1
|
Ekanayake SA, Mai H, Chen D, Caruso RA. Recent advances in synthesis and application of Magnéli phase titanium oxides for energy storage and environmental remediation. Chem Sci 2025; 16:2980-3018. [PMID: 39840300 PMCID: PMC11744683 DOI: 10.1039/d4sc04477k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025] Open
Abstract
High-temperature reduction of TiO2 causes the gradual formation of structural defects, leading to oxygen vacancy planar defects and giving rise to Magnéli phases, which are substoichiometric titanium oxides that follow the formula Ti n O2n-1, with 4 ≤ n ≤ 9. A high concentration of defects provides several possible configurations for Ti4+ and Ti3+ within the crystal, with the variation in charge ordered states changing the electronic structure of the material. The changes in crystal and electronic structures of Magnéli phases introduce unique properties absent in TiO2, facilitating their diverse applications. Their exceptional electrical conductivity, stability in harsh chemical environments and capability to generate hydroxyl radicals make them highly valuable in electrochemical applications. Additionally, their high specific capacity and corrosion resistance make them ideal for energy storage facilities. These properties, combined with excellent solar light absorption, have led to their widespread use in electrochemical, photochemical, photothermal, catalytic and energy storage applications. To provide a complete overview of the formation, properties, and environmental- and energy-related applications of Magnéli phase titanium suboxides, this review initially highlights the crystal structure and the physical, thermoelectrical and optical properties of these materials. The conventional and novel strategies developed to synthesise these materials are then discussed, along with potential approaches to overcome challenges associated with current issues and future low-energy fabrication methods. Finally, we provide a comprehensive overview of their applications across various fields, including environmental remediation, energy storage, and thermoelectric and optoelectronic technologies. We also discuss promising new directions for the use of Magnéli phase titanium suboxides and solutions to challenges in energy and environment-related applications, and provide guidance on how these materials can be developed and utilised to meet diverse research application needs. By making use of control measures to mitigate the potential hazards associated with their nanoparticles, Magnéli phases can be considered as versatile materials with potential for next generation energy needs.
Collapse
Affiliation(s)
- S Amanda Ekanayake
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University Melbourne Victoria 3000 Australia
| | - Haoxin Mai
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University Melbourne Victoria 3000 Australia
| | - Dehong Chen
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University Melbourne Victoria 3000 Australia
- Current Address College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Rachel A Caruso
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University Melbourne Victoria 3000 Australia
| |
Collapse
|
2
|
Wu X, Wang X, Wu Y, Xu H, Li Z, Hong R, Rigby K, Wu Z, Kim JH. Bilayer electrified-membrane with pair-atom tin catalysts for near-complete conversion of low concentration nitrate to dinitrogen. Nat Commun 2025; 16:1122. [PMID: 39875403 PMCID: PMC11775098 DOI: 10.1038/s41467-025-56102-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Discharge of wastewater containing nitrate (NO3-) disrupts aquatic ecosystems even at low concentrations. However, selective and rapid reduction of NO3- at low concentration to dinitrogen (N2) is technically challenging. Here, we present an electrified membrane (EM) loaded with Sn pair-atom catalysts for highly efficient NO3- reduction to N2 in a single-pass electrofiltration. The pair-atom design facilitates coupling of adsorbed N intermediates on adjacent Sn atoms to enhance N2 selectivity, which is challenging with conventional fully-isolated single-atom catalyst design. The EM ensures sufficient exposure of the catalysts and intensifies the catalyst interaction with NO3- through mass transfer enhancement to provide more N intermediates for N2 coupling. We further develop a reduced titanium dioxide EM as the anode to generate free chlorines for fully oxidizing the residual ammonia (<1 mg-N L-1) to N2. The sequential cathode-to-anode electrofiltration realizes near-complete removal of 10 mg-N L-1 NO3- and ~100% N2 selectivity with a water resident time on the order of seconds. Our findings advance the single-atom catalyst design for NO3- reduction and provide a practical solution for NO3- contamination at low concentrations.
Collapse
Affiliation(s)
- Xuanhao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Xiaoxiong Wang
- Institute for Ocean Engineering & Center of Double Helix & Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| | - Yunshuo Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Huimin Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Zhe Li
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Rongrong Hong
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Kali Rigby
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Zhongbiao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA.
- School of Civil, Environmental and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Fu W, Yin Y, He S, Tang X, Liu Y, Shen F, Zou Y, Jiang G. Electrocatalytic conversion of nitrate to ammonia on the oxygen vacancy engineering of zinc oxide for nitrogen recovery from nitrate-polluted surface water. ENVIRONMENTAL RESEARCH 2025; 264:120279. [PMID: 39491605 DOI: 10.1016/j.envres.2024.120279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Nitrate pollution in surface water poses a significant threat to drinking water safety. The integration of electrocatalytic reduction reaction of nitrate (NO3RR) to ammonia with ammonia collection processes offers a sustainable approach to nitrogen recovery from nitrate-polluted surface water. However, the low catalytic activity of existing catalysts has resulted in excessive energy consumption for NO3RR. Herein, we developed a facile approach of electrochemical reduction to generate oxygen vacancy (Ov) on zinc oxide nanoparticles (ZnO1-x NPs) to enhance catalytic activity. The ZnO1-x NPs achieved a high NH3-N selectivity of 92.4% and NH3-N production rate of 1007.9 [Formula: see text] h-1 m-2 at -0.65 V vs. RHE in 22.5 mg L-1NO3--N, surpassing both pristine ZnO and the majority of catalysts reported in the literature. DFT calculations with in-situ Raman spectroscopy and ESR analysis revealed that the presence of Ov significantly increased the affinity for the NO3- (nitrate) and key intermediate of NO2- (nitrite). The strong adsorption of NO3- on Ov decreased the energy barrier of potential determining step (NO3- →∗NO3) from 0.49 to 0.1 eV, boosting the reaction rate. Furthermore, the strong adsorption of NO2- on Ov prevented its escape from the active sites, thereby minimizing NO2- by-product formation and enhancing ammonia selectivity. Moreover, the NO3RR, when coupled with a membrane separation process, achieved a 100% nitrogen recycling efficiency with low energy consumption of 0.55 kWh molN-1 at a flow rate below 112 mL min-1 for the treatment of nitrate-polluted lake water. These results demonstrate that ZnO1-x NPs are a reliable catalytic material for NO₃RR, enabling the development of a sustainable technology for nitrogen recovery from nitrate-polluted surface water.
Collapse
Affiliation(s)
- Wenyang Fu
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, 400067, China.
| | - Yanjun Yin
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Shuxian He
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Xiangyi Tang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Yinan Liu
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Fei Shen
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Yan Zou
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Guangming Jiang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, 400067, China.
| |
Collapse
|
4
|
Li D, Jiang SC, Xie JF, Zhang J, Zheng YL, Zhao QB, Yu HQ. Boosting seawater denitrification in an electrochemical flow cell. WATER RESEARCH 2024; 266:122384. [PMID: 39243459 DOI: 10.1016/j.watres.2024.122384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Nitrogen compounds in current seawater treatment processes typically are converted to nitrate, threatening seawater quality and marine ecology. Electrochemical denitrification is a promising technique, but its efficiency is severely limited by the presence of excess chloride ions. In this work, a flow-through cell went through an on-demand chlorine-mediated electrochemical-chemical tandem reaction process was designed for efficient seawater denitrification. Equipped with ultrathin cobalt-based nanosheets as the cathode catalyst and commercial IrO2-RuO2/Ti as the anode, the newly designed flow-through cell achieved nitrate removal efficiency that was about 50 times greater than the batch cell and nearly 100 % N2 selectivity. Moreover, nitrite and ammonia can also be removed with over 93 % efficiency in total nitrogen (TN) removal. Furthermore, the concentration of active chlorine in the effluent could be adjusted within two orders of magnitude, enabling on-demand release of active chlorine. Finally, this flow-through cell reduced the TN of actual mariculture tailwater (40.1 mg N L-1 nitrate) to only 5.7 mg N L-1, meeting the discharge standard for aquaculture tailwater of Fujian, China. This work demonstrates the paradigm of deep denitrification from ultra-concentrated chlorine ion wastewater using an on-demand active chlorine-mediated electrochemical-chemical tandem reaction process.
Collapse
Affiliation(s)
- Ding Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Jia-Fang Xie
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Lian Zheng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quan-Bao Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
5
|
Hou Z, Chen H, Chu J, Wang J, Li A, François-Xavier Corvini P. Bimetallic Pd-In alloy supported on TiO 2 nanosheets breaks the rate-limiting step for ultrafast photocatalytic denitrification. J Colloid Interface Sci 2024; 680:162-171. [PMID: 39504746 DOI: 10.1016/j.jcis.2024.10.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/16/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
Herein, the bimetallic Pd3In1 alloy were deposited onto the crystal facet engineered TiO2 nanosheet (NS) via one-step photoreduction (Pd3In1/TiO2-NS) for selective conversion of nitrate (NO3-) to N2. Bimetallic Pd3In1 provides higher affinity sites to bind NO3- and significantly reduces the energy barrier of the rate-limiting step (NO3* + e- → NO2*), which is the key for the ultra-fast NO3- reduction kinetics. More importantly, the synergistic effect of Pd and In not only suppresses the hydrogen evolution reaction resulting in high efficiency utilization of photogenerated electrons, but also promotes the selective conversion of nitrite (NO2-) to N2. Consequently, Pd3In1/TiO2-NS exhibits 100 % NO3- conversion and 90 % N2 selectivity within 20 min in six cycles. One order of magnitude improvement on the NO3- reduction kinetic constants of Pd3In1/TiO2-NS (0.254 min-1) is achieved compared with pristine TiO2-NS and monometallic loaded ones. This work provides new insights into the rational construction of bimetallic alloy cocatalysts for high-efficiency photocatalytic denitrification.
Collapse
Affiliation(s)
- Zhiang Hou
- State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment Nanjing University, Nanjing 210023, China
| | - Hao Chen
- State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment Nanjing University, Nanjing 210023, China
| | - Jiangfeng Chu
- State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment Nanjing University, Nanjing 210023, China
| | - Jinnan Wang
- State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment Nanjing University, Nanjing 210023, China.
