1
|
Zhang Q, Yang Y, Lee CH, Graham NJD, Ng HY. Enhanced methane production and biofouling mitigation by Fe 2O 3 nanoparticle-biochar composites in anaerobic membrane bioreactors. WATER RESEARCH 2025; 280:123522. [PMID: 40132466 DOI: 10.1016/j.watres.2025.123522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Conductive materials present an innovative approach to enhancing methane production while facilitating sludge reduction and recovering resources in anaerobic digestion systems. However, the synergistic mechanisms by which composite materials influence the performance of anaerobic membrane bioreactor (AnMBR)-particularly in improving methane production and mitigating membrane fouling, remain underexplored. To address this, Fe2O3 nanoparticle-biochar composites (Fe2O3-BC) were synthesized to enhance electrical conductivity and promote efficient electron transfer in AnMBRs system. These results demonstrated that Fe2O3-BC exhibit high electron donor and electron acceptor capacities, increasing electron transport system (ETS) activity and conductivity by 1.4-fold and 1.7-fold, respectively. This enhancement accelerated the degradation of organic matter during the hydrolysis-acidification stage and boosted the activity of key enzymes (CytC and F420) in the methanogenic phase, resulting in a 42 % increase in methane production. Microbial community analysis indicated that Fe2O3-BC strengthened the methanogenic pathway by fostering efficient metabolic interactions between acidogenic bacteria (e.g., norank_f_Rikenellaceae) and methanogens (e.g., Methanosaeta). Long-term experiments with the Fe3BC25-AnMBR reactor showed a significant reduction in the accumulation of soluble microbial products (SMP) and extracellular polymeric substances (EPS) on membrane surfaces, along with a decline in fouling-related bacteria (e.g., Bacteroidota), mitigating membrane fouling by approximately 20-65 %. Furthermore, Fe3BC25 inhibited biofilm-related quorum sensing (QS) signals (e.g., C6-HSL, AI-1, and AI-2), reducing microbial adhesion and biofouling. Simultaneously, it enhanced methanogenesis by upregulating QS signals associated with methane production (e.g., C10-HSL). Fe2O3-BC is expected to offer a promising strategy for advancing energy-driven AnMBR processes.
Collapse
Affiliation(s)
- Qianqian Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yu Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Chung-Hak Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| |
Collapse
|
2
|
Zhang Y, Ye Y, Fang M, Xiang Y, Chen J, Tang X, Yang Z, Qian Q. Biogas production enhancement from anaerobic digestion with magnetic biochar: Insights into the functional microbes and DIET. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125347. [PMID: 40228470 DOI: 10.1016/j.jenvman.2025.125347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/29/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
The application of magnetic biochar in anaerobic digestion (AD) has gained increasing attention. However, the underlying mechanisms remain insufficiently understood. This study systematically investigated the effects of magnetic biochar on functional microbial communities involved in methanogenesis and elucidated its role in promoting direct interspecies electron transfer (DIET) within AD systems. The addition of 40 mg g-1 TSadded of magnetic biochar significantly enhanced methane production by 42.21 %, reaching 223.08 mL g-1 TS with highest organic matter degradation efficiency. Microbial community analysis showed that magnetic biochar significantly enriched microorganisms associated with hydrolysis, acidogenesis, and methanogenesis, as well as electroactive microorganisms' abundance such as Geobacter spp., Syntrophus spp., P. aestuarii, and M. harundinacea, providing direct evidence for the DIET process of AD with magnetic biochar. Furthermore, the abundance of key genes involved in the DIET, including pilA, Fpo, and the genes encoded outer-membrane c-type cytochromes, was respectively upregulated by 44.49 %, 22.04 %, and 37.6 % in the presence of magnetic biochar. These findings suggest that magnetic biochar enhances the production of conductive pili and cytochrome c, facilitating extracellular electron transfer between syntrophic microorganisms. This accelerated electron transfer promotes CO2 reduction to CH4, ultimately improving methane production efficiency in the AD system. Moreover, the enhancement of hydrogenotrophic methanogenesis was particularly pronounced with magnetic biochar, further contributing to the improved AD performance. This study provides novel mechanistic insights into biochar-mediated DIET, offering a theoretical basis for optimizing biochar applications in AD.
Collapse
Affiliation(s)
- Yanru Zhang
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350007, China.
| | - Yuhang Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Minghui Fang
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350007, China.
| | - Yinping Xiang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Jianfei Chen
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, China.
| | - Xiang Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Qingrong Qian
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350007, China.
| |
Collapse
|
3
|
Jin HY, Ren YX, Tang CC, Zhang S, Wang J, Zhou AJ, Liang B, Liu W, Wang A, He ZW. Deciphering the synergistic effects and mechanisms of biochar and magnetite contained in magnetic biochar for enhancing methane production in anaerobic digestion of waste activated sludge. WATER RESEARCH 2025; 282:123734. [PMID: 40347893 DOI: 10.1016/j.watres.2025.123734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/16/2025] [Accepted: 04/26/2025] [Indexed: 05/14/2025]
Abstract
Adding conductive materials is one of the most extensive enhancement strategies while treating waste activated sludge via anaerobic digestion. Magnetic biochar (MBC), as one composite conductive material, is capable of enhancing methane yield and production rate because of its favorable characteristics. However, whether the synergistic effects formed or not between biochar and magnetite contained in MBC on anaerobic digestion is still unclear. This study investigated the synergistic effects and corresponded mechanisms of biochar and magnetite contained in MBC with semi-continuous anaerobic digestion mode. Results showed that the co-addition of biochar and magnetite performed non-synergistic effects on methane production potential, with decrease ratios of 2.2 % and 7.4 % respectively compared to that in biochar and magnetite groups. Interestingly, the biochar and magnetite contained in MBC formed synergistic effects, with an extra improvement of 5.5 % compared to the sum of those obtained in biochar and magnetite groups. The synergistic effects came from efficient hydrolysis and acidogenesis stages, including the thorough degradation of soluble organic matters and the rapid conversion of acetic acids. MBC also produced synergistic effects on the hydrophilia and redox properties of extracellular polymeric substances, the activities of enzymes involved in interspecies electron transfer, and the contents of adenosine triphosphate (ATP). Specifically, the enhancement potential contributed by MBC exceeded the total enhancement potential contributed by biochar and magnetite, with the extra enhancement ratios of 13.1 % and 19.4 % for cytochrome c and ATP, thus, the biochar and magnetite contained in MBC formed synergistic effects for promoting electron transmembrane and transfer from kinetic aspects. The correlation coefficient between methane production performance and the microbial electron transfer activity reached 0.96, correspondingly, the highest electron transfer activity of microorganisms was presented in MBC. As for microbial communities, the functional and electro-active microorganisms were enriched with the addition of MBC, such as Peptoclostridium, Anaerolineaceae, Methanosarcina, and Methanosaeta, which facilitated the conversion of organic matters and established direct interspecies electron transfer methanogenesis. The findings of this study revealed the synergistic effects and mechanisms of biochar and magnetite contained in magnetic biochar in enhancing sludge anaerobic digestion, and provided an effective strategy to recover bioenergy from waste activated sludge, potentially boosting carbon neutrality in wastewater treatment.
Collapse
Affiliation(s)
- Hong-Yu Jin
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, PR China; Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Shuai Zhang
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, PR China; Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jiabin Wang
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, PR China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Bin Liang
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Eco-Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Wenzong Liu
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Eco-Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Aijie Wang
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Eco-Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
4
|
Jiang Q, Zhou W, Chen Y, Peng Z, Li C. Impacts of the quinone-functionalized biochar on anaerobic digestion: Beyond the redox property of biochar. PLoS One 2025; 20:e0322275. [PMID: 40261889 PMCID: PMC12013935 DOI: 10.1371/journal.pone.0322275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Recent developments in biochar materials have led to renewed interest in biochar modification for environmental applications, however, much uncertainty still exists about the impact of engineered biochar on a given biotechnological process. The redox properties of biochar were considered to be the key property for enhancing the methanogenic process, and the redox activity of biochar was closely related to the type and amount of oxygen-containing functional groups, especially quinone groups. Therefore, anthraquinone-2-sulfonate (AQS) was immobilized on algal biochar (ABC) by surface doping method, and the impacts of the quinone-functionalization process on algal biochar for regulating methane production were investigated in this study. Results showed that the immobilization capacity of AQS on ABC (ABC-AQS) reached 0.289 mmol/g. The acidogenesis rate was improved by 26.3% with the addition of ABC-AQS during anaerobic digestion test. However, methane production was inhibited rather than enhanced by the ABC-AQS, which could be attributed to the strong acid treatment stage involved in the biochar modification process. pH interferences, the generation and/or dissolution of inhibitory substances, and the release of Zn2+ should be the major mechanisms of microbial inhibition by ABC-AQS. The findings of this study give us an important clue that when designing a biochar modification procedure for anaerobic digestion, attentions should be paid to the possible influences of chemical side reactions during biochar modification process on subsequent microbial metabolism, which would be valuable in designing engineered biochar for practical applications.
