1
|
Dos Santos I, Ramos JA, Ceia FR, Pais de Faria J, Pereira JM, Seco J, Cerveira LR, Laranjeiro MI, Brault-Favrou M, Veríssimo SN, Bustamante P, Paiva VH. The role of seabird foraging strategies on the uptake of mercury: A case study using gulls and shearwaters from the Portuguese coast. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137673. [PMID: 40007363 DOI: 10.1016/j.jhazmat.2025.137673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Mercury (Hg) is a non-essential element that bioaccumulates and biomagnifies in food webs through site-specific biogeochemical processes. Seabirds are valuable bioindicators of Hg contamination, yet certain regions, like the Portuguese coast, remain underrepresented. This study measured Hg concentrations in the blood of yellow-legged gulls (Larus michahellis), Audouin's gulls (Ichthyaetus audouinii), and Cory's shearwaters (Calonectris borealis) breeding along the Portuguese coastline. The influence of foraging ecology on Hg contamination was investigated using stable isotopes (δ13C, δ15N, δ34S) along with GPS-loggers. Thus, 52 % of the adults were at low risk (0.95-4.8 μg g-1 dry weight, dw), while 37 % were at moderate risk of Hg toxicity (>4.8 μg g-1 dw). The highest trophic positions (indicated by δ15N values) were associated with higher Hg concentrations, particularly in gulls from Deserta Island. Yellow-legged gulls foraging in terrestrial habitats (inferred from lower δ13C and δ34S values and GPS data) generally exhibited lower Hg concentrations, although patterns varied between regions. Gulls from Deserta Island had elevated Hg concentrations, likely because they feed on discarded demersal fish. In contrast, those from Porto showed some of the lowest concentrations, likely because they fed on terrestrial food. However, other factors not evaluated here, like age, sex, or even phylogeny could have also influenced Hg uptake and bioaccumulation and should not be disregarded in future research. This study highlights the critical role of foraging strategies in Hg contamination and stresses the importance of estimate food web-specific baseline isotopic composition to better understand how these differences may impact Hg trophic transfer.
Collapse
Affiliation(s)
- Ivo Dos Santos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, Coimbra 3000-456, Portugal; Littoral Environnement et Sociétés (LIENSs), CNRS-La Rochelle Université, 2 rue Olympe de Gouges, La Rochelle 17000, France.
| | - Jaime A Ramos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, Coimbra 3000-456, Portugal
| | - Filipe R Ceia
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, Coimbra 3000-456, Portugal
| | - Joana Pais de Faria
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, Coimbra 3000-456, Portugal
| | - Jorge M Pereira
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, Coimbra 3000-456, Portugal
| | - José Seco
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, Coimbra 3000-456, Portugal
| | - Lara R Cerveira
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, Coimbra 3000-456, Portugal
| | - Maria I Laranjeiro
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, Coimbra 3000-456, Portugal; MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Peniche 2520-641, Portugal; Institut de Ciències del Mar (ICM), CSIC, Passeig Maritim de la Barceloneta 37-49, Barcelona 08003, Spain
| | - Maud Brault-Favrou
- Littoral Environnement et Sociétés (LIENSs), CNRS-La Rochelle Université, 2 rue Olympe de Gouges, La Rochelle 17000, France
| | - Sara N Veríssimo
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, Coimbra 3000-456, Portugal
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), CNRS-La Rochelle Université, 2 rue Olympe de Gouges, La Rochelle 17000, France
| | - Vitor H Paiva
- University of Coimbra, CFE - Centre for Functional Ecology - Science for People & the Planet, Associate Laboratory TERRA, Department of Life Sciences, Calçada Martim de Freitas, Coimbra 3000-456, Portugal
| |
Collapse
|
2
|
Luo K, Yuan W, Lu Z, Xiong Z, Huang JH, Wang X, Feng X. Riverine songbirds capture high levels of atmospheric mercury pollution from brown food webs in forests by mercury isotopic evidence. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137347. [PMID: 39869980 DOI: 10.1016/j.jhazmat.2025.137347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Elevated methylmercury (MeHg) exposure poses significant risks to bird health, behavior, and reproduction. Still, the risk of MeHg exposure to forest birds, accounting for over 80 % of the world's bird species, is poorly understood. This study combines Hg isotopes and video analysis, aiming to assess MeHg exposure risks to a forest riverine songbird, the spotted forktail (Enicurus maculatus) from a remote subtropical montane forest. Noticeably, 83 % of feather MeHg concentrations of adult forktails exceeded 5000 ng g-1, a threshold level potentially impacting bird reproduction, and 50 % of feather MeHg concentrations in forktail nestlings exceeded the threshold level of 1000 ng g-1, that potentially impacts the nestling growth. Forktail nestlings ingested ∼ 99 % of their MeHg from prey within brown food webs (i.e., from forest floor, aquatic, and emergent aquatic prey). The Hg isotopes reveal that MeHg along the bird food chain is mostly derived from in situ methylation of litterfall deposited atmospheric Hg0, with limited photo-demethylation (i.e., 4-12 %) in shaded forest environments. The risk of MeHg exposure of forest songbirds correlated positively with the proportion of prey consumed from brown food webs. We recommend incorporating resident riverine songbirds in monitoring programs to better evaluate the effectiveness of the Minamata Convention, especially in remote forest ecosystems where in situ MeHg production may be underestimated.
Collapse
Affiliation(s)
- Kang Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhiyun Lu
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan 676200, China
| | - Zichun Xiong
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan 676200, China
| | - Jen-How Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Manceau A, Bustamante P, Richy E, Cherel Y, Janssen SE, Glatzel P, Poulin BA. Mercury speciation and stable isotopes in emperor penguins: First evidence for biochemical demethylation of methylmercury to mercury-dithiolate and mercury-tetraselenolate complexes. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136499. [PMID: 39662347 DOI: 10.1016/j.jhazmat.2024.136499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/26/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Apex marine predators, such as toothed whales and large petrels and albatrosses, ingest mercury (Hg) primarily in the form of methylmercury (MeHg) via prey consumption, which they detoxify as tiemannite (HgSe). However, it remains unclear how lower trophic level marine predators, termed mesopredators, with elevated Hg concentrations detoxify MeHg and what chemical species are formed. To address this need, we used high energy-resolution X-ray absorption near edge structure spectroscopy paired with nitrogen (N) and Hg stable isotopes to identify the chemical forms of Hg, Hg sources, and species-specific δ202Hg isotopic values in emperor penguin, a mesopredator feeding primarily on Antarctic silverfish. The penguin liver contains variable proportions of MeHg and two main inorganic Hg complexes (IHg), Hg-dithiolate (Hg(SR)2) and Hg-tetraselenolate (Hg(Sec)4), each characterized by specific isotopic values (δ202MeHg = 0.3 ± 0.2 ‰, δ202Hg(SR)2 = -1.6 ± 0.2 ‰, δ202Hg(Sec)4 = -2.0 ± 0.1 ‰). Using δ15N as a tracer of food source, we show that Hg(SR)2 is likely not obtained through dietary intake, but rather is present as a biochemical demethylation product. Furthermore, on average, female penguins transferred Hg to the egg strictly as MeHg in the egg albumen but as mixtures of MeHg and IHg in the membrane (89 % and 11 %, respectively) and yolk (32 % MeHg and 68 % Hg(Sec)4). Despite IHg species in eggs, MeHg is still the main species quantitatively transferred by the mother to the chick because of the disproportionate mass of the MeHg-rich albumen compared to the yolk. This work highlights the transformation of MeHg to Hg(SR)2 during demethylation for the first time in multicellular organisms, but further work is needed to understand the formation of Hg(SR)2 in the presence of relatively abundant Se biomolecules in lower trophic level predator species.
Collapse
Affiliation(s)
- Alain Manceau
- European Synchrotron Radiation Facility (ESRF), 38000 Grenoble, France; ENS de Lyon, CNRS, Laboratoire de Chimie, 69342 Lyon, France.
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), CNRS-La Rochelle Université, 17000 La Rochelle, France
| | - Etienne Richy
- Littoral Environnement et Sociétés (LIENSs), CNRS-La Rochelle Université, 17000 La Rochelle, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Sarah E Janssen
- US. Geological Survey, Upper Midwest Water Science Center, Madison, WI 53562, USA
| | - Pieter Glatzel
- European Synchrotron Radiation Facility (ESRF), 38000 Grenoble, France
| | - Brett A Poulin
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
4
|
Espejo W, Celis JE, O'Driscoll NJ, Sandoval M. Total mercury and methylmercury levels in blood of Adélie penguins (Pygoscelis adeliae) from the Antarctic Peninsula area. MARINE POLLUTION BULLETIN 2024; 209:117239. [PMID: 39531832 DOI: 10.1016/j.marpolbul.2024.117239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Antarctica is one of the most remote regions on the planet, where many species of penguins inhabit. One of these species is the Adélie penguin (Pygoscelis adeliae), which occupies a high trophic level. Blood is an important indicator of short-term exposure to mercury (Hg) in avian species, however there are few publications investigating methylmercury (MeHg) in Antarctic penguin blood. During the austral summer of 2016, thirty adult specimens of Adélie penguins were captured at three locations of the King George Island and the north-west Antarctic Peninsula. This study determined by atomic fluorescence spectroscopy, Hg levels in the blood of adult Adélie penguins. Concentrations of MeHg ranged from 22.0 to 323.3 (ng/g dw), while concentrations of total Hg (THg) ranged from 31.9 to 410.1 (ng/g dw). To our knowledge, this is the first study to report MeHg levels in the blood of adult Adélie penguins in these locations. The results showed that the highest Hg levels were found where human activities are more prevalent. Future studies are needed to determine the actual impact of these activities on local Hg contamination.
Collapse
Affiliation(s)
- Winfred Espejo
- Department of Soil & Natural Resources, Facultad de Agronomía, Universidad de Concepción, Av. Vicente Méndez 595, Chillán, Chile
| | - José E Celis
- Department of Animal Science, Facultad de Ciencias Veterinarias, Universidad de Concepción, Av. Vicente Méndez 595, Chillán, Chile.
| | - Nelson J O'Driscoll
- Department of Earth & Environmental Science, Acadia University, Wolfville, NS, Canada
| | - Marco Sandoval
- Department of Soil & Natural Resources, Facultad de Agronomía, Universidad de Concepción, Av. Vicente Méndez 595, Chillán, Chile
| |
Collapse
|
5
|
Lemesle P, Carravieri A, Poiriez G, Batard R, Blanck A, Deniau A, Faggio G, Fort J, Gallien F, Jouanneau W, le Guillou G, Leray C, McCoy KD, Provost P, Santoni MC, Sebastiano M, Scher O, Ward A, Chastel O, Bustamante P. Mercury contamination and potential health risk to French seabirds: A multi-species and multi-site study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175857. [PMID: 39209169 DOI: 10.1016/j.scitotenv.2024.175857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Mercury (Hg) is a naturally occurring highly toxic element which circulation in ecosystems has been intensified by human activities. Hg is widely distributed, and marine environments act as its main final sink. Seabirds are relevant bioindicators of marine pollution and chicks are particularly suitable for biomonitoring pollutants as they reflect contamination at short spatiotemporal scales. This study aims to quantify blood Hg contamination and identify its drivers (trophic ecology inferred from stable isotopes of carbon (δ13C) and nitrogen (δ15N), geographical location, chick age and species) in chicks of eight seabird species from 32 French sites representing four marine subregions: the English Channel and the North Sea, the Celtic Sea, the Bay of Biscay and the Western Mediterranean. Hg concentrations in blood ranged from 0.04 μg g-1 dry weight (dw) in herring gulls to 6.15 μg g-1 dw in great black-backed gulls. Trophic position (δ15N values) was the main driver of interspecific differences, with species at higher trophic positions showing higher Hg concentrations. Feeding habitat (δ13C values) also contributed to variation in Hg contamination, with higher concentrations in generalist species relying on pelagic habitats. Conversely, colony location was a weak contributor, suggesting a relatively uniform Hg contamination along the French coastline. Most seabirds exhibited low Hg concentrations, with 74% of individuals categorized as no risk, and < 0.5% at moderate risk, according to toxicity thresholds. However, recent work has shown physiological and fitness impairments in seabirds bearing Hg burdens considered to be safe, calling for precautional use of toxicity thresholds, and for studies that evaluate the impact of Hg on chick development.
Collapse
Affiliation(s)
- Prescillia Lemesle
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 17000 La Rochelle, France; Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 79360 Villiers-en-Bois, France.
| | - Alice Carravieri
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 17000 La Rochelle, France; Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Gauthier Poiriez
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 17000 La Rochelle, France
| | - Romain Batard
- Ligue pour la Protection des Oiseaux (LPO), 17300 Rochefort, France
| | - Aurélie Blanck
- Office Français de la Biodiversité (OFB), 94300 Vincennes, France
| | - Armel Deniau
- Ligue pour la Protection des Oiseaux (LPO), 17300 Rochefort, France
| | - Gilles Faggio
- Office de l'Environnement de la Corse (OEC), 20250 Corte, France
| | - Jérôme Fort
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 17000 La Rochelle, France
| | | | - William Jouanneau
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 79360 Villiers-en-Bois, France
| | | | - Carole Leray
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, 13200 Arles, France
| | - Karen D McCoy
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université de Montpellier - CNRS - IRD, 34090 Montpellier, France
| | - Pascal Provost
- Ligue pour la Protection des Oiseaux (LPO), 17300 Rochefort, France
| | | | - Manrico Sebastiano
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Olivier Scher
- Conservatoire d'espaces naturels d'Occitanie (CEN Occitanie), 34000 Montpellier, France
| | - Alain Ward
- Groupe ornithologique et naturaliste (GON, agrément régional Hauts-de-France), 59000 Lille, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 17000 La Rochelle, France
| |
Collapse
|
6
|
Rewi ST, Fessardi M, Landers TJ, Lyver PO, Taylor GA, Bury SJ, Dunphy BJ. Feather mercury content of grey-faced petrels (Pterodroma gouldi): Relationships with age, breeding success, and foraging behaviour, in known age individuals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175778. [PMID: 39187092 DOI: 10.1016/j.scitotenv.2024.175778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Seabirds have been touted as excellent bioindicators of mercury pollution. We utilised grey-faced petrel (Pterodroma gouldi) feathers to assess interannual differences in total mercury (THg) concentrations in adults (2020-2021) and chicks (2019-2021) breeding in the Auckland region of New Zealand. For adults, we also correlated feather THg with bird age (3-37+ years) and breeding outcome (i.e., Non breeder, Egg failed, Chick reared) recorded for that season i.e., 2020 and 2021. Interannual differences in chick feather THg were matched with bulk stable isotopes (δ13C, δ15N) to map the influence of adult foraging behaviour on chick feather THg values. Adult feather THg levels were similar across the years investigated i.e., mean ± S.D. 38.2 ± 12.8 (2020), and 39.5 ± 14.7 (2021) ug g-1 (some of the highest THg values recorded for seabirds). A slight, but significant decrease in THg accumulation was evident as age increased but feather THg had no significant influence on breeding outcome. Interannual differences in chick feather THg concentrations were 7.78 ± 1.6 (2019), 4.23 ± 1.45 (2020) and 6.97 ± 4.41 (2021) μg g-1, (p < 0.01); and correlated with a significantly lower δ13C value i.e., -17.2 ± 0.4 ‰ (2019), -17.8 ± 0.3 ‰ (2020) and -17.6 ± 0.2 ‰ (2021). This suggests that the lower feather THg values in 2020 chicks resulted from more oceanic, rather than shelf-edge, prey being consumed by chicks that year. Values of δ15N in chick feathers remained consistent among years i.e., 15.2 ± 1.2 ‰ (2019), 15.2 ± 0.2 ‰ (2020) and 15.3 ‰ (± 0.4). Due to these interannual differences, we recommend using grey-faced petrel chicks to monitor Hg pollution over adults. Chicks are also subject to cultural harvests by Māori communities, offering partnership opportunities to generate mutually beneficial information streams for Māori communities and scientists alike.