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment Nanjing University, Nanjing 210023, China
| | | |
Collapse
|
6
|
Lu J, Lv S, Park HS, Chen Q. Electrocatalytically active and charged natural chalcopyrite for nitrate-contaminated wastewater purification extended to energy storage Zn-NO 3- battery. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135287. [PMID: 39053059 DOI: 10.1016/j.jhazmat.2024.135287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/22/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Charged natural chalcopyrite (CuFeS2, Ncpy) was developed for a three-dimensional electrochemical nitrate reduction (3D ENO3-RR) system with carbon fiber cloth cathode and Ti/IrO2 anode and Zn-NO3- battery. The 3D ENO3-RR system with Ncpy particle electrodes (PEs) possessed superior nitrate removal of 95.6 % and N2 selectivity of 76 % with excellent reusability under a broad pH range of 2-13 involving heterogeneous and homogeneous radical mechanisms. The Zn-NO3- battery with Ncpy cathode delivered an open-circuit voltage of 1.03 V and a cycling stability over 210 h. It was found that Ncpy PEs functioned through self-oxidation, surface dynamic reconstruction (Cu1.02Fe1.0S1.72O1.66 to Cu0.61Fe1.0S0.27O2.98), intrinsic micro-electric field (CuI, S2- anodic and FeIII cathodic poles), and reactive species (•OH, SO4•-, 1O2, •O2- and •H) generation. Computational analyses reveal that CuFeS2(112) surface with the lowest surface energy preferentially exposes Fe and Cu atoms. Cu site is beneficial for reducing NO3- to NO2-, Fe and Fe-Cu dual sites are conducive to N2 selectivity, lowering the overall reaction barriers. It paves the way for selective NO3- reduction in wastewater treatment and can be further extended to energy storage devices by utilizing low-cost Ncpy.
Collapse
Affiliation(s)
- Jun Lu
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, the Republic of Korea.
| | - Shaoyan Lv
- School of Environment Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Ho Seok Park
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon-si, Gyeonggi-do, the Republic of Korea; SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon-si, Gyeonggi-do, the Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Suwon, the Republic of Korea.
| | - Quanyuan Chen
- School of Environment Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institution of Pollution Control and Ecological Security, Shanghai 200092, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
7
|
Zhou C, Zhang Y, Xie C, Bai J, Li J, Zhang H, Zhu H, Long M, Zhou B, Zheng G. Efficient Electroreduction of Low Nitrate Concentration via Nitrate Self-Enrichment and Active Hydrogen Inducement on the Ce(IV)-Co 3O 4 Cathode. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14940-14948. [PMID: 39105779 DOI: 10.1021/acs.est.4c06263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Low concentrations of nitrate (NO3-) widely exist in wastewater, post-treated wastewater, and natural environments; its further disposal is a challenge but meaningful for its discharge goals. Electroreduction of NO3- is a promising method that allows to eliminate NO3- and even generate higher-value NH3. However, the massive side reaction of hydrogen evolution has raised great obstacles in the electroreduction of low concentrations of NO3-. Herein, we present an efficient electroreduction method for low or even ultralow concentrations of NO3- via NO3- self-enrichment and active hydrogen (H*) inducement on the Ce(IV)-Co3O4 cathode. The key mechanism is that the strong oxytropism of Ce(IV) in Co3O4 resulted in two changes in structures, including loose nanoporous structures with copious dual adsorption sites of Ce-Co showing strong self-enrichment of NO3- and abundant oxygen vacancies (Ovs) inducing substantial H*. Ultimately, the bifunctional role synergistically promoted the selective conversion of NH3 rather than H2. As a result, Ce(IV)-Co3O4 demonstrated a NO3- self-enrichment with a 4.3-fold up-adsorption, a 7.5-fold enhancement of NH3 Faradic efficiency, and a 93.1% diminution of energy consumption when compared to Co3O4, substantially exceeding other reported electroreduction cathodes for NO3- concentrations lower than 100 mg·L-1. This work provides an effective treatment method for low or even ultralow concentrations of NO3-.
Collapse
Affiliation(s)
- Changhui Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Zhang
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chaoyue Xie
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Bai
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinhua Li
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haichuan Zhang
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 96 Jinzhai Rd, Hefei, Anhui 230026, China
| | - Hong Zhu
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
8
|
Qi Y, Li D, Zhang S, Li F, Hua T. Electrochemical filtration for drinking water purification: A review on membrane materials, mechanisms and roles. J Environ Sci (China) 2024; 141:102-128. [PMID: 38408813 DOI: 10.1016/j.jes.2023.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 02/28/2024]
Abstract
Electrochemical filtration can not only enrich low concentrations of pollutants but also produce reactive oxygen species to interact with toxic pollutants with the assistance of a power supply, making it an effective strategy for drinking water purification. In addition, the application of electrochemical filtration facilitates the reduction of pretreatment procedures and the use of chemicals, which has outstanding potential for maximizing process simplicity and reducing operating costs, enabling the production of safe drinking water in smaller installations. In recent years, the research on electrochemical filtration has gradually increased, but there has been a lack of attention on its application in the removal of low concentrations of pollutants from low conductivity water. In this review, membrane substrates and electrocatalysts used to improve the performance of electrochemical membranes are briefly summarized. Meanwhile, the application prospects of emerging single-atom catalysts in electrochemical filtration are also presented. Thereafter, several electrochemical advanced oxidation processes coupled with membrane filtration are described, and the related working mechanisms and their advantages and shortcomings used in drinking water purification are illustrated. Finally, the roles of electrochemical filtration in drinking water purification are presented, and the main problems and future perspectives of electrochemical filtration in the removal of low concentration pollutants are discussed.
Collapse
Affiliation(s)
- Yuying Qi
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Donghao Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Shixuan Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Tao Hua
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
9
|
Quoie Jr GDS, Jiao M, Lászlód K, Wang Y. Progress Made in Non-Metallic-Doped Materials for Electrocatalytic Reduction in Ammonia Production. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2419. [PMID: 38793485 PMCID: PMC11122855 DOI: 10.3390/ma17102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
The electrocatalytic production of ammonia has garnered considerable interest as a potentially sustainable technology for ammonia synthesis. Recently, non-metallic-doped materials have emerged as promising electrochemical catalysts for this purpose. This paper presents a comprehensive review of the latest research on non-metallic-doped materials for electrocatalytic ammonia production. Researchers have engineered a variety of materials, doped with non-metals such as nitrogen (N), boron (B), phosphorus (P), and sulfur (S), into different forms and structures to enhance their electrocatalytic activity and selectivity. A comparison among different non-metallic dopants reveals their distinct effects on the electrocatalytic performance for ammonia production. For instance, N-doping has shown enhanced activity owing to the introduction of nitrogen vacancies (NVs) and improved charge transfer kinetics. B-doping has demonstrated improved selectivity and stability, which is attributed to the formation of active sites and the suppression of competing reactions. P-doping has exhibited increased ammonia generation rates and Faradaic efficiencies, likely due to the modification of the electronic structure and surface properties. S-doping has shown potential for enhancing electrocatalytic performance, although further investigations are needed to elucidate the underlying mechanisms. These comparisons provide valuable insights for researchers to conduct in-depth studies focusing on specific non-metallic dopants, exploring their unique properties, and optimizing their performance for electrocatalytic ammonia production. However, we consider it a priority to provide insight into the recent progress made in non-metal-doped materials and their potential for enabling long-term and efficient electrochemical ammonia production. Additionally, this paper discusses the synthetic procedures used to produce non-metal-doped materials and highlights the advantages and disadvantages of each method. It also provides an in-depth analysis of the electrochemical performance of these materials, including their Faradaic efficiencies, ammonia yield rate, and selectivity. It examines the challenges and prospects of developing non-metallic-doped materials for electrocatalytic ammonia production and suggests future research directions.
Collapse
Affiliation(s)
- Gerald D. S. Quoie Jr
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (G.D.S.Q.J.); (M.J.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Mingshuo Jiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (G.D.S.Q.J.); (M.J.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Krisztina Lászlód
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| | - Ying Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (G.D.S.Q.J.); (M.J.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
10
|
Bayode AA, Ore OT, Nnamani EA, Sotunde B, Koko DT, Unuabonah EI, Helmreich B, Omorogie MO. Perovskite Oxides: Syntheses and Perspectives on Their Application for Nitrate Reduction. ACS OMEGA 2024; 9:19770-19785. [PMID: 38737083 PMCID: PMC11080040 DOI: 10.1021/acsomega.4c01487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024]
Abstract
Over the decades, the rise in nitrate levels in the ecosystem has posed a serious threat to the continuous existence of humans, fauna, and flora. The deleterious effects of increasing levels of nitrates in the ecosystem have led to adverse health and environmental implications in the form of methemoglobinemia and eutrophication, respectively. Different pathways/routes for the syntheses of perovskites and their oxides were presented in this review. In recent times, electrocatalytic reduction has emerged as the most utilized technique for the conversion of nitrates into ammonia, an industrial feedstock. According to published papers, the efficiency of various perovskites and their oxides used for the electrocatalytic reduction of nitrate achieved a high Faradaic efficiency of 98%. Furthermore, studies published have shown that there is a need to improve the chemical stability of perovskites and their oxides during scale-up applications, as well as their scalability for industrial applications.
