1
|
Hauns J, Zeug L, Moosmann L, Zwickel T, Schächtele A. Polychlorinated Alkanes in feed from the German market. CHEMOSPHERE 2025; 381:144434. [PMID: 40367745 DOI: 10.1016/j.chemosphere.2025.144434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Polychlorinated Alkanes (PCAs) were analysed in 47 feed samples, 13 and 34 respectively of animal and plant origin, collected from the southern German market in 2023. The overall median concentration of ∑PCAs- was determined as 10ngg-1 ww, with plant-based feeds being considerably lower than feed of animal origin, with respective median values of 8.8 and 44ngg-1 ww. Highest levels of PCAs with respect to fresh weight were found in plant-based fats and oils, including the highest sample at more than 9000ngg-1 ww, followed by feed of animal origin, particularly fish meal. Seeds, press cakes, meals and soy based products were usually lower. The ratio of ∑PCAs- to ∑PCAs- was below 1 for almost all samples, potentially resulting from the European enforcement of the Stockholm Convention. Homologue response pattern revealed a small difference in the abundances of chain lengths - between feed of animal origin and plant-based feeds.
Collapse
Affiliation(s)
- Jakob Hauns
- European Reference Laboratory for halogenated POPs in Feed and Food (EURL POPs), Bissierstr.5, 79114, Freiburg, Germany.
| | - Lena Zeug
- European Reference Laboratory for halogenated POPs in Feed and Food (EURL POPs), Bissierstr.5, 79114, Freiburg, Germany.
| | - Lena Moosmann
- European Reference Laboratory for halogenated POPs in Feed and Food (EURL POPs), Bissierstr.5, 79114, Freiburg, Germany.
| | - Theresa Zwickel
- European Reference Laboratory for halogenated POPs in Feed and Food (EURL POPs), Bissierstr.5, 79114, Freiburg, Germany.
| | - Alexander Schächtele
- European Reference Laboratory for halogenated POPs in Feed and Food (EURL POPs), Bissierstr.5, 79114, Freiburg, Germany.
| |
Collapse
|
2
|
Hanari N, Nakamura K, Yamazaki E, Nakano T. Multivariate statistical characterization of analytical methods for C 10-C 13 polychlorinated alkanes (PCAs) using interlaboratory comparison data of a reference material as a common quantification standard. CHEMOSPHERE 2025; 375:144222. [PMID: 39993346 DOI: 10.1016/j.chemosphere.2025.144222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
Polychlorinated alkanes (PCAs) are persistent environmental pollutants with numerous congeners and homologues, making their analysis challenging. Among these, carbon chain length congener groups (i.e., C10-C13) can be analysed using both gas chromatography (GC) and liquid chromatography (LC), but differences in ionization methods between these techniques can introduce analytical biases. To address this issue, we reanalysed data from the earlier interlaboratory comparisons using a common quantification standard and applied multivariate statistical analysis to elucidate methodological differences. First, we characterized the common quantification standard across different ionization methods and identified its distinctive features. Subsequently, we extracted results from participating laboratories that employed identical analytical methods in the earlier interlaboratory comparison and conducted a multivariate statistical analysis. Our case study with limited analytical samples revealed that specific chain length congener and homologue groups are associated with different ionization techniques. Recognizing these homologue group patterns is crucial for accurate source identifications in environmental monitoring and appropriate estimations of key ecological factors such as biomagnification.
Collapse
Affiliation(s)
- Nobuyasu Hanari
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (NMIJ/AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8563, Japan.
| | - Keisuke Nakamura
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (NMIJ/AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8563, Japan
| | - Eriko Yamazaki
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (NMIJ/AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8563, Japan
| | - Takeshi Nakano
- Research Center for Environmental Preservation, Osaka University, 2-4 Yamadaoka, Suita, 565-0871, Japan
| |
Collapse
|
3
|
Hutter J, Diaz OM, Knobloch M, Zennegg M, Vogel JC, Durisch E, Stalder U, Bigler L, Kern S, Buser AM, Heeb NV. Temporal trends and spatial variations of chlorinated paraffins and olefins in sewage sludge from eight Swiss wastewater treatment plants from 1993 to 2020. CHEMOSPHERE 2025; 372:144071. [PMID: 39756702 DOI: 10.1016/j.chemosphere.2025.144071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
High production rates of chlorinated paraffins (CPs) and their widespread use resulted in a global contamination. Since 2017, short-chain CPs (SCCPs, C10-C13) are listed as persistent organic pollutants (POPs) in the Stockholm Convention. Technical CP mixtures contain hundreds of homologues and side products such as chlorinated olefins (COs), diolefins (CdiOs) and triolefins (CtriOs). Sewage sludge from wastewater treatment plants (WWTPs) is a suitable indicator to assess anthropogenic emissions of POPs. We studied 40 sewage sludge samples from eight WWTPs taken in 1993, 2002, 2007, 2012 and 2020. These samples represent effluents of households of ∼344000 inhabitants corresponding to 4% of the Swiss population. Extracts were studied by liquid chromatography high-resolution mass spectrometry (LC-MS, R > 100000). Respective mass spectra contained more than 20000 m/z values which were evaluated with the R-based automated spectra evaluation routine (RASER). We assigned ∼4300 ions to 226 CP, 94 CO, 32 CdiO and 26 CtriO homologues. Proportions of olefinic material were on average 8%, 1% and <1%, respectively. Homologue distributions from 1993 sludge were rich in SCCPs (26%) and SCCOs (36%). Average SCCP levels dropped by 85% from 15600 ± 14300 (1993) to 2370 ± 840 ng/g dry matter (2020). Thus, SCCP emissions from Swiss households and industry were reduced successfully from 1993 to 2020. Levels of medium- (MCCPs, C14-C17), long- (LCCPs, C18-C21) and very long-chain CPs (vLCCPs, C ≥ 22) decreased by 67%, 11% and 11%. 2020 samples contained some (<1%) very short-chain CPs (vSCCPs, C ≤ 9). Spatial variations for different WWTPs are minor, except for one, which received high MCCP loads from 2002 to 2012. We assume that wastewater from a point source has reached this plant in those years. According to the levels of sludge from WWTPs, we conclude that the use of SCCPs in Swiss households and thus the exposure of people was reduced in the last three decades.
Collapse
Affiliation(s)
- Jules Hutter
- Swiss Federal Institute for Materials Science and Technology Empa, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, 8600, Dübendorf, Switzerland; Zurich University of Applied Sciences ZHAW, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland.
| | - Oscar Mendo Diaz
- Swiss Federal Institute for Materials Science and Technology Empa, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, 8600, Dübendorf, Switzerland; University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Marco Knobloch
- Swiss Federal Institute for Materials Science and Technology Empa, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, 8600, Dübendorf, Switzerland; University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Markus Zennegg
- Swiss Federal Institute for Materials Science and Technology Empa, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, 8600, Dübendorf, Switzerland.
| | - Jean Claude Vogel
- Office for Waste, Water, Energy and Air of the Canton of Zurich AWEL, Water Protection Department, Hardturmstrasse 105, 8090, Zurich, Switzerland.
| | - Edith Durisch
- Office for Waste, Water, Energy and Air of the Canton of Zurich AWEL, Water Protection Department, Hardturmstrasse 105, 8090, Zurich, Switzerland.
| | - Urs Stalder
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Laurent Bigler
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Susanne Kern
- Zurich University of Applied Sciences ZHAW, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland.
| | - Andreas M Buser
- Swiss Federal Office for the Environment FOEN, 3003, Bern, Switzerland.
| | - Norbert V Heeb
- Swiss Federal Institute for Materials Science and Technology Empa, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, 8600, Dübendorf, Switzerland.
| |
Collapse
|
4
|
Beloki Ezker I, Yuan B, Bohlin-Nizzetto P, Borgen AR, Wang T. Polychlorinated alkanes in indoor environment: A review of levels, sources, exposure, and health implications for chlorinated paraffin mixtures. CHEMOSPHERE 2024; 365:143326. [PMID: 39306115 DOI: 10.1016/j.chemosphere.2024.143326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 10/03/2024]
Abstract
Polychlorinated n-alkanes (PCAs) are the main components of chlorinated paraffins (CPs) mixtures, that have been commonly grouped into short-chain (SCCPs, C10-13), medium-chain (MCCPs, C14-17), and long-chain (LCCPs, C18-30) CPs. PCAs pose a significant risk to human health as they are broadly present in indoor environments and are potentially persistent, bioaccumulative, and toxic. The lack of specific terminology and harmonization in analytical methodologies for PCA analysis complicates direct comparisons between studies. The present work summarizes the different methodologies applied for the analysis of PCAs in indoor dust, air, and organic films. The large variability between the reviewed studies points to the difficulties to assess PCA contamination in these matrices and to mitigate risks associated with indoor exposure. Based on our review of physicochemical properties of PCAs and previously reported sum of measurable S/M/LCCPs levels, the homologue groups PCAs-C10-13 are found to be mostly present in the gas phase, PCAs-C14-17 in particulate matter and organic films, and PCAs-C≥18 in settled dust. However, we emphasized that mapping PCA sources and distribution in the indoors is highly dependent on the individual homologues. To further comprehend indoor PCA distribution, we described the uses of PCA in building materials and household products to apportion important indoor sources of emissions and pathways for human exposure. The greatest risk for indoor PCAs were estimated to arise from dermal absorption and ingestion through contact with dust and CP containing products. In addition, there are several factors affecting indoor PCA levels and exposure in different regions, including legislation, presence of specific products, cleaning routines, and ventilation frequency. This review provides comprehensive analysis of available indoor PCA data, the physicochemical properties, applied analytical methods, possible interior sources, variables affecting the levels, human exposure to PCAs, as well as need for more information, thereby providing perspectives for future research studies.
Collapse
Affiliation(s)
- Idoia Beloki Ezker
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83, Linköping, Sweden
| | - Bo Yuan
- Department of Chemistry, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
| | | | | | - Thanh Wang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83, Linköping, Sweden; Department of Thematic Studies - Environmental Change, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
5
|
Zhang Z, Geng N, Ning C, Zhu X, Zhang H, Chen J, Cao R. Physicochemical properties dominating the behaviors of short/medium chain chlorinated paraffins in the atmosphere. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135335. [PMID: 39079292 DOI: 10.1016/j.jhazmat.2024.135335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024]
Abstract
Chlorinated paraffins (CPs) are chlorinated alkane mixtures widely used as flame retardants and plasticizers in multiple industrial products. Systematic research on how homolog-specific properties affect their atmospheric behaviors is limited. Herein, we investigated the levels of short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) in long-timescale, seasonal, and size-fractioned particles in the urban area of Dalian, a coastal city in northern China. The average SCCP and MCCP concentrations in particles with diameters ≤ 10 µm were 3.36 and 4.89 ng/m3, respectively, and a general increase in the SCCP concentration was observed from 2.59 ng/m3 in 2018 - 2019 to 7.84 ng/m3 in 2021 - 2023. CP levels and patterns showed significant seasonal variation, with a higher abundance of C11-13Cl7-9 in winter and C10-12Cl5 in summer. Elevated particle levels in winter and high temperatures in summer contributed to the seasonal variations. SCCPs and MCCPs were concentrated on particles with diameters of < 1 µm and their geometric mean diameter increased with the increasing carbon and chlorine numbers. Total Daily intake of SCCP and MCCP was calculated to be 0.15 and 0.22 ng/kg bw/day for adults. 53.1 %, 8.5 %, and 38.4 % of inhaled SCCPs, and 60.6 %, 7.6 %, and 31.8 % of inhaled MCCPs deposited into the head airway, tracheobronchial region, and alveolar region, respectively. This study reports on how homolog-specific physicochemical properties alter the temporal variations, size distributions, and inhaled fractions of CPs.
Collapse
Affiliation(s)
- Zhijie Zhang
- School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China; CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Cuiping Ning
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Xiuhua Zhu
- School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China.
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rong Cao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
6
|
Parvizian BA, Helm PA, Fernando S, Crimmins BS, Hopke PK, Holsen TM. Short- and medium-chain chlorinated paraffins in surface sediment from Lake Ontario. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38358-38366. [PMID: 38801611 DOI: 10.1007/s11356-024-33788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Concentrations of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) were analyzed and investigated in surficial sediment collected in 2018 from ten different nearshore sites in Lake Ontario and the St. Lawrence River influenced by inputs from varying urban and historical land uses. Sites were grouped into two categories of tributary and lake according to their location. Results show that tributary sites had higher concentrations of total chlorinated paraffin (CP) than lake sites. Humber Bay, a lake site, had the highest total CP concentration (55,000 ng/gTOC) followed by Humber River, a tributary site (50,000 ng/gTOC). The lowest concentrations were found in eastern Lake Ontario and Lake St. Francis in the St. Lawrence River (540 ng/gTOC). Higher concentrations of chlorinated paraffins (CPs) were found where runoff and wastewater inputs from urban areas, current industrial activities, and population were the greatest. Levels of MCCPs were higher than SCCPs at all sites but one, Lake St. Francis. Among the SCCPs, C13 and among the MCCPs C14 were the dominant chain length alkanes, with C14 being the highest among both groups. The SCCPs and MCCPs profiles suggest that they can be used to distinguish between sites impacted by local sources vs. sites impacted by short-/long-range transport of these chemicals.