Collapse
Affiliation(s)
- Qian Jiang
- School of Biological and Materials Engineering, Suqian University, Suqian, China
- Jiangsu Engineering Research Center of Novel Functional Film and Technology, Biological and Materials Engineering, Suqian University, Suqian, China
| | - Wentao Zhou
- School of Biological and Materials Engineering, Suqian University, Suqian, China
| | - Yue Chen
- School of Biological and Materials Engineering, Suqian University, Suqian, China
| | - Zhenglong Peng
- School of Biological and Materials Engineering, Suqian University, Suqian, China
| | - Chengcheng Li
- School of Biological and Materials Engineering, Suqian University, Suqian, China
| |
Collapse
|
5
|
Xu H, Hei S, Fu W, Zhang X, Liang P, Pan B, Huang X. Unraveling the Trade-Off Effect of Pyrogenic Carbons Between Biopseudocapacitors and Bioconductors During Anaerobic Methanogenesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2861-2874. [PMID: 39871112 DOI: 10.1021/acs.est.4c10638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Pyrogenic carbons (PCs), with varying structures depending on the materials and thermal treatment conditions, have been extensively used to enhance anaerobic digestion by mediating electron transfer. However, the underlying mechanism has yet to be explored. Herein, the redirection and enhancement of the direct interspecies electron transfer (DIET) pathway were evidenced, along with the upregulated electrochemical properties and structural proteins in the methanogenic consortia. Further, we found that PCs featured trade-off properties of "biopseudocapacitor" and "bioconductor" during thermal treatment, as endowed by the evolution of oxygen-containing functional groups (for charging and discharging) and graphitic structure (for conductivity). Correspondingly, their trade-off effect on mediating syntrophic methanogenesis (SM) was realized between the generally acknowledged bioconductor role and the pseudocapacitive effect, as highlighted by the enhanced SM of reduced PCs from more balanced electron exchange capacities. Consequently, a performance comparison of PCs obtained at 450, 650, and 850 °C in SM resulted in an optimized sample at 650 °C, where a 61.3 ± 1.8% increase in methane production rate and a 33.4 ± 1.1% decrease in lag time were observed. Microbiologically, DIET-active Methanothrix and Geobacteraceae flourished with the intra- and extracellular electron transport channels established. These findings provide new insights into the mediating mechanism and renewable potential of PCs in regulating energy-harvesting biochemical processes toward carbon neutrality.
Collapse
Affiliation(s)
- Hui Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Shengqiang Hei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Wanyi Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
6
|
Yang H, Chen N, Yang K, Liu F, Yuan Y, Zhang X, Hao Z, Jia H. Microscale Spatiotemporal Variation of Reactive Oxygen Species in the Charosphere: Underlying Formation Mechanism and Their Role in CO 2 Emission. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2095-2106. [PMID: 39849310 DOI: 10.1021/acs.est.4c11955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Charosphere, a highly active zone between biochar and surrounding soil, is widely present in agricultural and wildfire-affected soils, yet whether reactive oxygen species (ROS) are produced within the charosphere remains unclear. Herein, the production and spatiotemporal evolution of charosphere ROS were explored. In situ ROS capture visualized a gradual decrease in ROS production with increasing distance from the biochar/soil interface. Temporally, O2•- and H2O2 contents initially increased and then declined with increasing incubation time, peaking at 3.04 and 5.40 μmol kg-1, respectively, while •OH content decreased continuously. High-throughput sequencing revealed that dissolved biochar (DBC) facilitated ROS production by promoting the growth of bacteria with electron-releasing capacity, such as Bacteroidetes, Acidobacteria, Actinobacteria, and Chloroflexi. Additionally, adding electron transfer-weakened DBC significantly decreased ROS contents (ANOVA, P < 0.05), demonstrating that DBC also served as the electron shuttle and electron-storing materials to promote ROS production by accelerating electron transfer. This was further confirmed via fluorescence imaging, which visually showed stronger electron transfer ability near the soil/biochar surface. Inhibition and isotope experiments revealed the critical role of charosphere ROS in CO2 emissions, primarily from soil organic carbon. This study highlights the charosphere as a prevalent yet overlooked ROS hotspot, advancing our understanding of organic carbon turnover in soils.
Collapse
Affiliation(s)
- Huiqiang Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Na Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Kangjie Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Fuhao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Yuntao Yuan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Xianglei Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Zelin Hao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| |
Collapse
|
7
|
Yan X, Peng P, Li X, Zhou X, Chen L, Zhao F. Unlocking anaerobic digestion potential via extracellular electron transfer by exogenous materials: Current status and perspectives. BIORESOURCE TECHNOLOGY 2025; 416:131734. [PMID: 39489312 DOI: 10.1016/j.biortech.2024.131734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/17/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The efficiency of energy transfer among microorganisms presents a substantial hurdle for the widespread implementation of anaerobic digestion techniques. Nonetheless, recent studies have demonstrated that enhancing the extracellular electron transfer (EET) can markedly enhance this efficiency. This review highlights recent advancements in EET for anaerobic digestion and examines the contribution of external additives to fostering enhanced efficiency within this context. Diverse mechanisms through which additives are employed to improve EET in anaerobic environments are delineated. Furthermore, specific strategies for effectively regulating EET are proposed, aiming to augment methane production from anaerobic digestion. This review thus offers a perspective on future research directions aimed at optimizing waste resources, enhancing methane production efficiency, and improving process predictability in anaerobic digestion.
Collapse
Affiliation(s)
- Xinyu Yan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Pin Peng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Xiang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Xudong Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China
| | - Lixiang Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China.
| |
Collapse
|
8
|
Cheng Y, Lu K, Chen Z, Li N, Wang M. Biochar Reduced the Risks of Human Bacterial Pathogens in Soil via Disturbing Quorum Sensing Mediated by Persistent Free Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22343-22354. [PMID: 39642235 DOI: 10.1021/acs.est.4c07668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Biochar has great potential in reducing the abundance of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) from soil. However, its efficiency in removing other biological pollutants, such as human bacterial pathogens (HBPs) and virulence factor genes (VFGs), is rarely studied. Herein, by pyrolyzing rice straw (RS) and pine wood (PW) at 350 and 700 °C, we prepared a series of biochar (RS350, RS700, PW350, and PW700) and investigated their impacts on the abundance and pathogenicity of HBPs. Compared with PW biochar, RS biochar effectively reduced the abundance of HBPs by 6.3-40.1%, as well as their pathogenicity, evidenced by an 8.2-10.1% reduction in the abundance of VFGs. Mechanistically, more persistent free radicals (PFRs) were formed in RS biochar than that of PW biochar during pyrolysis, and PFRs triggered the degradation of N-butyryl-l-homoserine lactone (C4-HSL) from 1.05 to 0.68 ng/kg, thereby disturbing the quorum sensing (QS) of HBPs. Once the QS was disturbed, the communications among HBPs were hindered, and their virulence factors were reduced, which ultimately lowered the abundance and pathogenicity of HBPs. Collectively, our study provides insights into the role of biochar in decreasing the risks of HBPs, which is significant in the development of biochar-based technologies for soil remediation.
Collapse
Affiliation(s)
- Yangjuan Cheng
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling & International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Kun Lu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling & International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Zaiming Chen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling & International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Na Li
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling & International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China
| | - Meizhen Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling & International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
- School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
9
|
Ngaba MJY, Hu B, Rennenberg H. Biochar amendment affects the microbial genetic profile of the soil, its community structure and phospholipid fatty acid contents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176748. [PMID: 39395494 DOI: 10.1016/j.scitotenv.2024.176748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/17/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Biochar (BC) amendment has been proposed as a promising strategy for mitigating greenhouse gas (GHG) emissions, specifically carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Conducting a meta-analysis to evaluate the impact of biochar on microbial genetic profile, community structure, and phospholipid fatty acid (PLFA) contents can aid in identifying key microbial groups involved in GHG production and consumption, and assessing the overall effectiveness of biochar in reducing GHG emissions. The present meta-analysis revealed that the addition of biochar resulted in a 22 % and 41 % reduction in pmoA and mcrA genes of methanogenic microorganisms, respectively. The mcrA/pmoA ratio significantly increased by 81 %. Gene abundances exhibited a positive response to biochar amendment, with increases observed in nifH, nirK, nirS, nosZ, and nosZ (nirS + nirK) genes by 13 %, 32 %, 37 %, 42 %, and 79 %, respectively. Moreover, biochar amendment influenced the microbial community structure accordingly. The concentration of PLFAs increased in response to BC treatment in the following order: A-bacteria (+49 %) < Fungi (+30 %) < Gram-pb (+21 %) < G-bacteria (+17 %) < Gram-nb (+11 %). These findings indicate that biochar amendment shapes the microbial community structure, further emphasizing its significance in enhancing soil fertility.
Collapse
Affiliation(s)
- Mbezele Junior Yannick Ngaba
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, People's Republic of China; Higher Technical Teacher' Training College of Ebolowa, University of Ebolowa (HTTTC), 886 Ebolowa, Cameroon
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, People's Republic of China.
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
10
|
Zhang Y, Wang B, Hassan M, Zhang X. Biochar coupled with multiple technologies for the removal of nitrogen and phosphorus from water: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122407. [PMID: 39265490 DOI: 10.1016/j.jenvman.2024.122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/13/2024] [Accepted: 08/31/2024] [Indexed: 09/14/2024]
Abstract
Water eutrophication caused by nitrogen (N) and phosphorus (P) has become a global environmental issue. Biochar is a competent adsorbent for removing N and P from wastewater. However, compared with commercial activated carbon, biochar has relatively limited adsorption capacity. To broaden the field scale application of biochar, biochar coupled with multiple technologies (BC-MTs) (such as microorganisms, electrochemistry, biofilm, phytoremediation, etc.) have been extensively developed for environmental remediation. Nevertheless, due to the fluctuations and differences in biochar types, coupling methods, and wastewater types, various techniques show different removal mechanisms and performance, hindering the promotion and application of BC-MTs. A systematic review of the research progress of BC-MTs is highly necessary to gain a better understanding of the current research status and progress, as well as to promote the application of these techniques. In this paper, the application of pristine and modified biochar in adsorbing N and P in wastewater is critically reviewed. Then the removal performance, influencing factors, mechanisms, and the environmental applications of BC-MTs in wastewater are systematically summarized. In addition, the cost analysis and risk assessment of BC-MTs in environmental applications are conducted. Finally, suggestions and prospects for future research and practical application are put forward.