Collapse
Affiliation(s)
- Ajibola A. Bayode
- College
of Chemical Engineering, Sichuan University
of Science and Engineering, Zigong 643000, P. R. China
- Department
of Chemical Sciences, Faculty of Natural Sciences, Redeemer’s University, P.M.B. 230, 232101 Ede, Nigeria
| | - Odunayo T. Ore
- Department
of Chemical Sciences, Achiever’s
University, P.M.B. 1030, 341101 Owo, Nigeria
| | - Esther A. Nnamani
- Department
of Chemical Sciences, Faculty of Natural Sciences, Redeemer’s University, P.M.B. 230, 232101 Ede, Nigeria
- Environmental
Science and Technology Unit, African Centre of Excellence for Water
and Environmental Research (ACEWATER), Redeemer’s
University, P.M.B. 230, 232101 Ede, Nigeria
| | - Babajide Sotunde
- Department
of Chemical Sciences, Faculty of Natural Sciences, Redeemer’s University, P.M.B. 230, 232101 Ede, Nigeria
- Environmental
Science and Technology Unit, African Centre of Excellence for Water
and Environmental Research (ACEWATER), Redeemer’s
University, P.M.B. 230, 232101 Ede, Nigeria
| | - Daniel T. Koko
- Department
of Chemical Sciences, Faculty of Natural Sciences, Redeemer’s University, P.M.B. 230, 232101 Ede, Nigeria
- Environmental
Science and Technology Unit, African Centre of Excellence for Water
and Environmental Research (ACEWATER), Redeemer’s
University, P.M.B. 230, 232101 Ede, Nigeria
| | - Emmanuel I. Unuabonah
- Department
of Chemical Sciences, Faculty of Natural Sciences, Redeemer’s University, P.M.B. 230, 232101 Ede, Nigeria
- Environmental
Science and Technology Unit, African Centre of Excellence for Water
and Environmental Research (ACEWATER), Redeemer’s
University, P.M.B. 230, 232101 Ede, Nigeria
| | - Brigitte Helmreich
- Chair
of Urban Water Systems Engineering, School
of Engineering and Design, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Martins O. Omorogie
- Department
of Chemical Sciences, Faculty of Natural Sciences, Redeemer’s University, P.M.B. 230, 232101 Ede, Nigeria
- Environmental
Science and Technology Unit, African Centre of Excellence for Water
and Environmental Research (ACEWATER), Redeemer’s
University, P.M.B. 230, 232101 Ede, Nigeria
- Chair
of Urban Water Systems Engineering, School
of Engineering and Design, Technical University of Munich (TUM), 85748 Garching, Germany
| |
Collapse
|
11
|
Guan S, Wang L, Hao L, Yoshida H, Itoi T, Lu Y, Terashima C, Fujishima A. Achieving water-floatable photocatalyst on recycled bamboo chopsticks. Sci Rep 2024; 14:9496. [PMID: 38664484 PMCID: PMC11045838 DOI: 10.1038/s41598-024-60272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024] Open
Abstract
Disposable bamboo chopsticks (DBCs) are difficult to recycle, which inevitably cause secondary pollution. Based on energy and environmental issues, we propose a facile strategy to fabricate floatable photocatalyst (fPC) coated onto DBCs, which can be flexibly used in water purification. The photocatalyst of titania and titanium carbide on bamboo (TiO2/TiC@b) was successfully constructed from TiC-Ti powders and DBCs using a coating technique followed heat treatment in carbon powder, and the fPC exhibited excellent photocatalytic activity under visible light irradation. The analysis results indicate that rutile TiO2 forms on TiC during heat treatment, achieving a low-density material with an average value of approximately 0.5233 g/cm3. The coatings of TiO2/TiC on the bamboo are firm and uniform, with a particle size of about 20-50 nm. XPS results show that a large amount of oxygen vacancies is generated, due to the reaction atmosphere of more carbon and less oxygen, further favoring to narrowing the band gap of TiO2. Furthermore, TiO2 formed on residual TiC would induce the formation of a heterojunction, which effectively inhibits the photogenerated electron-hole recombination via the charge transfer effect. Notably, the degradation of dye Rhodamine B (Rh.B) is 62.4% within 3 h, while a previous adsorption of 36.0% for 1 h. The excellent photocatalytic performance of TiO2/TiC@b can be attributed to the enhanced reaction at the water/air interface due to the reduced light loss in water, improved visible-light response, increased accessible area and charge transfer effect. Our findings show that the proposed strategy achieves a simple, low-cost, and mass-producible method to fabricate fPC onto the used DBCs, which is expected to applied in multiple fields, especially in waste recycling and water treatment.
Collapse
Affiliation(s)
- Sujun Guan
- Research Center for Space System Innovation, Tokyo University of Science, Chiba, 2788510, Japan
| | - Lijun Wang
- School of Intelligent Manufacturing, Chengdu Technological University, Chengdu, 610031, China.
| | - Liang Hao
- College of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin, 300222, China
| | - Hiroyuki Yoshida
- Chiba Industrial Technology Research Institute, Chiba, 2630016, Japan
| | - Takaomi Itoi
- Graduate School and Faculty of Engineering, Chiba University, Chiba, 2638522, Japan
| | - Yun Lu
- School of Intelligent Manufacturing, Chengdu Technological University, Chengdu, 610031, China
- Graduate School and Faculty of Engineering, Chiba University, Chiba, 2638522, Japan
| | - Chiaki Terashima
- Research Center for Space System Innovation, Tokyo University of Science, Chiba, 2788510, Japan
- Department of Pure and Applied Chemistry, Tokyo University of Science, Chiba, 2788510, Japan
| | - Akira Fujishima
- Research Center for Space System Innovation, Tokyo University of Science, Chiba, 2788510, Japan
- Shanghai Institute of Photocatalysis Industrial Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
12
|
He X, Liu H, Qin J, Niu Z, Mu J, Liu B. Heterostructured Co/Co 3O 4 anchored on N-doped carbon nanotubes as a highly efficient electrocatalyst for nitrate reduction to ammonia. Dalton Trans 2023. [PMID: 37486287 DOI: 10.1039/d3dt01705b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The electrochemical reduction of nitrate (NO3-) to ammonia (NH3) has emerged as an attractive approach for selectively reducing NO3- to highly value-added NH3 and removing NO3- pollutants simultaneously. In this work, a heterostructured Co/Co3O4 electrocatalyst anchored on N-doped carbon nanotubes was prepared and applied for the NO3- reduction towards NH3 under alkaline conditions. The catalyst achieves outstanding performance with up to 67% NH3 faradaic efficiency at -1.2 V vs. Hg/HgO and 8.319 mg h-1 mgcat-1 yield at -1.7 V vs. Hg/HgO. In addition, it also exhibits good long-term stability. 15N isotopic labelling experiments prove that the yielded NH3 is derived from NO3- species. In situ electrochemical Raman spectra revealed that the structure of the as-prepared catalyst showed outstanding stability and identified possible intermediates during the electrocatalytic NO3- reduction reaction (NO3RR).
Collapse
Affiliation(s)
- Xianxian He
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Hongfei Liu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Jiangzhou Qin
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Zhaodong Niu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science & Technology, Dalian University of Technology, Dalian 116024, China
| | - Jincheng Mu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Baojun Liu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
13
|
Levi J, Guo S, Kavadiya S, Luo Y, Lee CS, Jacobs HP, Holman Z, Wong MS, Garcia-Segura S, Zhou C, Rittmann BE, Westerhoff P. Comparing methods to deposit Pd-In catalysts on hydrogen-permeable hollow-fiber membranes for nitrate reduction. WATER RESEARCH 2023; 235:119877. [PMID: 36989800 DOI: 10.1016/j.watres.2023.119877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/04/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
Catalytic hydrogenation of nitrate in water has been studied primarily using nanoparticle slurries with constant hydrogen-gas (H2) bubbling. Such slurry reactors are impractical in full-scale water treatment applications because 1) unattached catalysts are difficult to be recycled/reused and 2) gas bubbling is inefficient for delivering H2. Membrane Catalyst-film Reactors (MCfR) resolve these limitations by depositing nanocatalysts on the exterior of gas-permeable hollow-fiber membranes that deliver H2 directly to the catalyst-film. The goal of this study was to compare the technical feasibility and benefits of various methods for attaching bimetallic palladium/indium (Pd/In) nanocatalysts for nitrate reduction in water, and subsequently select the most effective method. Four Pd/In deposition methods were evaluated for effectiveness in achieving durable nanocatalyst immobilization on the membranes and repeatable nitrate-reduction activity: (1) In-Situ MCfR-H2, (2) In-Situ Flask-Synthesis, (3) Ex-Situ Aerosol Impaction-Driven Assembly, and (4) Ex-Situ Electrostatic. Although all four deposition methods achieved catalyst-films that reduced nitrate in solution (≥ 1.1 min-1gPd-1), three deposition methods resulted in significant palladium loss (>29%) and an accompanying decline in nitrate reactivity over time. In contrast, the In-Situ MCfR-H2 deposition method had negligible Pd loss and remained active for nitrate reduction over multiple operational cycles. Therefore, In-Situ MCfR-H2 emerged as the superior deposition method and can be utilized to optimize catalyst attachment, nitrate-reduction, and N2 selectivity in future studies with more complex water matrices, longer treatment cycles, and larger reactors.
Collapse
Affiliation(s)
- Juliana Levi
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States; Biodesign Swette Center for Environmental Biotechnology, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Sujin Guo
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Shalinee Kavadiya
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Yihao Luo
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States; Biodesign Swette Center for Environmental Biotechnology, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Chung-Seop Lee
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Hunter P Jacobs
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Zachary Holman
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Michael S Wong
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Sergi Garcia-Segura
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Bruce E Rittmann
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States; Biodesign Swette Center for Environmental Biotechnology, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States.
| |
Collapse
|
14
|
Yin H, Peng Y, Li J. Electrocatalytic Reduction of Nitrate to Ammonia via a Au/Cu Single Atom Alloy Catalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3134-3144. [PMID: 36785514 DOI: 10.1021/acs.est.2c07968] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electrocatalytic ammonia (NH3) synthesis from the reduction of nitrate (NO3-) is one of the effective and mild methods to treat nitrogen-containing wastewater from stationary sources and to obtain NH3 readily compared with the Haber-Bosch process. However, the low efficiency of electrocatalytic NO3- reduction to NH3 on traditional Cu-based catalysts hinders their practical application. Here, we prepare a Au/Cu single atom (SA) alloy (Au/Cu SAA) that shows a high performance of NH3 synthesis with 99.69% Faradaic efficiency at -0.80 V vs RHE. The structures of Au SAs and alloyed Au/Cu are confirmed by the detailed characterizations. Online differential electrochemical mass spectrometry confirms the occurrence of key reaction intermediates (*NO2, *NO, and *NH3). Density functional theory calculations demonstrate that Au SAs efficiently reduce the adsorption energy of *NO3-, and the newly formed Au-Cu bonds boost the reduction process of *NO2 to *NO. Meanwhile, Au/Cu SAAs produce significantly less N2 and N2O byproducts due to the prohibition of N-N coupling on single atoms, which finally leads to excellent Faradaic efficiency and NH3 selectivity.