Collapse
Affiliation(s)
- S T Rewi
- School of Biological Sciences, Institute of Marine Sciences, The University of Auckland, Private Bag, Auckland 1142, New Zealand
| | - M Fessardi
- School of Biological Sciences, Institute of Marine Sciences, The University of Auckland, Private Bag, Auckland 1142, New Zealand; Research and Evaluation Unit (RIMU), Auckland Council, Level 23, 135 Albert Street, Auckland 1010, New Zealand
| | - T J Landers
- School of Biological Sciences, Institute of Marine Sciences, The University of Auckland, Private Bag, Auckland 1142, New Zealand; Research and Evaluation Unit (RIMU), Auckland Council, Level 23, 135 Albert Street, Auckland 1010, New Zealand
| | - P O'B Lyver
- Manaaki Whenua/Landcare Research, 76 Gerald Street, Lincoln 7608, New Zealand
| | - G A Taylor
- Dept of Conservation, 18-32 Manners St, PO Box 10 420, Wellington 6143, New Zealand
| | - S J Bury
- National Institute of Water & Atmospheric Research Ltd (NIWA), 301 Evans Bay Parade Hataitai, Wellington 6021, New Zealand
| | - B J Dunphy
- School of Biological Sciences, Institute of Marine Sciences, The University of Auckland, Private Bag, Auckland 1142, New Zealand.
| |
Collapse
|
7
|
Sontag PT, Godfrey LV, Fraser WR, Hinke JT, Reinfelder JR. Influence of migration range and foraging ecology on mercury accumulation in Southern Ocean penguins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175154. [PMID: 39153634 DOI: 10.1016/j.scitotenv.2024.175154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/19/2024]
Abstract
In order to evaluate mercury (Hg) accumulation patterns in Southern Ocean penguins, we measured Hg concentrations and carbon (δ13C) and nitrogen (δ15N) stable isotope ratios in body feathers of adult Adélie (Pygoscelis adeliae), gentoo (Pygoscelis papua), and chinstrap (Pygoscelis antarctica) penguins living near Anvers Island, West Antarctic Peninsula (WAP) collected in the 2010/2011 austral summer. With these and data from Pygoscelis and other penguin genera (Eudyptes and Aptenodytes) throughout the Southern Ocean, we modelled Hg variation using δ13C and δ15N values. Mean concentrations of Hg in feathers of Adélie (0.09 ± 0.05 μg g-1) and gentoo (0.16 ± 0.08 μg g-1) penguins from Anvers Island were among the lowest ever reported for the Southern Ocean. However, Hg concentrations in chinstrap penguins (0.80 ± 0.20 μg g-1), which undertake relatively broad longitudinal winter migrations north of expanding sea ice, were significantly higher (P < 0.001) than those in gentoo or Adélie penguins. δ13C and δ15N values for feathers from all three Anvers Island populations were also the lowest among those previously reported for Southern Ocean penguins foraging within Antarctic and subantarctic waters. These observations, along with size distributions of WAP krill, suggest foraging during non-breeding seasons as a primary contributor to higher Hg accumulation in chinstraps relative to other sympatric Pygoscelis along the WAP. δ13C values for all Southern Ocean penguin populations, alone best explained feather Hg concentrations among possible generalized linear models (GLMs) for populations grouped by either breeding site (AICc = 36.9, wi = 0.0590) or Antarctic Frontal Zone (AICc = 36.9, wi = 0.0537). Although Hg feather concentrations can vary locally by species, there was an insignificant species-level effect (wi < 0.001) across the full latitudinal range examined. Therefore, feeding ecology at breeding locations, as tracked by δ13C, control Hg accumulation in penguin populations across the Southern Ocean.
Collapse
Affiliation(s)
- Philip T Sontag
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA.
| | - Linda V Godfrey
- Department of Earth and Planetary Sciences, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | | | - Jefferson T Hinke
- Antarctic Ecosystem Research Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 8901 La Jolla Shores Drive, La Jolla, CA 92037, USA
| | - John R Reinfelder
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
8
|
Matos DM, Ramos JA, Brandão ALC, Baptista F, Rodrigues I, Fernandes JO, Batista de Carvalho LAE, Marques MPM, Cunha SC, Antunes S, Paiva VH. Influence of paternal factors on plastic ingestion and brominated chemical exposure in East Tropical Atlantic Procellariid chicks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173815. [PMID: 38857804 DOI: 10.1016/j.scitotenv.2024.173815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
The presence of plastic debris and organo-brominated compounds in the marine environment poses a concern to wildlife. Plastic can absorb and release chemical compounds, making their ingestion potentially harmful, while chemical compounds have become omnipresent, with a tendency to bioaccumulate in the food web. Seabirds are often used as indicators of marine plastic pollution, yet studies on the exposure of tropical communities to plastic contamination are still scarce. In this study we monitored the amounts of plastics in faeces and organo-brominated compounds ingested/assimilated in feathers by adults and chicks of Cape Verde shearwaters and Bulwer's petrels from Cabo Verde. Anthropogenic pollutants, polybrominated diphenyl ethers (PBDEs), and naturally generated methoxylated-PBDEs (MeO-PBDEs) were among the probed compounds. The frequency of plastic debris ingestion was similar in both species' adults and chicks, although, the characteristics of the ingested plastic differed. Frequency and number of microplastics increased throughout the nestling season for chicks from both species. All species and age groups showed the presence of PBDEs and MeO-PBDEs. Among PBDEs, Bulwer's petrels exhibited higher concentrations than Cape Verde shearwaters, and chicks had higher concentration profiles than adults. Specifically, Bulwer's petrel chicks showed higher concentrations than Cape Verde shearwater chicks. On the contrary, Cape Verde shearwater adults exhibited higher occurrence and concentrations of MeO-PBDEs when compared to Cape Verde shearwater chicks. We found no effect of plastic loadings or loadings of organohalogen contaminants on body condition or size, although harmful effects may be hidden or reveal themselves in a medium- to long-term. Feather samples from both adults and chicks were shown to be useful for comparing intraspecific contamination levels and appear suitable for the long-term assessment of organohalogen contaminants in seabirds. Species-specific foraging and feeding strategies are likely the drivers of the observed variation in organochlorine contamination burdens among seabird species.
Collapse
Affiliation(s)
- Diana M Matos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - J A Ramos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - A L C Brandão
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Francisca Baptista
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Isabel Rodrigues
- Biosfera Cabo Verde, Sul do Cemitério, Rua 5 - Caixa Postal 233, São Vicente, Cabo Verde
| | - J O Fernandes
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - L A E Batista de Carvalho
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - M P M Marques
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal; University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - S C Cunha
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Stefan Antunes
- Biosfera Cabo Verde, Sul do Cemitério, Rua 5 - Caixa Postal 233, São Vicente, Cabo Verde
| | - V H Paiva
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
9
|
Bertram J, Bichet C, Moiron M, Schupp PJ, Bouwhuis S. Sex- and age-specific mercury accumulation in a long-lived seabird. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172330. [PMID: 38599409 DOI: 10.1016/j.scitotenv.2024.172330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Mercury levels in the environment are increasing, such that they are also expected to accumulate in top-predators, but individual-based longitudinal studies required to investigate this are rare. Between 2017 and 2023, we therefore collected 1314 blood samples from 588 individual common terns (Sterna hirundo) to examine how total blood mercury concentration changed with age, and whether this differed between the sexes. Blood mercury concentrations were highly variable, but all exceeded toxicity thresholds above which adverse health effects were previously observed. A global model showed blood mercury to be higher in older birds of both sexes. Subsequent models partitioning the age effect into within- and among-individual components revealed a linear within-individual accumulation with age in females, and a decelerating within-individual accumulation with age in males. Time spent at the (particularly contaminated) breeding grounds prior to sampling, as well as egg laying in females, were also found to affect mercury concentrations. As such, our study provides evidence that male and female common terns differentially accumulate mercury in their blood as they grow older and calls for further studies of the underlying mechanisms as well as its consequences for fitness components, such as reproductive performance and survival.
Collapse
Affiliation(s)
- Justine Bertram
- Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven, Niedersachsen DE 26386, Germany.
| | - Coraline Bichet
- Centre d'Etudes Biologiques de Chizé (CEBC), CNRS-La Rochelle Université, Villiers-en-Bois, France
| | - Maria Moiron
- Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven, Niedersachsen DE 26386, Germany; Department of Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Peter J Schupp
- Carl von Ossietzky Universität Oldenburg, Department for Chemistry and Biology of the Marine Environment, Terramare, Wilhelmshaven, Niedersachsen DE 26382, Germany; Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Oldenburg DE 26129, Germany
| | - Sandra Bouwhuis
- Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven, Niedersachsen DE 26386, Germany
| |
Collapse
|
10
|
Lemaire J, Mangione R, Caut S, Bustamante P. Mercury biomagnification in the food web of Agami Pond, Kaw-Roura Nature Reserve, French Guiana. Heliyon 2024; 10:e28859. [PMID: 38596056 PMCID: PMC11002669 DOI: 10.1016/j.heliyon.2024.e28859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
Freshwater ecosystems are among the most important ecosystems worldwide, however, over the last centuries, anthropogenic pressures have had catastrophic effects on them. Mercury (Hg) is one of the main environmental contaminants which globally affect ecosystems and particularly freshwater wildlife. While Hg originates from natural sources, anthropogenic activities such as agriculture, biomass combustion, and gold mining increase its concentrations. Gold mining activities are the main drivers of Hg emission in tropical ecosystems and are responsible for up to 38% of global emissions. Once in its methylated form (MeHg), mercury biomagnifies through the trophic chain and accumulates in top predators. Due to the toxicity of MeHg, long-lived predators are even more subjected to chronic effects as they accumulate Hg over time. In the present study we quantified Hg contamination in two top predators, the Black caiman Melanosuchus niger and the Agami heron Agamia agami, and in their prey in the Kaw-Roura Nature Reserve in French Guiana and evaluated the biomagnification rate in the trophic chain. Our results show that despite a TMF in the range of others in the region (4.38 in our study), top predators of the ecosystem present elevated concentrations of Hg. We have found elevated Hg concentrations in the blood of adult Black caiman (2.10 ± 0.652 μg g-1 dw) and chicks of Agami heron (1.089 ± 0.406 μg g-1 dw). These findings highlight the need to better evaluate the potential impact of Hg in freshwater top predators, especially regarding reprotoxic effects.
Collapse
Affiliation(s)
- Jérémy Lemaire
- Department of Behavioral and Cognitive Biology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Rosanna Mangione
- Department of Behavioral and Cognitive Biology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Stéphane Caut
- Consejo Superior de Investigaciones Cientificas (CSIC), Departamento de Etologia y Conservacion de la Biodiversidad, Estacion Biologica de Doñana, C/ Americo Vespucio, s/n (Isla de la Cartuja), E-41092, Sevilla, Spain
- ANIMAVEG Conservation, 58 avenue du Président Salvador Allende, F-94800, Villejuif, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| |
Collapse
|
11
|
Xu Z, Lu Q, Jia D, Li S, Luo K, Su T, Chen Z, Qiu G. Significant biomagnification of methylmercury in songbird nestlings through a rice-based food web: Insights from stable mercury isotopes. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133783. [PMID: 38367440 DOI: 10.1016/j.jhazmat.2024.133783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
To elucidate the sources and transfer of mercury (Hg) in terrestrial food chains, particularly in heavily Hg-contaminated rice paddy ecosystems, we collected rice leaves, invertebrates, and Russet Sparrow nestlings from a clear food chain and analyzed the dietary compositions and potential Hg sources using stable Hg isotopes coupled with a Bayesian isotope mixing model (BIMM). Our findings indicated that MeHg exposure is dominant through the dietary route, with caterpillars, grasshoppers, and katydids being the main prey items, while the less provisioned spiders, dragonflies, and mantises contributed the most of the Hg to nestlings. We found minimal MIF but certain MDF in this terrestrial food chain and identified two distinct MeHg sources of dietary exposure and maternal transfer. We firstly found that the dietary route contributed substantially (almost tenfold) more MeHg to the nestlings than maternal transfer. These findings offer new insights into the integration of Hg from the dietary route and maternal transfers, enhancing our understanding of fluctuating Hg exposure risk during the nestling stage. Our study suggested that Hg isotopes combined with BIMM is an effective approach for tracing Hg sources in birds and for gaining in-depth insight into the trophic transfers and biomagnification of MeHg in food chains.
Collapse
Affiliation(s)
- Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qinhui Lu
- The Key Laboratory of Environment Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Dongya Jia
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China
| | - Shenghao Li
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China
| | - Kang Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong 676200, China
| | - Tongping Su
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China
| | - Zhuo Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China.
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
12
|
Jung S, Besnard L, Li ML, R Reinfelder J, Kim E, Kwon SY, Kim JH. Interspecific Variations in the Internal Mercury Isotope Dynamics of Antarctic Penguins: Implications for Biomonitoring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6349-6358. [PMID: 38531013 DOI: 10.1021/acs.est.3c09452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Mercury (Hg) biomonitoring requires a precise understanding of the internal processes contributing to disparities between the Hg sources in the environment and the Hg measured in the biota. In this study, we investigated the use of Hg stable isotopes to trace Hg accumulation in Adélie and emperor penguin chicks from four breeding colonies in Antarctica. Interspecific variation of Δ199Hg in penguin chicks reflects the distinct foraging habitats and Hg exposures in adults. Chicks at breeding sites where adult penguins predominantly consumed mesopelagic prey showed relatively lower Δ199Hg values than chicks that were primarily fed epipelagic krill. Substantial δ202Hg variations in chick tissues were observed in both species (Adélie: -0.11 to 1.13‰, emperor: -0.27 to 1.15‰), whereas only emperor penguins exhibited the lowest δ202Hg in the liver and the highest in the feathers. Our results indicate that tissue-specific δ202Hg variations and their positive correlations with % MeHg resulted from MeHg demethylation in the liver and kidneys of emperor penguin chicks, whereas Adélie penguin chicks showed different internal responses depending on their exposure to dietary MeHg. This study highlights the importance of considering intra- and interspecific variations in adult foraging ecology and MeHg demethylation when selecting penguin chicks for Hg biomonitoring.