Collapse
Affiliation(s)
- Yaping Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China.
| | - Masud Hassan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xueyang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| |
Collapse
|
11
|
Cui S, Wang R, Chen Q, Pugliese L, Wu S. Geobatteries in environmental biogeochemistry: Electron transfer and utilization. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100446. [PMID: 39104555 PMCID: PMC11298864 DOI: 10.1016/j.ese.2024.100446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 08/07/2024]
Abstract
The efficiency of direct electron flow from electron donors to electron acceptors in redox reactions is significantly influenced by the spatial separation of these components. Geobatteries, a class of redox-active substances naturally present in soil-water systems, act as electron reservoirs, reversibly donating, storing, and accepting electrons. This capability allows the temporal and spatial decoupling of redox half-reactions, providing a flexible electron transfer mechanism. In this review, we systematically examine the critical role of geobatteries in influencing electron transfer and utilization in environmental biogeochemical processes. Typical redox-active centers within geobatteries, such as quinone-like moieties, nitrogen- and sulfur-containing groups, and variable-valent metals, possess the potential to repeatedly charge and discharge. Various characterization techniques, ranging from qualitative methods like elemental analysis, imaging, and spectroscopy, to quantitative techniques such as chemical, spectroscopic, and electrochemical methods, have been developed to evaluate this reversible electron transfer capacity. Additionally, current research on the ecological and environmental significance of geobatteries extends beyond natural soil-water systems (e.g., soil carbon cycle) to engineered systems such as water treatment (e.g., nitrogen removal) and waste management (e.g., anaerobic digestion). Despite these advancements, challenges such as the complexity of environmental systems, difficulties in accurately quantifying electron exchange capacity, and scaling-up issues must be addressed to fully unlock their potential. This review underscores both the promise and challenges associated with geobatteries in responding to environmental issues, such as climate change and pollutant transformation.
Collapse
Affiliation(s)
- Shihao Cui
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Rui Wang
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Lorenzo Pugliese
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| |
Collapse
|
12
|
Lv Y, Ren WT, Huang Y, Wang HZ, Wu QL, Guo WQ. Upgrading soybean dreg to caproate via intermediate of lactate and mediator of biochar. BIORESOURCE TECHNOLOGY 2024; 406:130958. [PMID: 38876284 DOI: 10.1016/j.biortech.2024.130958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/07/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
To address the environmental hazards posed by high-yield soybean dreg (SD), a high-value strategy is firstly proposed by synthesizing caproate through chain elongation (CE). Optimized conditions for lactate-rich broth as intermediate, utilizing 50 % inoculum ratio, 40 g/L substrate concentration, and pH 5, resulting in 2.05 g/L caproate from direct fermentation. Leveraging lactate-rich broth supplemented with ethanol, caproate was optimized to 2.76 g/L under a refined electron donor to acceptor of 2:1. Furthermore, incorporating 20 g/L biochar elevated caproate production to 3.05 g/L and significantly shortened the lag phase. Mechanistic insights revealed that biochar's surface-existed quinone and hydroquinone groups exhibit potent redox characteristics, thereby facilitating electron transfer. Moreover, biochar up-regulated the abundance of key genes involved in CE process (especially fatty acids biosynthesis pathway), also enriching Lysinibacillus and Pseudomonas as an unrecognized cooperation to CE. This study paves a way for sustainable development of SD by upgrading to caproate.
Collapse
Affiliation(s)
- Yang Lv
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei-Tong Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hua-Zhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qing-Lian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
13
|
Liu Z, Su J, Yao Z, Zhang Y, Wang L, Zhao L. Enhancing humic acids production from cornstalk under fast hydrothermal conditions: Insights into new pathways of skeleton self-polymerization and branch growth. BIORESOURCE TECHNOLOGY 2024; 406:131020. [PMID: 38909871 DOI: 10.1016/j.biortech.2024.131020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Hydrochar, a sustainable fertilizer rich in humic substances, is made from lignocellulose through hydrothermal conversion. However, hydrothermal humification (HTH) is challenged by low yields and limited selectivity in the resulting hydrochar. This study proved humic-like acids production can be enhanced under fast non-catalytic conditions (260 ∼ 280 °C, 0 ∼ 1 h). A higher yield (by 14.1 %) and selectivity (by 40.2 %) in hydrochar of humic-like acids than conventional HTH (<250 °C) were achieved. Meanwhile, decreased lignin derivatives, carbonyl and quinone groups, as well as increased sp2-C structures in the humic-like acids were observed. The synthesized humic-like acids exhibited a lower degree of aromatization and a higher molecular weight than commercial variants. Two pathways of humic-like acids formation of self-polymerization and the development of branched sidechains were hypothesized based on mass mitigation, carbon flow and aqueous phase compositions. This research contributes a novel approach to producing humic-like acids rich hydrochar for environmentally friendly fertilizer production.
Collapse
Affiliation(s)
- Ziyun Liu
- Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs P. R. China. Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing 100081, China; Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jinting Su
- Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs P. R. China. Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing 100081, China; School of Agricultural Engineering and Food Science, Shandong Research Center of Engineering and Technology for Clean Energy, Shandong University of Technology, Zibo, China
| | - Zonglu Yao
- Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs P. R. China. Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing 100081, China
| | - Yuanhui Zhang
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lihong Wang
- School of Agricultural Engineering and Food Science, Shandong Research Center of Engineering and Technology for Clean Energy, Shandong University of Technology, Zibo, China
| | - Lixin Zhao
- Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs P. R. China. Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing 100081, China.
| |
Collapse
|
14
|
Deng Y, Zhang Y, Zhao Z. A data-driven approach for revealing the linkages between differences in electrochemical properties of biochar during anaerobic digestion using automated machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172291. [PMID: 38588748 DOI: 10.1016/j.scitotenv.2024.172291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Biochar is commonly used to enhance the anaerobic digestion of organic waste solids and wastewater, due to its electrochemical properties, which intensify the electron transfer of microorganisms attached to its large surface area. However, it is difficult to create biochar with both high conductivity and high capacitance, which makes selecting the right biochar for engineering applications challenging. To address this issue, two Auto algorithms (TPOT and H2O) were applied to model the effects of different biochar properties on anaerobic digestion processes. The results showed that the gradient boosting machine had the highest predictive accuracy (R2 = 0.96). Feature importance analysis showed that feedstock concentration, digestion time, capacitance, and conductivity of biochar were the main factors affecting methane yield. According to the two-dimensional (2D) partial dependence plots, high-capacitance biochar (0.27-0.29 V·mA) is favorable for substrates with low-solid content (< 19.6 TS%), while the high-conductivity biochar (80.82-170.58 mS/cm) is suitable for high-solids substrates (> 20.1 TS%). The software, based on the optimal model, can be used to obtain the ideal range of biochar for AD trials, aiding researchers in practical applications prior to implementation.
Collapse
Affiliation(s)
- Ying Deng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yifan Zhang
- Olin Business School, Washington University in St. Louis, St. Louis 63130, United States
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
15
|
Zhao ZJ, Liu XL, Wang YX, Wang YS, Shen JY, Pan ZC, Mu Y. Material and microbial perspectives on understanding the role of biochar in mitigating ammonia inhibition during anaerobic digestion. WATER RESEARCH 2024; 255:121503. [PMID: 38537488 DOI: 10.1016/j.watres.2024.121503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/24/2024]
Abstract
With the increasing adoption of carbon-based strategies to enhance methanogenic processes, there is a growing concern regarding the correlation between biochar properties and its stimulating effects on anaerobic digestion (AD) under ammonia inhibition. This study delves into the relevant characteristics and potential mechanisms of biochar in the context of AD system under ammonia inhibition. The introduction of optimized biochar, distinguished by rich CO bond, abundant defect density, and high electronic capacity, resulted in a significant reduction in the lag period of anaerobic digestion system under 5.0 g/L ammonia stress, approximately by around 63 % compared to the control one. Biochar helps regulate the community structure, promotes the accumulation of acetate-consuming bacteria, in the AD system under ammonia inhibition. More examinations show that biochar promotes direct interspecies electron transfer in AD system under ammonia inhibition, as evidenced by diminished levels of bound electroactive extracellular polymeric substances, increased abundance of electroactive bacteria, and notably, the up-regulation of direct interspecies electron transfer associated genes, including the conductive pili and Cytochrome C genes, as revealed by meta-transcriptomic analysis. Additionally, gene expression related to proteins associated with ammonium detoxification were found to be up-regulated in systems supplemented with biochar. These findings provide essential evidence and insights for the selection and potential engineering of effective biochar to enhance AD performance under ammonia inhibition.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Li Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Xuan Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yan-Shan Wang
- School of Geographic Sciences, Nantong University, Nantong 226007, China
| | - Jin-You Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhi-Cheng Pan
- Laboratory of Urban Wastewater Treatment Technology in Sichuan Province of Haitian Water Group Co., Ltd, Chengdu 610041, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
16
|
Xu Z, Tsang DC. Mineral-mediated stability of organic carbon in soil and relevant interaction mechanisms. ECO-ENVIRONMENT & HEALTH (ONLINE) 2024; 3:59-76. [PMID: 38318344 PMCID: PMC10840363 DOI: 10.1016/j.eehl.2023.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/24/2023] [Accepted: 12/13/2023] [Indexed: 02/07/2024]
Abstract
Soil, the largest terrestrial carbon reservoir, is central to climate change and relevant feedback to environmental health. Minerals are the essential components that contribute to over 60% of soil carbon storage. However, how the interactions between minerals and organic carbon shape the carbon transformation and stability remains poorly understood. Herein, we critically review the primary interactions between organic carbon and soil minerals and the relevant mechanisms, including sorption, redox reaction, co-precipitation, dissolution, polymerization, and catalytic reaction. These interactions, highly complex with the combination of multiple processes, greatly affect the stability of organic carbon through the following processes: (1) formation or deconstruction of the mineral-organic carbon association; (2) oxidative transformation of the organic carbon with minerals; (3) catalytic polymerization of organic carbon with minerals; and (4) varying association stability of organic carbon according to the mineral transformation. Several pieces of evidence related to the carbon turnover and stability during the interaction with soil minerals in the real eco-environment are then demonstrated. We also highlight the current research gaps and outline research priorities, which may map future directions for a deeper mechanisms-based understanding of the soil carbon storage capacity considering its interactions with minerals.