Collapse
Affiliation(s)
- Haibo Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
15
|
Coupling nitrate capture with ammonia production through bifunctional redox-electrodes. Nat Commun 2023; 14:823. [PMID: 36788213 PMCID: PMC9929237 DOI: 10.1038/s41467-023-36318-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
Nitrate is a ubiquitous aqueous pollutant from agricultural and industrial activities. At the same time, conversion of nitrate to ammonia provides an attractive solution for the coupled environmental and energy challenge underlying the nitrogen cycle, by valorizing a pollutant to a carbon-free energy carrier and essential chemical feedstock. Mass transport limitations are a key obstacle to the efficient conversion of nitrate to ammonia from water streams, due to the dilute concentration of nitrate. Here, we develop bifunctional electrodes that couple a nitrate-selective redox-electrosorbent (polyaniline) with an electrocatalyst (cobalt oxide) for nitrate to ammonium conversion. We demonstrate the synergistic reactive separation of nitrate through solely electrochemical control. Electrochemically-reversible nitrate uptake greater than 70 mg/g can be achieved, with electronic structure calculations and spectroscopic measurements providing insight into the underlying role of hydrogen bonding for nitrate selectivity. Using agricultural tile drainage water containing dilute nitrate (0.27 mM), we demonstrate that the bifunctional electrode can achieve a 8-fold up-concentration of nitrate, a 24-fold enhancement of ammonium production rate (108.1 ug h-1 cm-2), and a >10-fold enhancement in energy efficiency when compared to direct electrocatalysis in the dilute stream. Our study provides a generalized strategy for a fully electrified reaction-separation pathway for modular nitrate remediation and ammonia production.
Collapse
|
16
|
Ma Q, Chu Y, Ni X, Zhang J, Chen H, Xu F, Wang Y. CeO 2 modified carbon nanotube electrified membrane for the removal of antibiotics. CHEMOSPHERE 2023; 310:136771. [PMID: 36241109 DOI: 10.1016/j.chemosphere.2022.136771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/15/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Electrified carbon nanotube membranes (ECM) are used as electroactive porous materials for the degradation of micropollutants. It integrated design of both electrochemical processes and filtration functions. In this study, CeO2 modified carbon nanotube electrified membrane (CeO2@CNT membrane) was prepared and activate NaClO towards degradation of antibiotics. As CeO2 with face-centered cubic (Fcc) fluorite structure was loaded onto the CNT sidewalls, the CeO2@CNT membrane showed a higher over potential and a smaller equivalent polarization resistance compared to ECM. More reactive oxygen species (ROS) and reactive chlorine species (RCS) were generated by CeO2@CNT membrane due to faster electron transfer at the solid-liquid interface. Thus, the removal efficiencies of DCF, SMX, CIP, TC and CBZ were more than 91.2%, 91.3%, 94.4%, 99.3% and 89.4% by the CeO2@CNT membrane with NaClO, respetively. And the apparent reaction rate constant (k) of the CeO2@CNT membrane was 2.9 times of that of ECM. The selective capping experiments and density functional theory (DFT) calculation showed that the oxygen vacancies of CeO2 contributed to the generation of ‧OH, and the generation of ClO‧ and ‧O2- would mainly occur on Lewis acid sites of CeO2. In addition, the CeO2@CNT membrane showed a reasonable stability to treat actual water samples and reduced disinfection byproducts (DBPs) formation, suggesting that it can potentially be combined with the conventional chlorine disinfection to degrade antibiotics in water.
Collapse
Affiliation(s)
- Qingfeng Ma
- School of Environmental and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Yongbao Chu
- School of Environmental and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| | - Xiaoyu Ni
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jingyi Zhang
- School of Environmental and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Haoze Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Fei Xu
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
17
|
Hyusein C, Tsakova V. Nitrate detection at Pd-Cu-modified carbon screen printed electrodes. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Bian X, Shi F, Li J, Liang J, Bao C, Zhang H, Jia J, Li K. Highly selective electrocatalytic reduction of nitrate to nitrogen in a chloride ion-free system by promoting kinetic mass transfer of intermediate products in a novel Pd-Cu adsorption confined cathode. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116405. [PMID: 36352730 DOI: 10.1016/j.jenvman.2022.116405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The mass transfer on the catalyst surface has a great influence on the selectivity of electrocatalytic nitrate reduction to nitrogen. In this study, a Pd-Cu adsorption confined nickel foam cathode is designed in the absence of both proton exchange membranes and chloride ions. The repulsion of the cathode enables intermediate products such as nitrite to accumulate in the confined region, resulting in an increase in the possibility of a second-order reaction to form nitrogen. The system can obtain more than 92% continuous N2 selectivity when it is used to treat 200 mg L-1 NO3--N under a current density of 8 mA cm-2, which is not only higher than those of semiconfined and nonconfined systems but also significantly better than the results obtained by Pd-Cu directly modified cathodes prepared by electrodeposition or impregnation. It is found that a high initial nitrate concentration and low current density are more beneficial for the accumulation of intermediates on Pd-Cu catalysts, thus improving the formation of nitrogen. A mechanism study reveals that the intermediates can completely occupy the active sites on the surface of Pd, avoiding the generation of active hydrogen, and therefore inhibiting the first-order reaction to produce ammonia. Moreover, the reducibility of Pd-Cu can also be gradually improved under the function of the cathode so that the system exhibits good stability. This study demonstrates an environmentally friendly and promising method for total nitrogen removal from industrial wastewater with high conductivity.
Collapse
Affiliation(s)
- Xingchen Bian
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China
| | - Feng Shi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China
| | - Jingdong Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China
| | - Jianxing Liang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China
| | - Chenyu Bao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China
| | - Hongbo Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China; Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Kan Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China; Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
19
|
Li X, Xing W, Hu T, Luo K, Wang J, Tang W. Recent advances in transition-metal phosphide electrocatalysts: Synthetic approach, improvement strategies and environmental applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Kumar A, Barbhuiya NH, Jashrapuria K, Dixit N, Arnusch CJ, Singh SP. Magnéli-Phase Ti 4O 7-Doped Laser-Induced Graphene Surfaces and Filters for Pollutant Degradation and Microorganism Removal. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52448-52458. [PMID: 36349685 DOI: 10.1021/acsami.2c10348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Laser-induced graphene (LIG) has recently become a point of attraction globally as an environmentally friendly method to fabricate graphene foam in a single step using a CO2 laser. The electrical properties of LIG are studied in different environmental applications, such as bacterial inactivation, antibiofouling, and pollutant sensing. Furthermore, metal or nonmetal doping of graphene enhances its catalytical performance in pollutant degradation and decontamination. Magnéli phase (TinO2n-1) is a substoichiometric titanium oxide known for its high electrocatalytic behavior and chemical inertness and is being explored as a membrane or electrode material for environmental decontamination. Here, we show the fabrication and characterization of LIG-Magnéli-phase (Ti4O7) titanium suboxide composites as electrodes and filters on poly(ether sulfone). Unlike undoped LIG electrodes, the doped Ti4O7-LIG electrodes exhibit enhanced electrochemical activity, as demonstrated in electrochemical characterization using cyclic voltammetry and electrochemical impedance spectroscopy. Due to the in situ generation of hydroxyl radicals on the surface, the doped electrodes exhibit increase in methylene blue degradation and microorganism removal. Effects of voltage and doping were examined, resulting in a clear trend of degradation and decontamination performance proportional to the doping concentration and applied voltage giving the best result at 2.5 V for 10% Ti4O7 doping. The LIG-Ti4O7 surfaces also showed biofilm inhibition against mixed bacterial culture. The flow-through filtration using a LIG-Ti4O7 conductive filter showed complete bacterial killing with 6 log removal in the permeate at 2.5 V, an enhancement of ∼2.5 log compared to undoped LIG filters at a flow rate of ∼500 L m-2 h-1. The facile fabrication of Ti4O7-doped LIG with enhanced electrochemical properties can be effectively used for energy and environmental applications.
Collapse
Affiliation(s)
- Ashish Kumar
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai400076, India
| | - Najmul H Barbhuiya
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai400076, India
| | - Kritika Jashrapuria
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai400076, India
| | - Nandini Dixit
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai400076, India
| | - Christopher J Arnusch
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion8499000, Israel
| | - Swatantra P Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai400076, India
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai400076, India
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai400076, India
| |
Collapse
|
21
|
Kumar A, Barbhuiya NH, Singh SP. Magnéli phase titanium sub-oxides synthesis, fabrication and its application for environmental remediation: Current status and prospect. CHEMOSPHERE 2022; 307:135878. [PMID: 35932919 DOI: 10.1016/j.chemosphere.2022.135878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Sub-stoichiometric titanium oxide, also called titanium suboxides (TSO), had been a focus of research for many decades with a chemical composition of TinO2n-1 (n ≥ 1). It has a unique oxygen-deficient crystal structure which provides it an outstanding electrical conductivity and high corrosion resistance similar to ceramic materials. High electrical conductivity and ability to sustain in adverse media make these phases a point of attention for researchers in energy storage and environmental remediation applications. The Magnéli phase-based reactive electroconductive membranes (REM) and electrodes have demonstrated the electrochemical oxidation of pollutants in the water in flow-through and flow by configuration. Additionally, it has also shown its potential for visible light photochemical degradation as well. This review attempts to summarize state of the art in various Magnéli phases materials synthesis routes and their electrochemical and photochemical ability for environmental application. The manuscript introduces the Magnéli phase, its crystal structure, and catalytic properties, followed by the recent development in synthesis methods from diverse titanium sources, notably TiO2 through thermal reduction. The various fabrication methods for Magnéli phase-base REMs and electrodes have also been summarized. Furthermore, the article discussed the environmental remediations via electrochemical and photochemical advanced oxidation processes. Additionally, the hybrid technology with REMs and electrodes is used to counter membrane biofouling and develop electrochemical sensing devices for the pollutants. The Magnéli phase materials have a bright future for both electrochemical and photochemical advanced oxidation of emerging contaminants in water and wastewater treatment.