Collapse
Affiliation(s)
- Saebom Jung
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | - Lucien Besnard
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | - Mi-Ling Li
- School of Marine Science and Policy, University of Delaware, Newark, Delaware 19716, United States
| | - John R Reinfelder
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Eunhee Kim
- Citizens' Institute for Environmental Studies (CIES), Seoul 03039, South Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 85 Songdogwahak-ro, Incheon 21983, South Korea
| | - Jeong-Hoon Kim
- Korea Polar Research Institute (KOPRI), 26 Songdomirae-ro, Incheon 21990, South Korea
| |
Collapse
|
13
|
Li S, Zhang F, Xu Z, Jia D, Wu G, Liu H, Li C, Liang L, Liu J, Chen Z, Qiu G. Using live videography observation and Bayesian isotope mixing model to identify food composition and dietary contribution to inorganic mercury and methylmercury intake by songbird nestlings. ENVIRONMENTAL RESEARCH 2024; 244:117902. [PMID: 38092237 DOI: 10.1016/j.envres.2023.117902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Mercury (Hg) exposure is increasing in terrestrial birds; however, studies on its sources are scarce. In the present study, we elucidated the food composition of green-backed tit nestlings from three urban forest parks (CPL, AHL, and LCG) using live videography observation (LVO). Furthermore, the daily dietary intakes of inorganic Hg (IHg) (MDIIHg) and methylmercury (MeHg) (MDIMeHg) were determined using the Bayesian isotope mixing model (BIMM) to uncover the nestlings' specific dietary Hg contribution. Both LVO and BIMM indicated that Lepidoptera (primarily caterpillar) constituted the primary food source for the nestlings in the three forests, accounting for approximately 60% of their diet in all three forest parks. The estimated MDI of Hg revealed that lepidopterans and spiders primarily contributed to IHg exposure, with a co-contribution ratio of 71.8%-97.7%. Unexpectedly, dietary MeHg was mostly derived from spiders; the highest contribution ratio of 93.6% was recorded at CPL, followed by another peak ratio of 92.9% at LCG. However, the dietary exposure was primarily IHg, accounting for 69.8% (AHL), 62.0% (LCG), and 61.3% (CPL) of the nestlings. Our study findings highlight the importance of dietary IHg transfer in evaluating the effects of Hg in nestlings. LVO, coupled with BIMM, is an effective tool for determining the food compositions of songbird nestlings and estimating the contribution of specific diets.
Collapse
Affiliation(s)
- Shenghao Li
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550001, China
| | - Fudong Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Dongya Jia
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550001, China
| | - Gaoen Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Hongjiang Liu
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550001, China
| | - Chan Li
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Longchao Liang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550001, China
| | - Jiemin Liu
- Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Zhuo Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550001, China.
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| |
Collapse
|
14
|
Yang L, Yu B, Liu H, Ji X, Xiao C, Cao M, Fu J, Zhang Q, Hu L, Yin Y, Shi J, Jiang G. Foraging behavior and sea ice-dependent factors affecting the bioaccumulation of mercury in Antarctic coastal waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169557. [PMID: 38141978 DOI: 10.1016/j.scitotenv.2023.169557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
To elucidate the potential risks of the toxic pollutant mercury (Hg) in polar waters, the study of accumulated Hg in fish is compelling for understanding the cycling and fate of Hg on a regional scale in Antarctica. Herein, the Hg isotopic compositions of Antarctic cod Notothenia coriiceps were assessed in skeletal muscle, liver, and heart tissues to distinguish the differences in Hg accumulation in isolated coastal environments of the eastern (Chinese Zhongshan Station, ZSS) and the antipode western Antarctica (Chinese Great Wall Station, GWS), which are separated by over 4000 km. Differences in odd mass-independent isotope fractionation (odd-MIF) and mass-dependent fractionation (MDF) across fish tissues were reflection of the specific accumulation of methylmercury (MeHg) and inorganic Hg (iHg) with different isotopic fingerprints. Internal metabolism including hepatic detoxification and processes related to heart may also contribute to MDF. Regional heterogeneity in iHg end-members further provided evidence that bioaccumulated Hg origins can be largely influenced by polar water circumstances and foraging behavior. Sea ice was hypothesized to play critical roles in both the release of Hg with negative odd-MIF derived from photoreduction of Hg2+ on its surface and the impediment of photochemical transformation of Hg in water layers. Overall, the multitissue isotopic compositions in local fish species and prime drivers of the heterogeneous Hg cycling and bioaccumulation patterns presented here enable a comprehensive understanding of Hg biogeochemical cycling in polar coastal waters.
Collapse
Affiliation(s)
- Lin Yang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ben Yu
- National Research Center for Environmental Analysis and Measurement, Beijing 100029, China
| | - Hongwei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomeng Ji
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Cailing Xiao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jianjie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qinghua Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianbo Shi
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Liu H, Zheng W, Gao Y, Yang L, Yue F, Huang T, Xie Z. Increased Contribution of Circumpolar Deep Water Upwelling to Methylmercury in the Upper Ocean around Antarctica: Evidence from Mercury Isotopes in the Ornithogenic Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2762-2773. [PMID: 38294849 DOI: 10.1021/acs.est.3c06923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Upwelling plays a pivotal role in supplying methylmercury (MeHg) to the upper oceans, contributing to the bioaccumulation of MeHg in the marine food web. However, the influence of the upwelling of Circumpolar Deep Water (CDW), the most voluminous water mass in the Southern Ocean, on the MeHg cycle in the surrounding oceans and marine biota of Antarctica remains unclear. Here, we study the mercury (Hg) isotopes in an ornithogenic sedimentary profile strongly influenced by penguin activity on Ross Island, Antarctica. Results indicate that penguin guano is the primary source of Hg in the sediments, and the mass-independent isotope fractionation of Hg (represented by Δ199Hg) can provide insights on the source of marine MeHg accumulated by penguin. The Δ199Hg in the sediments shows a significant decrease at ∼1550 CE, which is primarily attributed to the enhanced upwelling of CDW that brought more MeHg with lower Δ199Hg from the deeper seawater to the upper ocean. We estimate that the contribution of MeHg from the deeper seawater may reach more than 38% in order to explain the decline in Δ199Hg at ∼1550 CE. Moreover, we found that the intensified upwelling may have increased the MeHg exposure for marine organisms, highlighting the importance of CDW upwelling on the MeHg cycle in Antarctic coastal ecosystems.
Collapse
Affiliation(s)
- Hongwei Liu
- Department of Environmental Science and Engineering, Anhui Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wang Zheng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, United States
| | - Yuesong Gao
- Department of Environmental Science and Engineering, Anhui Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lianjiao Yang
- Department of Environmental Science and Engineering, Anhui Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fange Yue
- Department of Environmental Science and Engineering, Anhui Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tao Huang
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Zhouqing Xie
- Department of Environmental Science and Engineering, Anhui Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
16
|
Ibañez AE, Mills WF, Bustamante P, Morales LM, Torres DS, D' Astek B, Mariano-Jelicich R, Phillips RA, Montalti D. Deleterious effects of mercury contamination on immunocompetence, liver function and egg volume in an antarctic seabird. CHEMOSPHERE 2024; 346:140630. [PMID: 37939926 DOI: 10.1016/j.chemosphere.2023.140630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/16/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Mercury (Hg) is a globally important pollutant that can negatively impact metabolic, endocrine and immune systems of marine biota. Seabirds are long-lived marine top predators and hence are at risk of bioaccumulating high Hg concentrations from their prey. Here, we measured blood total mercury (THg) concentrations and relationships with physiology and breeding parameters of breeding brown skuas (Stercorarius antarcticus) (n = 49 individuals) at Esperanza/Hope Bay, Antarctic Peninsula. Mean blood THg concentrations were similar in males and females despite the differences in body size and breeding roles, but differed between study years. Immune markers (hematocrit, Immunoglobulin Y [IgY] and albumin) were negatively correlated with blood THg concentrations, which likely indicates a disruptive effect of Hg on immunity. Alanine aminotransferase (GPT) activity, reflecting liver dysfunction, was positively associated with blood THg. Additionally, triacylglycerol and albumin differed between our study years, but did not correlate with Hg levels, and so were more likely to reflect changes in diet and nutritional status rather than Hg contamination. Egg volume correlated negatively with blood THg concentrations. Our study provides new insights into the sublethal effects of Hg contamination on immunity, liver function and breeding parameters in seabirds. In this Antarctic species, exposure to sublethal Hg concentrations reflects the short-term risks which could make individuals more susceptible to environmental stressors, including ongoing climatic changes.
Collapse
Affiliation(s)
- Andrés E Ibañez
- Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET), La Plata, Buenos Aires, Argentina.
| | - William F Mills
- Department of Geography and Environmental Science, University of Reading, Reading, UK
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Lara M Morales
- Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | - Diego S Torres
- Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | - Beatriz D' Astek
- Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | - Rocío Mariano-Jelicich
- Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMdP-CONICET, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Richard A Phillips
- British Antarctic Survey, Natural Environment Research Council, Cambridge, CB3 0ET, UK
| | - Diego Montalti
- Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET), La Plata, Buenos Aires, Argentina; Instituto Antártico Argentino, San Martin, Buenos Aires, Argentina
| |
Collapse
|
17
|
Xu Z, Luo K, Lu Q, Shang L, Tian J, Lu Z, Li Q, Chen Z, Qiu G. The mercury flow through a terrestrial songbird food chain in subtropical pine forest: Elucidated by Bayesian isotope mixing model and stable mercury isotopes. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132263. [PMID: 37573826 DOI: 10.1016/j.jhazmat.2023.132263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
In order to comprehend the transfer of inorganic mercury (IHg) and methylmercury (MeHg) within food chains in terrestrial pine forests, we collected samples of Great Tit nestlings, common invertebrates, plants, and soil in a subtropical pine forest and used Bayesian isotope mixing model analysis, Hg daily intake, and stable Hg isotopes to elucidate the flow of MeHg and IHg in these food chains. Results indicate that caterpillars and cockroaches are the predominant prey items for nestlings, accounting for a combined contribution of 81.5%. Furthermore, caterpillars, cockroaches, and spiders were found to contribute the most (∼80%) of both IHg and MeHg that dietary accumulated in nestlings. The provisoned invertebrates tend to supply more IHg and diluting the proportion of MeHg as total Hg (MeHg%). Notably, nestling feathers displayed the highest Δ199Hg values but a relatively lower MeHg%, suggesting an imbalanced incorporation of Hg from maternal transfer and dietary accumulation during the nestling stage. This study highlights the efficacy of nestlings as indicators for identifying Hg sources and transfers in avian species and food chains. However, caution must be exercised when using Hg isotope compositions in growing feathers, and the contribution of maternally transferred Hg should not be ignored.
Collapse
Affiliation(s)
- Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Kang Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong 676200, China
| | - Qinhui Lu
- The Key Laboratory of Environment Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Lihai Shang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jing Tian
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhiyun Lu
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong 676200, China
| | - Qiuhua Li
- Guizhou Key Laboratory for Mountainous Environmental Information and Ecological Protection, Guizhou Normal University, Guiyang 550001, China
| | - Zhuo Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
18
|
Hurtado TC, de Medeiros Costa G, de Carvalho GS, Brum BR, Ignácio ÁRA. Mercury and methylmercury concentration in the feathers of two species of Kingfishers Megaceryle torquata and Chloroceryle amazona in the Upper Paraguay Basin and Amazon Basin. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:1084-1095. [PMID: 37349507 DOI: 10.1007/s10646-023-02680-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Mercury (Hg) contamination remains a significant environmental concern. In aquatic ecosystems, Hg can undergo methylation, forming its organic form, methylmercury (MeHg), which bioaccumulates and biomagnifies in the food chain, ultimately reaching the top predators, including waterfowl. The objective of this study was to investigate the distribution and levels of Hg in wing feathers, with a specific focus on evaluating heterogeneity in the primary feathers of two kingfisher species (Megaceryle torquata and Chloroceryle amazona). The concentrations of total Hg (THg) in the primary feathers of C. amazona individuals from the Juruena, Teles Pires, and Paraguay rivers were 4.724 ± 1.600, 4.003 ± 1.532, and 2.800 ± 1.475 µg/kg, respectively. The THg concentrations in the secondary feathers were 4.624 ± 1.718, 3.531 ± 1.361, and 2.779 ± 1.699 µg/kg, respectively. For M. torquata, the THg concentrations in the primary feathers from the Juruena, Teles Pires, and Paraguay rivers were 7.937 ± 3.830, 6.081 ± 2.598, and 4.697 ± 2.585 µg/kg, respectively. The THg concentrations in the secondary feathers were 7.891 ± 3.869, 5.124 ± 2.420, and 4.201 ± 2.176 µg/kg, respectively. The percentage of MeHg in the samples increased during THg recovery, with an average of 95% in primary feathers and 80% in secondary feathers. It is crucial to comprehend the current Hg concentrations in Neotropical birds to mitigate potential toxic effects on these species. Exposure to Hg can lead to reduced reproductive rates and behavioral changes, such as motor incoordination and impaired flight ability, ultimately resulting in population decline among bird populations.