Collapse
Affiliation(s)
- Zibo Xu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C.W. Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
17
|
Wang YQ, Ding J, Pang JW, Wu CD, Sun HJ, Fang R, Ren NQ, Yang SS. Promotion of anaerobic biodegradation of azo dye RR2 by different biowaste-derived biochars: Characteristics and mechanism study by machine learning. BIORESOURCE TECHNOLOGY 2024; 396:130383. [PMID: 38316227 DOI: 10.1016/j.biortech.2024.130383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
The addition of biochar resulted in a 31.5 % to 44.6 % increase in decolorization efficiency and favorable decolorization stability. Biochar promoted extracellular polymeric substances (EPS) secretion, especially humic-like and fulvic-like substances. Additionally, biochar enhanced the electron transfer capacity of anaerobic sludge and facilitated surface attachment of microbial cells. 16S rRNA gene sequencing analysis indicated that biochar reduced microbial species diversity, enriching fermentative bacteria such as Trichococcus. Finally, a machine learning model was employed to establish a predictive model for biochar characteristics and decolorization efficiency. Biochar electrical conductivity, H/C ratio, and O/C ratio had the most significant impact on RR2 anaerobic decolorization efficiency. According to the results, the possible mechanism of RR2 anaerobic decolorization enhanced by different types of biochar was proposed.
Collapse
Affiliation(s)
- Yu-Qian Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Digital Technology Co., Ltd., Beijing 100096, China
| | - Chuan-Dong Wu
- Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Harbin 150090, China; Guangdong Water Engineering Research Center of Water Resource (Guangdong) Co., Ltd, Shenzhen 518002, China
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Rui Fang
- Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Harbin 150090, China; Guangdong Water Engineering Research Center of Water Resource (Guangdong) Co., Ltd, Shenzhen 518002, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
18
|
Zhuo M, Quan X, Yin R, Lv K. Enhancing methane production and interspecies electron transfer of anaerobic granular sludge by the immobilization of magnetic biochar. CHEMOSPHERE 2024; 352:141332. [PMID: 38296206 DOI: 10.1016/j.chemosphere.2024.141332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/20/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Supplementation of conductive materials has been proved to be a promising approach for enhancing microbial interspecies electron transfer (IET) in anaerobic digestion systems. In this study, magnetic bamboo-based biochar was prepared at temperatures of 400-800 °C via a ball milling/carbonization method, and it immobilized in mature anaerobic granular sludge (AGS) aimed to enhance methane production by improving the IET process between syntrophic microbial communities in the AGS. Results showed that the AGS with magnetic biochar immobilization demonstrated increased glucotrophic and acetotrophic methane production by 69.54-77.56 % and 39.96-54.92 %, respectively. Magnetic biochar prepared at 800 °C with a relatively higher Fe content (0.37 g/g magnetic biochar) displayed a stronger electron charge/discharge capacity (36.66 F/g), and its immobilization into AGS promoted methane production most. The conductivity of AGS increased by 52.13-87.32 % after incorporating magnetic biochar. Furthermore, the extracellular polymeric substance (EPS) of AGS showed an increased capacitance and decreased electron transfer resistance possibly due to the binding of magnetic biochar and more riboflavin secretion in EPS, which could contribute to the accelerated IET process in the inner AGS. In addition, the immobilization of magnetic biochar could promote the production of volatile fatty acids by 15.36-22.50 %. All these improvements may jointly lead to the enhanced methane production capacity of AGS. This study provided a fundamental understanding of the role of incorporated magnetic biochar in AGS in promoting anaerobic digestion performance.
Collapse
Affiliation(s)
- Meihui Zhuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiangchun Quan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Ruoyu Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kai Lv
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
19
|
Liu QH, Sun HY, Yang ZM. Role of KOH-activated biochar on promoting anaerobic digestion of biomass from Pennisetumgianteum. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120165. [PMID: 38278119 DOI: 10.1016/j.jenvman.2024.120165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/30/2023] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
Pennisetum giganteum is a promising non-food crop feedstock for biogas production due to its high productivity and bio-methane potential. However, the accumulation of volatile fatty acids (VFA) usually restricts the conversion efficiency of P. giganteum biomass (PGB) during anaerobic digestion (AD). Here, the role of KOH-activated biochar (KB) in improving the AD efficiency of PGB and the related mechanisms were investigated in detail. The results revealed that KB exhibited excellent electrical conductivity, electron transfer capacity and specific capacitance, which might be related to the decrease in the electron transfer resistance after adding KB to the AD process. In addition, the KB addition not only reinforced metabolisms of energy and VFAs but also promoted the conversion of VFAs to methane, leading to a 52% increase in the methane production rate. Bioinformatics analysis showed that Smithella and Methanosaeta were key players in the KB-mediated AD process of PGB. The stimulatory effect of methanogenesis probably resulted from the establishment of direct interspecies electron transfer (DIET) between VFA-oxidizing acetogens (e.g., Smithella) and Methanosaeta. These findings provided a key step to improve the PGB-based AD process.
Collapse
Affiliation(s)
- Qing-Hua Liu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China; China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong-Ying Sun
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China; China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhi-Man Yang
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Science, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
20
|
Shi Z, Zhang C, Tan X, Xie L, Luo G. Syntrophic microbes involved in the oxidation of short-chain fatty acids in continuous-flow anaerobic digesters treating waste activated sludge with hydrochar. Appl Environ Microbiol 2024; 90:e0204723. [PMID: 38205997 PMCID: PMC10880590 DOI: 10.1128/aem.02047-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
The rapid degradation of short-chain fatty acids (SCFAs) is an essential issue of anaerobic digestion (AD), in which SCFA oxidizers could generally metabolize in syntrophy with methanogens. The dynamic responses of active metagenome-assembled genomes to low concentrations of propionate and acetate were analyzed to identify specific syntrophic SCFA oxidizers and their metabolic characteristics in continuous-flow AD systems treating waste activated sludge with and without hydrochar. In this study, hydrochar increased methane production by 19%, possibly due to hydrochar enhancing acidification and methanogenesis processes. A putative syntrophic propionate oxidizer and two acetate oxidizers contributed substantially to the syntrophic degradation of SCFAs, and hydrochar positively regulated their functional gene expressions. A significant relationship was established between the replication rate of SCFA oxidizers and their stimulation-related transcriptional activity. Acetate was degraded in the hydrochar group, which might be mainly through the syntrophic acetate oxidizer from the genus Desulfallas and methanogens from the genus Methanosarcina.IMPORTANCEShort-chain fatty acid (SCFA) degradation is an important process in the methanogenic ecosystem. However, current knowledge of this microbial mechanism is mainly based on studies on a few model organisms incubated as mono- or co-cultures or in enrichments, which cannot provide appropriate evidence in complex environments. Here, this study revealed the microbial mechanism of a hydrochar-mediated anaerobic digestion (AD) system promoting SCFA degradation at the species level and identified key SCFA oxidizing bacteria. Our analysis provided new insights into the SCFA oxidizers involved in the AD of waste activated sludge facilitated by hydrochar.
Collapse
Affiliation(s)
- Zhijian Shi
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai, China
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai, China
| | - Chen Zhang
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai, China
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai, China
| | - Xuejun Tan
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai, China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Gang Luo
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai, China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| |
Collapse
|
21
|
Hassaan MA, Elkatory MR, El-Nemr MA, Ragab S, Yi X, Huang M, El Nemr A. Synthesis, characterization, optimization and application of Pisum sativum peels S and N-doping biochars in the production of biogas from Ulva lactuca. RENEWABLE ENERGY 2024; 221:119747. [DOI: 10.1016/j.renene.2023.119747] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
22
|
Zhao W, Hu T, Ma H, Li D, Zhao Q, Jiang J, Wei L. A review of microbial responses to biochar addition in anaerobic digestion system: Community, cellular and genetic level findings. BIORESOURCE TECHNOLOGY 2024; 391:129929. [PMID: 37923231 DOI: 10.1016/j.biortech.2023.129929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
The biochar is a well-developed porous material with various excellent properties, that has been proven with excellent ability in anaerobic digestion (AD) efficiency promotion. Current research is usually focused on the macro effects of biochar on AD, while the systematic review about the mechanisms of biochar on microbial behavior are still lacking. This review summarizes the effects and potential mechanisms of biochar on microorganisms in AD systems, and found that biochar addition can provide habitats for microbial colonization, alleviate toxins stress, supply essential nutrients, and accelerate interspecies electron transferring. Moreover, it also improves microbial community diversity, facilitates EPS secretion, enhances functional enzyme activity, promotes functional genes expression, and inhibits the antibiotic resistance genes transformation. Future research directions including biochar targeted design, in-depth microbial mechanisms revelation, and modified model development were suggested, which could promote the widely practical application of of biochar-amended AD technology.