Collapse
Affiliation(s)
- Ashish Kumar
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Najmul H Barbhuiya
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Swatantra P Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India; Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, 400076, India; Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
22
|
Mechanistic study of electrooxidation of coexisting chloramphenicol and natural organic matter: Performance, DFT calculation and removal route. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Chu Y, Li Y, Ni X, Du J, Ma Q, Wang M, Wang Y. Effect of the presence of various natural organic matters on anodic oxidation of electrified carbon nanotube membrane. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71179-71189. [PMID: 35595891 DOI: 10.1007/s11356-022-20716-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The widespread adoption of electrified carbon nanotube membranes (ECM) requires to better understand process effectiveness according to limiting phenomena of natural organic matters (NOMs). In this study, the influences of various NOM fractions were investigated on the oxidative degradation of Rhodamine B (RhB) in ECM. The results showed the decolorizing efficiencies of RhB in the presence of humic acid (HA) were still above 96%, while bovine serum albumin (BSA) reduced firstly and then increased the decolorizing efficiencies of RhB. The decolorizing efficiencies of RhB with alginate (AA) were over 98% at the first 15 min but decreased gradually to 76% after 150 min. These different performances of HA, BSA and AA were mainly due to their influences on the electrochemical reactivity characterization of ECM. ECM with the BSA depositing layer showed the highest exchange current density (j0), while the AA depositing layer restrained electron-transfer activity of ECM. Cyclic voltammetry (CV) experiments showed that the partial electrooxidation of BSA would occur in ECM with its degradation product observed in the effluent. The variation of electrochemical reactivity characterization of ECM resulted into its electri-oxidation and electri-adsorption rates to be the largest with BSA, followed by AA and HA.
Collapse
Affiliation(s)
- Yongbao Chu
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yingxin Li
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xiaoyu Ni
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Jinhui Du
- Shandong Academy of Environmental Sciences Co., Ltd, Jinan, 250013, People's Republic of China
| | - Qingfeng Ma
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Min Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Yan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
24
|
Mo Y, Zhang L, Zhao X, Li J, Wang L. A critical review on classifications, characteristics, and applications of electrically conductive membranes for toxic pollutant removal from water: Comparison between composite and inorganic electrically conductive membranes. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129162. [PMID: 35643008 DOI: 10.1016/j.jhazmat.2022.129162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Research efforts have recently been directed at developing electrically conductive membranes (EMs) for pressure-driven membrane separation processes to remove effectively the highly toxic pollutants from water. EMs serve as both the filter and the electrode during filtration. With the assistance of a power supply, EMs can considerably improve the toxic pollutant removal efficiency and even realize chemical degradation to reduce their toxicity. Organic-inorganic composite EMs and inorganic EMs show remarkable differences in characteristics, removal mechanisms, and application situations. Understanding their differences is highly important to guide the future design of EMs for specific pollutant removal from water. However, reviews concerning the differences between composite and inorganic EMs are still lacking. In this review, we summarize the classifications, fabrication techniques, and characteristics of composite and inorganic EMs. We also elaborate on the removal mechanisms and performances of EMs toward recalcitrant organic pollutants and toxic inorganic ions in water. The comparison between composite and inorganic EMs is emphasized particularly in terms of the membrane characteristics (pore size, permeability, and electrical conductivity), application situations, and underlying removal mechanisms. Finally, the energy consumption and durability of EMs are evaluated, and future perspectives are presented.
Collapse
Affiliation(s)
- Yinghui Mo
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Lu Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Xin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China
| |
Collapse
|
25
|
Jiang M, Zhu Q, Song X, Gu Y, Zhang P, Li C, Cui J, Ma J, Tie Z, Jin Z. Batch-Scale Synthesis of Nanoparticle-Agminated Three-Dimensional Porous Cu@Cu 2O Microspheres for Highly Selective Electrocatalysis of Nitrate to Ammonia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10299-10307. [PMID: 35767694 DOI: 10.1021/acs.est.2c01057] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The electrochemical nitrate reduction reaction (NITRR), which converts nitrate to ammonia, is promising for artificial ammonia synthesis at mild conditions. However, the lack of favorable electrocatalysts has hampered its large-scale applications. Herein, we report the batch-scale synthesis of three-dimensional (3D) porous Cu@Cu2O microspheres (Cu@Cu2O MSs) composed of fine Cu@Cu2O nanoparticles (NPs) using a convenient electric explosion method with outstanding activity and stability for the electrochemical reduction of nitrate to ammonia. Density functional theory (DFT) calculations revealed that the Cu2O (111) facets could facilitate the formation of *NO3H and *NO2H intermediates and suppress the hydrogen evolution reaction (HER), resulting in high selectivity for the NITRR. Moreover, the 3D porous structure of Cu@Cu2O MSs facilitates electrolyte penetration and increases the localized concentration of reactive species for the NITRR. As expected, the obtained Cu@Cu2O MSs exhibited an ultrahigh NH3 production rate of 327.6 mmol·h-1·g-1cat. (which is superior to that of the Haber-Bosch process with a typical NH3 yield <200 mmol h-1g-1cat.), a maximum Faradaic efficiency of 80.57%, and remarkable stability for the NITRR under ambient conditions. Quantitative 15N isotope labeling experiments indicated that the synthesized ammonia originated from the electrochemical reduction of nitrate. Achieving the batch-scale and low-cost production of high-performance Cu@Cu2O MSs electrocatalysts using the electric explosion method is promising for the large-scale realization of selective electrochemical reduction of nitrate toward artificial ammonia synthesis.
Collapse
Affiliation(s)
- Minghang Jiang
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Suzhou Tierui New Energy Technology Co. Ltd., Suzhou 215228, China
| | - Qiang Zhu
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xinmei Song
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yuming Gu
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Pengbo Zhang
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Changqing Li
- Hebei FLANCE Nanotechnology Co. Ltd., Hebei 052360, China
| | - Jianxun Cui
- Hebei FLANCE Nanotechnology Co. Ltd., Hebei 052360, China
| | - Jing Ma
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zuoxiu Tie
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Suzhou Tierui New Energy Technology Co. Ltd., Suzhou 215228, China
| | - Zhong Jin
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Suzhou Tierui New Energy Technology Co. Ltd., Suzhou 215228, China
| |
Collapse
|
26
|
Ma J, Wei W, Qin G, Jiang L, Hing Wong N, Sunarso J, Liu S. Integrated electrocatalytic packed-bed membrane reactor for nitrate removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Li Y, Ma J, Wu Z, Wang Z. Direct Electron Transfer Coordinated by Oxygen Vacancies Boosts Selective Nitrate Reduction to N 2 on a Co-CuO x Electroactive Filter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8673-8681. [PMID: 35575637 DOI: 10.1021/acs.est.1c05841] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atomic hydrogen (H*) is used as an important mediator for electrochemical nitrate reduction; however, the Faradaic efficiency (FE) and selective reduction to N2 are likely compromised due to the side reactions (e.g., ammonia generation and hydrogen evolution reactions). This work reports a Co-CuOx electrochemical filter with CoOx nanoclusters rooted on vertically aligned CuOx nanowalls for selective nitrate reduction to N2, utilizing the direct electron transfer between oxygen vacancies and nitrate to suppress the contribution by H*. At a cathodic potential of -1.1 V (vs Ag/AgCl), the Co-CuOx filter showed 95.2% nitrate removal and 96.0% N2 selectivity at an influent nitrate concentration of 20 N-mg L-1. Meanwhile, the energy consumption and FE were 0.60 kW h m-3 and 53.5%, respectively, at a permeate flux of 60 L m-2 h-1. The presence of abundant oxygen vacancies on Co-CuOx was due to the change in the electron density of the Cu atom and a decrease of the coordination numbers of Cu-O via cobalt doping. Theoretical calculations and electrochemical tests showed that the oxygen vacancies coordinated nitrate adsorption and subsequent reduction reactions, thus suppressing the contribution of H* to nitrate reduction and leading to a thermodynamically favorable process to N2 via direct electron transfer.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Tongji Advanced Membrane Technology Center, Shanghai 200092, China
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Tongji Advanced Membrane Technology Center, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Tongji Advanced Membrane Technology Center, Shanghai 200092, China
| |
Collapse
|
28
|
Wang C, Cao Z, Huang H, Liu H, Wang S. Electrocatalytic Reduction of Nitrate via Co3O4/Ti Cathode Prepared by Electrodeposition Paired With IrO2-RuO2 Anode. Front Chem 2022; 10:900962. [PMID: 35720989 PMCID: PMC9203690 DOI: 10.3389/fchem.2022.900962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Nitrate pollution is already a global problem, and the electrocatalytic reduction of nitrate is a promising technology for the remediation of wastewater and polluted water bodies. In this work, Co3O4/Ti electrodes were prepared by electrodeposition for the electrocatalytic reduction of nitrate. The morphology, chemical, and crystal structures of Co3O4/Ti and its catalytic activity were investigated. Then, the electrocatalytic nitrate reduction performance of Co3O4/Ti as the cathode was evaluated by monitoring the removal efficiencies of nitrate (NO3−-N) and total nitrogen (TN), generation of reduction products, current efficiency (CE), and energy consumption (EC) at different operating conditions. Under the catalysis of Co3O4/Ti, NO3− was reduced to N2 and NH4+, while no NO2− was produced. After the introduction of chloride ions and IrO2-RuO2/Ti as the anode, NH4+ was selectively oxidized to N2. The removal efficiencies of NO3−-N (at 100 mg/L) and TN after 2 h were 91.12% and 60.25%, respectively (pH 7.0; Cl− concentration, 2000 mg/L; current density, 15 mA/cm2). After 4 h of operation, NO3−-N and TN were completely removed. However, considering the EC and CE, a 2-h reaction was the most appropriate. The EC and CE were 0.10 kWh/g NO3−N and 40.3%, respectively, and electrocatalytic performance was maintained after 10 consecutive reduction cycles (2 h each). The cathode Co3O4/Ti, which is prepared by electrodeposition, can effectively remove NO3−-N, with low EC and high CE.
