physicochemical transformation-induced toxicity and detoxification mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125300. [PMID: 33578093 DOI: 10.1016/j.jhazmat.2021.125300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/15/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
The physicochemical transformations as well as the redox reaction-induced toxicity changes of ceria nanoparticles (CeO2 NPs) in reducing conditions is extremely lacking. Herein, the behaviors, chemical modifications and toxicity of CeO2 NPs in the presence of reduction-active ions (namely Fe2+ and S2-) were investigated, with a particular emphasis on the cytotoxicity mechanism associated with their physicochemical transformations. The presence of Fe2+ and S2- differently altered the surface properties and toxicity of CeO2 NPs. Redox reactions with Fe2+ led to form small aggregates, boosted the reduction of CeIVO2 and enhanced dissolved Ce3+ concentration. Moreover, CeO2 NPs possessed a high affinity for Escherichia coli (E. coli) and induced the generation of •OH abiotically after reaction with Fe2+, provoking serious disruption of cell membranes and causing high toxicity to E. coli. In contrast, the amending of S2- protected E. coli from direct contact with CeO2 NPs by creating new Ce2S3 precipitated on the surface, accelerating the aggregation of NPs and reducing the concentration of dissolved Ce3+. This study suggested that the chemical interactions between the reactive surfaces of CeO2 and reduction-active ions highly determined the stability and cytotoxicity of CeO2 NPs, which provides fundamental insights into the environmental risks of CeO2 NPs.
Collapse
Affiliation(s)
- Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| | - Yi Xu
- College of Agricultural Engineering, Hohai University, Nanjing 210098, People's Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China.
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China.
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| | - Yang Gao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| | - Yan Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| |
Collapse
|
7
|
You G, Hou J, Xu Y, Miao L, Ao Y, Xing B. Surface Properties and Environmental Transformations Controlling the Bioaccumulation and Toxicity of Cerium Oxide Nanoparticles: A Critical Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 253:155-206. [PMID: 32462332 DOI: 10.1007/398_2020_42] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Increasing production and utilization of cerium oxide nanoparticles (CNPs) in recent years have raised wide concerns about their toxicity. Numerous studies have been conducted to reveal the toxicity of CNPs, but the results are sometimes contradictory. In this review, the most important factors in mediating CNPs toxicity are discussed, including (1) the roles of physicochemical properties (size, morphology, agglomeration condition, surface charge, coating and surface valence state) on CNPs toxicity; (2) the phase transfer and transformation process of CNPs in various aqueous, terrestrial, and airborne environments; and (3) reductive dissolution of CNPs core and their chemical reactions with phosphate, sulfate/S2-, and ferrous ions. The physicochemical properties play key roles in the interactions of CNPs with organisms and consequently their environmental transformations, reactivity and toxicity assessment. Also, the speciation transformations of CNPs caused by reactions with (in)organic ligands in both environmental and biological systems would further alter their fate, transport, and toxicity potential. Thus, the toxicity mechanisms are proposed based on the physical damage of direct adsorption of CNPs onto the cell membrane and chemical inhibition (including oxidative stress and interaction of CNPs with biomacromolecules). Finally, the current knowledge gaps and further research needs in identifying the toxicological risk factors of CNPs under realistic environmental conditions are highlighted, which might improve predictions about their potential environmental influences. This review aims to provide new insights into cost-effectiveness of control options and management practices to prevent environmental risks from CNPs exposure.
Collapse
Affiliation(s)
- Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China.