Collapse
Affiliation(s)
- Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Ma
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dan Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
23
|
Nie W, He S, Lin Y, Cheng JJ, Yang C. Functional biochar in enhanced anaerobic digestion: Synthesis, performances, and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167681. [PMID: 37839485 DOI: 10.1016/j.scitotenv.2023.167681] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Anaerobic digestion technology is crucial in bioenergy recovery and organic waste management. At the same time, it often encounters challenges such as low organic digestibility and inhibition of toxic substances, resulting in low biomethane yields. Biochar has recently been used in anaerobic digestion to alleviate toxicity inhibition, improve the stability of anaerobic digestion processes, and increase methane yields. However, the practical application of biochar is limited, for the properties of pristine biochar significantly affect its application in anaerobic digestion. Although much research focuses on understanding original biochar's fundamental properties and functionalization, there are few reviews on the applications of functional biochar and the effects of critical properties of pristine biochar on anaerobic digestion. This review systematically reviewed functionalization strategies, key performances, and applications of functional biochar in anaerobic digestion. The properties determining the role of biochar were reviewed, the synthesis methods of functional biochar were summarized and compared, the mechanism of functional biochar was discussed, and the factors affecting the function of functional biochar were reviewed. This review provided a comprehensive understanding of functional biochar in anaerobic digestion processes, which would be helpful for the development and applications of engineered biochar.
Collapse
Affiliation(s)
- Wenkai Nie
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China; College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China.
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Jay J Cheng
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.
| |
Collapse
|
24
|
Alam M, Dhar BR. Boosting thermophilic anaerobic digestion with conductive materials: Current outlook and future prospects. CHEMOSPHERE 2023; 343:140175. [PMID: 37714472 DOI: 10.1016/j.chemosphere.2023.140175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/15/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Thermophilic anaerobic digestion (TAD) can provide superior process kinetics, higher methane yields, and more pathogen destruction than mesophilic anaerobic digestion (MAD). However, the broader application of TAD is still very limited, mainly due to process instabilities such as the accumulation of volatile fatty acids and ammonia inhibition in the digesters. An emerging technique to overcome the process disturbances in TAD and enhance the methane production rate is to add conductive materials (CMs) to the digester. Recent studies have revealed that CMs can promote direct interspecies electron transfer (DIET) among the microbial community, increasing the TAD performance. CMs exhibited a high potential for alleviating the accumulation of volatile fatty acids and inhibition caused by high ammonia levels. However, the types, properties, sources, and dosage of CMs can influence the process outcomes significantly, along with other process parameters such as the organic loading rates and the type of feedstocks. Therefore, it is imperative to critically review the recent research to understand the impacts of using different CMs in TAD. This review paper discusses the types and properties of CMs applied in TAD and the mechanisms of how they influence methanogenesis, digester start-up time, process disturbances, microbial community, and biogas desulfurization. The engineering challenges for industrial-scale applications and environmental risks were also discussed. Finally, critical research gaps have been identified to provide a framework for future research.
Collapse
Affiliation(s)
- Monisha Alam
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB, T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
25
|
Kozłowski M, Igwegbe CA, Tarczyńska A, Białowiec A. Revealing the Adverse Impact of Additive Carbon Material on Microorganisms and Its Implications for Biogas Yields: A Critical Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7250. [PMID: 38067995 PMCID: PMC10707503 DOI: 10.3390/ma16237250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 09/16/2024]
Abstract
Biochar could be a brilliant additive supporting the anaerobic fermentation process. However, it should be taken into account that in some cases it could also be harmful to microorganisms responsible for biogas production. The negative impact of carbon materials could be a result of an overdose of biochar, high biochar pH, increased arsenic mobility in the methane fermentation solution caused by the carbon material, and low porosity of some carbon materials for microorganisms. Moreover, when biochar is affected by an anaerobic digest solution, it could reduce the biodiversity of microorganisms. The purpose of the article is not to reject the idea of biochar additives to increase the efficiency of biogas production, but to draw attention to the properties and ways of adding these materials that could reduce biogas production. These findings have practical relevance for organizations seeking to implement such systems in industrial or local-scale biogas plants and provide valuable insights for future research. Needless to say, this study will also support the implementation of biogas technologies and waste management in implementing the idea of a circular economy, further emphasizing the significance of the research.
Collapse
Affiliation(s)
- Michał Kozłowski
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
| | - Chinenye Adaobi Igwegbe
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka 420218, Nigeria
| | - Agata Tarczyńska
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
| |
Collapse
|
26
|
Guo Z, Zhang C, Jiang H, Li L, Li Z, Zhao L, Chen H. Phosphogypsum/titanium gypsum coupling for enhanced biochar immobilization of lead: Mineralization reaction behavior and electron transfer effect. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118781. [PMID: 37611520 DOI: 10.1016/j.jenvman.2023.118781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
The hazards caused by Pb pollution have received worldwide attention. Phosphogypsum (PG) and titanium gypsum (TG) have the disadvantage of limited adsorption capacity and poor dispersion when used as heavy metal adsorbents on their own. The excellent pore and electron transfer capacity of biochar makes it possible to combine with PG and TG to solidify/stabilize Pb2+. In this study, the mechanism of Pb2+ adsorption/immobilization by rice husk biochar (BC) combined with PG/TG was investigated in terms of both mineral formation and electron transfer rate. The removal rate of Pb2+ by BC composite PG (BC/PG-Pb) or TG (BC/TG-Pb) was as high as 97%-98%, an increase of 120.9% and 122.5% over BC. Adsorption kinetics and mineral precipitation results indicate that the main removal of Pb2+ from BC/PG-Pb and BC/TG-Pb is achieved by PG/TG induced Pb-sulfate and Pb-phosphate formation. The addition of PG/TG significantly enhances the formation of stable Pb-minerals on the biochar surface, with the proportion of non-bioaccessible forms exceeding 50%. The four-step extraction results confirm that P and F in PG/TG are key in facilitating the conversion of Pb minerals to pyromorphite. The rich pore structure of biochar not only disperses the easily agglomerated PG/TG onto the biochar surface, but also attracts Pb2+ for uniformly dispersed precipitation. Furthermore, the excellent electrical conductivity and smooth electron transfer channels of biochar facilitate the reaction rate of Pb2+ mineralization. Overall, the use of biochar in combination with PG/TG is a promising technology for the combination of solid waste resourceisation and Pb remediation.
Collapse
Affiliation(s)
- Ziqi Guo
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Chaonan Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Hanfeng Jiang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lingli Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhonghua Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lei Zhao
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Haoming Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
27
|
Li D, Ping Q, Guo W, Chen Y, Wang L, Li Y. Evaluating effects of biochar on anaerobic digestion of dewatered waste activated sludge: Digester performance, microbial co-metabolism and underlying mechanism. CHEMOSPHERE 2023; 341:140139. [PMID: 37690547 DOI: 10.1016/j.chemosphere.2023.140139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023]
Abstract
Biochar has been proven to be capable of improving the performance of anaerobic digestion (AD). However, the effect of biochar on microbial communities remains ambiguous. In this study, the influence of pH was excluded in a semi-continuous anaerobic digestor for the treatment of dewatered waste activated sludge (WAS) to determine the effect of biochar on microbes. Compared with the control group, the average methane production increased by 24.5% and 23.2% at the organic loading rates (OLRs) of 1.56 and 3.00 gTS/L/d, respectively, in the presence of biochar. This study innovatively found biochar accelerated the enrichment of Methanofastidiosaceae, which competed with Methanobacteriaceae for H2, and its abundance increased from 0.99% at the OLR of 1.56 g TS/L/d to 16.57% and 38.11% at the OLR of 3.00 and 5.60 gTS/L/d, respectively. The efficient metabolic network of f__norank_o__Aminicenantales, syntrophic bacteria, Methanofastidiosaceae and Methanosaetaceae promoted the conversion of WAS to CH4 in the biochar group. In addition, metagenome analysis revealed that biochar optimized the metabolites related to energy conservation and electron transfer, particularly for hydrogenase (frhABG, mbhLHK and hndA-D), confirming that biochar changed the way H2 was involved in methanogenesis. These findings provide novel insights into the direct effect of biochar on microbial evolution and facilitate the reduction of WAS to achieve higher economic benefits in biogas production.