Collapse
Affiliation(s)
- Bita Alipour Parvizian
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY, 13699, USA
| | - Paul A Helm
- Environmental Monitoring & Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Toronto, ON, M9P 3V6, Canada
| | - Sujan Fernando
- Center for Air and Aquatic Resources Engineering and Science, Clarkson University, Potsdam, NY, 13699, USA
| | - Bernard S Crimmins
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY, 13699, USA
- AEACS, 1015 Hunt Valley Cir, LLC, New Kensington, PA, 15068, USA
| | - Philip K Hopke
- Center for Air and Aquatic Resources Engineering and Science, Clarkson University, Potsdam, NY, 13699, USA.
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| | - Thomas M Holsen
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY, 13699, USA
- Center for Air and Aquatic Resources Engineering and Science, Clarkson University, Potsdam, NY, 13699, USA
| |
Collapse
|
7
|
McGrath TJ, Saint-Vanne J, Hutinet S, Vetter W, Poma G, Fujii Y, Dodson RE, Johnson-Restrepo B, Muenhor D, Le Bizec B, Dervilly G, Covaci A, Cariou R. Detection of Bromochloro Alkanes in Indoor Dust Using a Novel CP-Seeker Data Integration Tool. Anal Chem 2024; 96:4942-4951. [PMID: 38478960 DOI: 10.1021/acs.analchem.3c05800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Bromochloro alkanes (BCAs) have been manufactured for use as flame retardants for decades, and preliminary environmental risk screening suggests they are likely to behave similarly to polychlorinated alkanes (PCAs), subclasses of which are restricted as Stockholm Convention Persistent Organic Pollutants (POPs). BCAs have rarely been studied in the environment, although some evidence suggests they may migrate from treated-consumer materials into indoor dust, resulting in human exposure via inadvertent ingestion. In this study, BCA-C14 mixture standards were synthesized and used to validate an analytical method. This method relies on chloride-enhanced liquid chromatography-electrospray ionization-Orbitrap-high resolution mass spectrometry (LC-ESI-Orbitrap-HRMS) and a novel CP-Seeker integration software package for homologue detection and integration. Dust sample preparation via ultrasonic extraction, acidified silica cleanup, and fractionation on neutral silica cartridges was found to be suitable for BCAs, with absolute recovery of individual homologues averaging 66 to 78% and coefficients of variation ≤10% in replicated spiking experiments (n = 3). In addition, a total of 59 indoor dust samples from six countries, including Australia (n = 10), Belgium (n = 10), Colombia (n = 10), Japan (n = 10), Thailand (n = 10), and the United States of America (n = 9), were analyzed for BCAs. BCAs were detected in seven samples from the U.S.A., with carbon chain lengths of C8, C10, C12, C14, C16, C18, C24 to C28, C30 and C31 observed overall, though not detected in samples from any other countries. Bromine numbers of detected homologues in the indoor dust samples ranged Br1-4 as well as Br7, while chlorine numbers ranged Cl2-11. BCA-C18 was the most frequently detected, observed in each of the U.S.A. samples, while the most prevalent degrees of halogenation were homologues of Br2 and Cl4-5. Broad estimations of BCA concentrations in the dust samples indicated that levels may approach those of other flame retardants in at least some instances. These findings suggest that development of quantification strategies and further investigation of environmental occurrence and health implications are needed.
Collapse
Affiliation(s)
- Thomas J McGrath
- Oniris, INRAE, LABERCA, 44307 Nantes, France
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
| | | | | | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry, 70599, Stuttgart, Germany
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
| | - Yukiko Fujii
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
- Daiichi University of Pharmacy, Fukuoka, 815-8511, Japan
| | - Robin E Dodson
- Silent Spring Institute, Newton, Massachusetts 02460, United States
| | - Boris Johnson-Restrepo
- Environmental Chemistry Research Group, School of Exact and Natural Sciences, Campus of San Pablo, University of Cartagena, Cartagena 130015, Colombia
| | - Dudsadee Muenhor
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Health Impact Assessment Research Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
| | | | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
| | | |
Collapse
|
8
|
He C, Thai PK, Bertrand L, Jayarathne A, van Mourik L, Phuc DH, Banks A, Mueller JF, Wang XF. Calibration and Application of PUF Disk Passive Air Samplers To Assess Chlorinated Paraffins in Ambient Air in Australia, China, and Vietnam. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21061-21070. [PMID: 37939218 DOI: 10.1021/acs.est.3c06703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Ambient air samples were collected in Brisbane (Australia), Dalian (China), and Hanoi (Vietnam) during Mar 2013-Feb 2018 using polyurethane foam based passive air samplers. A sampling rate calibration experiment was conducted for chlorinated paraffins (CPs, i.e., short-chain, medium-chain, and long-chain CPs), where the sampling rates were 4.5 ± 0.7, 4.8 ± 0.3, and 4.8 ± 2.1 m3 day-1 for SCCPs, MCCPs, and LCCPs, respectively. The atmospheric concentration of CPs was then calculated and the medians of ∑CPs were 0.079, 1.0, and 0.89 ng m-3 in Brisbane, Dalian, and Hanoi, respectively. The concentration of CPs in Brisbane's air remained at low levels, with no significant differences observed between the city background site and the city center site, indicating limited usage and production of CPs in this city. The highest concentration of MCCPs was detected in Dalian, while the highest concentration of SCCPs was detected in Hanoi. A decrease of SCCP concentration and an increase of MCCPs' were found in Brisbane's air from 2016 to 2018, while increasing trends for both SCCPs and MCCPs were observed in Dalian. These results indicated impacts from different sources of CPs in the investigated cities.
Collapse
Affiliation(s)
- Chang He
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| | - Phong K Thai
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| | - Lidwina Bertrand
- CIBICI- CONICET and Universidad Nacional de Córdoba, Facultad Ciencias Químicas, Dpto. Bioquímica Clínica, 5000 Córdoba, Argentina
| | - Ayomi Jayarathne
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| | - Louise van Mourik
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Dam Hoang Phuc
- Hanoi University of Science and Technology, Hanoi 10999, Viet Nam
| | - Andrew Banks
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
- Racing Science Centre, Queensland Racing Integrity Commission, 4010 Brisbane, Australia
| | - Jochen F Mueller
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| | - Xianyu Fisher Wang
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| |
Collapse
|
9
|
Hanari N, Nakano T. Interlaboratory trial of short-chain chlorinated paraffin: comparison of mass fractions and homolog profiles in a simulation environmental sample. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119450-119461. [PMID: 37924406 DOI: 10.1007/s11356-023-30577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) are listed in the Stockholm Convention. Therefore, selecting suitable methods for their accurate quantification is essential. Nowadays, the quality of commercial reagents employed as quantification standards is not guaranteed. As a solution, we adopted an SCCP formulation reference material with known homolog composition ratios as the quantification standard to evaluate the appropriateness of the methods. By mixing the SCCP formulation and interferences, an analytical sample was independently prepared and used as the simulation environmental sample. The homolog compositional profiles of the SCCPs resembled those of the quantification standard and the analytical sample. The mass fractions and the homolog profiles, including the carbon chain length and chlorine homolog profiles, of the SCCPs were reported by 14 different laboratories. For the mass fraction, the results reported by participants were consistent, except for the participants that employed low-resolution gas chromatography (GC). The results generated from liquid chromatography (LC) and GC were slightly different, despite of the similar homolog composition ratios between the quantification standard and the analytical sample. Although there were discreet discrepancies in the overall chlorine homolog profiles, the carbon chain length profiles acquired from GC and LC were similar. The differences depended on the method employed. Additionally, compared with the low-resolution data, the high-resolution data displayed less fluctuation since the effect of the interferences on the analytical sample was reduced because of the mass accuracy of high-resolution instruments. Accordingly, the interlaboratory trial employing the similar homolog compositional profiles of the quantification standard and the analytical sample proved valuable in elucidating the differences among methods, considering equipment, resolution specification, and ionization.
Collapse
Affiliation(s)
- Nobuyasu Hanari
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (NMIJ/AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8563, Japan.
| | - Takeshi Nakano
- Research Center for Environmental Preservation, Osaka University, 2-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
10
|
Huang J, Zhao L, Shi Y, Zeng X, Sun W, Zhao X, Liu R, Wu Q, Dong G, Chen D, Liu X. Characterization of short-, medium- and long-chain chlorinated paraffins in ambient PM 2.5 from the Pearl River Delta, China. ENVIRONMENT INTERNATIONAL 2023; 175:107932. [PMID: 37116426 DOI: 10.1016/j.envint.2023.107932] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/08/2023] [Accepted: 04/11/2023] [Indexed: 05/22/2023]
Abstract
Research on the environmental occurrence of long-chain chlorinated paraffins (LCCPs) in ambient fine particulate matter (PM2.5) is still scarce. In the present study, short-chain chlorinated paraffins (SCCPs), medium-chain chlorinated paraffins (MCCPs) and LCCPs were simultaneously quantified and profiled in PM2.5 samples collected from 96 primary or secondary schools in the Pearl River Delta of South China. SCCPs, MCCPs and LCCPs were detected in higher than 90% samples with concentrations in the range of 0.832-109, 1.02-110, and 0.173-17.4 ng/m3, respectively. The dominant congener groups of SCCPs, MCCPs and LCCPs were C13Cl6-8, C14Cl7-8, and C18Cl7-9, respectively. The concentrations of SCCPs and MCCPs were higher in summer than in winter, while an opposite seasonal trend was observed for LCCPs. Principal components analysis showed there were seasonal variations in the congener group patterns with C13Cl6-7 and C14Cl7 more abundant in summer than in winter. Concentrations of CPs also exhibited slight spatial variations. Exposure risk assessment based on different age groups suggested exposure to PM2.5-associated CPs would not pose significant health risk. The present study expands the existing knowledge of CPs contamination in atmospheric environment.
Collapse
Affiliation(s)
- Jingwen Huang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lei Zhao
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yumeng Shi
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaowen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenwen Sun
- SCIEX (China) Co., Ltd., Guangzhou 510623, China
| | | | - Ruqing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qizhen Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guanghui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaotu Liu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
11
|
Liu S, Ye X, Zhou X, Chen C, Huang Y, Fang S, Guo P, Ouyang G. In Vivo Profiling and Quantification of Chlorinated Paraffin Homologues in Living Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3053-3061. [PMID: 36790355 DOI: 10.1021/acs.est.2c05923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herein, we demonstrate the ability of a dual-purpose periodic mesoporous organosilica (PMO) probe to track the complex chlorinated paraffin (CP) composition in living animals by assembling it as an adsorbent-assisted atmospheric pressure chemical ionization Fourier-transform ion cyclotron resonance mass spectrometry (APCI-FT-ICR-MS) platform and synchronously performing it as the in vivo sampling device. First, synchronous solvent-free ionization and in-source thermal desorption of CP homologues were achieved by the introduction of the PMO adsorbent-assisted APCI module, generating exclusive adduct ions ([M - H]-) of individual CP homologues (CnClm) with enhanced ionization efficiency. Improved detection limits of short- and medium-chain CPs (0.10-24 and 0.48-5.0 pg/μL) were achieved versus those of the chloride-anion attachment APCI-MS methods. Second, the dual-purpose PMO probe was applied to extract the complex CP compositions in living animals, following APCI-FT-ICR-MS analysis. A modified pattern-deconvolution algorithm coupled with the sampling-rate calibration method was used for the quantification of CPs in living fish. In vivo quantification of a tilapia exposed to technical CPs for 7 days was successfully achieved, with ∑SCCPs and ∑MCCPs of the sampled fish calculated to be 1108 ± 289 and 831 ± 266 μg/kg, respectively. Meanwhile, 58 potential CP metabolites were identified in living fish for the first time during in vivo sampling of CPs, a capacity that could provide an important tool for future study regarding its expected risks to humans and its environmental fate.
Collapse
Affiliation(s)
- Shuqin Liu
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China
| | - Xiaoji Ye
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China
| | - Xi Zhou
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China
| | - Chao Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China
| | - Yiquan Huang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuting Fang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China
| | - Pengran Guo
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China
| | - Gangfeng Ouyang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
12
|
Niu S, Chen X, Chen R, Zou Y, Zhang Z, Li L, Hageman KJ, Ng C, Dong L. Understanding inter-individual variability in short-chain chlorinated paraffin concentrations in human blood. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130235. [PMID: 36368064 DOI: 10.1016/j.jhazmat.2022.130235] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Chlorinated paraffins (CPs), particularly short-chain CPs (SCCPs), have been reported in human blood with high detection frequency and often high variation among individuals. However, factors associated with and their contributions to inter-individual variability in SCCP concentrations in human blood have not been assessed. In this study, we first measured SCCP concentrations in 57 human blood samples collected from individuals living in the same vicinity in China. We then used the PROduction-To-Exposure model to investigate the impacts of variations in sociodemographic data, biotransformation rates, dietary patterns, and indoor contamination on inter-individual variability in SCCP concentrations in human blood. Measured ∑SCCP concentrations varied by a factor of 10 among individuals with values ranging from 122 to 1230 ng/g, wet weight. Model results show that age, sex, body weight, and dietary composition played a minor role in causing variability in ∑SCCP concentrations in human blood given that modeled ∑SCCP concentrations ranged over a factor of 2 - 3 correlated to the variations of these factors. In contrast, variations in the modeled ΣSCCP concentrations increased to factors of 6 and 8 when variability in biotransformation rates and indoor contamination were considered, respectively, indicating these two factors could be the most influential on inter-individual variability in SCCP concentrations in human blood.