Collapse
Affiliation(s)
- Thaysa Costa Hurtado
- Center for the Study of Limnology, Biodiversity and Ethnobiology of the Pantanal (CELBE) - Ecotoxicology Laboratory, University of the State of Mato Grosso, Cáceres, Brazil.
| | - Gerlane de Medeiros Costa
- Center for the Study of Limnology, Biodiversity and Ethnobiology of the Pantanal (CELBE) - Ecotoxicology Laboratory, University of the State of Mato Grosso, Cáceres, Brazil
| | - Giovani Spínola de Carvalho
- Center for the Study of Limnology, Biodiversity and Ethnobiology of the Pantanal (CELBE) - Ecotoxicology Laboratory, University of the State of Mato Grosso, Cáceres, Brazil
| | - Bruno Ramos Brum
- Center for the Study of Limnology, Biodiversity and Ethnobiology of the Pantanal (CELBE) - Ecotoxicology Laboratory, University of the State of Mato Grosso, Cáceres, Brazil
| | - Áurea Regina Alves Ignácio
- Center for the Study of Limnology, Biodiversity and Ethnobiology of the Pantanal (CELBE) - Ecotoxicology Laboratory, University of the State of Mato Grosso, Cáceres, Brazil
| |
Collapse
|
19
|
Xu Z, Lu Q, Xu X, Liang L, Abeysinghe KS, Chen Z, Qiu G. Aquatic methylmercury is a significant subsidy for terrestrial songbirds: Evidence from the odd mass-independent fractionation of mercury isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163217. [PMID: 37011675 DOI: 10.1016/j.scitotenv.2023.163217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/27/2023]
Abstract
In contrast to aquatic food chains, knowledge of the origins and transfer of mercury (Hg) and methylmercury (MeHg) in terrestrial food chains is relatively limited, especially in songbirds. We collected soil, rice plants, aquatic and terrestrial invertebrates, small wild fish, and resident songbird feathers from an Hg-contaminated rice paddy ecosystem for an analysis of stable Hg isotopes to clarify the sources of Hg and its transfer in songbirds and their prey. Significant mass-dependent fractionation (MDF, δ202Hg), but no mass-independent fractionation (MIF, ∆199Hg) occurred in the trophic transfers in terrestrial food chains. Piscivorous, granivorous, and frugivorous songbirds and aquatic invertebrates were all characterized by elevated Δ199Hg values. The estimated MeHg isotopic compositions obtained using linear fitting and a binary mixing model explained both the terrestrial and aquatic origins of MeHg in the terrestrial food chains. We found that MeHg from aquatic habitats is an important subsidy for terrestrial songbirds, even those that feed mainly on seeds, fruits, or cereals. The results show that MIF of the MeHg isotope is a reliable tool to reveal MeHg sources in songbirds. Because the MeHg isotopic compositions was calculated with a binary mixing model or directly estimated from the high proportions of MeHg, compound-specific isotope analysis of Hg would be more useful for the interpretation of the Hg sources, and is highly recommended for future studies.
Collapse
Affiliation(s)
- Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qinhui Lu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; The Key Laboratory of Environment Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Xiaohang Xu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China
| | - Longchao Liang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China
| | - Kasun S Abeysinghe
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhuo Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
20
|
Quillfeldt P, Bedolla-Guzmán Y, Libertelli MM, Cherel Y, Massaro M, Bustamante P. Mercury in Ten Storm-Petrel Populations from the Antarctic to the Subtropics. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 85:55-72. [PMID: 37438517 PMCID: PMC10374726 DOI: 10.1007/s00244-023-01011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
The oceans become increasingly contaminated as a result of global industrial production and consumer behaviour, and this affects wildlife in areas far removed from sources of pollution. Migratory seabirds such as storm-petrels may forage in areas with different contaminant levels throughout the annual cycle and may show a carry-over of mercury from the winter quarters to the breeding sites. In this study, we compared mercury levels among seven species of storm-petrels breeding on the Antarctic South Shetlands and subantarctic Kerguelen Islands, in temperate waters of the Chatham Islands, New Zealand, and in temperate waters of the Pacific off Mexico. We tested for differences in the level of contamination associated with breeding and inter-breeding distribution and trophic position. We collected inert body feathers and metabolically active blood samples in ten colonies, reflecting long-term (feathers) and short-term (blood) exposures during different periods ranging from early non-breeding (moult) to late breeding. Feathers represent mercury accumulated over the annual cycle between two successive moults. Mercury concentrations in feathers ranged over more than an order of magnitude among species, being lowest in subantarctic Grey-backed Storm-petrels (0.5 μg g-1 dw) and highest in subtropical Leach's Storm-petrels (7.6 μg g-1 dw, i.e. posing a moderate toxicological risk). Among Antarctic Storm-petrels, Black-bellied Storm-petrels had threefold higher values than Wilson's Storm-petrels, and in both species, birds from the South Shetlands (Antarctica) had threefold higher values than birds from Kerguelen (subantarctic Indian Ocean). Blood represents mercury taken up over several weeks, and showed similar trends, being lowest in Grey-backed Storm-petrels from Kerguelen (0.5 μg g-1 dw) and highest in Leach's Storm-petrels (3.6 μg g-1 dw). Among Antarctic storm-petrels, species differences in the blood samples were similar to those in feathers, but site differences were less consistent. Over the breeding season, mercury decreased in blood samples of Antarctic Wilson's Storm-petrels, but did not change in Wilson's Storm-petrels from Kerguelen or in Antarctic Black-bellied Storm-petrels. In summary, we found that mercury concentrations in storm-petrels varied due to the distribution of species and differences in prey choice. Depending on prey choices, Antarctic storm-petrels can have similar mercury concentrations as temperate species. The lowest contamination was observed in subantarctic species and populations. The study shows how seabirds, which accumulate dietary pollutants in their tissues in the breeding and non-breeding seasons, can be used to survey marine pollution. Storm-petrels with their wide distributions and relatively low trophic levels may be especially useful, but more detailed knowledge on their prey choice and distributions is needed.
Collapse
Affiliation(s)
- Petra Quillfeldt
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Yuliana Bedolla-Guzmán
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
- Grupo de Ecología Y Conservación de Islas, A.C., Ensenada, 22800 Baja California, Mexico
| | - Marcela M. Libertelli
- Departamento de Biología de los Predadores Tope, Coordinación Ciencias de la Vida, Instituto Antártico Argentino, Avenida 25 de Mayo 1143, B1650HML Buenos Aires, Argentina
| | - Yves Cherel
- Centre d’Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Melanie Massaro
- School of Agricultural, Environmental and Veterinary Sciences, Gulbali Institute, Charles Sturt University, Albury, NSW 2640 Australia
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
21
|
Zhang L, Yin Y, Li Y, Cai Y. Mercury isotope fractionation during methylmercury transport and transformation: A review focusing on analytical method, fractionation characteristics, and its application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156558. [PMID: 35710002 DOI: 10.1016/j.scitotenv.2022.156558] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Methylmercury (MeHg), a potent neurotoxin, can be formed, migrated and transformed in environmental compartments, accompanying with unique mass-dependent and mass-independent fractionation of mercury (Hg). These Hg isotope fractionation signals have great potential to probe the transformation and transport of MeHg in aquatic environments. However, the majority of studies to date have focused on total Hg isotopic composition, with less attention to the isotopic fractionation of MeHg due to technical difficulties in analysis, which severely hinders the understanding of MeHg isotopic fractionation and its applications. This review a) evaluates the reported analytical methods for Hg isotopic composition of MeHg, including online and offline measurement techniques; b) summarizes the extent and characteristics of Hg isotopic fractionation during MeHg transport and transformation, focusing on methylation, demethylation, trophic transfer and internal metabolism; and c) briefly discusses several applications of MeHg isotopic fractionation signatures in estimating the extent of photodemethylation, tracing the source of Hg species, and diagnosing reaction mechanisms. Additionally, the existing problems and future directions in MeHg isotope fractionation are highlighted to improve the analytical protocol for Hg isotope fractionation and deepen our understanding of Hg isotope fractionation in the biogeochemical cycling of MeHg.
Collapse
Affiliation(s)
- Lian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yongguang Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yong Cai
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
22
|
Jouanneau W, Sebastiano M, Rozen-Rechels D, Harris SM, Blévin P, Angelier F, Brischoux F, Gernigon J, Lemesle JC, Robin F, Cherel Y, Bustamante P, Chastel O. Blood mercury concentrations in four sympatric gull species from South Western France: Insights from stable isotopes and biologging. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119619. [PMID: 35709917 DOI: 10.1016/j.envpol.2022.119619] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) is a toxic trace element widely distributed in the environment, which particularly accumulates in top predators, including seabirds. Among seabirds, large gulls (Larus sp) are generalist feeders, foraging in both terrestrial and marine habitats, making them relevant bioindicators of local coastal Hg contamination. In the present study, we reported blood Hg concentrations in adults and chicks of four different gull species breeding on the French Atlantic coast: the European herring gull (Larus argentatus), the Lesser black-backed gull (L. fuscus), the Great black-backed gull (L. marinus) and the Yellow-legged gull (L. michahellis). We also investigated the potential role of foraging ecology in shaping Hg contamination across species, using the unique combination of three dietary tracers (carbon, nitrogen and sulfur stable isotopes) and biologging (GPS tracking). A high concentration of Hg was associated with high trophic position and a marine diet in gulls, which was corroborated by birds' space use strategy during foraging trips. Adults of all four species reached Hg concentrations above reported toxicity thresholds. Specifically, adults of Great black-backed gulls had a high trophic marine specialized diet and significantly higher Hg concentrations than the three other species. Blood Hg was 4-7 times higher in adults than in chicks, although chicks of all species received mainly marine and high trophic position prey, which is expected to be the cause of blood Hg concentrations of toxic concern. By using both stable isotopes and GPS tracking, the present study provides compelling insights on the main feeding habits driving Hg contamination in a seabird assemblage feeding in complex coastal environments.
Collapse
Affiliation(s)
- William Jouanneau
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS & La Rochelle Université, 79360, Villiers-en-Bois, France.
| | - Manrico Sebastiano
- Unité Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, UMR 7221 CNRS/MNHN, 7 Rue Cuvier, 75005, Paris, France; Behavioural Ecology and Ecophysiology Group, University of Antwerp, Antwerp, Belgium
| | - David Rozen-Rechels
- Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Créteil, Institut d'écologie et des Sciences de l'environnement de Paris (iEES-Paris), Paris, France
| | - Stephanie M Harris
- School of Ocean Sciences, College of Environmental Science and Engineering, Bangor University, Menai Bridge, LL59 5AB, United Kingdom; Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, USA
| | - Pierre Blévin
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS & La Rochelle Université, 79360, Villiers-en-Bois, France; Akvaplan-niva AS, Fram Centre, P.O. Box 6606 Langnes, 9296, Tromsø, Norway
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS & La Rochelle Université, 79360, Villiers-en-Bois, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS & La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Julien Gernigon
- Ligue pour la Protection des Oiseaux (LPO), 17300, Rochefort, France
| | | | - Frédéric Robin
- Ligue pour la Protection des Oiseaux (LPO), 17300, Rochefort, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS & La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés, LIENSs, Univ. La Rochelle, CNRS, 17000, La Rochelle, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 75005, Paris, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS & La Rochelle Université, 79360, Villiers-en-Bois, France
| |
Collapse
|
23
|
Ibañez AE, Mills WF, Bustamante P, McGill RAR, Morales LM, Palacio FX, Torres DS, Haidr NS, Mariano-Jelicich R, Phillips RA, Montalti D. Variation in blood mercury concentrations in brown skuas (Stercorarius antarcticus) is related to trophic ecology but not breeding success or adult body condition. MARINE POLLUTION BULLETIN 2022; 181:113919. [PMID: 35816822 DOI: 10.1016/j.marpolbul.2022.113919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Mercury is a pervasive environmental contaminant that can negatively impact seabirds. Here, we measure total mercury (THg) concentrations in red blood cells (RBCs) from breeding brown skuas (Stercorarius antarcticus) (n = 49) at Esperanza/Hope Bay, Antarctic Peninsula. The aims of this study were to: (i) analyse RBCs THg concentrations in relation to sex, year and stable isotope values of carbon (δ13C) and nitrogen (δ15N); and (ii) examine correlations between THg, body condition and breeding success. RBC THg concentrations were positively correlated with δ15N, which is a proxy of trophic position, and hence likely reflects the biomagnification process. Levels of Hg contamination differed between our study years, which is likely related to changes in diet and distribution. RBC THg concentrations were not related to body condition or breeding success, suggesting that Hg contamination is currently not a major conservation concern for this population.
Collapse
Affiliation(s)
- A E Ibañez
- Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET), La Plata, Buenos Aires, Argentina.
| | - W F Mills
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK
| | - P Bustamante
- Littoral Environnement et Societes (LIENSs), UMR 7266, CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - R A R McGill
- Stable Isotope Ecology Lab, Natural Environment Isotope Facility, Scottish Universities Environmental Research Centre, East Kilbride G75 0QF, UK
| | - L M Morales
- Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | - F X Palacio
- Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | - D S Torres
- Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | - N S Haidr
- Unidad Ejecutora Lillo (CONICET - FML), San Miguel de Tucumán, Tucumán, Argentina
| | - R Mariano-Jelicich
- Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMdP-CONICET, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - R A Phillips
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK
| | - D Montalti
- Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET), La Plata, Buenos Aires, Argentina; Instituto Antártico Argentino, San Martin, Buenos Aires, Argentina
| |
Collapse
|
24
|
Li ML, Kwon SY, Poulin BA, Tsui MTK, Motta LC, Cho M. Internal Dynamics and Metabolism of Mercury in Biota: A Review of Insights from Mercury Stable Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9182-9195. [PMID: 35723432 PMCID: PMC9261262 DOI: 10.1021/acs.est.1c08631] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Monitoring mercury (Hg) levels in biota is considered an important objective for the effectiveness evaluation of the Minamata Convention. While many studies have characterized Hg levels in organisms at multiple spatiotemporal scales, concentration analyses alone often cannot provide sufficient information on the Hg exposure sources and internal processes occurring within biota. Here, we review the decadal scientific progress of using Hg isotopes to understand internal processes that modify the speciation, transport, and fate of Hg within biota. Mercury stable isotopes have emerged as a powerful tool for assessing Hg sources and biogeochemical processes in natural environments. A better understanding of the tissue location and internal mechanisms leading to Hg isotope change is key to assessing its use for biomonitoring. We synthesize the current understanding and uncertainties of internal processes leading to Hg isotope fractionation in a variety of biota, in a sequence of better to less studied organisms (i.e., birds, marine mammals, humans, fish, plankton, and invertebrates). This review discusses the opportunities and challenges of using certain forms of biota for Hg source monitoring and the need to further elucidate the physiological mechanisms that control the accumulation, distribution, and toxicity of Hg in biota by coupling new techniques with Hg stable isotopes.