Collapse
Affiliation(s)
- Chuan Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, China
| | - Zhifen Cao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, China
| | - Hongtao Huang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Sha Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- *Correspondence: Sha Wang,
| |
Collapse
|
29
|
Li C, Zhu J, Zhao Z, Wang J, Yang Q, Sun H, Jiang B. An efficient and robust flow-through electrochemical Ti4O7 membrane system for simultaneous Cr(VI) reduction and Cr immobilization with membrane cleaning by a periodic polarity reversal strategy. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Ren L, Ma J, Chen M, Qiao Y, Dai R, Li X, Wang Z. Recent advances in electrocatalytic membrane for the removal of micropollutants from water and wastewater. iScience 2022; 25:104342. [PMID: 35602955 PMCID: PMC9117875 DOI: 10.1016/j.isci.2022.104342] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The increasing occurrence of micropollutants in water and wastewater threatens human health and ecological security. Electrocatalytic membrane (EM), a new hybrid water treatment platform that integrates membrane separation with electrochemical technologies, has attracted extensive attention in the removal of micropollutants from water and wastewater in the past decade. Here, we systematically review the recent advances of EM for micropollutant removal from water and wastewater. The mechanisms of the EM for micropollutant removal are first introduced. Afterwards, the related membrane materials and operating conditions of the EM are summarized and analyzed. Lastly, the challenges and future prospects of the EM in research and applications are also discussed, aiming at a more efficient removal of micropollutants from water and wastewater.
Collapse
Affiliation(s)
- Lehui Ren
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Mei Chen
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yiwen Qiao
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xuesong Li
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
- Corresponding author
| |
Collapse
|
31
|
Jiang M, Tao A, Hu Y, Wang L, Zhang K, Song X, Yan W, Tie Z, Jin Z. Crystalline Modulation Engineering of Ru Nanoclusters for Boosting Ammonia Electrosynthesis from Dinitrogen or Nitrate. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17470-17478. [PMID: 35394763 DOI: 10.1021/acsami.2c02048] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing highly efficient nitrogen reduction reaction (NRR) and nitrate reduction reaction (NITRR) electrocatalysts is an ongoing challenge. Herein, we report the in situ growth of ultrafine amorphous Ru nanoclusters with a uniform diameter of ∼1.2 nm on carbon nanotubes as a highly efficient electrocatalyst for both the NRR and the NITRR. The amorphous Ru nanoclusters were prepared via a convenient ambient chelated co-reduction method, in which trisodium citrate as a chelating agent played a key role to form amorphous Ru instead of crystalline Ru. The strong d-π interaction between Ru metal and carbon nanotubes led to the homogeneous distribution and good long-term stability of ultrafine Ru nanoclusters. Compared with crystalline Ru, amorphous Ru nanoclusters with abundant low-coordinate atoms can provide more catalytic sites. The amorphous Ru nanoclusters exhibited an NH3 yield of 10.49 μg·h-1·mgcat.-1 and a FENH3 of 17.48% at -0.2 V vs reversible hydrogen electrode (RHE) for NRR. For the NITRR, an NH3 yield of 145.1 μg·h-1·mgcat.-1 and a FENH3 of 80.62% were also achieved at -0.2 V vs RHE. This work provides new insights into crystalline modulation engineering of metal nanoclusters for electrocatalytic ammonia synthesis.
Collapse
Affiliation(s)
- Minghang Jiang
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Suzhou Tierui New Energy Technology Ltd., Co., Suzhou 215228, China
| | - Anyang Tao
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Suzhou Tierui New Energy Technology Ltd., Co., Suzhou 215228, China
| | - Yi Hu
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Lei Wang
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Kaiqiang Zhang
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Suzhou Tierui New Energy Technology Ltd., Co., Suzhou 215228, China
| | - Xinmei Song
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Suzhou Tierui New Energy Technology Ltd., Co., Suzhou 215228, China
| | - Wen Yan
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zuoxiu Tie
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Suzhou Tierui New Energy Technology Ltd., Co., Suzhou 215228, China
| | - Zhong Jin
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Suzhou Tierui New Energy Technology Ltd., Co., Suzhou 215228, China
| |
Collapse
|
32
|
Meta-analysis of electrically conductive membranes: A comparative review of their materials, applications, and performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
33
|
Jiang M, Su J, Song X, Zhang P, Zhu M, Qin L, Tie Z, Zuo JL, Jin Z. Interfacial Reduction Nucleation of Noble Metal Nanodots on Redox-Active Metal-Organic Frameworks for High-Efficiency Electrocatalytic Conversion of Nitrate to Ammonia. NANO LETTERS 2022; 22:2529-2537. [PMID: 35266387 DOI: 10.1021/acs.nanolett.2c00446] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrochemically converting nitrate to ammonia is a promising route to realize artificial nitrogen recycling. However, developing highly efficient electrocatalysts is an ongoing challenge. Herein, we report the construction of stable and redox-active zirconium metal-organic frameworks (Zr-MOFs) based on Zr6 nanoclusters and redox-reversible tetrathiafulvalene (TTF) derivatives as inorganic nodes and organic linkers, respectively. The redox-active Zr-MOF can facilitate the in situ reduction of noble metal precursors free of external reductants and realize the uniform nucleation of noble metal nanodots (NDs) on Zr-MOF, achieving the preparation of M-NDs/Zr-MOF (M = Pd, Ag, or Au). The highly porous Zr-MOF with good conductivity can facilitate the mass transfer process. Among the M-NDs/Zr-MOF catalysts, Pd-NDs/Zr-MOF exhibits the highest electrocatalytic activity, delivering a NH3 yield of 287.31 mmol·h-1·g-1cat. and a Faradaic efficiency of 58.1%. The proposed interfacial reduction nucleation strategy for anchoring M NDs on Zr-MOFs can be applied to other challenging energy conversion reactions.
Collapse
Affiliation(s)
- Minghang Jiang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Suzhou Tierui New Energy Technology Co. Ltd., Suzhou, Jiangsu 215228, China
| | - Jian Su
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xinmei Song
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Pengbo Zhang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Mengfei Zhu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Lina Qin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zuoxiu Tie
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Suzhou Tierui New Energy Technology Co. Ltd., Suzhou, Jiangsu 215228, China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Suzhou Tierui New Energy Technology Co. Ltd., Suzhou, Jiangsu 215228, China
| |
Collapse
|
34
|
Almassi S, Ren C, Liu J, Chaplin BP. Electrocatalytic Perchlorate Reduction Using an Oxorhenium Complex Supported on a Ti 4O 7 Reactive Electrochemical Membrane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3267-3276. [PMID: 35175742 DOI: 10.1021/acs.est.1c08220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An organometallic rhenium catalyst was deposited on a Ti4O7 reactive electrochemical membrane (Re/REM) for the electrocatalytic reduction of aqueous ClO4- to Cl-. Results showed increasing ClO4- reduction upon increasing cathodic potential (i.e., -0.4 to-1.7 V/SHE). A 5 mM ClO4- solution was reduced by ∼21% in a single pass (residence time ∼0.2 s) through the Re/REM at a pH of 7, with >99% Cl- selectivity and a current efficiency of ∼100%. Kinetic analysis indicated that the reaction rate constant increased from 3953 to 7128 L h-1 gRe-1 at pH values of 9 to 3, respectively, and was mass transport-limited at pH < 5. The rate constants were 2 orders of magnitude greater than reported values for an analogous catalytic system using hydrogen as an electron donor. A continuous flow Re/REM system reduced 1 ppm ClO4- in a groundwater sample by >99.9% for the first 93.5 h, and concentrations were lower than the EPA ClO4- guideline (56 ppb) for 374 h of treatment. The fast ClO4- reduction kinetics and high chloride selectivity without the need for acidic conditions and a continual hydrogen electron donor supply for catalyst regeneration indicate the promising ability of the Re/REM for aqueous electrocatalytic ClO4- treatment.
Collapse
Affiliation(s)
- Soroush Almassi
- Department of Chemical Engineering, University of Illinois at Chicago, 929 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Changxu Ren
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Jinyong Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Brian P Chaplin
- Department of Chemical Engineering, University of Illinois at Chicago, 929 W. Taylor Street, Chicago, Illinois 60607, United States
- Institute of Environmental Science and Policy, University of Illinois at Chicago, 1603 W. Taylor Street, Chicago, Illinois 60612, United States
- Department of Civil, Materials, and Environmental Engineering, University of Illinois at Chicago, 842 W. Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
35
|
Yin H, Zhao X, Xiong S, Peng Y, Chen Z, Wang R, Wen M, Luo J, Yamashita H, Li J. New insight on electroreduction of nitrate to ammonia driven by oxygen vacancies-induced strong interface interactions. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Xu B, Chen Z, Zhang G, Wang Y. On-Demand Atomic Hydrogen Provision by Exposing Electron-Rich Cobalt Sites in an Open-Framework Structure toward Superior Electrocatalytic Nitrate Conversion to Dinitrogen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:614-623. [PMID: 34914357 DOI: 10.1021/acs.est.1c06091] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrocatalytic nitrate (NO3-) reduction to N2 via atomic hydrogen (H*) is a promising approach for advanced water treatment. However, the reduction rate and N2 selectivity are hindered by slow mass transfer and H* provision-utilization mismatch, respectively. Herein, we report an open-framework cathode bearing electron-rich Co sites with extraordinary H* provision performance, which was validated by electron spin resonance (ESR) and cyclic voltammetry (CV) tests. Benefiting from its abundant channels, NO3- has a greater opportunity to be efficiently transferred to the vicinity of the Co active sites. Owing to the enhanced mass transfer and on-demand H* provision, the nitrate removal efficiency and N2 selectivity of the proposed cathode were 100 and 97.89%, respectively, superior to those of noble metal-based electrodes. In addition, in situ differential electrochemical mass spectrometry (DEMS) indicated that ultrafast *NO2- to *NO reduction and highly selective *NO to *N2O or *N transformation played crucial roles during the NO3- reduction process. Moreover, the proposed electrochemical system can achieve remarkable N2 selectivity without the additional Cl- supply, thus avoiding the formation of chlorinated byproducts, which are usually observed in conventional electrochemical nitrate reduction processes. Environmentally, energy conservation and negligible byproduct release ensure its practicability for use in nitrate remediation.