Collapse
Affiliation(s)
- Shan Niu
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA; National Research Center for Environmental Analysis and Measurement, Beijing, Beijing, China.
| | - Xi Chen
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruiwen Chen
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yun Zou
- Organic Biological Analytical Chemistry Group, Department of Chemistry, University of Liège, Liège, Belgium
| | - ZhiZhen Zhang
- School of Public Health, University of Nevada, Reno, NV, USA
| | - Li Li
- School of Public Health, University of Nevada, Reno, NV, USA
| | - Kimberly J Hageman
- Department of Chemistry & Biochemistry, Utah State University, Logan, UT, USA
| | - Carla Ng
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Liang Dong
- National Research Center for Environmental Analysis and Measurement, Beijing, Beijing, China
| |
Collapse
|
13
|
McGrath TJ, Christia C, Poma G, Covaci A. Seasonal variation of short-, medium- and long-chain chlorinated paraffin distribution in Belgian indoor dust. ENVIRONMENT INTERNATIONAL 2022; 170:107616. [PMID: 36370602 DOI: 10.1016/j.envint.2022.107616] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Chlorinated paraffins (CPs) are high production volume plasticizers and flame retardants, which have exhibited bioaccumulative and toxic properties. CPs may be released from treated consumer goods and bind with indoor dust, leading to human exposure via unintentional dust ingestion. In this study, the concentrations and homologue distribution of CPs were measured in 50 indoor dust samples collected in paired winter and summer sampling campaigns from 25 homes in Flanders, Belgium. Short-, medium- and long-chain CPs (SCCPs (C10-13), MCCPs (C14-17) and LCCPs (C18-20), respectively) were each detected in all Belgian indoor dust samples with overall median concentrations of 6.1 µg/g (range 0.61 to 120 µg/g), 45 µg/g (range 4.5 to 520 µg/g) and 4.5 µg/g (range 0.3 to 50 µg/g), respectively. Concentrations were significantly higher in the winter samples than summer for each of the three groups (p < 0.05). LCCPs homologues ranging from C21-32 were also detected in dust samples and accounted for approximately half of the LCCP relative abundance based on instrumental peak area, although a lack of appropriate analytical standards prevented quantification of these homologues. While clear sources of CP contamination in dust could not be identified, significant associations between concentrations of ∑SCCPs, ∑MCCPs and ∑LCCPs (C18-20) (p < 0.05) suggested the combined application within materials or products in homes. Based on typical exposure scenarios, estimated daily intake of ∑CPs (C10-20) for adults and toddlers were 14 and 270 ng/kg bw/day, respectively, though margin of exposure assessments for SCCPs and MCCPs indicated that adverse health effects were unlikely for all exposure scenarios. This study presents the first evidence of seasonal variation in the levels and distribution for each of the SCCP, MCCP and LCCP classes in indoor dust and highlights the urgent need for appropriate analytical standards for LCCP quantification.
Collapse
Affiliation(s)
- Thomas J McGrath
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Christina Christia
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
14
|
He C, van Mourik L, Brandsma S, Thai P, Wang X, Chen S, Thomas KV, Mueller JF. Semiquantitative Characterization of Bromo-chloro Paraffins and Olefins in the Australian Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12452-12459. [PMID: 35976999 DOI: 10.1021/acs.est.2c03576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A semiquantitative high-resolution mass spectrometry method was developed and applied to assess the occurrence of bromo-/chloro paraffins (BCPs) and olefins (BCOs) in the environment. More than 400 possible BCPs and BCO congener groups were detected in dust, air, and sewage sludge samples collected from Australia. Median chain analytes with the number of halogen atoms <7 (CnHmClxBry, 14 ≤ n ≤ 17, x + y < 7) prevailed in the dust and sludge samples, while short chain analytes (CnHmClxBry, 10 ≤ n ≤ 13, x + y < 7) predominated the air samples. The estimated concentrations of ∑BCPs and ∑BCOs in dust and sludge were approximately 20% that of the chlorinated paraffins (CPs) present, with the median concentrations of 5.4 μg/g (dust) and 0.18 μg/g (sludge) for ∑BCPs and 22 μg/g (in dust) and 0.50 μg/g (sludge) for BCOs. In the air samples, the concentrations of BCPs (0.020 pg/m3) and BCOs (0.032 pg/m3) were 3-4 orders of magnitudes lower than the concentrations of CPs (790 pg/m3). Significant correlations (P < 0.001) were found between the concentration of CPs, BCPs, and BCOs in all the matrices.
Collapse
Affiliation(s)
- Chang He
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane 4102, Australia
| | - Louise van Mourik
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1087, Amsterdam 1081 HV, The Netherlands
| | - Sicco Brandsma
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1087, Amsterdam 1081 HV, The Netherlands
| | - Phong Thai
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane 4102, Australia
| | - Xianyu Wang
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane 4102, Australia
| | - Shuo Chen
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane 4102, Australia
| | - Kevin V Thomas
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane 4102, Australia
| | - Jochen F Mueller
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane 4102, Australia
| |
Collapse
|
15
|
Xu S, Hansen S, Rautio A, Järvelin MR, Abass K, Rysä J, Palaniswamy S, Huber S, Grimalt JO, Dumas P, Odland JØ. Monitoring temporal trends of dioxins, organochlorine pesticides and chlorinated paraffins in pooled serum samples collected from Northern Norwegian women: The MISA cohort study. ENVIRONMENTAL RESEARCH 2022; 204:111980. [PMID: 34474033 DOI: 10.1016/j.envres.2021.111980] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
The ubiquitous presence of legacy and emerging persistent organic pollutants (POPs) in the environmental matrices poses a potential hazard to the humans and creating public health concerns. The present study aimed to evaluate dioxins, dioxin-like polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and chlorinated paraffins (CPs) concentrations in serum of women (postpartum, pregnant and non-pregnant) from Northern Norway to better understand their exposure and contamination status as well as temporal trends across 2007-2009 (MISA 1) to 2019 (MISA 2). Sixty-two blood samples from the MISA 1 cohort and 38 samples from MISA 2 were randomly selected in this study (n = 100). Ninety samples from postpartum (MISA 1) and pregnant women (MISA 2) were randomly combined into 9 pools, with 9-11 individual samples contributing to each pool keeping the groups of pregnant and postpartum women. Remaining 10 samples from non-pregnant women (MISA 2) were allocated into separate group. Geometric mean, minimum and maximum were used to describe the serum concentrations of pooled POPs in MISA cohort. Mann-Whitney U test and independent sample t-test were applied for trend analysis of blood levels of POPs between MISA 1 and MISA 2. We found the serum concentrations of selected POPs in this study to be at lower range. Serum concentrations of dibenzo-p-dioxins (PCDDs) (p = 0.010), polychlorinated dibenzofurans (PCDFs) (p = 0.002), dioxins-like PCBs (p = 0.001), hexachlorobenzene (HCB) (p < 0.001) and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) (p = 0.002) were decreased between the studied time. In contrast, the serum concentrations of medium chain chlorinated paraffins showed an increasing trend between 2007 and 2009 and 2019 (p = 0.019). Our findings report a particular concern of emerging contaminant medium chain chlorinated paraffin exposure to humans. Future observational studies with repeated measurements of chlorinated paraffins in general populations worldwide and large sample size are warranted.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Solrunn Hansen
- Department of Health and Care Sciences, UiT the Arctic University of Norway, Tromsø, 9037, Norway
| | - Arja Rautio
- Arctic Health, Faculty of Medicine, University of Oulu, Oulu, Finland; Thule Institute, University of Arctic, University of Oulu, Oulu, Finland
| | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom; Unit of Primary Care, Oulu University Hospital, Oulu, Finland; MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom; Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Khaled Abass
- Arctic Health, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Pesticides, Menoufia University, Menoufia, Egypt
| | - Jaana Rysä
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Saranya Palaniswamy
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Sandra Huber
- Department of Laboratory Medicine, University Hospital of North Norway, Sykehusveien 38, Tromsø, NO-9038, Norway
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, Barcelona, Catalonia, 08034, Spain
| | - Pierre Dumas
- Institut Nacional de Santé Publique du Québec (INSPQ), Québec City, Canada
| | - Jon Øyvind Odland
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, 7491, Norway; Department of General Hygiene I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119992, Russia.
| |
Collapse
|
16
|
Hanari N, Nakano T. Comparison of short-chain chlorinated paraffin concentrations and homolog profiles by interlaboratory trial using a candidate reference material. CHEMOSPHERE 2022; 291:132783. [PMID: 34752840 DOI: 10.1016/j.chemosphere.2021.132783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Chlorinated paraffins (CPs) are industrial chemicals that have been primarily used in applications involving metalworking fluids. Among CPs, short-chain chlorinated paraffins (SCCPs) are a well-known environmental pollutant and are listed under Annex A of the Stockholm Convention on Persistent Organic Pollutants. CPs are alkanes substituted with chlorine atoms, and SCCPs are comprised of 10-13 carbon atoms. Reliable quantification of SCCPs is a critical issue because of the large number of SCCP isomers that are in use across multiple industries. Some interlaboratory comparisons of SCCP analyses have been conducted, and the reliability of these results was overwhelmingly determined as inferior to that of comparable PCB and dioxin analyses because of variations in the quality of commercial reagents that were employed as quantification standards. In order to address such inconsistencies, this study endeavored to prepare and evaluate a novel SCCP formulation as a candidate reference material for use as a reliable quantification standard. A subject trial study was hence performed to evaluate methods such as gas- and liquid-chromatography mass spectrometry (GC/MS and LC/MS) on sample matrices (without a clean-up process), and to subsequently elucidate the interpreted specifications for their candidacy as a reliable quantification standard. Results ultimately showed that the SCCP concentrations obtained from GC and LC were comparable. When the homologs reported by a subset of 14 separate laboratories were unified (excluding all results for Cl4 homologs), the carbon chain length profiles obtained from GC and LC were found to be similar; however, the overall chlorine homolog profiles did exhibit slight differences. Moreover, the results from high-resolution MS showed less variation than those from low-resolution MS. Thus, it was overarchingly determined that the deployment of this candidate reference material would serve as an effective mechanism for estimating the comparability of SCCP quantifications/evaluations of standard materials.
Collapse
Affiliation(s)
- Nobuyasu Hanari
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (NMIJ/AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8563, Japan.
| | - Takeshi Nakano
- Research Center for Environmental Preservation, Osaka University, 2-4 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
17
|
Godéré M, Malleret L, Höhener P, Doumenq P. Passive sampling of chlorinated paraffins by silicone: Focus on diffusion and silicone-water partition coefficients. CHEMOSPHERE 2022; 287:132201. [PMID: 34509757 DOI: 10.1016/j.chemosphere.2021.132201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) are under regulation through the European Water Framework Directive and were recently classified as POPs. Consecutively, the increasing use of middle-chain chlorinated paraffins (MCCPs) becomes of growing concern. Knowledge on the occurrence of chlorinated paraffins (CPs) is still scarce particularly in water phase. To achieve sufficient method sensitivity, the passive sampling approach, acting as a relevant alternative to usual grab sampling, has been considered only very recently for the monitoring of CPs in water. The present work aimed at determining the diffusion coefficients in silicone (Ds) and the silicone-water partition coefficients (Ksw) of various CP groups, having different chlorine contents and carbon chain lengths, in four commercial CP mixtures. Log Ds (-10.78 to -10.21) was found to vary little and to be high for the groups of CPs studied. Thus, their uptake in silicone is controlled by the water boundary layer, which allows to consider the release of performance and reference compounds for in-field estimation of the sampling rate. Moreover, CPs partitioned strongly towards silicone rubbers. Both the chlorination degree and the carbon chain length of CPs cause large uncertainties in the partitioning between silicone and water (log Ksw between 4.85 and 6.30), indicating that instead of an average value, differentiated Ksw should be used to estimate aqueous CPs more accurately. Even so, the probable influence of chlorine atoms position on polarity and partitioning may be an argument for favoring sampling in the kinetic stage.