| | - Yi Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
8
|
Abbas Q, Liu G, Yousaf B, Ali MU, Ullah H, Mujtaba Munir MA, Ahmed R, Rehman A. Biochar-assisted transformation of engineered-cerium oxide nanoparticles: Effect on wheat growth, photosynthetic traits and cerium accumulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109845. [PMID: 31654865 DOI: 10.1016/j.ecoenv.2019.109845] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
The extensive use of nano-fabricated products in daily life is releasing a large volume of engineered nanoparticles (ENPs) in the environment having unknown consequences. Meanwhile, little efforts have been paid to immobilize and prevent the entry of these emerging contaminants in the food chain through plant uptake. Herein, we investigated the biochar role in cerium oxide nanoparticles (CeO2NPs) bioaccumulation and subsequent translocation in wheat (Triticum aestivum L.) as well as impact on growth, photosynthesis and gas-exchange related physiological parameters. Results indicated that CeO2NPs up to 500 mg L-1 level promoted the plant growth by triggering photosynthesis, transpiration and stomatal conductance. Higher NPs concentration (2000 mg CeO2NPs L-1) has negatively affected the plant growth and photosynthesis related processes. Conversely, biochar amendment with CeO2NPs considerably reduced (~9 folds) the plants accumulated contents of Ce even at 2000 mg L-1 exposure level of CeO2NPs through surface complexation process and alleviated the phyto-toxic effects of NPs on plant growth. XPS and FTIR analysis confirmed the role of biochar-mediated carboxylate and hydroxyl groups bonding with CeO2NPs. These findings provides an inside mechanistic understanding about biochar interaction with nano-pollutants to inhibit their bioavailability to plant body.
Collapse
Affiliation(s)
- Qumber Abbas
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, PR China.
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, PR China.
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, PR China.
| | - Muhammad Ubaid Ali
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Habib Ullah
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Mehr Ahmed Mujtaba Munir
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Rafay Ahmed
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Abdul Rehman
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
9
|
Hong J, Xie J, Mirshahghassemi S, Lead J. Metal (Cd, Cr, Ni, Pb) removal from environmentally relevant waters using polyvinylpyrrolidone-coated magnetite nanoparticles. RSC Adv 2020; 10:3266-3276. [PMID: 35497719 PMCID: PMC9048832 DOI: 10.1039/c9ra10104g] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/04/2020] [Indexed: 12/20/2022] Open
Abstract
Water pollution is a major global challenge given the increasing growth in industry and human population, and certain metals can be highly toxic and contribute to this significantly. In this study, polyvinylpyrrolidone-coated magnetic nanoparticles (PVP–Fe3O4 NPs) were used to remove metals (Cd, Cr, Ni, and Pb) from synthetic soft water and sea water in the presence and absence of fulvic acid. Nanoparticle (NP) suspensions were added to water media at a range of metal concentrations (0.1–100 mg L−1). Removal at different time points (1.5, 3, 6, 12, 24 hours) was also evaluated. Results showed that 167 mg L−1 PVP–Fe3O4 NPs could remove nearly 100% of four metals at 0.1 mg L−1 and more than 80% at 1 mg L−1. The removal decreased as the initial metal concentration increased, although essentially 100% of the Pb was removed under all conditions. The kinetic adsorption fitted well to the pseudo-second-order model and in general, the majority of metal adsorption occurred within the first 1.5 hours. These NPs are a reliable method to remove metals under a wide range of environmentally relevant conditions. Our previous research showed the NPs effectively removed oil from waters, so these NPs offer the possibility of combined in situ remediation of oil and metals. PVP–Fe3O4 NPs synthesized with no organic solvents, low toxicity reactants and low temperature/energy requirements could remove Cd, Cr, Ni, Pb efficiently in the different synthetic water media under environmentally relevant conditions.![]()
Collapse
Affiliation(s)
- Jie Hong
- College of Environment
- Zhejiang University of Technology
- Hangzhou
- China
- Center for Environmental Nanoscience and Risk
| | - Junyu Xie
- College of Resources and Environment
- Shanxi Agricultural University
- Taigu
- China
| | - Seyyedali Mirshahghassemi
- Center for Environmental Nanoscience and Risk
- Department of Environmental Health Sciences
- Arnold School of Public Health
- University of South Carolina
- Columbia
| | - Jamie Lead
- Center for Environmental Nanoscience and Risk
- Department of Environmental Health Sciences
- Arnold School of Public Health
- University of South Carolina
- Columbia
| |
Collapse
|
10
|
|
11
|
Gupta A, Sakthivel TS, Neal CJ, Koul S, Singh S, Kushima A, Seal S. Antioxidant properties of ALD grown nanoceria films with tunable valency. Biomater Sci 2019; 7:3051-3061. [PMID: 31115397 DOI: 10.1039/c9bm00397e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Herein, we provide the first account of a method to control cerium oxide's mixed valence states (as Ce3+ to Ce4+ ratio) in ultra-thin films formed via atomic layer deposition (ALD). It is determined that modulation of Ce3+/Ce4+ ratio occurs with respect to film thickness and is analogous to the change in surface chemistry observed for cerium oxide nanoparticles with varying particle diameter. The influence of film thickness on enzyme-mimetic radical scavenging is also characterized. Higher film thicknesses show 9-fold increase in catalytic activity. In vitro biocompatibility (apoptosis < 4%) and electrochemical biosensing (lowest concentration: 18 ppt) studies were performed to demonstrate the potential of ALD-grown nanoceria films for biomedical applications.