Collapse
Affiliation(s)
- Dunjie Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Wenjie Guo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yifeng Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
28
|
Jin HY, Yang L, Ren YX, Tang CC, Zhou AJ, Liu W, Li Z, Wang A, He ZW. Insights into the roles and mechanisms of a green-prepared magnetic biochar in anaerobic digestion of waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165170. [PMID: 37379930 DOI: 10.1016/j.scitotenv.2023.165170] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
Methane is one of the most promising renewable energies to alleviate energy crisis or replace fossil fuels, which can be recovered from anaerobic digestion of bio-wastes. However, the engineering application of anaerobic digestion is always hindered by low methane yield and production rate. This study revealed the roles and mechanisms of a green-prepared magnetic biochar (MBC) in promoting methane production performance from waste activated sludge. Results showed that the methane yield reached 208.7 mL/g volatile suspended solids with MBC additive dosage of 1 g/L, increasing by 22.1 % compared to that in control. Mechanism analysis demonstrated that MBC could promote hydrolysis, acidification, and methanogenesis stages. This was because the properties of biochar were upgraded by loading nano-magnetite, such as specific surface area, surface active sites, and surface functional groups, which made MBC have greater potential to mediate electron transfer. Correspondingly, the activity of α-glucosidase and protease respectively increased by 41.7 % and 50.0 %, and then the hydrolysis performances of polysaccharides and proteins were improved. Also, MBC improved the secretion of electroactive substances like humic substances and cytochrome C, which could promote extracellular electron transfer. Furthermore, Clostridium and Methanosarcina, as well-known electroactive microbes, were selectively enriched. The direct interspecies electron transfer between them was established via MBC. This study provided some scientific evidences to comprehensively understand the roles of MBC in anaerobic digestion, with important implications for achieving resource recovery and sludge stabilization.
Collapse
Affiliation(s)
- Hong-Yu Jin
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lei Yang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhihua Li
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
29
|
Valentin MT, Luo G, Zhang S, Białowiec A. Direct interspecies electron transfer mechanisms of a biochar-amended anaerobic digestion: a review. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:146. [PMID: 37784139 PMCID: PMC10546780 DOI: 10.1186/s13068-023-02391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/09/2023] [Indexed: 10/04/2023]
Abstract
This paper explores the mechanisms of biochar that facilitate direct interspecies electron transfer (DIET) among syntrophic microorganisms leading to improved anaerobic digestion. Properties such as specific surface area (SSA), cation exchange capacity (CEC), presence of functional groups (FG), and electrical conductivity (EC) were found favorable for increased methane production, reduction of lag phase, and adsorption of inhibitors. It is revealed that these properties can be modified and are greatly affected by the synthesizing temperature, biomass types, and residence time. Additionally, suitable biochar concentration has to be observed since dosage beyond the optimal range can create inhibitions. High organic loading rate (OLR), pH shocks, quick accumulation and relatively low degradation of VFAs, and the presence of heavy metals and toxins are the major inhibitors identified. Summaries of microbial community analysis show fermentative bacteria and methanogens that are known to participate in DIET. These are Methanosaeta, Methanobacterium, Methanospirillum, and Methanosarcina for the archaeal community; whereas, Firmicutes, Proteobacteria, Synergistetes, Spirochetes, and Bacteroidetes are relatively for bacterial analyses. However, the number of defined cocultures promoting DIET is very limited, and there is still a large percentage of unknown bacteria that are believed to support DIET. Moreover, the instantaneous growth of participating microorganisms has to be validated throughout the process.
Collapse
Affiliation(s)
- Marvin T. Valentin
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
- Department of Science and Technology, Engineering and Industrial Research, National Research Council of the Philippines, Taguig, Philippines
- Benguet State University, Km. 5, La Trinidad, 2601 Benguet, Philippines
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
- Department of Agricultural and Biosystems Engineering, Iowa State University, 605 Bissell Road, Ames, IA 50011 USA
| |
Collapse
|
30
|
Feng L, Gao Z, Hu T, He S, Liu Y, Jiang J, Zhao Q, Wei L. A review of application of combined biochar and iron-based materials in anaerobic digestion for enhancing biogas productivity: Mechanisms, approaches and performance. ENVIRONMENTAL RESEARCH 2023; 234:116589. [PMID: 37423354 DOI: 10.1016/j.envres.2023.116589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Strengthening direct interspecies electron transfer (DIET), via adding conductive materials, is regarded as an effective way for improving methane productivity of anaerobic digestion (AD). Therein, the supplementation of combined materials (composition of biochar and iron-based materials) has attracted increasing attention in recent years, because of their advantages of promoting organics reduction and accelerating biomass activity. However, as far as we known, there is no study comprehensively summarizing the application of this kind combined materials. Here, the combined methods of biochar and iron-based materials in AD system were introduced, and then the overall performance, potential mechanisms, and microbial contribution were summarized. Furthermore, a comparation of the combinated materials and single material (biochar, zero valent iron, or magnetite) in methane production was also evaluated to highlight the functions of combined materials. Based on these, the challenges and perspectives were proposed to point the development direction of combined materials utilization in AD field, which was hoped to provide a deep insight in engineering application.
Collapse
Affiliation(s)
- Likui Feng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhelu Gao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yu Liu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
31
|
Xu Y, Huang M, Wang H, Sun G, Kumar A, Yu Z. Enhancing arsenic adsorptions by optimizing Fe-loaded biochar and preliminary application in paddy soil under different water management strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101616-101626. [PMID: 37653193 DOI: 10.1007/s11356-023-29499-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
Arsenic (As) is widely distributed in nature and is a highly toxic element impacting human health through drinking water and rice. In this study, an optimized approach was attempted to improve As adsorption capabilities by combining pre- and post-pyrolysis modification of Fe(oxy)hydroxides to rice husk biochar (FRB), of which the method is rarely addressed in previous studies. Maghemite and goethite were successfully loaded onto biochar, characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoemission spectroscopy (XPS) analyzer. The FRB had maximum As(III) and As(V) adsorption capabilities of 7908 and 11,268 mg/kg, respectively, which was significantly higher than that of Fe-modified biochar in the pre-pyrolysis and/or post-pyrolysis process. Adsorption mechanisms for As explored by Fourier-transform infrared spectroscopy (FTIR), XPS analysis mainly included electronic attraction and ligand exchange with hydroxyl groups on the FRB. It was noteworthy that more than half of the As(II) species loaded on FRB were converted into less toxic As(V) species, which could be mediated by the redox-active groups on the biochar. The preliminary application of FRB in soil indicated that it has an effective remediation potential for As-contaminated soil under flooded conditions, while promoted As release under dry conditions. Finding of this study highlighted that the loading of metal oxides onto biochar by combining pre- and post-pyrolysis modification could potentially increase As adsorption capabilities and further help in strategic water management.
Collapse
Affiliation(s)
- Yijie Xu
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Manjie Huang
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hongyan Wang
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Guoxin Sun
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Zhiguo Yu
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
32
|
Wang M, Ren T, Yin M, Lu K, Xu H, Huang X, Zhang X. Enhanced Anaerobic Wastewater Treatment by a Binary Electroactive Material: Pseudocapacitance/Conductance-Mediated Microbial Interspecies Electron Transfer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12072-12082. [PMID: 37486327 DOI: 10.1021/acs.est.3c01986] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Anaerobic digestion (AD) is a promising method to treat organic matter. However, AD performance was limited by the inefficient electron transfer and metabolism imbalance between acid-producing bacteria and methanogens. In this study, a novel binary electroactive material (Fe3O4@biochar) with pseudocapacitance (1.4 F/g) and conductance (10.2 μS/cm) was exploited to store-release electrons as well as enhance the direct electron transfer between acid-producing bacteria and methanogens during the AD process. The mechanism of pseudocapacitance/conductance on mediating interspecies electron transfer was deeply studied at each stage of AD. In the hydrolysis acidification stage, the pseudocapacitance of Fe3O4@biochar acting as electron acceptors proceeded NADH/NAD+ transformation of bacteria to promote ATP synthesis by 21% which supported energy for organics decomposition. In the methanogenesis stage, the conductance of Fe3O4@biochar helped the microbes establish direct interspecies electron transfer (DIET) to increase the coenzyme F420 content by 66% and then improve methane production by 13%. In the complete AD experiment, electrons generated from acid-producing bacteria were rapidly transported to methanogens via conductors. Excess electrons were buffered by the pseudocapacitor and then gradually released to methanogens which alleviated the drastic drop in pH. These findings provided a strategy to enhance the electron transfer in anaerobic treatment as well as guided the design of electroactive materials.