Collapse
Affiliation(s)
- Mathilde Godéré
- Aix Marseille Université, CNRS, Laboratoire Chimie Environnement, France
| | - Laure Malleret
- Aix Marseille Université, CNRS, Laboratoire Chimie Environnement, France.
| | - Patrick Höhener
- Aix Marseille Université, CNRS, Laboratoire Chimie Environnement, France
| | - Pierre Doumenq
- Aix Marseille Université, CNRS, Laboratoire Chimie Environnement, France
| |
Collapse
|
18
|
Fernandes AR, Vetter W, Dirks C, van Mourik L, Cariou R, Sprengel J, Heeb N, Lentjes A, Krätschmer K. Determination of chlorinated paraffins (CPs): Analytical conundrums and the pressing need for reliable and relevant standards. CHEMOSPHERE 2022; 286:131878. [PMID: 34416588 DOI: 10.1016/j.chemosphere.2021.131878] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The determination of chlorinated paraffins (CPs) has posed an intractable challenge in analytical chemistry for over three decades. The combination of an as yet unspecifiable number (tens - hundreds of thousands) of individual congeners in mass produced commercial CP mixtures and the steric interactions between them, contrive to defy efforts to characterise their residual occurrences in environmental compartments, food and human tissues. However, recent advances in instrumentation (mass spectrometric detectors and nuclear magnetic resonance), combined with interlaboratory studies, have allowed a better insight into the nature of the conundrums. These include the variability of results, even between experienced laboratories when there is insufficient matching between analytical standards and occurrence profiles, the poor (or no) response of some instrumentation to some CP congener configurations (multiple terminal chlorines or < four chlorines) and the occurrence of chlorinated olefins in commercial mixtures. The findings illustrate some limitations in the existing set of commercially available standards. These include cross-contamination of some standards (complex CP mixtures), an insufficient number of single chain standards (existing ones do not fully reflect food/biota occurrences), lack of homologue group standards and unsuitability of some configurationally defined CP congeners/labelled standards (poor instrument response and a smaller likelihood of occurrence in commercial mixtures). They also indicate an underestimation in reported occurrences arising from those CPs that are unresponsive during measurement. A more extensive set of standards is suggested and while this might not be a panacea for accurate CP determination, it would reduce the layers of complexity inherent in the analysis.
Collapse
Affiliation(s)
- Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Walter Vetter
- Institute of Food Chemistry, (170b), University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany
| | - Caroline Dirks
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - Louise van Mourik
- Department of Environment and Health, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1087, 1081 HV, Amsterdam, the Netherlands
| | | | - Jannik Sprengel
- Institute of Food Chemistry, (170b), University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany
| | - Norbert Heeb
- Laboratory for Advanced Analytical Technologies, Swiss Federal Institute for Materials Science and Technology Empa, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Anouk Lentjes
- Department of Environment and Health, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1087, 1081 HV, Amsterdam, the Netherlands
| | - Kerstin Krätschmer
- European Union Reference Laboratory (EURL) for Halogenated POPs in Feed and Food, Bissierstraße 5, 79114, Freiburg, Germany
| |
Collapse
|
19
|
McGrath TJ, Limonier F, Poma G, Bombeke J, Winand R, Vanneste K, Andjelkovic M, Van Hoeck E, Joly L, Covaci A. Concentrations and distribution of chlorinated paraffins in Belgian foods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118236. [PMID: 34582924 DOI: 10.1016/j.envpol.2021.118236] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/26/2021] [Accepted: 09/24/2021] [Indexed: 05/22/2023]
Abstract
This study reports on concentrations of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs, respectively) in a wide range of food samples (n = 211) purchased in Belgium during 2020. Samples were analysed by gas chromatography-mass spectrometry (GC-MS) and quantified using chlorine content calibration. ∑SCCPs were present above LOQ in 25% of samples with an overall range of <LOQ to 58 ng/g wet weight (ww), while ∑MCCPs were identified in 66% of samples ranging from <LOQ to 250 ng/g ww. ∑MCCP concentrations were greater than those of ∑SCCPs in all 48 samples in which both groups were detected with an average ∑MCCP/∑SCCP ratio of 5.8 (ranging from 1.3 to 81). In general, the greatest CP concentrations were observed in foods classified as animal and vegetable fats and oils and sugar and confectionary for both SCCPs and MCCPs. Significant correlations between lipid content in food samples and CP levels illustrated the role of lipids in accumulating CPs within foodstuffs, while industrial processing, food packaging and environmental conditions are each likely to contribute to overall CP loads. Selected samples (n = 20) were further analysed by liquid chromatography-high resolution MS (LC-HRMS) to investigate homologue profiles and the occurrence of long-chain CPs (LCCPs). LCCPs were detected in 35% of the 20 subset samples while the HRMS results for SCCPs and MCCPs matched closely with those obtained by GC-MS. This study reveals the widespread occurrence of SCCPs and MCCPs in Belgian food and indicates that LCCPs may represent a substantial contribution to overall CP levels in foodstuffs.
Collapse
Affiliation(s)
- Thomas J McGrath
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Franck Limonier
- Chemical and Physical Health Risks Department, Sciensano, Rue Juliette Wytsman 14, 1050, Ixelles, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Jasper Bombeke
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Raf Winand
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Ixelles, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Ixelles, Belgium
| | - Mirjana Andjelkovic
- Chemical and Physical Health Risks Department, Sciensano, Rue Juliette Wytsman 14, 1050, Ixelles, Belgium
| | - Els Van Hoeck
- Chemical and Physical Health Risks Department, Sciensano, Rue Juliette Wytsman 14, 1050, Ixelles, Belgium
| | - Laure Joly
- Chemical and Physical Health Risks Department, Sciensano, Rue Juliette Wytsman 14, 1050, Ixelles, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
20
|
Li Q, Guo M, Song H, Cui J, Zhan M, Zou Y, Li J, Zhang G. Size distribution and inhalation exposure of airborne particle-bound polybrominated diphenyl ethers, new brominated flame retardants, organophosphate esters, and chlorinated paraffins at urban open consumption place. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148695. [PMID: 34214811 DOI: 10.1016/j.scitotenv.2021.148695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
At present, the global urban population has exceeded half of the total population and is still on the rise. Urban air pollution has attracted much attention, but most of the research focuses on typical pollution sources and indoor environment. This study reports the occurrence characteristics of particle-bound polybrominated diphenyl ethers (PBDEs), new brominated flame retardants (NBFRs), organophosphate esters (OPEs), short-chain chlorinated paraffins (SCCPs), and medium-chain chlorinated paraffins (MCCPs) at urban open consumption place. Among those pollutants detected in this study, the level of CPs was generally higher than other urban outdoor environments, and even higher than few indoor environments, such as house in Guangzhou (China) and Stockholm (Sweden). The size distributions of PBDEs and NBFRs exhibited bimodal peaks and that of SCCPs presented a unimodal peak, whereas no obvious trend was observed for OPEs or MCCPs. Additionally, the results of calculating the deposition fluxes of target pollutants in various regions based on the size distribution confirmed that total deposition was dominated by deposition in the head airways and alveolar region, and inhalation exposure in the current environment poses no significant health risk. Both discrepancy of the spatial distribution and principal component analysis indicated that sources of these organic pollutants may be related to the type of stores. Various construction and decoration materials might have been responsible for the high concentrations of OPEs and CPs, and thus, these materials require further analysis.
Collapse
Affiliation(s)
- Qilu Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Mengran Guo
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Han Song
- High & New Technology Research Center of Henan Academy of Sciences, Zhengzhou 450003, China
| | - Jinle Cui
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Mengdi Zhan
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Yun Zou
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, Liège 4000, Belgium
| | - Jun Li
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
21
|
Wu Y, Wu J, Wu Z, Zhou J, Zhou L, Lu Y, Liu X, Wu W. Groundwater contaminated with short-chain chlorinated paraffins and microbial responses. WATER RESEARCH 2021; 204:117605. [PMID: 34488140 DOI: 10.1016/j.watres.2021.117605] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The vertical migrations of toxic and persistent short-chain chlorinated paraffins (SCCPs) in soils as well as the microbial responses have been reported, however, there is a paucity of data on the resulting groundwater contamination. Here, we determined the concentration and congener profile of SCCPs in the groundwater beneath a production plant of chlorinated paraffins (CPs) and characterized the microbial community to explore their responses to SCCPs. Results showed that SCCPs ranged from not detected to 70.3 μg/L, with C13-CPs (11.2-65.8%) and Cl7-CPs (27.2-50.6%), in mass ratio, as the dominant groups. Similar to the distribution pattern in soils, SCCPs in groundwater were distributed in hotspot pattern. CP synthesis was the source of SCCPs in groundwater and the entire contamination plume significantly migrated downgradient, while there was an apparent hysteresis of C13-CP migration. Groundwater microbial community was likely shaped by both hydrogeological condition (pH and depth) and SCCPs. Specifically, the microbial community responded to the contamination by forming a co-occurrence network with "small world" feature, where Desulfobacca, Desulfomonile, Ferritrophicum, Methylomonas, Syntrophobacter, Syntrophorhabdus, Syntrophus, and Thermoanaerobaculum were the keystone taxa. Furthermore, the interrelations between bacterial taxa and SCCPs indicated that the microbial community might cooperate to achieve the dechlorination and mineralization of SCCPs through either anaerobic organohalide respiration mainly functioned by the keystone taxa, or cometabolic degradation processes functioned by Aquabacterium and Hydrogenophaga. Results of this study would provide a better understanding of the environmental behavior and ecological effects of SCCPs in groundwater systems.
Collapse
Affiliation(s)
- Yingxin Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Jiahui Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Zhuohao Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Jingyan Zhou
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Lingli Zhou
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Yang Lu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Xiaowen Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Wencheng Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China.
| |
Collapse
|
22
|
Chloride-attachment atmospheric pressure photoionisation for the determination of short-chain chlorinated paraffins by gas chromatography-high-resolution mass spectrometry. Anal Chim Acta 2021; 1172:338673. [PMID: 34119025 DOI: 10.1016/j.aca.2021.338673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 11/20/2022]
Abstract
In this work, a new gas chromatography-high-resolution mass spectrometry (GC-HRMS) method based on atmospheric pressure photoionisation (APPI) has been developed for the accurate determination of short-chain chlorinated paraffins (SCCPs) as a reliable alternative to the established methods. To the best of our knowledge, this is the first time these compounds has been analysed by GC-MS using atmospheric pressure photoionisation (APPI). Efficient ionisation of SCCPs was achieved using the new GC-APPI source by the formation of [M+Cl]- adduct ions in negative ion mode using dopant-assisted APPI with a mixture of acetone/CCl4 (3:1, v/v). Operating at a resolution of 70,000 FWHM (full width at half maximum) and monitoring the [M+Cl]- adduct ions for each congener group, a selective determination of the SCCPs was achieved, avoiding isobaric interferences between homologue groups with different carbon chain length and chlorination degree. Moreover, the GC-APPI-HRMS response of each congener group was mainly influenced by its concentration and did not depend on the number of chlorine atoms in the molecule as occurs with the GC-MS methods based on the electron-capture negative ionisation (ECNI). Thus, the contribution of the different carbon and chlorine homologue groups in the SCCP mixtures was determined by the internal normalization method, and the quantification was performed independently of the chlorine content of the SCCP standard mixture employed. The developed GC-APPI-HRMS method offers some interesting advantages over the existing methods, particularly the possibility to quantify individual SCCP congener groups, the use of a simple calibration method for quantification, and an important time-saving in the data processing, especially over ECNI-based traditional methods. The GC-APPI-HRMS method allowed the determination of SCCPs at low concentration levels in fish samples with low method limits of detection (17-34 pg g-1 wet weight for total SCCPs), good precision (RSD < 7%) and trueness (relative error < 8%) and can be proposed as a reliable alternative of the established methods for the determination of these pollutants in environmental samples.
Collapse
|
23
|
Al Saify I, Cioni L, van Mourik LM, Brandsma SH, Warner NA. Optimization of a low flow sampler for improved assessment of gas and particle bound exposure to chlorinated paraffins. CHEMOSPHERE 2021; 275:130066. [PMID: 33662729 DOI: 10.1016/j.chemosphere.2021.130066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
An optimized low volume sampler was developed to determine both gas- and particle bound concentrations of short and medium-chain chlorinated paraffins (S/MCCPs). Background contamination was limited by the sampler design, providing method quantification limits (MQLs) at least two orders of magnitude lower than other studies within the gas (MQL: 500 pg (ΣSCCPs), 1.86 ng (ΣMCCPs)) and particle (MQL: 500 pg (ΣSCCPs), 1.72 ng (ΣMCCPs) phases. Good repeatability was observed between parallel indoor measurements (RSD ≤ 9.3% (gas), RSD ≤ 14% (particle)) with no breakthrough/saturation observed after a week of continuous sampling. For indoor air sampling, SCCPs were dominant within the gas phase (17 ± 4.9 ng/m3) compared to MCCPs (2.7 ± 0.8 ng/m3) while the opposite was observed in the particle bound fraction (0.28 ± 0.11 ng/m3 (ΣSCCPs) vs. 2.7 ± 1.0 ng/m3 (ΣMCCPs)). Only SCCPs in the gas phase could be detected reliably during outdoor sampling and were considerably lower compared to indoor concentrations (0.27 ± 0.10 ng/m3). Separation of the gas and particle bound phase was found to be crucial in applying the appropriate response factors for quantification based on the deconvoluted S/MCCP sample profile, thus avoiding over- (gas phase) or underestimation (particle phase) of reported concentrations. Very short chain chlorinated paraffins (vSCCPs, C5-C9) were also detected at equal or higher abundance compared to SCCP congener groups (C10-C13) congener groups, indicating an additional human indoor inhalation risk.