Collapse
Affiliation(s)
- Ankur Gupta
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Blvd., P.O. Box 162450, Orlando, Florida 32816, USA. and Advanced Materials Processing and Analysis Center, University of Central Florida, 4000 Central Florida Blvd., P.O. Box 162455, Orlando, Florida 32816, USA
| | - Tamil S Sakthivel
- Advanced Materials Processing and Analysis Center, University of Central Florida, 4000 Central Florida Blvd., P.O. Box 162455, Orlando, Florida 32816, USA
| | - Craig J Neal
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Blvd., P.O. Box 162450, Orlando, Florida 32816, USA. and Advanced Materials Processing and Analysis Center, University of Central Florida, 4000 Central Florida Blvd., P.O. Box 162455, Orlando, Florida 32816, USA
| | - Supriya Koul
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Blvd., P.O. Box 162450, Orlando, Florida 32816, USA. and Advanced Materials Processing and Analysis Center, University of Central Florida, 4000 Central Florida Blvd., P.O. Box 162455, Orlando, Florida 32816, USA
| | - Sushant Singh
- Advanced Materials Processing and Analysis Center, University of Central Florida, 4000 Central Florida Blvd., P.O. Box 162455, Orlando, Florida 32816, USA
| | - Akihiro Kushima
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Blvd., P.O. Box 162450, Orlando, Florida 32816, USA. and Advanced Materials Processing and Analysis Center, University of Central Florida, 4000 Central Florida Blvd., P.O. Box 162455, Orlando, Florida 32816, USA and Nanoscience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, Florida 32816, USA
| | - Sudipta Seal
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Blvd., P.O. Box 162450, Orlando, Florida 32816, USA. and Advanced Materials Processing and Analysis Center, University of Central Florida, 4000 Central Florida Blvd., P.O. Box 162455, Orlando, Florida 32816, USA and Nanoscience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, Florida 32816, USA and College of Medicine, University of Central Florida, Orlando, Florida 32827, USA
| |
Collapse
|
12
|
Ao B, Tang J, Ye X, Tao R, Qiu R. Phase Segregation, Transition, or New Phase Formation of Plutonium Dioxide: The Roles of Transition Metals. Inorg Chem 2019; 58:4350-4364. [PMID: 30864447 DOI: 10.1021/acs.inorgchem.8b03497] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
As impurities are virtually impossible to exclude from Pu oxides in realistic environments, understanding the roles of impurities is crucial for the applications and designs of Pu oxides. Here we perform a systematic first-principles DFT + U calculation to find the trends of transition-metal (TM) behaviors in PuO2 in terms of energetics, atomic properties, oxidation states, and electronic structures. The results show that group IV-B elements Ti, Zr, and Hf are energetically and electronically favorable in PuO2 and render the possibilities of forming Pu-TM-O ternary phases. In contrast, the remaining TMs tend to destabilize PuO2 and whether phase segregation or transition occurs largely depends on the redox conditions: oxidation one induces segregation, whereas reduction one facilitates the transition from PuO2 to Pu2O3. On the basis of the correlations between the properties of TMs and their relative stabilities in PuO2, we conclude that the degree of electron match between TMs and Pu plays the decisive role in the stability, as established for the cases of tetravalent elements, whereas some electron-mismatched but energetically stable TMs such as III-B and V-B elements could drive the valence transition of Pu, resulting in the phase instability of PuO2.