Collapse
Affiliation(s)
- Bincheng Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhixuan Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
37
|
Ma J, Wei W, Qin G, Xiao T, Tang W, Zhao S, Jiang L, Liu S. Electrochemical reduction of nitrate in a catalytic carbon membrane nano-reactor. WATER RESEARCH 2022; 208:117862. [PMID: 34814021 DOI: 10.1016/j.watres.2021.117862] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Nitrate pollution is a critical environmental issue in need of urgent addressing. Electrochemical reduction is an attractive strategy for treating nitrate due to the environmental friendliness. However, it is still a challenge to achieve the simultaneous high activity and selectivity. Here we report the design of a porous tubular carbon membrane as the electrode deposited with catalysts, which provides a large triple-phase boundary area for nitrate removal reactions. The achieved nitrate removal rate is one order of magnitude higher than other literatures with high nitrate conversion and high selectivity of nitrogen. The carbon membrane itself had a limited catalytic property thus Cu-Pd bimetal catalysts were deposited inside the nano-pores to enhance the activity and selectivity. When Na2SO4 electrolyte was applied, the achieved single-pass removal of nitrate was increased from 55.15% (for blank membrane) to 97.12% by adding catalysts inside the membrane. In case of NaOH as the electrolyte, the single-pass nitrate removal efficiency, selectivity to nitrogen formation and nitrate removal rate was 90.66%, 96.40% and 1.47 × 10-3 mmol min-1 cm-2, respectively. Density functional theory studies demonstrate that the loading of bimetal catalysts compared with single metal catalysts enhances the adsorption of *NO3 on membrane surface favorable for N2 formation than NH3 on Cu-Pd surface. The application of catalytic carbon membrane nano-reactors can open new windows for nitrate removal due to the high reactor efficiency.
Collapse
Affiliation(s)
- Jing Ma
- School of Space and Environment, Beihang University, Shahe Campus, Beijing 102206, China
| | - Wei Wei
- College of Biochemical Engineering, Beijing Union University, 18 Sanqu Fatouxili, Chaoyang District, Beijing 100023, China
| | - Guotong Qin
- School of Space and Environment, Beihang University, Shahe Campus, Beijing 102206, China.
| | - Tianliang Xiao
- School of Energy and Power Engineering, Beihang University, Shahe Campus, Beijing 102206, China
| | - Weiqiang Tang
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuangliang Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Lei Jiang
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, 37 Xueyuan Road, Beijing 100191, China
| | - Shaomin Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
38
|
Su Y, Muller KR, Yoshihara-Saint H, Najm I, Jassby D. Nitrate Removal in an Electrically Charged Granular-Activated Carbon Column. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16597-16606. [PMID: 34874719 DOI: 10.1021/acs.est.1c02152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nitrate removal from groundwater remains a challenge. Here, we report on the development of a flow-through, electrically charged, granular-activated carbon (GAC)-filled column, which effectively removes nitrate. In this system, the GAC functioned as an anode, while a titanium sheet acted as a cathode. The high removal rate of nitrate was achieved through a combination of electrosorption and electrochemical transformation to N2. The column could be readily regenerated in situ by reversing the polarity of the applied potential. We demonstrate that in the presence of chloride, the mechanism responsible for the observed nitrate removal involves a combination of electroadsorption of nitrate to the anodically charged GAC, electroreduction of nitrate to ammonium, and the oxidation of ammonium to N2 gas by reactive chlorine and other oxidative radicals (with nearly 100% N2 selectivity). Given the ubiquitous presence of chloride in groundwater, this method represents a ready, green, and sustainable treatment process with significant potential for the remediation of contaminated groundwater.
Collapse
Affiliation(s)
- Yiming Su
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
| | - Katherine R Muller
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Hira Yoshihara-Saint
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Issam Najm
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
| | - David Jassby
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
39
|
Wang Y, Shu S, Peng M, Hu L, Lv X, Shen Y, Gong H, Jiang G. Dual-site electrocatalytic nitrate reduction to ammonia on oxygen vacancy-enriched and Pd-decorated MnO 2 nanosheets. NANOSCALE 2021; 13:17504-17511. [PMID: 34651160 DOI: 10.1039/d1nr04962c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrocatalytic nitrate reduction (NRR) represents one promising alternative to the Haber-Bosch process for NH3 production due to the lower reaction energy barrier compared to N2 reduction and the potential recycling of nitrogen source from nitrate wastewater. The metal oxides with oxygen vacancy (Ov) display high NH3 selectivities in NRR (NO2-/N2 as side products), but the complexity in Ov enrichment and the inferior hydrogen adsorption on oxides make NRR an inefficient process. Herein, one superior dual-site NRR electrocatalyst that is composed of Ov-enriched MnO2 nanosheets (MnO2-Ov) and Pd nanoparticles (deposited on MnO2) is constructed over the three-dimensional porous nickel foam (Pd-MnO2-Ov/Ni foam). In a continuous-flow reaction cell, this electrode delivers a NO3--N conversion rate of 642 mg N m-2electrode h-1 and a NH3 selectivity of 87.64% at -0.85 V vs. Ag/AgCl when feeding 22.5 mg L-1 of NO3--N (0.875 mL min-1), outperforming the Pd/Ni foam (369 mg N m-2electrode h-1, 85.02%) and MnO2-Ov/Ni foam (118 mg N m-2electrode h-1, 32.25%). Increasing the feeding NO3--N concentration and flow rate to 180.0 mg L-1 and 2.81 mL min-1 can further lift the conversion rate to 1933 and 1171 mg N m-2electrode h-1, respectively. The combination of experimental characterizations and theoretical calculations reveal that the MnO2-Ov adsorbs, immobilizes, and activates the NO3- and N-intermediates, while the Pd supplies the Ov sites with sufficient adsorbed hydrogen (H*) for both the NRR and Ov refreshment. Our work presents a good example of utilizing dual-site catalysis in the highly selective conversion of NO3- to NH3 that is important for nitrate pollution abatement, nitrogen resource recycling, as well as sustainable NH3 production.
Collapse
Affiliation(s)
- Yan Wang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Song Shu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Min Peng
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Lin Hu
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Xiaoshu Lv
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Yu Shen
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Haifeng Gong
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Guangming Jiang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China.
| |
Collapse
|
40
|
Min B, Gao Q, Yan Z, Han X, Hosmer K, Campbell A, Zhu H. Powering the Remediation of the Nitrogen Cycle: Progress and Perspectives of Electrochemical Nitrate Reduction. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bokki Min
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States,
| | - Qiang Gao
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States,
| | - Zihao Yan
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States,
| | - Xue Han
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States,
| | - Kait Hosmer
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States,
| | - Alayna Campbell
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States,
| | - Huiyuan Zhu
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States,
| |
Collapse
|
41
|
Pei S, Shi H, Zhang J, Wang S, Ren N, You S. Electrochemical removal of tetrabromobisphenol A by fluorine-doped titanium suboxide electrochemically reactive membrane. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126434. [PMID: 34323737 DOI: 10.1016/j.jhazmat.2021.126434] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/29/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
This study reports fluorine-doped titanium suboxide anode for electrochemical mineralization of hydrophobic micro-contaminant, tetrabromobisphenol A. Fluorinated TiSO anode promoted electro-generated hydroxyl radicals (•OH) with higher selectivity and activity, due to increased O2 evolution potential and more loosely interaction with hydrophobic electrode surface. For electro-oxidation process, fluorine doping had an insignificant impact on outer-sphere reaction and exerted inhibition on inner-sphere reaction, as indicated by cyclic voltammogram performed on Ru(NH3)63+/2+, Fe(CN)63-/4- and Fe3+/2+ redox couple. This facilitated electrochemical conversion of TBBPA and intermediates via more efficient outer-sphere reaction and hydroxylation route. Additionally, generated O2 micro-bubbles could be stabilized on hydrophobic F-doped TiSO anode, which extended the three-phase boundary available for interfacial enrichment of TBBPA and subsequent mineralization. Under action of these comprehensive factors, 0.5% F-doped TiSO electrochemically reactive membrane could achieve 99.7% mineralization of TBBPA upon energy consumption of 0.52 kWh m-3 at current density of 7.8 ± 0.24 mA cm-2 (3.75 V vs SHE) and flow rate of 1628 LHM based on flow-through electrolysis. The modified anode exhibited superior performances compared with un-modified one with more efficient TBBPA removal, less toxic intermediate accumulation and lower energy consumption. The results may have important implications for electrochemical removal and detoxification of hydrophobic micro-pollutants.