Collapse
Affiliation(s)
- Insam Al Saify
- NILU-Norwegian Institute for Air Research, Fram Centre, NO-9296, Tromsø, Norway; Vrije Universiteit, Department of Environment and Health, Faculty of Sciences, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Lara Cioni
- NILU-Norwegian Institute for Air Research, Fram Centre, NO-9296, Tromsø, Norway
| | - Louise M van Mourik
- Vrije Universiteit, Department of Environment and Health, Faculty of Sciences, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Sicco H Brandsma
- Vrije Universiteit, Department of Environment and Health, Faculty of Sciences, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Nicholas A Warner
- NILU-Norwegian Institute for Air Research, Fram Centre, NO-9296, Tromsø, Norway; UiT-The Arctic University of Norway, Department of Arctic and Marine Biology, Hansine Hansens Veg 18, 9037, Tromsø, Norway.
| |
Collapse
|
24
|
Endo S. Refinement and extension of COSMO-RS-trained fragment contribution models for predicting the partition properties of C 10-20 chlorinated paraffin congeners. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:831-843. [PMID: 34019049 DOI: 10.1039/d1em00123j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
COSMO-RS-trained fragment contribution models (FCMs) to predict the partition properties of chlorinated paraffin (CP) congeners were refined and extended. The improvement includes (i) the use of an improved conformer generation method for COSMO-RS, (ii) extension of training and validation sets for FCMs up to C20 congeners covering short-chain (SCCPs), medium-chain (MCCPs) and long-chain CPs (LCCPs), and (iii) more realistic simulation of industrial CP mixture compositions by using a stochastic algorithm. Extension of the training set markedly improved the accuracy of model predictions for MCCPs and LCCPs, as compared to the previous study. The predicted values of the log octanol/water partition coefficients (Kow) for CP mixtures agreed well with experimentally determined values from the literature. Using the established FCMs, this study provided a set of quantum chemically based predictions for 193 congener groups (C10-20 and Cl0-21) regarding Kow, air/water (Kaw), and octanol/air (Koa) partition coefficients, subcooled liquid vapor pressure (VP) and aqueous solubility (Sw) in a temperature range of 5-45 °C as well as the respective enthalpy and internal energy changes.
Collapse
Affiliation(s)
- Satoshi Endo
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki, Japan.
| |
Collapse
|
25
|
Sprengel J, Vetter W. Chlorinated paraffins in hinges of kitchen appliances. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:250. [PMID: 33829339 PMCID: PMC8026443 DOI: 10.1007/s10661-021-09023-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/22/2021] [Indexed: 05/05/2023]
Abstract
Chlorinated paraffins (CPs) are anthropogenic pollutants of growing environmental concern. These highly complex mixtures of thousands of homologs and congeners are usually applied as additives in lubricants or as flame retardants and plasticizers in polymers and paints. Recent studies indicated the presence of high amounts of CPs in the kitchen environment whose sources could not be unequivocally identified. One option was the use of CPs as or in lubricants of hinges. To test this hypothesis, we performed wipe tests on lubricants on 29 hinges of different types of kitchen appliances (refrigerators, baking ovens, dishwashers, freezers, microwave oven, pasta machine, food processor, steam cooker) and analyzed them for short-chain CPs (SCCPs) and medium-chain CPs (MCCPs). CPs were detected in 21 samples (72%). Per wipe, SCCP concentrations ranged between 0.02 and 10 µg (median 0.23 µg), while MCCPs ranged from 0.09 to 750 µg (median 1.0 µg). Highest MCCP amounts (380 and 750 µg per wipe, respectively) were determined in new and unused appliances. A medium correlation between SCCP content and appliance age was observed, but no additional statistic correlation between SCCP/MCCP amount and appliance type or manufacturer could be observed. CPs released from hinges by volatilization, abrasion, and cleaning processes could enter the environment and come in contact with persons living in the corresponding households.
Collapse
Affiliation(s)
- Jannik Sprengel
- Institute of Food Chemistry (170B), University of Hohenheim, Garbenstr. 28, 70593, Stuttgart, Germany
| | - Walter Vetter
- Institute of Food Chemistry (170B), University of Hohenheim, Garbenstr. 28, 70593, Stuttgart, Germany.
| |
Collapse
|
26
|
He C, van Mourik L, Tang S, Thai P, Wang X, Brandsma SH, Leonards PEG, Thomas KV, Mueller JF. In vitro biotransformation and evaluation of potential transformation products of chlorinated paraffins by high resolution accurate mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124245. [PMID: 33082018 DOI: 10.1016/j.jhazmat.2020.124245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Chlorinated paraffins (CPs) are high production chemicals, which leads to their ubiquitous presence in the environment. To date, few studies have measured CPs in humans and typically at relatively low concentrations, despite indications that exposure may be high compared to various persistent organic pollutants. The aim of this study is to investigate the in vitro biotransformation of CPs by human liver fractions. We determined the changes of the CP concentrations after the enzymatic transformation with human liver microsomes using a two-tiered in vitro approach. CP concentrations decreased with human liver microsomes, with the decreases of 33-94% after incubating with different groups of enzymes for 2 h. The profiles of CP rapidly shifted after the incubation with human liver microsomes. In addition, the concentrations of CPs and the biotransformation products were tentatively measured using high-resolution mass spectrometric analysis, including very short CP (carbon chain length <10), alcohols, ketones, and carboxylic acids. C‒C bond cleavage is a potential transformation pathway for CPs, and ketones are potential products of CP biotransformation, especially for long-chain CPs (C>17). The ketone products may be investigated as CP exposure biomarker in biomonitoring studies.
Collapse
Affiliation(s)
- Chang He
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 4102 Brisbane, Australia.
| | - Louise van Mourik
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Shaoyu Tang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, 511700 Dongguan, China
| | - Phong Thai
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 4102 Brisbane, Australia
| | - Xianyu Wang
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 4102 Brisbane, Australia
| | - Sicco H Brandsma
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Pim E G Leonards
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 4102 Brisbane, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 4102 Brisbane, Australia
| |
Collapse
|
27
|
Abstract
Background: Bio-indicator systems are vital in terms of monitoring of pollutants around the world. The impact of environmental change can be monitored by employing the responsive behaviour of snails. Heavy metal and organic pollutants affects snail reproduction, mortality, and normal metabolic activities. Various changes like a discontinuity in food intake, growth rate, twitching, and quenching of tentacles, are the biomarkers of the snails for biomonitoring. Different snails can bio-monitor eco-toxicological urban pollution, oil pollutant, terrestrial pollution, pesticide pollutants, mercury contamination, ammonia, chlorinated paraffin in soil, ethanol in water, ocean acidification pollutions. These animals can also make bio-sense about diverse environment spheres, which include the biosphere, lithosphere, anthroposphere, cryosphere, and hydrosphere.Methods: We examined the scientific literature and related articles listed in Pub-med, Google Scholar reporting on biomonitoring potential and biomarkers expression of various snail species and consequently explore the value of snails in the respective field by discussing various outcomes of a number of studies on the pollution biomonitoring and biosensing capabilities.Results: Several terrestrial, freshwater and sea snail species are characterized by the high sense of biomonitoring and biosensing potential. Various biomarkers such as expression of heat shock proteins and metallothioneins in the body are found to be the essential in-vivo biomarkers for pollution biomonitoring.Conclusion: It is observed that snails offer an environment friendly approach for the environmental bio monitoring by expressing their numerous physiological, biochemical, genetical and histological biomarkers in their body. Thus, it proved to be a critical bio monitoring tool and early warning indicators.
Collapse
Affiliation(s)
- Varun Dhiman
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamsala, India
| | - Deepak Pant
- School of Chemical Sciences, Central University of Haryana, Mahendragarh, India
| |
Collapse
|
28
|
Short- and Medium-Chain Chlorinated Paraffins in Polyvinylchloride and Rubber Consumer Products and Toys Purchased on the Belgian Market. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031069. [PMID: 33530429 PMCID: PMC7908593 DOI: 10.3390/ijerph18031069] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 01/21/2023]
Abstract
This study investigates the presence of Stockholm Convention listed short-chain chlorinated paraffins (SCCPs) and their replacement medium-chain chlorinated paraffins (MCCPs) counterparts in polyvinyl chloride and rubber consumer products and toys purchased on the Belgian market in 2019. SCCPs were detected in 27/28 samples at concentrations ranging from <LOQ-130,000 µg/g with a median level of 2.5 µg/g, while MCCPs were detected in only five samples ranging <LOQ-3500 µg/g. Levels of SCCPs in all but one of the samples were below the European Union's guideline limit of 0.15%, by weight, and concentrations of both SCCPs and MCCPs in the majority of products suggested unintentional incorporation to the polymeric materials. The homologue distribution of SCCPs was generally dissimilar to known commercial formulations and appeared to be indicative of contamination during manufacture or via recycling of previously treated goods. MCCP patterns, conversely, were broadly representative of those reported for industrial mixtures and may have been inadvertently incorporated via the application of mixed carbon-chain length CP formulations or recycled goods. This research suggests that overall SCCP presence has decreased in goods on the European market compared with previous reports and that both SCCPs and MCCPs may still enter EU marketplaces from unintentional sources.
Collapse
|
29
|
Endo S, Hammer J. Predicting Partition Coefficients of Short-Chain Chlorinated Paraffin Congeners by COSMO-RS-Trained Fragment Contribution Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15162-15169. [PMID: 33207873 DOI: 10.1021/acs.est.0c06506] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chlorinated paraffins (CPs) are highly complex mixtures of polychlorinated n-alkanes with differing chain lengths and chlorination patterns. Knowledge on physicochemical properties of individual congeners is limited but needed to understand their environmental fate and potential risks. This work used a sophisticated but time-demanding quantum chemically based method COSMO-RS and a fast-running fragment contribution approach to enable prediction of partition coefficients for a large number of short-chain chlorinated paraffin (SCCP) congeners. Fragment contribution models (FCMs) were developed using molecular fragments with a length of up to C4 in CP molecules as explanatory variables and COSMO-RS-calculated partition coefficients as training data. The resulting FCMs could quickly provide COSMO-RS predictions for octanol-water (Kow), air-water (Kaw), and octanol-air (Koa) partition coefficients of SCCP congeners with an accuracy of 0.1-0.3 log units root-mean-squared errors. The FCM predictions for Kow agreed with experimental values for individual constitutional isomers within 1 log unit. The distribution of partition coefficients for each SCCP congener group was computed, which successfully reproduced experimental log Kow ranges of industrial CP mixtures. As an application of the developed FCMs, the predicted Kaw and Koa were plotted to evaluate the bioaccumulation potential of each SCCP congener group.
Collapse
Affiliation(s)
- Satoshi Endo
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki, Japan
| | - Jort Hammer
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki, Japan
| |
Collapse
|
30
|
Mézière M, Krätschmer K, Pe Rkons I, Zacs D, Marchand P, Dervilly G, Le Bizec B, Schächtele A, Cariou R, Vetter W. Addressing Main Challenges Regarding Short- and Medium-Chain Chlorinated Paraffin Analysis Using GC/ECNI-MS and LC/ESI-MS Methods. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1885-1895. [PMID: 32872783 DOI: 10.1021/jasms.0c00155] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The risk assessment of chlorinated paraffins (CPs), chemicals of widespread industrial use, is struggling without standardized analytical methods to obtain reliable occurrence data. Indeed, scientists face analytical challenges that hinder the comparability of analytical methods, among them uncontrolled ionization efficiency and lack of quantification standards. In this study, our goal was to investigate potential issues faced when comparing data from different mass spectrometry platforms and quantification methods. First, the injection of the same set of single-chain length standards in three different instrumental mass spectrometry set-ups (liquid chromatography-electrospray-Orbitrap (LC/ESI-HRMS), liquid chromatography-electrospray-time-of-flight (LC/ESI-MS), and gas chromatography-electron capture negative ion-Orbitrap (GC/ECNI-HRMS)) revealed a shift of homologue response patterns even in-between LC/ESI-based set-ups, which was more pronounced for CPs of low chlorination degree. This finding emphasizes the need for a comprehensive description of instrument parameters when publishing occurrence data. Second, the quantification of a data set of samples with four quantification methods showed that quantification at the sum SCCP and MCCP levels presented good comparability, while quantification at the homologue level remained unsatisfactory. In light of those results, we suggest that (i) response pattern comparison should only be performed between similar instrumental set-ups, (ii) experimental chlorination degrees should be used when quantifying according to the %Cl (instead of those provided by the suppliers), and (iii) concentration results should be expressed as the sum of SCCPs and MCCPs primarily, with an indication on the match between samples and quantification standards (for example their chlorine content).