Collapse
Affiliation(s)
- Mi-Ling Li
- School
of Marine Science and Policy, University
of Delaware, 201 Robinson Hall, Newark, Delaware 19716, United
States
| | - Sae Yun Kwon
- Division
of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro,
Nam-Gu, Pohang 37673, South Korea
- Institute
for Convergence Research and Education in Advanced Technology, Yonsei University, 85 Songdogwahak-Ro, Yeonsu-Gu, Incheon 21983, South Korea
| | - Brett A. Poulin
- Department
of Environmental Toxicology, University
of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Martin Tsz-Ki Tsui
- School
of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR 999077, China
| | - Laura C. Motta
- Department
of Chemistry, University at Buffalo, 359 Natural Sciences Complex, Buffalo, New York 14260-3000, United States
| | - Moonkyoung Cho
- Division
of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro,
Nam-Gu, Pohang 37673, South Korea
| |
Collapse
|
25
|
Le Croizier G, Point D, Renedo M, Munaron JM, Espinoza P, Amezcua-Martinez F, Lanco Bertrand S, Lorrain A. Mercury concentrations, biomagnification and isotopic discrimination factors in two seabird species from the Humboldt Current ecosystem. MARINE POLLUTION BULLETIN 2022; 177:113481. [PMID: 35245770 DOI: 10.1016/j.marpolbul.2022.113481] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Assessing mercury (Hg) biomagnification requires the description of prey-predator relationships, for each species and ecosystem, usually based on carbon and nitrogen isotope analyses. Here, we analyzed two seabirds from the Humboldt Current ecosystem, the Guanay cormorant (Phalacrocorax bougainvillii) and the Peruvian booby (Sula variegata), as well as their main prey, the Peruvian anchovy (Engraulis ringens). We reported Hg concentrations, Hg biomagnification (BMF) and isotopic discrimination factors (Δ13C and Δ15N) in seabird whole blood. BMFs and Δ13C in our study (on wild birds where diet was not controlled) were similar to other piscivorous seabirds previously studied in captive settings, but Δ15N were lower than most captive experiments. We observed lower Hg concentrations in Humboldt seabirds compared to other oligotrophic ecosystems, possibly due to Hg biodilution in the high biomass of the first trophic levels. This work calls for a better characterization of Hg trophic dynamics in productive upwelling ecosystems.
Collapse
Affiliation(s)
- Gaël Le Croizier
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Joel Montes Camarena S/N, Mazatlán, Sin. México 82040, Mexico.
| | - David Point
- UMR Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France
| | - Marina Renedo
- UMR Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France
| | | | - Pepe Espinoza
- Laboratorio de Ecología Trófica, Instituto del Mar del Perú, Esquina Gamarra y General Valle S/N Chucuito Callao, Lima, Peru; Carrera de Biología Marina, Facultad de Ciencias Veterinarias y Biológicas, Universidad Científica del Sur, Lima, Peru
| | - Felipe Amezcua-Martinez
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Joel Montes Camarena S/N, Mazatlán, Sin. México 82040, Mexico
| | - Sophie Lanco Bertrand
- Institut de Recherche pour le Développement (IRD), MARBEC (Univ. Montpellier, Ifremer, CNRS, IRD), Avenue Jean Monnet, 34200 Sète, France
| | - Anne Lorrain
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| |
Collapse
|
26
|
Mills WF, Ibañez AE, Bustamante P, Carneiro APB, Bearhop S, Cherel Y, Mariano-Jelicich R, McGill RAR, Montalti D, Votier SC, Phillips RA. Spatial and sex differences in mercury contamination of skuas in the Southern Ocean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118841. [PMID: 35026328 DOI: 10.1016/j.envpol.2022.118841] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Antarctic marine ecosystems are often considered to be pristine environments, yet wildlife in the polar regions may still be exposed to high levels of environmental contaminants. Here, we measured total mercury (THg) concentrations in blood samples from adult brown skuas Stercorarius antarcticus lonnbergi (n = 82) from three breeding colonies south of the Antarctic Polar Front in the Southern Ocean (southwest Atlantic region): (i) Bahía Esperanza/Hope Bay, Antarctic Peninsula; (ii) Signy Island, South Orkney Islands; and, (iii) Bird Island, South Georgia. Blood THg concentrations increased from the Antarctic Peninsula towards the Antarctic Polar Front, such that Hg contamination was lowest at Bahía Esperanza/Hope Bay (mean ± SD, 0.95 ± 0.45 μg g-1 dw), intermediate at Signy Island (3.42 ± 2.29 μg g-1 dw) and highest at Bird Island (4.47 ± 1.10 μg g-1 dw). Blood THg concentrations also showed a weak positive correlation with δ15N values, likely reflecting the biomagnification process. Males had higher Hg burdens than females, which may reflect deposition of Hg into eggs by females or potentially differences in their trophic ecology. These data provide important insights into intraspecific variation in contamination and the geographic transfer of Hg to seabirds in the Southern Ocean.
Collapse
Affiliation(s)
- William F Mills
- British Antarctic Survey, Natural Environment Research Council, Cambridge, CB3 0ET, UK; Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9EZ, UK.
| | - Andrés E Ibañez
- Sección Ornitología, Div. Zool. Vert., Museo de La Plata (FCNyM-UNLP, CONICET), Museo de La Plata, Paseo Del Bosque S/n, B1900FWA-La Plata, Buenos Aires, Argentina
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 75005, Paris, France
| | - Ana P B Carneiro
- BirdLife International, The David Attenborough Building, Pembroke St, Cambridge, CB2 3QZ, UK
| | - Stuart Bearhop
- Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9EZ, UK
| | - Yves Cherel
- Centre D'Etudes Biologiques de Chizé (CEBC), UMR 7372 Du CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Rocío Mariano-Jelicich
- Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMdP-CONICET, Universidad Nacional de Mar Del Plata, Mar Del Plata, Argentina
| | - Rona A R McGill
- Stable Isotope Ecology Lab, Natural Environment Isotope Facility, Scottish Universities Environmental Research Centre, East Kilbride, G75 0QF, UK
| | - Diego Montalti
- Sección Ornitología, Div. Zool. Vert., Museo de La Plata (FCNyM-UNLP, CONICET), Museo de La Plata, Paseo Del Bosque S/n, B1900FWA-La Plata, Buenos Aires, Argentina; Instituto Antartico Argentino, 25 de Mayo 1143, (B1650HMK) San Martin, Buenos Aires, Argentina
| | | | - Richard A Phillips
- British Antarctic Survey, Natural Environment Research Council, Cambridge, CB3 0ET, UK
| |
Collapse
|
27
|
Queipo-Abad S, Pedrero Z, Marchán-Moreno C, El Hanafi K, Bérail S, Corns WT, Cherel Y, Bustamante P, Amouroux D. New insights into the biomineralization of mercury selenide nanoparticles through stable isotope analysis in giant petrel tissues. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127922. [PMID: 34894503 DOI: 10.1016/j.jhazmat.2021.127922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 05/12/2023]
Abstract
Tiemannite (HgSe) is considered the end-product of methylmercury (MeHg) demethylation in vertebrates. The biomineralization of HgSe nanoparticles (NPs) is understood to be an efficient MeHg detoxification mechanism; however, the process has not yet been fully elucidated. In order to contribute to the understanding of complex Hg metabolism and HgSe NPs formation, the Hg isotopic signatures of 40 samples of 11 giant petrels were measured. This seabird species is one of the largest avian scavengers in the Southern Ocean, highly exposed to MeHg through their diet, reaching Hg concentrations in the liver up to more than 900 µg g-1. This work constitutes the first species-specific isotopic measurement (δ202Hg, Δ199Hg) of HgSe NPs in seabirds and the largest characterization of this compound in biota. Similar δ202Hg values specifically associated to HgSe (δ202HgHgSe) and tissues (δ202Hgbulk) dominated by inorganic Hg species were found, suggesting that no isotopic fractionation is induced during the biomineralization step from the precursor (demethylated) species. In contrast, the largest variations between δ202Hgbulk and δ202HgHgSe were observed in muscle and brain tissues. This could be attributed to the higher fraction of Hg present as MeHg in these tissues. Hg-biomolecules screening highlights the importance of the isotopic characterization of these (unknown) complexes.
Collapse
Affiliation(s)
- Silvia Queipo-Abad
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Zoyne Pedrero
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France.
| | - Claudia Marchán-Moreno
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Khouloud El Hanafi
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Sylvain Bérail
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Warren T Corns
- PS Analytical, Arthur House, Crayfields Industrial Estate, Main Road, Orpington, Kent BR5 3HP, UK
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS - La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| | - David Amouroux
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| |
Collapse
|
28
|
Dodino S, Riccialdelli L, Polito MJ, Pütz K, Brasso RL, Raya Rey A. Mercury exposure driven by geographic and trophic factors in Magellanic penguins from Tierra del Fuego. MARINE POLLUTION BULLETIN 2022; 174:113184. [PMID: 34856432 DOI: 10.1016/j.marpolbul.2021.113184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Penguins accumulate mercury due to their long-life span together with their high trophic position. We sampled adult and juveniles' feathers from three colonies of Spheniscus magellanicus from Tierra del Fuego along an inshore-offshore corridor. We integrated toxicological information (mercury concentrations) and foraging biomarkers (δ13C, δ15N) into a common data analysis framework (isotopic niche analysis) to evaluate the influence of age, location, and foraging behaviors on mercury concentrations. Adults had higher feather mercury concentrations, δ13C, and δ15N values compared to juveniles. Also, adult and juvenile feather mercury concentrations differed between colonies, with lower mercury concentrations at the nearest inshore colony relative to the farther offshore colonies. Trophic position and the isotopic niche analyses suggest that this geographic gradient in mercury concentrations is due to differences in colonies' foraging areas. Understanding penguins' exposure to mercury derived from local food webs is a crucial first step in evaluating the impacts of this heavy metal on their conservation status.
Collapse
Affiliation(s)
- Samanta Dodino
- Ecología y Conservación de Vida Silvestre, Centro Austral de Investigaciones Científicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Ushuaia, Tierra del Fuego, Argentina.
| | - Luciana Riccialdelli
- Ecología y Conservación de Vida Silvestre, Centro Austral de Investigaciones Científicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Ushuaia, Tierra del Fuego, Argentina
| | - Michael J Polito
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, United States of America
| | | | | | - Andrea Raya Rey
- Ecología y Conservación de Vida Silvestre, Centro Austral de Investigaciones Científicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Ushuaia, Tierra del Fuego, Argentina; Instituto de Ciencias Polares, Ambiente y Recursos Naturales, Universidad Nacional de Tierra del Fuego, Ushuaia, Argentina; Wildlife Conservation Society, Buenos Aires, Argentina
| |
Collapse
|
29
|
Renedo M, Point D, Sonke JE, Lorrain A, Demarcq H, Graco M, Grados D, Gutiérrez D, Médieu A, Munaron JM, Pietri A, Colas F, Tremblay Y, Roy A, Bertrand A, Bertrand SL. ENSO Climate Forcing of the Marine Mercury Cycle in the Peruvian Upwelling Zone Does Not Affect Methylmercury Levels of Marine Avian Top Predators. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15754-15765. [PMID: 34797644 DOI: 10.1021/acs.est.1c03861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Climate change is expected to affect marine mercury (Hg) biogeochemistry and biomagnification. Recent modeling work suggested that ocean warming increases methylmercury (MeHg) levels in fish. Here, we studied the influence of El Niño Southern Oscillations (ENSO) on Hg concentrations and stable isotopes in time series of seabird blood from the Peruvian upwelling and oxygen minimum zone. Between 2009 and 2016, La Niña (2011) and El Niño conditions (2015-2016) were accompanied by sea surface temperature anomalies up to 3 °C, oxycline depth change (20-100 m), and strong primary production gradients. Seabird Hg levels were stable and did not co-vary significantly with oceanographic parameters, nor with anchovy biomass, the primary dietary source to seabirds (90%). In contrast, seabird Δ199Hg, proxy for marine photochemical MeHg breakdown, and δ15N showed strong interannual variability (up to 0.8 and 3‰, respectively) and sharply decreased during El Niño. We suggest that lower Δ199Hg during El Niño represents reduced MeHg photodegradation due to the deepening of the oxycline. This process was balanced by equally reduced Hg methylation due to reduced productivity, carbon export, and remineralization. The non-dependence of seabird MeHg levels on strong ENSO variability suggests that marine predator MeHg levels may not be as sensitive to climate change as is currently thought.
Collapse
Affiliation(s)
- Marina Renedo
- Géosciences Environnement Toulouse (GET)-Institut de Recherche pour le Développement (IRD), CNRS, Université de Toulouse, 14 Avenue Edouard Belin, Toulouse 31400, France
| | - David Point
- Géosciences Environnement Toulouse (GET)-Institut de Recherche pour le Développement (IRD), CNRS, Université de Toulouse, 14 Avenue Edouard Belin, Toulouse 31400, France
| | - Jeroen E Sonke
- Géosciences Environnement Toulouse (GET)-Institut de Recherche pour le Développement (IRD), CNRS, Université de Toulouse, 14 Avenue Edouard Belin, Toulouse 31400, France
| | - Anne Lorrain
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané F-29280 France
| | - Hervé Demarcq
- IRD, MARBEC (Univ. Montpellier, CNRS, Ifremer, IRD), Sète 34203, France
| | - Michelle Graco
- Instituto del Mar del Perú (IMARPE), Esquina Gamarra y General Valle, Callao 07021, Peru
| | - Daniel Grados
- Instituto del Mar del Perú (IMARPE), Esquina Gamarra y General Valle, Callao 07021, Peru
| | - Dimitri Gutiérrez
- Instituto del Mar del Perú (IMARPE), Esquina Gamarra y General Valle, Callao 07021, Peru
| | - Anaïs Médieu
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané F-29280 France
| | | | - Alice Pietri
- Instituto del Mar del Perú (IMARPE), Esquina Gamarra y General Valle, Callao 07021, Peru
| | - François Colas
- LOCEAN IPSL (IRD/CNRS/SU/MNHN), 4 Place Jussieu, Paris 75252, France
| | - Yann Tremblay
- IRD, MARBEC (Univ. Montpellier, CNRS, Ifremer, IRD), Sète 34203, France
| | - Amédée Roy
- IRD, MARBEC (Univ. Montpellier, CNRS, Ifremer, IRD), Sète 34203, France
| | - Arnaud Bertrand
- IRD, MARBEC (Univ. Montpellier, CNRS, Ifremer, IRD), Sète 34203, France
| | | |
Collapse
|
30
|
Manceau A, Brossier R, Janssen SE, Rosera TJ, Krabbenhoft DP, Cherel Y, Bustamante P, Poulin BA. Mercury Isotope Fractionation by Internal Demethylation and Biomineralization Reactions in Seabirds: Implications for Environmental Mercury Science. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13942-13952. [PMID: 34596385 DOI: 10.1021/acs.est.1c04388] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A prerequisite for environmental and toxicological applications of mercury (Hg) stable isotopes in wildlife and humans is quantifying the isotopic fractionation of biological reactions. Here, we measured stable Hg isotope values of relevant tissues of giant petrels (Macronectes spp.). Isotopic data were interpreted with published HR-XANES spectroscopic data that document a stepwise transformation of methylmercury (MeHg) to Hg-tetraselenolate (Hg(Sec)4) and mercury selenide (HgSe) (Sec = selenocysteine). By mathematical inversion of isotopic and spectroscopic data, identical δ202Hg values for MeHg (2.69 ± 0.04‰), Hg(Sec)4 (-1.37 ± 0.06‰), and HgSe (0.18 ± 0.02‰) were determined in 23 tissues of eight birds from the Kerguelen Islands and Adélie Land (Antarctica). Isotopic differences in δ202Hg between MeHg and Hg(Sec)4 (-4.1 ± 0.1‰) reflect mass-dependent fractionation from a kinetic isotope effect due to the MeHg → Hg(Sec)4 demethylation reaction. Surprisingly, Hg(Sec)4 and HgSe differed isotopically in δ202Hg (+1.6 ± 0.1‰) and mass-independent anomalies (i.e., changes in Δ199Hg of ≤0.3‰), consistent with equilibrium isotope effects of mass-dependent and nuclear volume fractionation from Hg(Sec)4 → HgSe biomineralization. The invariance of species-specific δ202Hg values across tissues and individual birds reflects the kinetic lability of Hg-ligand bonds and tissue-specific redistribution of MeHg and inorganic Hg, likely as Hg(Sec)4. These observations provide fundamental information necessary to improve the interpretation of stable Hg isotope data and provoke a revisitation of processes governing isotopic fractionation in biota and toxicological risk assessment in wildlife.