Collapse
Affiliation(s)
- Bingyun Ao
- Science and Technology on Surface Physics and Chemistry Laboratory , Mianyang 621908 , Sichuan , People's Republic of China
| | - Jun Tang
- Science and Technology on Surface Physics and Chemistry Laboratory , Mianyang 621908 , Sichuan , People's Republic of China
| | - Xiaoqiu Ye
- Science and Technology on Surface Physics and Chemistry Laboratory , Mianyang 621908 , Sichuan , People's Republic of China
| | - Ran Tao
- Science and Technology on Surface Physics and Chemistry Laboratory , Mianyang 621908 , Sichuan , People's Republic of China
| | - Ruizhi Qiu
- Science and Technology on Surface Physics and Chemistry Laboratory , Mianyang 621908 , Sichuan , People's Republic of China
| |
Collapse
|
13
|
You G, Wang P, Hou J, Wang C, Qian J, Ao Y, Chen J, Miao L, Xu Y, Feng T, Tao L. Investigation of the rheological behavior of activated sludge in response to CeO 2 nanoparticles and potential mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:29725-29733. [PMID: 30145757 DOI: 10.1007/s11356-018-2986-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
With the rapid development of CeO2 nanoparticles (NPs), the released CeO2 NPs entering into wastewater treatment plants might bring the challenges for sludge pumping and mixing. In this study, we firstly elucidated the rheological behavior of 4.0 wt% sludge at various concentrations of CeO2 NPs. With the increase of CeO2 NPs to 5 mg/L, the shear stress at any given shear rate was reduced and the limiting viscosity was also decreased, indicating the sludge became more flowability. The dynamic sweep tests further demonstrated the decreased elastic behavior and weakened internal structure in response to low concentrations of CeO2 NPs (≤ 5 mg/L). However, 20 mg/L CeO2 NPs had negative effects on the rheological evolution of sludge, namely, better solid-like property and higher elastic structure. These results were mainly attributed to the combination of the decreased β-D-glucopyranose polysaccharides which support the rigid structure of sludge and the dramatically increased protein content (especially in 20 mg/L CeO2 NPs). These results can potentially provide novel information for the efficient design of sludge treatment when coped with CeO2 NPs. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China.
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Yi Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Tao Feng
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Li Tao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| |
Collapse
|
14
|
Lead JR, Batley GE, Alvarez PJJ, Croteau MN, Handy RD, McLaughlin MJ, Judy JD, Schirmer K. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects-An updated review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2029-2063. [PMID: 29633323 DOI: 10.1002/etc.4147] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/14/2018] [Accepted: 03/29/2018] [Indexed: 05/21/2023]
Abstract
The present review covers developments in studies of nanomaterials (NMs) in the environment since our much cited review in 2008. We discuss novel insights into fate and behavior, metrology, transformations, bioavailability, toxicity mechanisms, and environmental impacts, with a focus on terrestrial and aquatic systems. Overall, the findings were that: 1) despite substantial developments, critical gaps remain, in large part due to the lack of analytical, modeling, and field capabilities, and also due to the breadth and complexity of the area; 2) a key knowledge gap is the lack of data on environmental concentrations and dosimetry generally; 3) substantial evidence shows that there are nanospecific effects (different from the effects of both ions and larger particles) on the environment in terms of fate, bioavailability, and toxicity, but this is not consistent for all NMs, species, and relevant processes; 4) a paradigm is emerging that NMs are less toxic than equivalent dissolved materials but more toxic than the corresponding bulk materials; and 5) translation of incompletely understood science into regulation and policy continues to be challenging. There is a developing consensus that NMs may pose a relatively low environmental risk, but because of uncertainty and lack of data in many areas, definitive conclusions cannot be drawn. In addition, this emerging consensus will likely change rapidly with qualitative changes in the technology and increased future discharges. Environ Toxicol Chem 2018;37:2029-2063. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Jamie R Lead
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Graeme E Batley
- Centre for Environmental Contaminants Research, CSIRO Land and Water, Kirrawee, New South Wales, Australia
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | | | | | | | - Jonathan D Judy
- Soil and Water Sciences Department, University of Florida, Gainesville, Florida, USA
| | - Kristin Schirmer
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering, Federal Institute of Technology Lausanne, Lausanne, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland
| |
Collapse
|