Collapse
Affiliation(s)
| | - Kerstin Krätschmer
- EURL for Halogenated POPs, c/o State Institute for Chemical and Veterinary Analysis of Food (CVUA) Freiburg, Bissierstraße 5, 79114 Freiburg, Germany
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, 70599 Stuttgart, Germany
| | | | | | | | | | | | - Alexander Schächtele
- EURL for Halogenated POPs, c/o State Institute for Chemical and Veterinary Analysis of Food (CVUA) Freiburg, Bissierstraße 5, 79114 Freiburg, Germany
| | | | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, 70599 Stuttgart, Germany
| |
Collapse
|
31
|
Yuan B, Lysak DH, Soong R, Haddad A, Hisatsune A, Moser A, Golotvin S, Argyropoulos D, Simpson AJ, Muir DCG. Chlorines Are Not Evenly Substituted in Chlorinated Paraffins: A Predicted NMR Pattern Matching Framework for Isomeric Discrimination in Complex Contaminant Mixtures. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2020; 7:496-503. [PMID: 32685603 PMCID: PMC7365351 DOI: 10.1021/acs.estlett.0c00244] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 05/06/2023]
Abstract
Chlorinated paraffins (CPs) can be mixtures of nearly a half-million possible isomers. Despite the extensive use of CPs, their isomer composition and effects on the environment remain poorly understood. Here, we reveal the isomeric distributions of nine CP mixtures with single-chain lengths (C14/15) and varying degrees of chlorination. The molar distribution of C n H2n+2-m Cl m in each mixture was determined using high-resolution mass spectrometry (MS). Next, the mixtures were analyzed by applying both one-dimensional 1H, 13C and two-dimensional nuclear magnetic resonance (NMR) spectroscopy. Due to substantially overlapping signals in the experimental NMR spectra, direct assignment of individual isomers was not possible. As such, a new NMR spectral matching approach that used massive NMR databases predicted by a neural network algorithm to provide the top 100 most likely structural matches was developed. The top 100 isomers appear to be an adequate representation of the overall mixture. Their modeled physicochemical and toxicity parameters agree with previous experimental results. Chlorines are not evenly distributed in any of the CP mixtures and show a general preference at the third carbon. The approach described here can play a key role in understanding of complex isomeric mixtures such as CPs that cannot be resolved by MS alone.
Collapse
Affiliation(s)
- Bo Yuan
- Department
of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Daniel Henryk Lysak
- Environmental
NMR Centre, University of Toronto, Toronto, ON, Canada M1C 1A4
| | - Ronald Soong
- Environmental
NMR Centre, University of Toronto, Toronto, ON, Canada M1C 1A4
| | - Andrew Haddad
- Environmental
NMR Centre, University of Toronto, Toronto, ON, Canada M1C 1A4
| | - Arika Hisatsune
- Environmental
NMR Centre, University of Toronto, Toronto, ON, Canada M1C 1A4
| | - Arvin Moser
- ACD/Labs, 8 King Street East, Toronto, ON, Canada M5C 1B5
| | | | | | - Andre J. Simpson
- Environmental
NMR Centre, University of Toronto, Toronto, ON, Canada M1C 1A4
| | - Derek C. G. Muir
- Canada
Centre for Inland Waters, Environment and
Climate Change Canada, Burlington, ON, Canada L7S 1A1
| |
Collapse
|
32
|
NMR and GC/MS analysis of industrial chloroparaffin mixtures. Anal Bioanal Chem 2020; 412:4669-4679. [PMID: 32468281 PMCID: PMC7329780 DOI: 10.1007/s00216-020-02720-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 11/02/2022]
Abstract
Chlorinated paraffins (CPs) are high-volume chemicals used worldwide in various industries as plasticizers, lubricants, and flame retardants. CPs are produced by chlorination of alkane mixtures which leads to complex products of thousands of homologs and congeners. Classic mass spectrometric analyses of CPs allow determining carbon chain lengths and degrees of chlorination while information on the substitution patterns cannot be derived. Therefore, we performed different one- and two-dimensional nuclear magnetic resonance spectroscopy (NMR) experiments, elemental analysis (EA), and gas chromatography coupled with electron capture negative ion mass spectrometry (GC/ECNI-MS) for the analysis of ten technical CP products with 42%, 52%, and 70% chlorine content from four producers. Slight differences in chlorine content but varying chain length compositions were observed for similarly labeled products from different manufacturers. Two-dimensional heteronuclear spectral quantum coherence (HSQC) measurements helped to evaluate ten structural elements in the products and confirmed the presence of geminal chlorine atoms in primary and secondary carbons in products with 70% chlorine. The variation of signal groups increased with increasing chlorine content of the products. Two-dimensional heteronuclear multiple bond coherence (HMBC) analysis of one sample and GC/ECNI-MS measurements indicated the presence of impurities (e.g., C9-CPs, iso-alkanes) in different technical CP products. These methods could in future allow for better distinction of CP mixtures, and an improved trace-back of environmental CPs to the source, based on specific structural features. Additionally, further structural characterization could help in the development of more accurate analysis processes. Graphical Abstract.
Collapse
|
33
|
Marć M, Bystrzanowska M, Tobiszewski M. Exploratory analysis and ranking of analytical procedures for short-chain chlorinated paraffins determination in environmental solid samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134665. [PMID: 31818586 DOI: 10.1016/j.scitotenv.2019.134665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Short-chain chlorinated paraffins are ones of the most recent chemical compounds that have been classified as persistent organic pollutants. They have various applications and are emitted to the environment. Despite the fact, that the content levels of these compounds in the environmental compartments should be monitored, there is still a lack of well-defined and validated analytical procedures, proposed or suggested by the national or international environmental protection agencies. Finding an appropriate analytical procedure (sensitive and green at the same time) from many available ones is very often a difficult task. Therefore it can be supported with multicriteria decision analysis. The dataset consisting of 22 procedures was described by 7 criteria, mainly referring to procedures greenness. The data treatment with cluster analysis and principal component analysis revealed the internal structure of the dataset. Moreover, both statistical tools allowed for reduction of dataset criteria to three. This was used for applying ternary plot to show the multicriteria decision analysis results within all possible weights. With the aid of chemometric and multicriteria decision analysis tools it was easy to assess the set of analytical procedure. Depending on the applied weights to assessment criteria different analytical procedures are the most appropriate (winners).
Collapse
Affiliation(s)
- Mariusz Marć
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology (GUT), 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland.
| | - Marta Bystrzanowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology (GUT), 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland
| | - Marek Tobiszewski
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology (GUT), 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland
| |
Collapse
|
34
|
Matsukami H, Takemori H, Takasuga T, Kuramochi H, Kajiwara N. Liquid chromatography-electrospray ionization-tandem mass spectrometry for the determination of short-chain chlorinated paraffins in mixed plastic wastes. CHEMOSPHERE 2020; 244:125531. [PMID: 31821924 DOI: 10.1016/j.chemosphere.2019.125531] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Wastes containing short-chain chlorinated paraffins (SCCPs) at concentrations above the Basel Convention low persistent organic pollutant content (LPC) values must be destroyed or irreversibly transformed in an environmentally-sound manner. Here, we developed a novel liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MSMS) method for determining the concentrations of SCCPs in mixed plastic wastes. Major SCCP homologues were identified with good separation and peak width by using a low-hydrophobicity cyano-propyl column and a mobile phase consisting of water and methanol containing ammonium acetate. Precursor ion peaks corresponding to the formation of stable SCCP homologue-adducts were observed, followed by two intense product ion peaks corresponding to separation of the adduct into acetate and the homologue. The formulation of a novel calibration standard with known SCCP homologue percentage composition supported the development of our novel mass spectrometric technique. The results obtained with the LC-ESI-MSMS system were quantitatively and qualitatively comparable with those obtained with a high-resolution mass spectrometry (HRMS) coupled to gas chromatography (GC) system. Homologue concentrations determined by LC-ESI-MSMS were significantly correlated with those determined by GC-HRMS in samples of commercial chlorinated paraffin mixture and mixed plastic waste, respectively. As a complementary technique to the highly accurate, but less versatile GC-HRMS approaches, the SCCP analysis by LC-ESI-MSMS is a practical way to identify mixed plastic wastes containing SCCPs at concentrations higher than the Basel Convention's LPC value.
Collapse
Affiliation(s)
- Hidenori Matsukami
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, 305-8506, Japan.
| | - Hiroaki Takemori
- Shimadzu Techno-Research, Inc. 1 Nishinokyo-Shimoai-cho, Nakagyo-Ku, Kyoto, 604-8436, Japan
| | - Takumi Takasuga
- Shimadzu Techno-Research, Inc. 1 Nishinokyo-Shimoai-cho, Nakagyo-Ku, Kyoto, 604-8436, Japan
| | - Hidetoshi Kuramochi
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, 305-8506, Japan
| | - Natsuko Kajiwara
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, 305-8506, Japan
| |
Collapse
|
35
|
Moeckel C, Breivik K, Nøst TH, Sankoh A, Jones KC, Sweetman A. Soil pollution at a major West African E-waste recycling site: Contamination pathways and implications for potential mitigation strategies. ENVIRONMENT INTERNATIONAL 2020; 137:105563. [PMID: 32106045 DOI: 10.1016/j.envint.2020.105563] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 05/22/2023]
Abstract
Organic contaminants (polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and chlorinated paraffins (CPs)) and heavy metals and metalloids (Ag, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, Zn) were analysed in surface soil samples from the Agbogbloshie e-waste processing and dumping site in Accra (Ghana). In order to identify which of the pollutants are likely to be linked specifically to handling of e-waste, samples were also collected from the Kingtom general waste site in Freetown (Sierra Leone). The results were compared using principal component analyses (PCA). PBDE congeners found in technical octa-BDE mixtures, highly chlorinated PCBs and several heavy metals (Cu, Pb, Ni, Cd, Ag and Hg) showed elevated concentrations in the soils that are likely due to contamination by e-waste. PCAs associated those compounds with pyrogenic PAHs, suggesting that burning of e-waste, a common practice to isolate valuable metals, may cause this contamination. Moreover, other contamination pathways, especially incorporation of waste fragments into the soil, also appeared to play an important role in determining concentrations of some of the pollutants in the soil. Concentrations of several of these compounds were extremely high (especially PBDEs, heavy metals and SCCPs) and in some cases exceeded action guideline levels for soil. This indicates that exposure to these contaminants via the soil alone is potentially harmful to the recyclers and their families living on waste sites. Many organic contaminants and other exposure pathways such as inhalation are not yet included in such guidelines but may also be significant, given that deposition from the air following waste burning was identified as a major pollutant source.
Collapse
Affiliation(s)
- Claudia Moeckel
- NILU - Norwegian Institute for Air Research, 2007 Kjeller, Norway; Stockholm University, 11418 Stockholm, Sweden.
| | - Knut Breivik
- NILU - Norwegian Institute for Air Research, 2007 Kjeller, Norway; University of Oslo, 0351 Oslo, Norway
| | - Therese Haugdahl Nøst
- NILU - Norwegian Institute for Air Research, 2007 Kjeller, Norway; The Arctic University of Norway, 9019 Tromsø, Norway
| | - Alhaji Sankoh
- Njala University, Njala, Moyamba District, Sierra Leone
| | - Kevin C Jones
- Lancaster Environment Centre, Library Avenue, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Andrew Sweetman
- Lancaster Environment Centre, Library Avenue, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| |
Collapse
|
36
|
Niu S, Chen R, Zou Y, Dong L, Hai R, Huang Y. Spatial distribution and profile of atmospheric short-chain chlorinated paraffins in the Yangtze River Delta. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113958. [PMID: 32023802 DOI: 10.1016/j.envpol.2020.113958] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 05/22/2023]
Abstract
Research on the atmospheric occurrence of short chain chlorinated paraffins (SCCPs) in industrialized areas is scarce. In this study, we investigated the concentrations, profile, and spatial distribution of SCCPs in the highly industrialized and developed areas of the Yangtze River Delta (YRD) in China using polyurethane foam passive air samplers. Sampling was performed during two separate periods in 2011. The concentrations of atmospheric SCCPs ranged from 6.1 to 63 ng m-3 in summer and 6.2-42 ng m-3 in winter. The C10 and C11 groups were the predominant carbon groups in all the samples. Different congener patterns between summer and winter were found, indicating that congeners in the air in winter may be influenced by local and external sources. The highest level of SCCPs was found in Suzhou, which is a highly industrialized area with many manufactories including electronic industries and plastic factories. Higher levels of SCCPs were found in the air than polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ether (PBDEs), suggesting that the production and use of SCCPs were much higher than prohibited or restricted persistent organic pollutants (e.g., PCBs, OCPs, and PBDEs). Future studies should investigate the different sources of atmospheric SCCPs by conducting a comprehensive assessment of SCCP exposure.