Collapse
Affiliation(s)
- Alain Manceau
- Université Grenoble Alpes, ISTerre, CNRS, 38000 Grenoble, France
| | - Romain Brossier
- Université Grenoble Alpes, ISTerre, CNRS, 38000 Grenoble, France
| | - Sarah E Janssen
- Upper Midwest Water Science Center, U.S. Geological Survey, Middleton, Wisconsin 53562, United States
| | - Tylor J Rosera
- Upper Midwest Water Science Center, U.S. Geological Survey, Middleton, Wisconsin 53562, United States
| | - David P Krabbenhoft
- Upper Midwest Water Science Center, U.S. Geological Survey, Middleton, Wisconsin 53562, United States
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), CNRS, La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), CNRS-La Rochelle Université, 17000 La Rochelle, France
| | - Brett A Poulin
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
31
|
Li C, Xu Z, Luo K, Chen Z, Xu X, Xu C, Qiu G. Biomagnification and trophic transfer of total mercury and methylmercury in a sub-tropical montane forest food web, southwest China. CHEMOSPHERE 2021; 277:130371. [PMID: 34384195 DOI: 10.1016/j.chemosphere.2021.130371] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 06/13/2023]
Abstract
Little is known about the bioaccumulation and trophic transfer of total mercury (THg) and methylmercury (MeHg) via food webs in terrestrial ecosystems, especially in subtropical forest ecosystems. In the present study, THg and MeHg were determined as well as the carbon (δ13C) and nitrogen (δ15N) isotope composition in samples of soils, plants, invertebrates, and songbird feathers to construct food webs in a remote subtropical montane forest in Mt. Ailao, southwest China and assess the bioaccumulation, biomagnification, and trophic transfer of Hg. Results showed that the trophic levels (TLs) of all consumers ranged from 0.8 to 3.3 and followed the order of songbirds > spiders > omnivorous insects > herbivorous insects > plants, and THg and MeHg exhibited a clear biomagnification up the food chain from plants-herbivorous/omnivorous insects-spiders-songbirds. The lowest MeHg concentration was observed in pine needles ranged from 0.104 to 0.949 ng g-1 with only a 1.6% ratio of MeHg to THg (MeHg%), while the highest MeHg concentrations ranged from 425 to 5272 ng g-1 in songbirds with MeHg% values of up to 96%. High values of trophic magnification slope (TMS) for THg (0.22) and MeHg (0.38) were observed in plant-invertebrate-songbird food chain, verifying the significant bioaccumulation of Hg, particularly MeHg, in the remote subtropical forest ecosystem. This study confirmed the production and efficient biomagnification of MeHg in remote subtropical montane forest and the significant bioaccumulation of MeHg in terrestrial top predators.
Collapse
Affiliation(s)
- Chan Li
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550001, China
| | - Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kang Luo
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, 666303, China; CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, 666303, China; Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, 676200, China
| | - Zhuo Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550001, China.
| | - Xiaohang Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengxiang Xu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| |
Collapse
|
32
|
Pinzone M, Cransveld A, Tessier E, Bérail S, Schnitzler J, Das K, Amouroux D. Contamination levels and habitat use influence Hg accumulation and stable isotope ratios in the European seabass Dicentrarchus labrax. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 281:117008. [PMID: 33813195 DOI: 10.1016/j.envpol.2021.117008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/15/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Hg accumulation in marine organisms depends strongly on in situ water or sediment biogeochemistry and levels of Hg pollution. To predict the rates of Hg exposure in human communities, it is important to understand Hg assimilation and processing within commercially harvested marine fish, like the European seabass Dicentrarchus labrax. Previously, values of Δ199Hg and δ202Hg in muscle tissue successfully discriminated between seven populations of European seabass. In the present study, a multi-tissue approach was developed to assess the underlying processes behind such discrimination. We determined total Hg content (THg), the proportion of monomethyl-Hg (%MeHg), and Hg isotopic composition (e.g. Δ199Hg and δ202Hg) in seabass liver. We compared this to the previously published data on muscle tissue and local anthropogenic Hg inputs. The first important finding of this study showed an increase of both %MeHg and δ202Hg values in muscle compared to liver in all populations, suggesting the occurrence of internal MeHg demethylation in seabass. This is the first evidence of such a process occurring in this species. Values for mass-dependent (MDF, δ202Hg) and mass-independent (MIF, Δ199Hg) isotopic fractionation in liver and muscle accorded with data observed in estuarine fish (MDF, 0-1‰ and MIF, 0-0.7‰). Black Sea seabass stood out from other regions, presenting higher MIF values (≈1.5‰) in muscle and very low MDF (≈-1‰) in liver. This second finding suggests that under low Hg bioaccumulation, Hg isotopic composition may allow the detection of a shift in the habitat use of juvenile fish, such as for first-year Black Sea seabass. Our study supports the multi-tissue approach as a valid tool for refining the analysis of Hg sourcing and metabolism in a marine fish. The study's major outcome indicates that Hg levels of pollution and fish foraging location are the main factors influencing Hg species accumulation and isotopic fractionation in the organisms.
Collapse
Affiliation(s)
- Marianna Pinzone
- Freshwater and Oceanic Sciences Unit of Research (FOCUS), Laboratory of Oceanology, University of Liège, B6c Allée du 6 Août, 4000, Liège, Belgium
| | - Alice Cransveld
- Freshwater and Oceanic Sciences Unit of Research (FOCUS), Laboratory of Oceanology, University of Liège, B6c Allée du 6 Août, 4000, Liège, Belgium
| | - Emmanuel Tessier
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux (IPREM), Technopôle Helioparc, 2 Avenue Pierre Angot, 64053, Pau Cedex 09, France
| | - Sylvain Bérail
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux (IPREM), Technopôle Helioparc, 2 Avenue Pierre Angot, 64053, Pau Cedex 09, France
| | - Joseph Schnitzler
- Freshwater and Oceanic Sciences Unit of Research (FOCUS), Laboratory of Oceanology, University of Liège, B6c Allée du 6 Août, 4000, Liège, Belgium; Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine of Hannover, Foundation, Werftstraße 6, 25761, Büsum, Schleswig-Holstein, Germany
| | - Krishna Das
- Freshwater and Oceanic Sciences Unit of Research (FOCUS), Laboratory of Oceanology, University of Liège, B6c Allée du 6 Août, 4000, Liège, Belgium.
| | - David Amouroux
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux (IPREM), Technopôle Helioparc, 2 Avenue Pierre Angot, 64053, Pau Cedex 09, France
| |
Collapse
|
33
|
Bracey AM, Etterson MA, Strand FC, Matteson SW, Niemi GJ, Cuthbert FJ, Hoffman JC. Foraging Ecology Differentiates Life Stages and Mercury Exposure in Common Terns (Sterna hirundo). INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2021; 17:398-410. [PMID: 32930480 PMCID: PMC8108127 DOI: 10.1002/ieam.4341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/19/2020] [Accepted: 09/03/2020] [Indexed: 05/21/2023]
Abstract
Some populations of common terns (Sterna hirundo) breeding at inland lakes in North America are declining, including the Laurentian Great Lakes. Terns nesting at inland colonies forage in freshwater during the breeding season and primarily in coastal marine environments during the nonbreeding season. As piscivores, they are susceptible to dietary Hg exposure. To characterize patterns of Hg exposure in this population, we 1) quantified within and among season differences in total mercury (THg) concentrations (μg/g) in blood and feathers at 2 Lake Superior breeding colonies, and 2) documented spatial and temporal variation in exposure by studying adult foraging ecology using geospatial tracking devices and stable isotopes. We used general linear models to assess the relationship between isotopic composition and THg concentrations in bird tissues relative to sex, age, colony location, and season. The THg concentrations were lowest in winter-grown feathers (geometric mean [95% confidence limits]): 1.32 (1.09-1.59) μg/g dw (n = 60), higher at the more industrially influenced colony (chick feathers: 4.95 [4.62-5.37] μg/g dw [n = 20]), and increased with a riverine-based diet. During the breeding season, Hg exposure varied along a gradient from lake to river, with adult females having lower blood THg concentrations than males (females: 0.83 [0.67-1.03]) μg/g ww (n = 7); males: 1.15 (0.92-1.45) μg/g ww (n = 5). Stable isotope values suggested adults obtained 42 ± 12% (n = 12) of their diet from the river during incubation, which was validated with tracking data. During chick-rearing, chicks obtained 68 ± 19% (n = 44) of their diet from the river. Our results indicate colony location, foraging behavior, and season influenced Hg exposure for these Lake Superior colonies and underscores the importance of local contamination with respect to exposure. Integr Environ Assess Manag 2021;17:398-410. © 2020 SETAC.
Collapse
Affiliation(s)
- Annie M. Bracey
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, 2003 Upper Buford Circle, St. Paul, Minnesota, 55108, USA
- Natural Resources Research Institute, University of Minnesota, 5013 Miller Trunk Hwy, Duluth, Minnesota, 55811, USA
| | - Matthew A. Etterson
- US EPA Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota, 55804, USA
| | - Frederick C. Strand
- Wisconsin Department of Natural Resources, 6250 Ranger Road, Brule, Wisconsin, 54820, USA
- Retired
| | - Sumner W. Matteson
- Wisconsin Department of Natural Resources, 101 South Webster Street, GEF 2, Madison, Wisconsin, 53707, USA
| | - Gerald J. Niemi
- Natural Resources Research Institute, University of Minnesota, 5013 Miller Trunk Hwy, Duluth, Minnesota, 55811, USA
| | - Francesca J. Cuthbert
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, 2003 Upper Buford Circle, St. Paul, Minnesota, 55108, USA
| | - Joel C. Hoffman
- US EPA Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota, 55804, USA
| |
Collapse
|
34
|
de Medeiros Costa G, Lázaro WL, Sanpera C, Sánchez-Fortún M, Dos Santos Filho M, Díez S. Rhamphotheca as a useful indicator of mercury in seabirds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:141730. [PMID: 32920380 DOI: 10.1016/j.scitotenv.2020.141730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
The evaluation of mercury (Hg) toxicity in wildlife species has prompted a search for sensitive indicators to accurately measure the body burden of Hg. Despite the extensive use of feathers as an indicator of Hg in birds, they do not appear to be an entirely suitable indicator of the extent of contamination in certain conditions and bird species since Hg levels are influenced by the growth period, timing of the last moult and migration. This research aimed to evaluate rhamphotheca as a potential indicator of environmental Hg concentrations in seabirds. We used culled yellow-legged gulls (Larus michahellis) (n = 20) and determined THg in rhamphotheca and feathers. We distinguished between upper and lower rhamphotheca, and divided each one into 16 equal portions along the culmen to analyse their THg content spatially. In each bird, THg was also determined in primary (P1) and secondary (S8) feathers and compared with rhamphotheca. The median (25th, 75th percentile) rhamphotheca Hg concentration was 13.44 (9.63, 17.46) μg/g, which was twofold higher than in the feathers 7.56 (4.88, 12.89) μg/g. Median THg in rhamphotheca was significantly higher (p < 0.05) in females 15.05 (10.35, 23.04) μg/g than in males 12.34 (8.57, 15.19) μg/g, whereas no differences (p > 0.05) were found in the feathers. No significant differences in Hg levels were found between upper and lower beak mandibles or along either. In contrast, significant differences in Hg concentrations were found between the P1 and S8 feathers (mean, 12.04 vs. 6.04 μg/g). No correlation was found between Hg content in rhamphotheca and feathers. Mercury levels in rhamphotheca exhibited stronger significant relationships with weight (R2 = 0.568), length (R2 = 0.524) and culmen (R2 = 0.347) than the levels in the feathers, which showed no correlation. Overall, our results suggest that rhamphotheca is a suitable tissue indicator for Hg monitoring in gulls; however, further studies are needed to extend our research to other bird species.
Collapse
Affiliation(s)
- Gerlane de Medeiros Costa
- Programa de Pós-graduação em Ciências Ambientais, Centro de Pesquisa de Limnologia, Biodiversidade, Etnobiologia do Pantanal - CELBE, Universidade do Estado do Mato Grosso - UNEMAT, Campus Cáceres - Avenida Santos Dumont, s/n - Cidade Universitária, Cáceres, MT 78200-000, Brazil
| | - Wilkinson L Lázaro
- Programa de Pós-graduação em Ciências Ambientais, Centro de Pesquisa de Limnologia, Biodiversidade, Etnobiologia do Pantanal - CELBE, Universidade do Estado do Mato Grosso - UNEMAT, Campus Cáceres - Avenida Santos Dumont, s/n - Cidade Universitária, Cáceres, MT 78200-000, Brazil
| | - Carola Sanpera
- Departament de Biologia Evolutiva i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| | - Moisès Sánchez-Fortún
- Departament de Biologia Evolutiva i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| | - Manoel Dos Santos Filho
- Programa de Pós-graduação em Ciências Ambientais, Centro de Pesquisa de Limnologia, Biodiversidade, Etnobiologia do Pantanal - CELBE, Universidade do Estado do Mato Grosso - UNEMAT, Campus Cáceres - Avenida Santos Dumont, s/n - Cidade Universitária, Cáceres, MT 78200-000, Brazil
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034 Barcelona, Spain.
| |
Collapse
|
35
|
Renedo M, Pedrero Z, Amouroux D, Cherel Y, Bustamante P. Mercury isotopes of key tissues document mercury metabolic processes in seabirds. CHEMOSPHERE 2021; 263:127777. [PMID: 32828051 DOI: 10.1016/j.chemosphere.2020.127777] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 05/12/2023]
Abstract
Seabirds accumulate significant amounts of mercury (Hg) due to their long-life span together with their medium to high trophic position in marine food webs. Hg speciation and Hg isotopic analyses of total Hg in different tissues (pectoral muscles, liver, brain, kidneys, blood and feathers) were assessed to investigate their detoxification mechanisms. Three species with contrasted ecological characteristics were studied: the Antarctic prion (zooplankton feeder), the white-chinned petrel (pelagic generalist consumer) and the southern giant petrel (scavenger on seabirds and marine mammals). The difference of mass-dependent fractionation (MDF, δ202Hg) values between liver and muscles (up to 0.94 ‰) in all three seabirds strongly suggests hepatic demethylation of the isotopically lighter methylmercury (MeHg) and subsequent redistribution of the isotopically heavier fraction of MeHg towards the muscles. Similarly, higher δ202Hg values in feathers (up to 1.88 ‰) relative to muscles and higher proportion of MeHg in feathers (94-97%) than muscles (30-70%) likely indicate potential MeHg demethylation in muscle and preferential excretion of MeHg (isotopically heavier) in the growing feathers during moult. The extents of these key detoxification processes were strongly dependent on the species-specific detoxification strategies and levels of dietary MeHg exposure. We also found higher mass-independent fractionation (MIF, Δ199Hg) values in feathers relative to internal tissues, possibly due to different integration times of Hg exposure between permanently active organs and inert tissues as feathers. Hg isotope variations reported in this study show evidence of detoxification processes in seabirds and propose a powerful approach for deep investigation of the Hg metabolic processes in seabirds.