Collapse
Affiliation(s)
- Shuzhao Pei
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Han Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jinna Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Shengli Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
42
|
Li Y, Ma J, Waite TD, Hoffmann MR, Wang Z. Development of a Mechanically Flexible 2D-MXene Membrane Cathode for Selective Electrochemical Reduction of Nitrate to N 2: Mechanisms and Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10695-10703. [PMID: 34132087 DOI: 10.1021/acs.est.1c00264] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The contamination of water resources by nitrate is a major problem. Herein, we report a mechanically flexible 2D-MXene (Ti3C2Tx) membrane with multilayered nanofluidic channels for a selective electrochemical reduction of nitrate to nitrogen gas (N2). At a low applied potential of -0.8 V (vs Ag/AgCl), the MXene electrochemical membrane was found to exhibit high selectivity for NO3- reduction to N2 (82.8%) due to a relatively low desorption energy barrier for the release of adsorbed N2 (*N2) compared to that for the adsorbed NH3 (*NH3) based on density functional theory (DFT) calculations. Long-term use of the MXene membrane for treating 10 mg-NO3-N L-1 in water was found to have a high faradic efficiency of 72.6% for NO3- reduction to N2 at a very low electrical cost of 0.28 kWh m-3. Results of theoretical calculations and experimental results showed that defects on the MXene nanosheet surfaces played an important role in achieving high activity, primarily at the low-coordinated Ti sites. Water flowing through the MXene nanosheets facilitated the mass transfer of nitrate onto the low-coordinated Ti sites with this enhancement of particular importance under cathodic polarization of the MXene membrane. This study provides insight into the tailoring of nanoengineered materials for practical application in water treatment and environmental remediation.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jinxing Ma
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - T David Waite
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Michael R Hoffmann
- California Institute of Technology, The Linde-Robinson Laboratory, 1200 E. California Blvd., Pasadena, California 91125, United States
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
43
|
Ji Y, Niu J, Xu D, Wang K, Brejcha J, Jeon S, Warsinger DM. Efficient electrocatalysis for denitrification by using TiO 2 nanotube arrays cathode and adding chloride ions. CHEMOSPHERE 2021; 274:129706. [PMID: 33540319 DOI: 10.1016/j.chemosphere.2021.129706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Electrocatalysis is emerging as a promising alternative to bacterial denitrification for removing nitrate and ammonia from sewage. The technology is highly efficient and robust in actual wastewater treatment scenarios; however, there may be the generation of harmful intermediates (such as nitrite) on the traditional cathode material. In this study, we demonstrated that TiO2 nanotube arrays can be used as an effective cathode to reduce nitrate to ammonia without generation of nitrite. Alongside this, the addition of chloride ions in the solution can further oxidize ammonia to N2. We looked into the key factors influencing the electrocatalytic denitrification, including the current density (2-10 mA/cm2), initial pH values (3-11), and types of anions (HCO3-, Cl-, SO42-). The results showed that 90.8% of nitrate and 59.4% of total nitrogen could be removed in 1.5 h under optimal conditions, with degradation kinetic constants of 1.61 h-1 and 0.79 h-1, respectively. Furthermore, we investigated the formation of intermediate products and explored the electrocatalytic denitrification mechanism: (a) the surface oxygen vacancies and high specific surface area of TiO2 nanotube arrays electrode promote the reduction of nitrate to ammonia and N2; (b) the active chlorine generated at the anode surface can effectively oxidize ammonium to N2.
Collapse
Affiliation(s)
- Yangyuan Ji
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China; School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Junfeng Niu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Dong Xu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Kaixuan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Jacob Brejcha
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Seunghyo Jeon
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - David M Warsinger
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
44
|
Saha S, Gayen P, Wang Z, Dixit RJ, Sharma K, Basu S, Ramani VK. Development of Bimetallic PdNi Electrocatalysts toward Mitigation of Catalyst Poisoning in Direct Borohydride Fuel Cells. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00768] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sulay Saha
- Center for Solar Energy and Energy Storage and Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Brauer Hall, 1 Brookings Dr., CB 1180, St. Louis, Missouri 63130, United States
| | - Pralay Gayen
- Center for Solar Energy and Energy Storage and Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Brauer Hall, 1 Brookings Dr., CB 1180, St. Louis, Missouri 63130, United States
| | - Zhongyang Wang
- Center for Solar Energy and Energy Storage and Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Brauer Hall, 1 Brookings Dr., CB 1180, St. Louis, Missouri 63130, United States
| | - Ram Ji Dixit
- Center for Solar Energy and Energy Storage and Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Brauer Hall, 1 Brookings Dr., CB 1180, St. Louis, Missouri 63130, United States
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kritika Sharma
- Center for Solar Energy and Energy Storage and Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Brauer Hall, 1 Brookings Dr., CB 1180, St. Louis, Missouri 63130, United States
| | - Suddhasatwa Basu
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India
| | - Vijay K. Ramani
- Center for Solar Energy and Energy Storage and Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Brauer Hall, 1 Brookings Dr., CB 1180, St. Louis, Missouri 63130, United States
| |
Collapse
|
45
|
Abstract
NASA's current mandate is to land humans on Mars by 2033. Here, we demonstrate an approach to produce ultrapure H2 and O2 from liquid-phase Martian regolithic brine at ∼-36 °C. Utilizing a Pb2Ru2O7-δ pyrochlore O2-evolution electrocatalyst and a Pt/C H2-evolution electrocatalyst, we demonstrate a brine electrolyzer with >25× the O2 production rate of the Mars Oxygen In Situ Resource Utilization Experiment (MOXIE) from NASA's Mars 2020 mission for the same input power under Martian terrestrial conditions. Given the Phoenix lander's observation of an active water cycle on Mars and the extensive presence of perchlorate salts that depress water's freezing point to ∼-60 °C, our approach provides a unique pathway to life-support and fuel production for future human missions to Mars.
Collapse
|
46
|
Zhao Y, Sun M, Wang X, Wang C, Lu D, Ma W, Kube SA, Ma J, Elimelech M. Janus electrocatalytic flow-through membrane enables highly selective singlet oxygen production. Nat Commun 2020; 11:6228. [PMID: 33277500 PMCID: PMC7718259 DOI: 10.1038/s41467-020-20071-w] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/28/2020] [Indexed: 01/06/2023] Open
Abstract
The importance of singlet oxygen (1O2) in the environmental and biomedical fields has motivated research for effective 1O2 production. Electrocatalytic processes hold great potential for highly-automated and scalable 1O2 synthesis, but they are energy- and chemical-intensive. Herein, we present a Janus electrocatalytic membrane realizing ultra-efficient 1O2 production (6.9 mmol per m3 of permeate) and very low energy consumption (13.3 Wh per m3 of permeate) via a fast, flow-through electro-filtration process without the addition of chemical precursors. We confirm that a superoxide-mediated chain reaction, initiated by electrocatalytic oxygen reduction on the cathodic membrane side and subsequently terminated by H2O2 oxidation on the anodic membrane side, is crucial for 1O2 generation. We further demonstrate that the high 1O2 production efficiency is mainly attributable to the enhanced mass and charge transfer imparted by nano- and micro-confinement effects within the porous membrane structure. Our findings highlight a new electro-filtration strategy and an innovative reactive membrane design for synthesizing 1O2 for a broad range of potential applications including environmental remediation.
Collapse
Affiliation(s)
- Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA
| | - Meng Sun
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA.
| | - Xiaoxiong Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA
| | - Chi Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA
- School of Environment, Northeast Normal University, Changchun, 130024, China
| | - Dongwei Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wen Ma
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA
| | - Sebastian A Kube
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, 06511, USA
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA.
| |
Collapse
|
47
|
Li K, Chen C, Bian X, Sun T, Jia J. Electrolytic nitrate reduction using Co3O4 rod-like and sheet-like cathodes with the control of (220) facet exposure and Co2+/Co3+ ratio. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137121] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Wei K, Cui T, Huang F, Zhang Y, Han W. Membrane Separation Coupled with Electrochemical Advanced Oxidation Processes for Organic Wastewater Treatment: A Short Review. MEMBRANES 2020; 10:membranes10110337. [PMID: 33198324 PMCID: PMC7697808 DOI: 10.3390/membranes10110337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 11/25/2022]
Abstract
Research on the coupling of membrane separation (MS) and electrochemical advanced oxidation processes (EAOPs) has been a hot area in water pollution control for decades. This coupling aims to greatly improve water quality and focuses on the challenges in practical application to provide a promising solution to water shortage problems. This article provides a summary of the coupling configurations of MS and EAOPs, including two-stage and one-pot processes. The two-stage process is a combination of MS and EAOPs where one process acts as a pretreatment for the other. Membrane fouling is reduced when setting EAOPs before MS, while mass transfer is promoted when placing EAOPs after MS. A one-pot process is a kind of integration of two technologies. The anode or cathode of the EAOPs is fabricated from porous materials to function as a membrane electrode; thus, pollutants are concurrently separated and degraded. The advantages of enhanced mass transfer and the enlarged electroactive area suggest that this process has excellent performance at a low current input, leading to much lower energy consumption. The reported conclusions illustrate that the coupling of MS and EAOPs is highly applicable and may be widely employed in wastewater treatment in the future.
Collapse
Affiliation(s)
- Kajia Wei
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (K.W.); (T.C.); (F.H.)
| | - Tao Cui
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (K.W.); (T.C.); (F.H.)
- Nanjing Research Institute of Electronic Engineering, Nanjing 210007, China
| | - Fang Huang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (K.W.); (T.C.); (F.H.)
| | - Yonghao Zhang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (K.W.); (T.C.); (F.H.)
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
- Correspondence: (Y.Z.); (W.H.)
| | - Weiqing Han
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (K.W.); (T.C.); (F.H.)
- Correspondence: (Y.Z.); (W.H.)
| |
Collapse
|
49
|
Chen X, Zhang T, Kan M, Song D, Jia J, Zhao Y, Qian X. Binderless and Oxygen Vacancies Rich FeNi/Graphitized Mesoporous Carbon/Ni Foam for Electrocatalytic Reduction of Nitrate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13344-13353. [PMID: 32993297 DOI: 10.1021/acs.est.0c05631] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Energy consumption and long-term stability of a cathode are two important aspects of great concern in electrocatalytic nitrate reduction. This work studied a binderless FeNi/graphitized mesoporous carbon directly formed on Ni Foam (FeNi/g-mesoC/NF, 7.3 wt % of Fe) and evaluated its electrocatalytic nitrate reduction performance. We proposed a unique structure model of FeNi/g-mesoC/NF cathode in which FeNi alloy nanoparticles were uniformly embedded in mesoporous carbon and graphitized carbon shells were coated on isolated alloy nanoparticles. Oxygen vacancies (OVs) in FeNi oxide passivating layer facilitate the conversion of NO3--N anions on cathode. Toxic NO2--N was almost undetected due to the synergetic effects of FeNi electrocatalysis, and the NO3--N conversion was high in comparation with ever reported iron-based cathode. The NO3--N conversion showed ultrahigh electrocatalytic stability during one-month-recycling test while the physiochemical properties showed negligible change for FeNi/g-mesoC/NF except the increase of OVs. The energy consumption to treat simulated underground water (50% of NO3--N conversion) was low (0.7 kWh mol-1) for 50 mg L-1 NO3--N. This binderless composite cathode shows great potential in electrocatalytic NO3--N removal in underground water.
Collapse
Affiliation(s)
- Xiaotong Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Ting Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Miao Kan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Dinggui Song
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Yixin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Xufang Qian
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| |
Collapse
|
50
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|