Collapse
Affiliation(s)
- Shan Niu
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology, Beijing, 10029, China; National Research Center of Environmental Analysis and Measurement, Beijing, 100029, China
| | - Ruiwen Chen
- Agilent Technologies (China) Co. LTD., Beijing, 100102, China
| | - Yun Zou
- China MS Center, Shimadzu (China) Co. LTD., Beijing, 100020, China
| | - Liang Dong
- National Research Center of Environmental Analysis and Measurement, Beijing, 100029, China.
| | - Reti Hai
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Yeru Huang
- National Research Center of Environmental Analysis and Measurement, Beijing, 100029, China
| |
Collapse
|
37
|
Li Y, Chen W, Kong W, Liu J, Schnoor JL, Jiang G. Transformation of 1,1,1,3,8,10,10,10-octachlorodecane in air phase increased by phytogenic volatile organic compounds of pumpkin seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135455. [PMID: 31791777 PMCID: PMC7029796 DOI: 10.1016/j.scitotenv.2019.135455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 05/15/2023]
Abstract
Short chain chlorinated paraffins (SCCPs) are widely distributed persistent organic pollutants (POPs). Airborne chlorodecanes were hypothesized to be transformed by reactive phytogenic volatile organic compounds (PVOCs) in our previous work. To test this hypothesis, PVOCs of pumpkin (Cucurbita maxima x C. moschata) were collected and reacted with 1,1,1,3,8,10,10,10-octachlorodecane in the air phase of a sealed glass bottle under illumination for 10 days (reaction system I, simulating atmospheric reaction conditions with PVOCs). The reaction control group (reaction system II) was set at the same conditions but only had chlorodecane (without PVOCs) inside the bottle. Transformation of SCCPs in the air phase of reaction control group was unexpectedly found. Results showed that 1,1,1,3,8,10,10,10-octachlorodecane was transformed to a great extent to C10Cl5-8, C9Cl6-8, and C8Cl7-8 in the air phase after 10-d illumination in both with and without the presence of PVOCs, which is explained by carbon chain decomposition, dechlorination and chlorine rearrangement products of the parent SCCP. Those transformation processes were increased to some extent by the PVOCs from pumpkin seedlings. This study provides the first experimental data on atmospheric transformation of SCCPs and also the first evidence that plant emissions (PVOCs) can increase the transformation of SCCPs in air under light and experimental conditions. It provides new insight into the potential transformation and fate of CPs in the environment.
Collapse
Affiliation(s)
- Yanlin Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA, USA; School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Weifang Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqian Kong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jerald L Schnoor
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA, USA
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Krätschmer K, Schächtele A. Interlaboratory studies on chlorinated paraffins: Evaluation of different methods for food matrices. CHEMOSPHERE 2019; 234:252-259. [PMID: 31220658 DOI: 10.1016/j.chemosphere.2019.06.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/29/2019] [Accepted: 06/02/2019] [Indexed: 05/22/2023]
Abstract
Short-chained chlorinated paraffins (SCCP) and medium-chained chlorinated paraffins (MCCPs) are two of the main groups currently used to classify chlorinated paraffins (CPs). Since only SCCPs have been restricted by the Stockholm Convention, a robust but selective analysis with comparable results especially for SCCPs, but also for all other CPs is needed to ensure official controls to enforce future resulting food legislation. Failing that, expansion of the legislation towards total CP or to include MCCPs and other main groups needs to be considered. A survey taken amongst official and private laboratories in the EU and beyond revealed a large variety of methods currently in use or in planning stages for CP analysis. In June 2017, spiked samples of coconut fat were sent to 27 registered participants from 18 countries for an interlaboratory study. In July 2018, lard samples spiked with CPs, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) were sent to 13 registered participants from 11 countries. In both cases, more than 55% of participants had a satisfactory overall performance (AZ2<3, σ = 25%). The greatest challenge seemed to be correct quantification of SCCP and MCCP mixtures, hinting at future problems with the through biodegradation much more complex food samples. Of the wide variety of methods being used, GC-MS based methods were favoured. Both HRMS and LRMS methods were able to perform satisfactorily. Identified influencing factors included choice of instrument, choice of standards and data processing strategy. These factors need to be further investigated in future interlaboratory studies.
Collapse
Affiliation(s)
- K Krätschmer
- European Union Reference Laboratory (EURL) for Halogenated Persistent Organic Pollutants (POPs) in Feed and Food, 79114, Freiburg, Germany.
| | - A Schächtele
- European Union Reference Laboratory (EURL) for Halogenated Persistent Organic Pollutants (POPs) in Feed and Food, 79114, Freiburg, Germany
| |
Collapse
|
39
|
Perkons I, Pasecnaja E, Zacs D. The impact of baking on chlorinated paraffins: Characterization of C10–C17 chlorinated paraffins in oven-baked pastry products and unprocessed pastry dough by HPLC–ESI–Q–TOF–MS. Food Chem 2019; 298:125100. [DOI: 10.1016/j.foodchem.2019.125100] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 11/25/2022]
|
40
|
van Mourik LM, Lava R, O'Brien J, Leonards PEG, de Boer J, Ricci M. The underlying challenges that arise when analysing short-chain chlorinated paraffins in environmental matrices. J Chromatogr A 2019; 1610:460550. [PMID: 31547958 DOI: 10.1016/j.chroma.2019.460550] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/10/2019] [Accepted: 09/14/2019] [Indexed: 11/28/2022]
Abstract
As short-chain chlorinated paraffins (SCCPs) are listed on several monitoring programs, validated methods are essential. However, their complexity and the lack of commercially available certified reference materials (RMs) hinder a proper validation of methods. Instead, one method is usually 'validated' by evaluating performances and results of spiked materials with that of one other method, which could easily lead to unreliable results. This study evaluated four analytical methods with different principles (i.e. comprehensive two dimensional GC coupled to a micro electron capture detector, developed for this study, chloride enhanced atmospheric pressure chemical ionization triple quadrupole time of flight MS (APCI-QToF-HRMS), GC coupled to an electron capture negative ion low resolution MS (GC-ECNI-LRMS) and carbon skeleton GC-MS), investigated the comparability in SCCP determination in spiked and naturally contaminated samples and determined SCCP amounts in candidate RMs for possible certification. The results cast doubt on the use of the most commonly applied method (i.e. GC-ECNI-LRMS), as well as using spiked materials for method validation. The APCI-QToF-HRMS method was found most promising as it achieves the required MS resolution (>21,000), is relatively fast and can detect also other CPs. The suitable identified SCCP levels in the candidate RMs and the agreement in results between the methods bring the first certification of a RM for SCCPs within reach.
Collapse
Affiliation(s)
- L M van Mourik
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Qld, Australia; Department of Environment and Health (E&H), Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands.
| | - R Lava
- European Commission, Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium
| | - J O'Brien
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Qld, Australia
| | - P E G Leonards
- Department of Environment and Health (E&H), Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - J de Boer
- Department of Environment and Health (E&H), Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - M Ricci
- European Commission, Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium
| |
Collapse
|
41
|
Zhou Y, de Wit CA, Yin G, Du X, Yuan B. Shorter than short-chain: Very short-chain chlorinated paraffins (vSCCPs) found in wildlife from the Yangtze River Delta. ENVIRONMENT INTERNATIONAL 2019; 130:104955. [PMID: 31260927 DOI: 10.1016/j.envint.2019.104955] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 05/22/2023]
Abstract
Very short-chain chlorinated paraffins (vSCCPs, C6-9) occurred in 94% of wildlife samples from the Yangtze River Delta (YRD), China, with CnClm comparable to that of a local CP product, CP-52. Therefore, we determined the content of vSCCPs in CP-52 using a mathematical deconvolution technique. Then with CP-52 and several other reference standards, vSCCPs together with short-, medium-, and long-chain CPs were quantified in 21 wildlife species from an artificial wetland ecosystem and a freshwater ecosystem in the YRD. Concentrations of vSCCPs ranged from 2.6 to 8400 ng/g lipid. These concentrations were 1.2-380 fold lower than SCCPs, but were significantly correlated with those of SCCPs. vSCCP concentrations were comparable to or higher than reported for brominated flame retardants in the same samples. Bioaccumulation tendency of vSCCPs was identified in two benthic species, indicating congener-specific accumulation of vSCCPs in the environment.
Collapse
Affiliation(s)
- Yihui Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Cynthia A de Wit
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Ge Yin
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden; Shimadzu (China) Co. LTD., Shanghai 200233, China
| | - Xinyu Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bo Yuan
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden.
| |
Collapse
|
42
|
Zhang C, Chang H, Wang H, Zhu Y, Zhao X, He Y, Sun F, Wu F. Spatial and Temporal Distributions of Short-, Medium-, and Long-Chain Chlorinated Paraffins in Sediment Cores from Nine Lakes in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9462-9471. [PMID: 31353896 DOI: 10.1021/acs.est.8b07296] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The spatial and temporal distributions of short-, medium-, and long-chain chlorinated paraffins (SCCPs, MCCPs, and LCCPs) were studied in sediment cores and surface sediment from nine lakes in China. The highest total CP concentrations in surface sediment were found in the plateau lakes of southwest China, followed by lakes in the northeast, east, and remote northwest. The concentrations of three CP groups in cores showed an increasing trend from the 1970s to 2014, with the most rapid increase occurring from the late 2000s to 2014, consistent with the statistics on historical production of CPs in China. The three CP groups showed site-specific profiles in sediments from the nine lakes, and their percentages changed with sedimentary years. In sediment samples with dated year after 1980, MCCPs were dominant in sediment from Lakes Sihailongwan maar, Taihu, Erhai, and Chenghai, and LCCPs were predominant compounds in the other five lakes. The proportions of LCCPs rapidly increased after 1980, reflecting the increasing production and usage of LCCPs in China. The total burdens of ∑SCCPs, ∑MCCPs, and ∑LCCPs in sediment prior to 2006 were estimated to be 0.26-5100, 0.29-21000, and 0.07-4300 kg, respectively, which were 1.4-440-fold higher than those of ∑PBDEs.
Collapse
Affiliation(s)
- Cunxu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering , Beijing Forestry University , Beijing 100083 , China
| | - Hong Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering , Beijing Forestry University , Beijing 100083 , China
| | - Hongping Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering , Beijing Forestry University , Beijing 100083 , China
| | - Yuanrong Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment , Chinese Research Academy of Environmental Sciences , Beijing 100012 , China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment , Chinese Research Academy of Environmental Sciences , Beijing 100012 , China
| | - Yong He
- College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Fuhong Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment , Chinese Research Academy of Environmental Sciences , Beijing 100012 , China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment , Chinese Research Academy of Environmental Sciences , Beijing 100012 , China
| |
Collapse
|
43
|
Krätschmer K, Schächtele A, Malisch R, Vetter W. Chlorinated paraffins (CPs) in salmon sold in southern Germany: Concentrations, homologue patterns and relation to other persistent organic pollutants. CHEMOSPHERE 2019; 227:630-637. [PMID: 31009870 DOI: 10.1016/j.chemosphere.2019.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 05/22/2023]
Abstract
Chlorinated paraffins (CPs) are complex mixtures of persistent contaminants present throughout the aquatic food web. In this study 122 farmed and 11 wild salmon samples were collected over the course of four years (2014-2017). The ratio of short-chain CP and medium-chain CP and the corresponding homologue patterns were determined by means of gas chromatography (GC) with high resolution, accurate mass Orbitrap mass spectrometry (MS) technology. Characteristic patterns were observed, enabling differentiation between European and non-European (Chilean) samples. Concentration ranges of short-chain CPs (0.97-170 ng/g ww) and medium-chain CPs (1.1-79 ng/g ww) were similarly widespread over three orders of magnitude. Yet, both the mean and median concentrations of MCCPs were usually higher than those of the SCCP. CP levels were generally higher than those of marker polychlorinated biphenyls (PCBs) and hexabromocyclododecanes (HBCDDs). An age- and gender-dependent estimated intake range of 4.6-35 ng/kg bw/week for short and medium-chain CPs via the consumption of salmon was calculated for adults in Germany.
Collapse
Affiliation(s)
- K Krätschmer
- European Union Reference Laboratory (EURL) for Halogenated Persistent Organic Pollutants (POPs) in Feed and Food, 79114, Freiburg, Germany; University of Hohenheim, Institute of Food Chemistry (170b), 70599, Stuttgart, Germany.
| | - A Schächtele
- European Union Reference Laboratory (EURL) for Halogenated Persistent Organic Pollutants (POPs) in Feed and Food, 79114, Freiburg, Germany
| | - R Malisch
- European Union Reference Laboratory (EURL) for Halogenated Persistent Organic Pollutants (POPs) in Feed and Food, 79114, Freiburg, Germany
| | - W Vetter
- University of Hohenheim, Institute of Food Chemistry (170b), 70599, Stuttgart, Germany
| |
Collapse
|
44
|
Kalinowska K, Lenartowicz P, Namieśnik J, Marć M. Analytical procedures for short chain chlorinated paraffins determination - How to make them greener? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:309-323. [PMID: 30928760 DOI: 10.1016/j.scitotenv.2019.03.312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 05/22/2023]
Abstract
The aim of the following paper was to gather current scientific information about the analytical protocols dedicated to measuring the content level of short-chain chlorinated paraffins (SCCPs) in various types of environmental samples. Moreover, the data about the basic validation parameters of applied procedures for SCCPs determination are listed. The main issue which is highlighted in the paper is the possibility of the application of green analytical chemistry (GAC) principals in the SCCPs measuring process to reduce the environmental impact of the applied methodology. Analytical methods dedicated to SCCPs determination contain a significant number of steps and require advanced analytical equipment during the quantitative and qualitative analysis. In addition, there is a substantial issue associated with the reliability of the obtained results, especially in the case of the quantification of individual SCCPs in the studied samples. Due to this fact, the paper attempts to discuss the various stages of the analytical procedure, in which appropriate changes in the formula or equipment solutions might be introduced to ensure a better quality of the analytical results, as well as to meet the requirements of the philosophy of green analytical chemistry. The most important case which concerns this subject is finding an optimal consensus between the economic and logistic aspects and the quality and "greenness" of the analytical procedure employed in SCCPs determination process.