Collapse
Affiliation(s)
- Marina Renedo
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS- La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France; Universite de Pau et des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour L'Environnement et Les Matériaux, Pau, France.
| | - Zoyne Pedrero
- Universite de Pau et des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour L'Environnement et Les Matériaux, Pau, France.
| | - David Amouroux
- Universite de Pau et des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour L'Environnement et Les Matériaux, Pau, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé, UMR 7372 Du CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS- La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 75005, Paris, France
| |
Collapse
|
36
|
Le Croizier G, Lorrain A, Sonke JE, Hoyos-Padilla EM, Galván-Magaña F, Santana-Morales O, Aquino-Baleytó M, Becerril-García EE, Muntaner-López G, Ketchum J, Block B, Carlisle A, Jorgensen SJ, Besnard L, Jung A, Schaal G, Point D. The Twilight Zone as a Major Foraging Habitat and Mercury Source for the Great White Shark. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15872-15882. [PMID: 33238094 DOI: 10.1021/acs.est.0c05621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The twilight zone contains the largest biomass of the world's ocean. Identifying its role in the trophic supply and contaminant exposure of marine megafauna constitutes a critical challenge in the context of global change. The white shark (Carcharodon carcharias) is a threatened species with some of the highest concentrations of neurotoxin methylmercury (MeHg) among marine top predators. Large white sharks migrate seasonally from coastal habitats, where they primarily forage on pinnipeds, to oceanic offshore habitats. Tagging studies suggest that while offshore, white sharks may forage at depth on mesopelagic species, yet no biochemical evidence exists. Here, we used mercury isotopic composition to assess the dietary origin of MeHg contamination in white sharks from the Northeast Pacific Ocean. We estimated that a minimum of 72% of the MeHg accumulated by white sharks originates from the consumption of mesopelagic prey, while a maximum of 25% derives from pinnipeds. In addition to highlighting the potential of mercury isotopes to decipher the complex ecological cycle of marine predators, our study provides evidence that the twilight zone constitutes a crucial foraging habitat for these large predators, which had been suspected for over a decade. Climate change is predicted to expand the production of mesopelagic MeHg and modify the mesopelagic biomass globally. Considering the pivotal role of the twilight zone is therefore essential to better predict both MeHg exposure and trophic supply to white sharks, and effectively protect these key vulnerable predators.
Collapse
Affiliation(s)
- Gaël Le Croizier
- UMR Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France
| | - Anne Lorrain
- Univ Brest, CNRS, Ifremer, LEMAR, 29280 Plouzané, France
| | - Jeroen E Sonke
- UMR Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France
| | - E Mauricio Hoyos-Padilla
- Pelagios-Kakunjá A.C., Sinaloa 1540, Col. Las Garzas, 23070 La Paz, Baja California Sur, México
- Fins Attached: Marine Research and Conservation, 19675 Still Glen Drive, Colorado Springs, Colorado 80908, United States
| | - Felipe Galván-Magaña
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n., 23096 La Paz, Baja California Sur, México
| | | | - Marc Aquino-Baleytó
- Pelagios-Kakunjá A.C., Sinaloa 1540, Col. Las Garzas, 23070 La Paz, Baja California Sur, México
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n., 23096 La Paz, Baja California Sur, México
| | - Edgar E Becerril-García
- Pelagios-Kakunjá A.C., Sinaloa 1540, Col. Las Garzas, 23070 La Paz, Baja California Sur, México
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n., 23096 La Paz, Baja California Sur, México
| | - Gádor Muntaner-López
- Pelagios-Kakunjá A.C., Sinaloa 1540, Col. Las Garzas, 23070 La Paz, Baja California Sur, México
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n., 23096 La Paz, Baja California Sur, México
| | - James Ketchum
- Pelagios-Kakunjá A.C., Sinaloa 1540, Col. Las Garzas, 23070 La Paz, Baja California Sur, México
| | - Barbara Block
- Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, United States
| | - Aaron Carlisle
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware 19958, United States
| | - Salvador J Jorgensen
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Lucien Besnard
- Univ Brest, CNRS, Ifremer, LEMAR, 29280 Plouzané, France
| | - Armelle Jung
- Des Requins et Des Hommes (DRDH), BLP/Technopole Brest-Iroise, 15 rue Dumont d'Urville, Plouzané 29860, France
| | | | - David Point
- UMR Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France
| |
Collapse
|
37
|
Liu HW, Yu B, Yang L, Wang LL, Fu JJ, Liang Y, Bu D, Yin YG, Hu LG, Shi JB, Jiang GB. Terrestrial mercury transformation in the Tibetan Plateau: New evidence from stable isotopes in upland buzzards. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123211. [PMID: 32593022 DOI: 10.1016/j.jhazmat.2020.123211] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/05/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Understanding the geochemical cycle of mercury (Hg) in the high-altitude Tibetan Plateau is of great value for studying the long-range transport of Hg. Herein, speciation and isotopic compositions of Hg in the muscle and feathers of upland buzzards (Buteo hemilasius) were studied to trace the terrestrial transformation of Hg in the Tibetan Plateau. Very low Hg content and relatively low δ202Hg values (feather: -0.77 ± 0.50‰, n = 9, muscle: -1.29 ± 0.29‰, n = 13, 1SD) were observed in upland buzzards. In contrast, the Δ199Hg values could be as high as 2.89‰ in collected samples. To our knowledge, this is the highest Δ199Hg value reported in avian tissues. Moreover, upland buzzards showed significantly different Δ199Hg values from fish collected from the same region, suggesting different generation and transformation processes of methylmercury (MeHg) in terrestrial and aquatic ecosystems. We speculated that different percentages of Hg undergoing photochemical reactions and contributions of atmospheric MeHg were possible reasons for observed differences. The results provide new clues for different circulation histories of Hg in terrestrial and aquatic ecosystems, which will be critical for further study of geochemical cycle and ecological risk of Hg in the environment.
Collapse
Affiliation(s)
- Hong-Wei Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ben Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lin Yang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lin-Lin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jian-Jie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Duo Bu
- Science Faculty, Tibet University, Lhasa 850000, China
| | - Yong-Guang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Li-Gang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jian-Bo Shi
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Gui-Bin Jiang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
38
|
Souza JS, Kasper D, da Cunha LST, Soares TA, de Lira Pessoa AR, de Carvalho GO, Costa ES, Niedzielski P, Torres JPM. Biological factors affecting total mercury and methylmercury levels in Antarctic penguins. CHEMOSPHERE 2020; 261:127713. [PMID: 32738710 DOI: 10.1016/j.chemosphere.2020.127713] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/15/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Penguins in Antarctica occupy high trophic levels, thus accumulating high amounts of mercury (Hg) through bioaccumulation and biomagnification. Blood reflects the current levels of contaminants circulating in the body, while feathers are known as the main route of Hg elimination in birds. Studies sampling chicks and adults can provide a comprehensive picture of bioaccumulation and local contamination. Three pygoscelid species (Pygoscelis adeliae, Pygoscelis antarcticus and Pygoscelis papua) have circumpolar distributions being the ideal sentinels of Antarctic environmental pollution. This study aimed to assess Hg contamination of the pristine Antarctic region using non-destructive penguin samples. Fieldwork was carried out during the austral summer of 2013/2014 in the South Shetland Islands, off the north-west Antarctic Peninsula. Concentrations of total Hg (ng.g-1 dw) in blood ranged from 39 to 182 in chicks and 45 to 581 in adults, while concentrations in feathers ranged from 73 to 598 in chicks and 156 to 1648 in adults. Most Hg in feathers (about 70%) is accumulated in the form of methylmercury. Differences were demonstrated in mercury bioaccumulation were related to species and age, but not to sex. To our knowledge this is the first study to report MeHg levels in both juvenile and adult pygoscelid penguins.
Collapse
Affiliation(s)
- Juliana Silva Souza
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, Brazil; Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Daniele Kasper
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, Brazil
| | - Larissa Schmauder Teixeira da Cunha
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, Brazil
| | - Tuany Alves Soares
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, Brazil
| | - Adriana Rodrigues de Lira Pessoa
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, Brazil
| | - Gabriel Oliveira de Carvalho
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, Brazil
| | - Erli Schneider Costa
- Programa de Pós-Graduação em Ambiente e Sustentabilidade, Universidade Estadual do Rio Grande do Sul, Unidade Universitária Hortênsias, Rua Assis Brasil 842, 95400-000, Rio Grande do Sul, Brazil
| | - Przemysław Niedzielski
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - João Paulo Machado Torres
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Renedo M, Bustamante P, Cherel Y, Pedrero Z, Tessier E, Amouroux D. A "seabird-eye" on mercury stable isotopes and cycling in the Southern Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140499. [PMID: 33167295 DOI: 10.1016/j.scitotenv.2020.140499] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 05/12/2023]
Abstract
Since mercury (Hg) biogeochemistry in the Southern Ocean is minimally documented, we investigated Hg stable isotopes in the blood of seabirds breeding at different latitudes in the Antarctic, Subantarctic and Subtropical zones. Hg isotopic composition was determined in adult penguins (5 species) and skua chicks (2 species) from Adélie Land (66°39'S, Antarctic) to Crozet (46°25'S, Subantarctic) and Amsterdam Island (37°47'S, Subtropical). Mass-dependent (MDF, δ202Hg) and mass-independent (MIF, Δ199Hg) Hg isotopic values separated populations geographically. Antarctic seabirds exhibited lower δ202Hg values (-0.02 to 0.79 ‰, min-max) than Subantarctic (0.88 to 2.12 ‰) and Subtropical (1.44 to 2.37 ‰) seabirds. In contrast, Δ199Hg values varied slightly from Antarctic (1.31 to 1.73 ‰) to Subtropical (1.69 to 2.04 ‰) waters. The extent of methylmercury (MeHg) photodemethylation extrapolated from Δ199Hg values was not significantly different between locations, implying that most of the bioaccumulated MeHg was of mesopelagic origin. The larger increase of MDF between the three latitudes co-varies with MeHg concentrations. This supports an increasing effect of specific biogenic Hg pathways from Antarctic to Subtropical waters, such as Hg biological transformations and accumulations. This "biogenic effect" among different productive southern oceanic regions can also be related to different mixed layer depth dynamics and biological productivity turnover that specifically influence the vertical transport between the mesopelagic and the photic zones. This study shows the first Hg isotopic data of the Southern Ocean at large scale and reveals how regional Southern Ocean dynamics and productivity control marine MeHg biogeochemistry and the exposure of seabirds to Hg contamination.
Collapse
Affiliation(s)
- Marina Renedo
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France.
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Zoyne Pedrero
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France
| | - Emmanuel Tessier
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France
| | - David Amouroux
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France.
| |
Collapse
|
40
|
Renedo M, Amouroux D, Albert C, Bérail S, Bråthen VS, Gavrilo M, Grémillet D, Helgason HH, Jakubas D, Mosbech A, Strøm H, Tessier E, Wojczulanis-Jakubas K, Bustamante P, Fort J. Contrasting Spatial and Seasonal Trends of Methylmercury Exposure Pathways of Arctic Seabirds: Combination of Large-Scale Tracking and Stable Isotopic Approaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13619-13629. [PMID: 33063513 DOI: 10.1021/acs.est.0c03285] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Despite the limited direct anthropogenic mercury (Hg) inputs in the circumpolar Arctic, elevated concentrations of methylmercury (MeHg) are accumulated in Arctic marine biota. However, the MeHg production and bioaccumulation pathways in these ecosystems have not been completely unraveled. We measured Hg concentrations and stable isotope ratios of Hg, carbon, and nitrogen in the feathers and blood of geolocator-tracked little auk Alle alle from five Arctic breeding colonies. The wide-range spatial mobility and tissue-specific Hg integration times of this planktivorous seabird allowed the exploration of their spatial (wintering quarters/breeding grounds) and seasonal (nonbreeding/breeding periods) MeHg exposures. An east-to-west increase of head feather Hg concentrations (1.74-3.48 μg·g-1) was accompanied by significant spatial trends of Hg isotope (particularly Δ199Hg: 0.96-1.13‰) and carbon isotope (δ13C: -20.6 to -19.4‰) ratios. These trends suggest a distinct mixing/proportion of MeHg sources between western North Atlantic and eastern Arctic regions. Higher Δ199Hg values (+0.4‰) in northern colonies indicate an accumulation of more photochemically impacted MeHg, supporting shallow MeHg production and bioaccumulation in high Arctic waters. The combination of seabird tissue isotopic analysis and spatial tracking helps in tracing the MeHg sources at various spatio-temporal scales.