Collapse
Affiliation(s)
- Mingwei Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tengfei Ren
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Mengxi Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kechao Lu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Lin WH, Chien CC, Ou JH, Yu YL, Chen SC, Kao CM. Cleanup of Cr(VI)-polluted groundwater using immobilized bacterial consortia via bioreduction mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117947. [PMID: 37075632 DOI: 10.1016/j.jenvman.2023.117947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/02/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Cr(VI) bioreduction has become a remedial alternative for Cr(VI)-polluted site cleanup. However, lack of appropriate Cr(VI)-bioreducing bacteria limit the field application of the in situ bioremediation process. In this study, two different immobilized Cr(VI)-bioreducing bacterial consortia using novel immobilization agents have been developed for Cr(VI)-polluted groundwater remediation: (1) granular activated carbon (GAC) + silica gel + Cr(VI)-bioreducing bacterial consortia (GSIB), and (2) GAC + sodium alginate (SA) + polyvinyl alcohol (PVA) + Cr(VI)-bioreducing bacterial consortia (GSPB). Moreover, two unique substrates [carbon-based agent (CBA) and emulsified polycolloid substrate (EPS)] were developed and used as the carbon sources for Cr(VI) bioreduction enhancement. The microbial diversity, dominant Cr-bioreducing bacteria, and changes of Cr(VI)-reducing genes (nsfA, yieF, and chrR) were analyzed to assess the effectiveness of Cr(VI) bioreduction. Approximately 99% of Cr(VI) could be bioreduced in microcosms with GSIB and CBA addition after 70 days of operation, which caused increased populations of total bacteria, nsfA, yieF, and chrR from 2.9 × 108 to 2.1 × 1012, 4.2 × 104 to 6.3 × 1011, 4.8 × 104 to 2 × 1011, and 6.9 × 104 to 3.7 × 107 gene copies/L. In microcosms with CBA and suspended bacteria addition (without bacterial immobilization), the Cr(VI) reduction efficiency dropped to 60.3%, indicating that immobilized Cr-bioreducing bacteria supplement could enhance Cr(VI) bioreduction. Supplement of GSPB led to a declined bacterial growth due to the cracking of the materials. The addition of GSIB and CBA could establish a reduced condition, which favored the growth of Cr(VI)-reducing bacteria. The Cr(VI) bioreduction efficiency could be significantly improved through adsorption and bioreduction mechanisms, and production of Cr(OH)3 precipitates confirmed the occurrence of Cr(VI) reduction. The main Cr-bioreducing bacteria included Trichococcus, Escherichia-Shigella, and Lactobacillus. Results suggest that the developed GSIB bioremedial system could be applied to cleanup Cr(VI)-polluted groundwater effectively.
Collapse
Affiliation(s)
- Wei-Han Lin
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China; Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li City, Taoyuan, Taiwan
| | - Jiun-Hau Ou
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ying-Liang Yu
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
34
|
Zhu R, Yan M, Zhang Y, Zou H, Zheng Y, Guo R, Fu S. Insights into the roles of humic acids in facilitating the anaerobic digestion process. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 168:25-34. [PMID: 37276631 DOI: 10.1016/j.wasman.2023.05.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
Humic acids (HAs) are important byproducts of anaerobic digestion (AD), which have complex structures and dynamic electrochemical activities. However, the effects of HAs on AD process were usually misestimated due to the neglect of the in situ generated HAs and the interaction between HAs and metal ions. This study explored the effects of HAs on AD performance using corn straw as typical "clean" substrate (rare in metals content) via commercial HAs (C-HAs) addition and in-situ-generated HAs (In-HAs) removal. Results showed that C-HAs (1 g/L) addition promoted the maximum methane production rate (Rm) by 20.6%, while In-HAs removal decreased the Rm by 42.7%. Meanwhile, C-HAs showed little effect on the acidification of corn straw but increased the Rm during the methanation of ethanol by 41.6%. Both the C-HAs and In-HAs were rich in surface oxygen-containing functional groups, which enabled them to act as electron shuttles and facilitate the syntrophic methanogenesis. HAs also acted in regulation of syntrophic microorganisms. For instance, C-HAs addition enriched the relative abundances of Cloacimonadia, Spirochaetia, Synergistia and Methanosarcina, while the removal of In-HAs reduced the relative abundances of Spirochaetia and Synergistia. In conclusion, HAs addition to the AD process could be a feasible approach to improve methane production by enhancing direct interspecies electron transfer during AD of lignocellulosic biomass.
Collapse
Affiliation(s)
- Rong Zhu
- Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 34100, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China.
| | - Miao Yan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China.
| | - Yun Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China.
| | - Hua Zou
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China.
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, United States.
| | - Rongbo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China.
| | - Shanfei Fu
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, PR China.
| |
Collapse
|
35
|
Papadopoulou K, Tarani E, Ainali NM, Chrissafis K, Wurzer C, Mašek O, Bikiaris DN. The Effect of Biochar Addition on Thermal Stability and Decomposition Mechanism of Poly(butylene succinate) Bionanocomposites. Molecules 2023; 28:5330. [PMID: 37513203 PMCID: PMC10384878 DOI: 10.3390/molecules28145330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
In the present study, poly(butylene succinate) (PBSu) and its bionanocomposites containing 1, 2.5, and 5 wt.% biochar (MSP700) were prepared via in situ melt polycondensation in order to investigate the thermal stability and decomposition mechanism of the materials. X-ray photoelectron spectroscopy (XPS) measurements were carried out to analyze the surface area of a biochar sample and PBSu/biochar nanocomposites. From XPS, it was found that only physical interactions were taking place between PBSu matrix and biochar nanoadditive. Thermal stability, decomposition kinetics, and the decomposition mechanism of the pristine PBSu and PBSu/biochar nanocomposites were thoroughly studied by thermogravimetric analysis (TGA) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). TGA thermograms depicted that all materials had high thermal stability, since their decomposition started at around 300 °C. However, results indicated a slight reduction in the thermal stability of the PBSu biochar nanocomposites because of the potential catalytic impact of biochar. Py-GC/MS analysis was employed to examine, in more detail, the thermal degradation mechanism of PBSu nanocomposites filled with biochar. From the decomposition products identified by Py-GC/MS after pyrolysis at 450 °C, it was found that the decomposition pathway of the PBSu/biochar nanocomposites took place mainly via β-hydrogen bond scission, which is similar to that which took place for neat PBSu. However, at higher biochar content (5 wt.%), some localized differences in the intensity of the peaks of some specific thermal degradation products could be recognized, indicating that α-hydrogen bond scission was also taking place. A study of the thermal stability and decomposition pathway of PBSu/biochar bionanocomposites is crucial to examine if the new materials fulfill the requirements for further investigation for mulch films in agriculture or in electronics as possible applications.
Collapse
Affiliation(s)
- Katerina Papadopoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Evangelia Tarani
- Laboratory of Advanced Materials and Devices, Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Nina Maria Ainali
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Konstantinos Chrissafis
- Laboratory of Advanced Materials and Devices, Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Christian Wurzer
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK
| | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
36
|
Zhou C, Zhang J, Pei Y, Tian K, Zhang X, Yan X, Yang J. Molten salt strategy to activate biochar for enhancing biohydrogen production. BIORESOURCE TECHNOLOGY 2023:129466. [PMID: 37429558 DOI: 10.1016/j.biortech.2023.129466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Generally, dark fermentation (DF) of hydrogen (H2) synthesis has low H2 production from industrial-scale plant. In this study, campus greening wastes-ginkgo leaves were used to produce molten salt-modified biochar (MSBC) and nitrogen (N2)-atmosphere BC (NBC) in molten salt and N2 environment at 800 °C, respectively. MSBC showed excellent properties including high specific surface area and electron transfer ability. After supplementation with MSBC, H2 yield rose by 32.4% compared to the control group without carbon material. Electrochemical analysis revealed MSBC improved the electrochemical properties of sludge. Furthermore, MSBC optimized the microbial community structure and increased the relative abundance of dominant microbes, thus promoting H2 production. This work is provide the deep understanding of two carbons that play vital roles in increasing microbial biomass, supplementing trace element and favoring electron transfer in DF reactions. Salt recovery achieved 93.57% in molten salt carbonization, which has sustainability compared with N2-atmosphere pyrolysis.
Collapse
Affiliation(s)
- Chen Zhou
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Yong Pei
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Kexin Tian
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Xiaoying Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Xiao Yan
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Junwei Yang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
37
|
Zhang G, Hao Q, Ma R, Luo S, Chen K, Liang Z, Jiang C. Biochar and hematite amendments suppress emission of CH 4 and NO 2 in constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162451. [PMID: 36863587 DOI: 10.1016/j.scitotenv.2023.162451] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Constructed wetlands (CWs) are considered a widely used cost-effective technology for pollutant removal. However, greenhouse gas emissions are a non-negligible problem in CWs. In this study, four laboratory-scale CWs were established to evaluate the effects of gravel (CWB), hematite (CWFe), biochar (CWC), and hematite + biochar (CWFe-C) as substrates on pollutants removal, greenhouse gas emissions, and associated microbial characteristics. The results showed that the biochar-amended CWs (CWC and CWFe-C) enhanced the removal efficiency of pollutants, with 92.53 % and 93.66 % of COD and 65.73 % and 64.41 % of TN removal, respectively. Both single and combined inputs of biochar and hematite significantly reduced CH4 and N2O fluxes, with the lowest average of CH4 flux obtained in CWC (5.99 ± 0.78 mg CH4 m-2 h-1) and the least N2O flux in CWFe-C (287.57 ± 44.84 μg N2O m-2 h-1). The substantial reduction of global warming potentials (GWP) was obtained in the applications of CWC (80.25 %) and CWFe-C (79.5 %) in biochar-amended CWs. The presence of biochar and hematite mitigated CH4 and N2O emissions by modifying microbial communities with higher ratios of pmoA/mcrA and nosZ genes abundances, as well as increasing the abundance of denitrifying bacteria (Dechloromona, Thauera and Azospira). This study demonstrated that biochar and the combined use of biochar and hematite could be the potential candidates as functional substrates for the efficient removal of pollutants and simultaneously reducing GWP emissions in the constructed wetlands.