Collapse
Affiliation(s)
- Kaja Kalinowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Paweł Lenartowicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Mariusz Marć
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland; Department of Analytical and Ecological Chemistry, Faculty of Chemistry, Opole University, Opole, Poland.
| |
Collapse
|
45
|
Li Y, Hou X, Chen W, Liu J, Zhou Q, Schnoor JL, Jiang G. Carbon Chain Decomposition of Short Chain Chlorinated Paraffins Mediated by Pumpkin and Soybean Seedlings. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6765-6772. [PMID: 31099560 PMCID: PMC6931393 DOI: 10.1021/acs.est.9b01215] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Short chain chlorinated paraffins (SCCPs) are a group of complex emerging persistent organic pollutants. In this study, the uptake, translocation, and transformation of four constitutionally defined SCCP isomers were studied using whole pumpkin ( Cucurbita maxima × C. moschata) and soybean ( Glycine max L. Merrill) seedlings via hydroponic exposure. Results showed that the daughter SCCPs were C10Cl5-8 and C11-13Cl5-6. The metabolic transformation of all tested isomers included dechlorination and chlorine rearrangement. In addition, carbon chain decomposition products were found for isomers with trichlorinated carbon atoms (CCl3-groups) in both pumpkin and soybean seedlings. This study provides the first evidence of carbon chain decomposition of SCCPs in whole plants, and it suggests new metabolism pathways of SCCPs in the environment. The influence of carbon chain length and degree of chlorination of SCCPs on their fate and behavior within different plant species were also investigated. Bioaccumulation of SCCPs in pumpkin and soybean increased with increasing carbon chain length and degree of chlorination. In comparison, soybean translocated and degraded parent SCCPs faster and to a greater extent than pumpkin, but pumpkin accumulated parent SCCPs to a greater extent than soybean. After 10 days exposure, less than 4% of the initial mass of exposed chemicals remained in solution of exposure groups. The parent chemicals accumulated in roots ranging from 23.6% to 59.9% for pumpkin and 1.98% to 54.5% for soybean and in stems ranging from 0.7% to 3.81% for pumpkin and 0.50% to 2.54% for soybean. These results give new perspectives on the transport, transformation, and fate of SCCPs in the environment.
Collapse
Affiliation(s)
- Yanlin Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, United States
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weifang Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jerald L. Schnoor
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Du X, Yuan B, Zhou Y, Zheng Z, Wu Y, Qiu Y, Zhao J, Yin G. Tissue-Specific Accumulation, Sexual Difference, and Maternal Transfer of Chlorinated Paraffins in Black-Spotted Frogs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4739-4746. [PMID: 30977643 DOI: 10.1021/acs.est.8b06350] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The restriction on usage of short-chain chlorinated paraffins (SCCPs) under Stockholm Convention may promote the production and application of medium chain chlorinated paraffins (MCCPs) and long chain chlorinated paraffins (LCCPs) as substitutes. This study focused on the tissue-specific exposure to SCCPs, MCCPs, and LCCPs in black-spotted frog, a prevalent amphibian species in the Yangtze River Delta, China. The total CP concentrations in frog liver, muscle, and egg samples ranged of 35-1200, 6.3-97, and 6.8-300 ng/g wet weight (ww), respectively. Livers and eggs contained primary SCCPs (on average 78%) while MCCPs (43%) together with SCCPs (41%) were dominant in muscles. A significantly negative correlation was observed between hepatosomatic index and CPs concentration in liver ( p < 0.01), indicating that CP exposure may lower survival rates of frogs by suppressing the energy storage in liver. Additionally, maternal transfer, an important uptake pathway for CPs, was evaluated for the first time by calculating the ratios of CP levels in eggs to those in their paired liver tissues. The ratio of egg to liver for CP congener groups raised with the increasing of log Kow values, indicating mother to egg transport of CPs was related to the lipophilicity of the chemicals.
Collapse
Affiliation(s)
- Xinyu Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , P. R. China
| | - Bo Yuan
- Department of Environmental Science and Analytical Chemistry , Stockholm University , SE-10691 Stockholm , Sweden
| | - Yihui Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , P. R. China
| | - Ziye Zheng
- Department of Chemistry , Umeå University , SE-901 87 Umeå , Sweden
| | - Yan Wu
- School of Public and Environmental Affairs , Indiana University , Bloomington , Indiana 47405 , United States
| | - Yanling Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , P. R. China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , P. R. China
| | - Ge Yin
- Department of Environmental Science and Analytical Chemistry , Stockholm University , SE-10691 Stockholm , Sweden
- Shimadzu (China) Company, Limited , Shanghai 200233 , P. R. China
| |
Collapse
|
47
|
Yuan B, Vorkamp K, Roos AM, Faxneld S, Sonne C, Garbus SE, Lind Y, Eulaers I, Hellström P, Dietz R, Persson S, Bossi R, de Wit CA. Accumulation of Short-, Medium-, and Long-Chain Chlorinated Paraffins in Marine and Terrestrial Animals from Scandinavia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3526-3537. [PMID: 30848596 DOI: 10.1021/acs.est.8b06518] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Short-, medium-, and long-chain chlorinated paraffins (SCCPs, MCCPs, and LCCPs) have a wide range of physical-chemical properties, indicating their varying bioaccumulation tendencies in marine and terrestrial ecosystems. However, there are few empirical data to reveal such bioaccumulation tendencies. In this study, we analyzed SCCPs, MCCPs, and LCCPs in samples from 18 species at both low and high trophic levels of marine and terrestrial ecosystems from the Scandinavian region collected during the past decade. These included fish, seabirds, marine mammals, and terrestrial birds and mammals. SCCPs, MCCPs, and LCCPs were present in all the species, with concentrations ranging from 26-1500, 30-1600, 6.0-1200 ng/g lipid, respectively. Although MCCPs and SCCPs predominated in most species, many terrestrial species had generally higher concentrations of LCCPs than marine species. Terrestrial raptors in particular accumulated higher concentrations of LCCPs, including C24/25-which are predominant among very-long-chain components. LCCP concentrations were highest and predominated (55% of total CPs) in peregrine falcons in this study, which is the first report where concentrations of LCCPs surpass those of SCCPs and MCCPs in wildlife. The results also indicate biomagnification of SCCPs, MCCPs, and LCCPs in both marine and terrestrial food chains, but in-depth studies of specific food webs are needed.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Environmental Science and Analytical Chemistry , Stockholm University , Svante Arrhenius väg 8 , SE-10691 Stockholm , Sweden
| | - Katrin Vorkamp
- Department of Environmental Science, Arctic Research Centre , Aarhus University , Frederiksborgvej 399 , PO Box 358, DK-4000 Roskilde , Denmark
| | - Anna Maria Roos
- Department of Environmental Research and Monitoring , Swedish Museum of Natural History , PO Box 50007, SE-10405 Stockholm , Sweden
| | - Suzanne Faxneld
- Department of Environmental Research and Monitoring , Swedish Museum of Natural History , PO Box 50007, SE-10405 Stockholm , Sweden
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre , Aarhus University , Frederiksborgvej 399 , PO Box 358, DK-4000 Roskilde , Denmark
| | - Svend Erik Garbus
- Department of Environmental Science, Arctic Research Centre , Aarhus University , Frederiksborgvej 399 , PO Box 358, DK-4000 Roskilde , Denmark
| | - Ylva Lind
- Department of Environmental Research and Monitoring , Swedish Museum of Natural History , PO Box 50007, SE-10405 Stockholm , Sweden
| | - Igor Eulaers
- Department of Bioscience, Arctic Research Centre , Aarhus University , Frederiksborgvej 399 , PO Box 358, DK-4000 Roskilde , Denmark
| | - Peter Hellström
- Department of Environmental Research and Monitoring , Swedish Museum of Natural History , PO Box 50007, SE-10405 Stockholm , Sweden
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre , Aarhus University , Frederiksborgvej 399 , PO Box 358, DK-4000 Roskilde , Denmark
| | - Sara Persson
- Department of Environmental Research and Monitoring , Swedish Museum of Natural History , PO Box 50007, SE-10405 Stockholm , Sweden
| | - Rossana Bossi
- Department of Environmental Science, Arctic Research Centre , Aarhus University , Frederiksborgvej 399 , PO Box 358, DK-4000 Roskilde , Denmark
| | - Cynthia A de Wit
- Department of Environmental Science and Analytical Chemistry , Stockholm University , Svante Arrhenius väg 8 , SE-10691 Stockholm , Sweden
| |
Collapse
|
48
|
Zhang W, Gao Y, Qin Y, Wang M, Wu J, Li G, An T. Photochemical degradation kinetics and mechanism of short-chain chlorinated paraffins in aqueous solution: A case of 1-chlorodecane. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:362-370. [PMID: 30690232 DOI: 10.1016/j.envpol.2019.01.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/14/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Short chain chlorinated paraffins (SCCPs) have attracted worldwide attention in recent years, due to their high production volume, persistent, bioaccumulative and toxic properties. In this study, 1-chlorodecane (CD) was selected as a model of SCCPs to explore its photochemical degradation behavior under UV irradiation. The results found that CD could be completely photochemical degradation within 120 min, and the •OH was found to be the main reactive species from both quenching experiments and electron paramagnetic resonance (EPR) results. However, the contribution of triple excited state of CD (3CD*) was still nonnegligible from the results with the absorption peak at 480 nm obtained by laser flash photolysis. Based on the identified intermediates as well as the data from theoretical chemical calculation, the detailed photochemical degradation mechanism of CD was tentatively proposed that CD firstly was excited and photo-ionized under UV irradiation, and the released Cl• in water could result in generating •OH. Then •OH initiates CD degradation mainly through the H-abstraction pathway, leading to the generation of several dehydrogenation radicals, which further generated alcohols or long chain intermediates through radical-radical reactions. The results will provide a comprehensive understanding of the degradation mechanism and environmental fates of SCCPs in water under UV irradiation.
Collapse
Affiliation(s)
- Wanlan Zhang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanpeng Gao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yaxin Qin
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Mei Wang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Junji Wu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Taicheng An
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
49
|
Yuan B, Muir D, MacLeod M. Methods for trace analysis of short-, medium-, and long-chain chlorinated paraffins: Critical review and recommendations. Anal Chim Acta 2019; 1074:16-32. [PMID: 31159936 DOI: 10.1016/j.aca.2019.02.051] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/01/2022]
Abstract
Many methods for quantifying chlorinated paraffins (CPs) yield only a total concentration of the mixture as a single value. With appropriate analytical instrumentation and quantification methods, more reliable and detailed analysis can be performed by quantifying total concentrations of short-, medium-, and long-chain CPs (SCCPs, MCCPs, and LCCPs), and in the current optimal situation by quantifying individual carbon-chlorine congener groups (CnClm). Sample extraction and clean-up methods for other persistent organochlorines that have been adapted for recovery of CPs must be applied prior to quantification with appropriate quality assurance and quality control to ensure applicability of the methods for SCCPs, MCCPs, and LCCPs. Part critical review, part tutorial, and part perspective, this paper provides practical guidance to analytical chemists who are interested in establishing a method for analysis of CPs in their lab facilities using commercial reference standards, or for expanding existing analysis of total CPs or SCCPs to analysis of SCCPs, MCCPs, and LCCPs, or to analysis of CnClm congener groups.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Derek Muir
- Environment and Climate Change Canada, Burlington, ON, Canada
| | - Matthew MacLeod
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
50
|
Sprengel J, Vetter W. Synthesis and characterization of eight single chain length chlorinated paraffin standards and their use for quantification. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:49-56. [PMID: 30334592 DOI: 10.1002/rcm.8310] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/24/2018] [Accepted: 10/06/2018] [Indexed: 05/22/2023]
Abstract
RATIONALE Quantification of chlorinated paraffins (CPs) via gas chromatography coupled with electron capture negative ionization low-resolution mass spectrometry (GC/ECNI-MS) is a very common practice, although the quality of the results has been disputed due to insufficient mass resolution and the strong impact of the degree of chlorination on the GC/ECNI-MS response. METHODS For further tests we synthesized eight single chain length CP standards (C10 -C17 ) with chlorine contents between 51.1% and 61.3%. The individual single chain length standards, 1 + 1 mixtures of two chain length standards and self-prepared mixtures of short-chain and medium-chain CPs were quantified by linear regression according to a previously reported method (method 1) as well as by exponential regression (method 2). RESULTS Concentrations obtained from single chain length CP standards deviated between -74% and 152% from the target value. However, the error became smaller when self-prepared CP mixes with two and four chain lengths were analysed. For short-chain CP (SCCP) mixture analysis, both methods produced good results (<25% deviation from the target value). In the case of medium-chain CP (MCCP) mixtures, however, method 2 (17-34% deviation) was more accurate than method 1 (43-52% deviation). CONCLUSIONS Both methods 1 and 2 are fit for GC/ECNI-MS analysis of SCCP mixtures, while the improved method 2 is recommended for quantification of MCCP mixtures.
Collapse
Affiliation(s)
- Jannik Sprengel
- University of Hohenheim, Institute of Food Chemistry, Garbenstr. 28, D-70599, Stuttgart, Germany
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry, Garbenstr. 28, D-70599, Stuttgart, Germany
| |
Collapse
|