Collapse
Affiliation(s)
- Marina Renedo
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, 64000 Pau, France
| | - David Amouroux
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, 64000 Pau, France
| | - Céline Albert
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - Sylvain Bérail
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, 64000 Pau, France
| | | | - Maria Gavrilo
- Association of Maritime Heritage: Sustain and Explore, 199106 Saint Petersburg, Russia
| | - David Grémillet
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS-La Rochelle Université, 405 Route de Prissé la Charrière, 79360 Villiers-en-Bois, France
- Percy FitzPatrick Institute, DST/NRF Centre of Excellence, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| | | | - Dariusz Jakubas
- Faculty of Biology, Gdańsk University, 80-308 Gdańsk, Poland
| | - Anders Mosbech
- Department of Bioscience, Aarhus University, 4000 Roskilde, Denmark
| | | | - Emmanuel Tessier
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, 64000 Pau, France
| | | | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| | - Jérôme Fort
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
41
|
Zorrozua N, Castège I, Diaz B, Egunez A, Galarza A, Hidalgo J, Milon E, Sanpera C, Arizaga J. Relating trophic ecology and Hg species contamination in a resident opportunistic seabird of the Bay of Biscay. ENVIRONMENTAL RESEARCH 2020; 186:109526. [PMID: 32335430 DOI: 10.1016/j.envres.2020.109526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Methylmercury (MeHg) is the most bioavailable and toxic form of the globally distributed pollutant Hg. Organisms of higher trophic levels living in aquatic ecosystems have potentially higher concentrations of MeHg. In this work, we analysed both MeHg and inorganic Mercury (Hg(II)) concentrations from dorsal feathers of chicks from ten colonies of Yellow-legged Gull (Larus michahellis) in the south-eastern part of the Bay of Biscay. Overall, we detected a high mean MeHg concentration that, however, differed among colonies. Additionally, based on stable isotopes analysis (δ13C and δ15N) and conducting General Linear Mixed Models, we found that chicks which were mostly/mainly fed with prey of marine origin had higher levels of MeHg. We propose Yellow-legged Gull as a reliable biomonitor for Hg species, as it is easy for sampling and in compliance with the Minamata convention on Mercury.
Collapse
Affiliation(s)
- Nere Zorrozua
- Department of Ornithology, Aranzadi Sciences Society, Zorroagagaina 11, E-20014, Donostia, Spain.
| | - Iker Castège
- Centre de la Mer de Biarritz, Plateau de l'Atalaye, 64200, Biarritz, France
| | - Beñat Diaz
- Department of Ornithology, Aranzadi Sciences Society, Zorroagagaina 11, E-20014, Donostia, Spain
| | - Alexandra Egunez
- Department of Ornithology, Aranzadi Sciences Society, Zorroagagaina 11, E-20014, Donostia, Spain
| | - Aitor Galarza
- Sustainable Development and Natural Environment Department, County Council of Biscay, 48014, Bilbao, Spain
| | | | - Emilie Milon
- Centre de la Mer de Biarritz, Plateau de l'Atalaye, 64200, Biarritz, France
| | - Carola Sanpera
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, E-08028, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Avda. Diagonal 643, E-08028, Barcelona, Spain
| | - Juan Arizaga
- Department of Ornithology, Aranzadi Sciences Society, Zorroagagaina 11, E-20014, Donostia, Spain
| |
Collapse
|
42
|
Carravieri A, Bustamante P, Labadie P, Budzinski H, Chastel O, Cherel Y. Trace elements and persistent organic pollutants in chicks of 13 seabird species from Antarctica to the subtropics. ENVIRONMENT INTERNATIONAL 2020; 134:105225. [PMID: 31711015 DOI: 10.1016/j.envint.2019.105225] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/06/2019] [Accepted: 09/24/2019] [Indexed: 05/24/2023]
Abstract
Seabirds from remote regions are mainly exposed to environmental contaminants from non-point contamination of their food webs. Pre-fledging seabird chicks are fed by their parents with marine prey captured in the vicinity of breeding colonies. Contaminant concentrations in tissues of pre-fledging chicks can thus be mostly related to local dietary sources, and have the potential to unravel spatial patterns of environmental contamination in marine ecosystems. Here, mercury (Hg), 13 other trace elements, and 18 persistent organic pollutants (POPs) were quantified in blood of chicks across four breeding locations that encompass a large latitudinal range in the southern Indian Ocean (from Antarctica, through subantarctic areas, to the subtropics), over a single breeding season. Thirteen species of penguins, albatrosses and petrels were studied, including endangered and near-threatened species, such as Amsterdam albatrosses and emperor penguins. Blood Hg burdens varied widely between species, with a factor of ~50 between the lowest and highest concentrations (mean ± SD, 0.05 ± 0.01 and 2.66 ± 0.81 µg g-1 dry weight, in thin-billed prions and Amsterdam albatrosses, respectively). Species relying on Antarctic waters for feeding had low Hg exposure. Concentrations of POPs were low in chicks, with the exception of hexachlorobenzene. Contaminant concentrations were mainly explained by species differences, but feeding habitat (inferred from δ13C values) and chicks' body mass also contributed to explain variation. Collectively, our findings call for further toxicological investigations in Amsterdam albatrosses and small petrel species, because they were exposed to high and diverse sources of contaminants, and in macaroni penguins, which specifically showed very high selenium concentrations. CAPSULE: Seabird chicks from four distant sites in the southern Indian Ocean had contrasted blood metallic and organic contaminant patterns depending on species, feeding habitat and body mass.
Collapse
Affiliation(s)
- Alice Carravieri
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS- La Rochelle Université, 79360 Villiers-en-Bois, France; Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS- La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP, UK.
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS- La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Pierre Labadie
- CNRS, UMR 5805 EPOC (LPTC Research Group), Université de Bordeaux, 351 Cours de la Libération, F-33405 Talence Cedex, France
| | - Hélène Budzinski
- CNRS, UMR 5805 EPOC (LPTC Research Group), Université de Bordeaux, 351 Cours de la Libération, F-33405 Talence Cedex, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS- La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS- La Rochelle Université, 79360 Villiers-en-Bois, France
| |
Collapse
|
43
|
Hayek EE, Brearley AJ, Howard T, Hudson P, Torres C, Spilde MN, Cabaniss S, Ali AMS, Cerrato JM. Calcium in Carbonate Water Facilitates the Transport of U(VI) in Brassica juncea Roots and Enables Root-to-Shoot Translocation. ACS EARTH & SPACE CHEMISTRY 2019; 3:2190-2196. [PMID: 31742240 PMCID: PMC6859903 DOI: 10.1021/acsearthspacechem.9b00171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The role of calcium (Ca) on the cellular distribution of U(VI) in Brassica juncea roots and root-to-shoot translocation was investigated using hydroponic experiments, microscopy, and spectroscopy. Uranium accumulated mainly in the roots (727-9376 mg kg-1) after 30 days of exposure to 80 μM dissolved U in water containing 1 mM HCO3 - at different Ca concentrations (0-6 mM) at pH 7.5. However, the concentration of U in the shoots increased 22 times in experiments with 6 mM Ca compared to 0 mM Ca. In the Ca control experiment, transmission electron microscopy-energy-dispersive spectroscopy analyses detected U-P-bearing precipitates in the cortical apoplast of parenchyma cells. In experiments with 0.3 mM Ca, U-P-bearing precipitates were detected in the cortical apoplast and the bordered pits of xylem cells. In experiments with 6 mM Ca, U-P-bearing precipitates aggregated in the xylem with no apoplastic precipitation. These results indicate that Ca in carbonate water inhibits the transport and precipitation of U in the root cortical apoplast and facilitates the symplastic transport and translocation toward shoots. These findings reveal the considerable role of Ca in the presence of carbonate in facilitating the transport of U in plants and present new insights for future assessment and phytoremediation strategies.
Collapse
Affiliation(s)
- Eliane El Hayek
- Department of Chemistry and Chemical Biology, University of New Mexico, MSC03 2060, Albuquerque, New Mexico 87131, United States
| | - Adrian J. Brearley
- Department of Earth and Planetary Sciences, University of New Mexico, MSC03 2040, Albuquerque, New Mexico 87131, United States
| | - Tamara Howard
- Department of Cell Biology and Physiology, University of New Mexico, MSC08 4750, Albuquerque, New Mexico 87131, United States
| | - Patrick Hudson
- Department of Biology, University of New Mexico, MSC03 2020, Albuquerque, New Mexico 87131, United States
| | - Chris Torres
- Department of Chemical and Biological Engineering, University of New Mexico, MSC01 1120, Albuquerque, New Mexico 87131, United States
| | - Michael N. Spilde
- Department of Earth and Planetary Sciences, University of New Mexico, MSC03 2040, Albuquerque, New Mexico 87131, United States
| | - Stephen Cabaniss
- Department of Chemistry and Chemical Biology, University of New Mexico, MSC03 2060, Albuquerque, New Mexico 87131, United States
| | - Abdul-Mehdi S. Ali
- Department of Earth and Planetary Sciences, University of New Mexico, MSC03 2040, Albuquerque, New Mexico 87131, United States
| | - José M. Cerrato
- Department of Civil Engineering, University of New Mexico, MSC01 1070, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
44
|
Kucharska K, Binkowski ŁJ, Batoryna M, Dudzik K, Zaguła G, Stawarz R. Blood mercury levels in mute swans (Cygnus olor) are not related to sex, but are related to age, with no blood parameter implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:21-30. [PMID: 31146235 DOI: 10.1016/j.envpol.2019.05.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Concentrations of mercury (Hg) were examined in the blood of mute swans from rural breeding sites and urban wintering areas in southern parts of Poland, Europe. The birds were classified into three age groups: cygnets, juveniles and adults. To investigate the potential impact of Hg on birds, hematocrit (Ht), reduced glutathione (GSH) levels and morphometric measurements were taken. Using morphometric parameters, we stated that all mute swans sampled were in good condition. The mercury concentrations found were rather low and differed between birds from industrialized wintering areas and rural breeding areas (means 7 ng/mL and 2 ng/mL, respectively). We found no difference in Hg concentrations between the sexes, but concentrations varied significantly between age groups (cygnets 2 ng/mL, juveniles 7 ng/mL and adults 6 ng/mL). A similar trend was observed for hematocrit levels. GSH levels did not differ between any of the groups studied. We found no significant relationship between blood parameters (Ht, GSH) in relation to Hg concentrations. We conclude that the Hg concentrations in blood may be influenced by industrialization, season and age, but generally low concentration such as those found by us do not affect Ht and GSH levels.
Collapse
Affiliation(s)
- Katarzyna Kucharska
- Institute of Biology, Pedagogical University of Cracow, Podbrzezie 3, 31-054, Krakow, Poland.
| | - Łukasz J Binkowski
- Institute of Biology, Pedagogical University of Cracow, Podbrzezie 3, 31-054, Krakow, Poland.
| | - Marta Batoryna
- Institute of Biology, Pedagogical University of Cracow, Podbrzezie 3, 31-054, Krakow, Poland.
| | - Krzysztof Dudzik
- Association of Psychoeducation and Environment M. O. S. T., Na Stoku 9/15, 25-437, Kielce, Poland.
| | - Grzegorz Zaguła
- Faculty of Biology and Agriculture, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| | - Robert Stawarz
- Institute of Biology, Pedagogical University of Cracow, Podbrzezie 3, 31-054, Krakow, Poland.
| |
Collapse
|
45
|
Liu H, Yu B, Fu J, Li Y, Yang R, Zhang Q, Liang Y, Yin Y, Hu L, Shi J, Jiang G. Different circulation history of mercury in aquatic biota from King George Island of the Antarctic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:892-897. [PMID: 31085475 DOI: 10.1016/j.envpol.2019.04.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/24/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
To trace the circulation history of aquatic bioavailable Hg in the Antarctic, the species and isotopic compositions of Hg in sediment, Archaeogastropoda (Agas), Neogastropoda (Ngas), and fish collected from King George Island were studied in detail. Positive mass independent fractionation (MIF) was observed and positively correlated with the percentages of methylmercury (MeHg%) in Agas and Ngas, suggesting an effect of MeHg accumulation during trophic transfer on MIF signatures. However, both the ratios of Δ199Hg/δ202Hg and Δ199Hg/Δ201Hg indicated different circulation histories of Hg in Agas, Ngas, and fish. The microbial methylation in sediment was the primary source of MeHg in Agas and Ngas (Δ199Hg/δ202Hg ∼0, Δ199Hg/Δ201Hg ∼1.00). In contrast, the MeHg in fish (Δ199Hg/δ202Hg = 0.55 ± 0.06, Δ199Hg/Δ201Hg = 1.19 ± 0.17) came from the combined sources of residual MeHg which had sunk from the surface water and microbial-methylated MeHg in sediments, and the bioavailable Hg in the sediments contributed to approximately 44% of the total Hg in fish. Subsequently, the Δ199Hg values of bioavailable MeHg and IHg in sediments were quantitatively calculated, which provided key end-member information for future source apportionment in the Antarctic and other pelagic regions. It was also found that the Hg accumulated in Agas and Ngas had no history of MeHg photo-degradation, indicating that the methylated Hg in benthic zones suffered little photo-degradation and thus presented high bioavailability and environmental risk.
Collapse
Affiliation(s)
- Hongwei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ben Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
46
|
Renedo M, Amouroux D, Pedrero Z, Bustamante P, Cherel Y. Identification of sources and bioaccumulation pathways of MeHg in subantarctic penguins: a stable isotopic investigation. Sci Rep 2018; 8:8865. [PMID: 29891979 PMCID: PMC5995893 DOI: 10.1038/s41598-018-27079-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/24/2018] [Indexed: 11/12/2022] Open
Abstract
Seabirds are widely used as bioindicators of mercury (Hg) contamination in marine ecosystems and the investigation of their foraging strategies is of key importance to better understand methylmercury (MeHg) exposure pathways and environmental sources within the different ecosystems. Here we report stable isotopic composition for both Hg mass-dependent (e.g. δ202Hg) and mass-independent (e.g. Δ199Hg) fractionation (proxies of Hg sources and transformations), carbon (δ13C, proxy of foraging habitat) and nitrogen (δ15N, proxy of trophic position) in blood of four species of sympatric penguins breeding at the subantarctic Crozet Islands (Southern Indian Ocean). Penguins have species-specific foraging strategies, from coastal to oceanic waters and from benthic to pelagic dives, and feed on different prey. A progressive increase to heavier Hg isotopic composition (δ202Hg and Δ199Hg, respectively) was observed from benthic (1.45 ± 0.12 and 1.41 ± 0.06‰) to epipelagic (1.93 ± 0.18 and 1.77 ± 0.13‰) penguins, indicating a benthic-pelagic gradient of MeHg sources close to Crozet Islands. The relative variations of MeHg concentration, δ202Hg and Δ199Hg with pelagic penguins feeding in Polar Front circumpolar waters (1.66 ± 0.11 and 1.54 ± 0.06‰) support that different MeHg sources occur at large scales in Southern Ocean deep waters.
Collapse
Affiliation(s)
- Marina Renedo
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000, La Rochelle, France. .,CNRS/UNIV PAU & PAYS ADOUR, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Materiaux, UMR 5254, 64000, Pau, France.
| | - David Amouroux
- CNRS/UNIV PAU & PAYS ADOUR, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Materiaux, UMR 5254, 64000, Pau, France
| | - Zoyne Pedrero
- CNRS/UNIV PAU & PAYS ADOUR, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Materiaux, UMR 5254, 64000, Pau, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 du CNRS-Université de La Rochelle, 79360, Villiers-en-Bois, France.
| |
Collapse
|