Collapse
Affiliation(s)
- Guosheng Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Qingju Hao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Rongzhen Ma
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Shixu Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Keqin Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zhenghao Liang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Changsheng Jiang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
38
|
Rios-Miguel AB, Jhm van Bergen T, Zillien C, Mj Ragas A, van Zelm R, Sm Jetten M, Jan Hendriks A, Welte CU. Predicting and improving the microbial removal of organic micropollutants during wastewater treatment: A review. CHEMOSPHERE 2023; 333:138908. [PMID: 37187378 DOI: 10.1016/j.chemosphere.2023.138908] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Organic micropollutants (OMPs) consist of widely used chemicals such as pharmaceuticals and pesticides that can persist in surface and groundwaters at low concentrations (ng/L to μg/L) for a long time. The presence of OMPs in water can disrupt aquatic ecosystems and threaten the quality of drinking water sources. Wastewater treatment plants (WWTPs) rely on microorganisms to remove major nutrients from water, but their effectiveness at removing OMPs varies. Low removal efficiency might be the result of low concentrations, inherent stable chemical structures of OMPs, or suboptimal conditions in WWTPs. In this review, we discuss these factors, with special emphasis on the ongoing adaptation of microorganisms to degrade OMPs. Finally, recommendations are drawn to improve the prediction of OMP removal in WWTPs and to optimize the design of new microbial treatment strategies. OMP removal seems to be concentration-, compound-, and process-dependent, which poses a great complexity to develop accurate prediction models and effective microbial processes targeting all OMPs.
Collapse
Affiliation(s)
- Ana B Rios-Miguel
- Department of Microbiology, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands.
| | - Tamara Jhm van Bergen
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands.
| | - Caterina Zillien
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Ad Mj Ragas
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Rosalie van Zelm
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Mike Sm Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - A Jan Hendriks
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
39
|
Wang H, Wang W, Zhang G, Gao X. Research on the performance of modified blue coke in adsorbing hexavalent chromium. Sci Rep 2023; 13:7223. [PMID: 37142630 PMCID: PMC10160119 DOI: 10.1038/s41598-023-34381-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
To solve the issue of hexavalent chromium (Cr(VI)) contamination in water bodies, blue coke powder (LC) was chemically changed using potassium hydroxide to create the modified material (GLC), which was then used to treat a Cr(VI)-containing wastewater solution. The differences between the modified and unmodified blue coke's adsorption characteristics for Cr(VI) were studied, and the impact of pH, starting solution concentration, and adsorption period on the GLC's adsorption performance was investigated. The adsorption behavior of the GLC was analyzed using isothermal adsorption models, kinetic models, and adsorption thermodynamic analysis. The mechanism of Cr(VI) adsorption by the GLC was investigated using characterization techniques such as Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscope (FE-SEM), X-Ray Diffraction (XRD), and X-Ray Photoelectron Spectroscopy (XPS). With the biggest difference in removal rate at pH = 2, which was 2.42 times that of LC, batch adsorption experiments revealed that, under the same adsorption conditions, the GLC always performed better than LC. With a specific surface area that was three times that of LC and an average pore diameter that was 0.67 times that of LC, GLC had a more porous structure than LC. The alteration significantly increased the number of hydroxyls on the surface of GLC by altering the structural makeup of LC. The ideal pH for removing Cr(VI) was 2, and the ideal GLC adsorbent dosage was 2.0 g/L. Pseudo-second-order kinetic (PSO) model and Redlich-Peterson (RP) model can effectively describe the adsorption behavior of GLC for Cr(VI). Physical and chemical adsorption work together to remove Cr(VI) by GLC in a spontaneous, exothermic, and entropy-increasing process, with oxidation-reduction processes playing a key role. GLC is a potent adsorbent that can be used to remove Cr(VI) from aqueous solutions.
Collapse
Affiliation(s)
- Hua Wang
- College of Chemistry and Chemical Engineering, Yulin University, Chongwen Road No. 51, Yulin, 719000, Shaanxi, China.
- Shaanxi Provincial Key Laboratory of Clean Utilization of Low-Modified Coal, Yulin University, Yulin, 719000, China.
| | - Wencheng Wang
- College of Chemistry and Chemical Engineering, Yulin University, Chongwen Road No. 51, Yulin, 719000, Shaanxi, China
| | - Guotao Zhang
- College of Chemistry and Chemical Engineering, Yulin University, Chongwen Road No. 51, Yulin, 719000, Shaanxi, China
| | - Xuchun Gao
- College of Chemistry and Chemical Engineering, Yulin University, Chongwen Road No. 51, Yulin, 719000, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Clean Utilization of Low-Modified Coal, Yulin University, Yulin, 719000, China
| |
Collapse
|
40
|
Feng L, He S, Gao Z, Zhao W, Jiang J, Zhao Q, Wei L. Mechanisms, performance, and the impact on microbial structure of direct interspecies electron transfer for enhancing anaerobic digestion-A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160813. [PMID: 36502975 DOI: 10.1016/j.scitotenv.2022.160813] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Direct interspecies electron transfer (DIET) has been received tremendous attention, recently, due to the advantages of accelerating methane production via organics reduction during anaerobic digestion (AD) process. DIET-based syntrophic relationships not only occurred with the existence of pili and some proteins in the microorganism, but also can be conducted by conductive materials. Therefore, more researches into understanding and strengthening DIET-based syntrophy have been conducted with the aim of improving methanogenesis kinetics and further enhance methane productivity in AD systems. This study summarized the mechanisms, application and microbial structures of typical conductive materials (carbon-based materials and iron-based materials) during AD reactors operation. Meanwhile, detail analysis of studies on DIET (from substrates, dosage and effectiveness) via conductive materials was also presented in the study. Moreover, the challenges of applying conductive materials in boosting methane production were also proposed, which was supposed to provide a deep insight in DIET for full scale application.
Collapse
Affiliation(s)
- Likui Feng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhelu Gao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
41
|
Wang ZK, Liu QH, Yang ZM. Nano magnetite-loaded biochar boosted methanogenesis through shifting microbial community composition and modulating electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160597. [PMID: 36464047 DOI: 10.1016/j.scitotenv.2022.160597] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
A batch anaerobic fermentation system was employed to clarify how nano magnetite-loaded biochar can improve methanogenic performance of the propionate-degrading consortia (PDC). The nano magnetite-loaded biochar was prepared in a sequential hydrothermal and pyrolysis procedure using the household waste (HW), biogas residue (BR) and Fe (NO3)3 as pristine materials. Comprehensive characterization showed that the nano magnetite-loaded biochar ameliorated the biochar properties with large specific surface area, high electrochemical response and low electron transfer resistance. PDC supplemented with the magnetite/BR-originated biochar composites displayed excellent methanogenic performance, where the methane production rate was enhanced by 1.6-fold compared with the control. The nano magnetite-loaded biochar promoted methane production probably by promoting direct interspecies electron transfer between syntrophic bacteria (e.g., Syntrophobacter and Thauera) and their partners (e.g., Methanosaeta). In this process, magnetite might be responsible for triggering rapidly extracellular electron release, whereas both external functional groups and intrinsic graphitic matrices of biochar might work as electron bridges for electron transport.
Collapse
Affiliation(s)
- Zhao-Kai Wang
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, China; Third Institute of Oceanography, Ministry of Natural Resources, China
| | - Qing-Hua Liu
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhi-Man Yang
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
42
|
Hu S, Zhu H, Bañuelos G, Shutes B, Wang X, Hou S, Yan B. Factors Influencing Gaseous Emissions in Constructed Wetlands: A Meta-Analysis and Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3876. [PMID: 36900888 PMCID: PMC10001287 DOI: 10.3390/ijerph20053876] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Constructed wetlands (CWs) are an eco-technology for wastewater treatment and are applied worldwide. Due to the regular influx of pollutants, CWs can release considerable quantities of greenhouse gases (GHGs), ammonia (NH3), and other atmospheric pollutants, such as volatile organic compounds (VOCs) and hydrogen sulfide (H2S), etc., which will aggravate global warming, degrade air quality and even threaten human health. However, there is a lack of systematic understanding of factors affecting the emission of these gases in CWs. In this study, we applied meta-analysis to quantitatively review the main influencing factors of GHG emission from CWs; meanwhile, the emissions of NH3, VOCs, and H2S were qualitatively assessed. Meta-analysis indicates that horizontal subsurface flow (HSSF) CWs emit less CH4 and N2O than free water surface flow (FWS) CWs. The addition of biochar can mitigate N2O emission compared to gravel-based CWs but has the risk of increasing CH4 emission. Polyculture CWs stimulate CH4 emission but pose no influence on N2O emission compared to monoculture CWs. The influent wastewater characteristics (e.g., C/N ratio, salinity) and environmental conditions (e.g., temperature) can also impact GHG emission. The NH3 volatilization from CWs is positively related to the influent nitrogen concentration and pH value. High plant species richness tends to reduce NH3 volatilization and plant composition showed greater effects than species richness. Though VOCs and H2S emissions from CWs do not always occur, it should be a concern when using CWs to treat wastewater containing hydrocarbon and acid. This study provides solid references for simultaneously achieving pollutant removal and reducing gaseous emission from CWs, which avoids the transformation of water pollution into air contamination.
Collapse
Affiliation(s)
- Sile Hu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Gary Bañuelos
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Science Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757, USA
| | - Brian Shutes
- Department of Natural Sciences, Middlesex University, Hendon, London NW4 4BT, UK
| | - Xinyi Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengnan Hou
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
43
|
Zhang K, Deng Y, Liu Z, Feng Y, Hu C, Wang Z. Biochar Facilitated Direct Interspecies Electron Transfer in Anaerobic Digestion to Alleviate Antibiotics Inhibition and Enhance Methanogenesis: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20032296. [PMID: 36767663 PMCID: PMC9915179 DOI: 10.3390/ijerph20032296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/04/2023]
Abstract
Efficient conversion of organic waste into low-carbon biofuels such as methane through anaerobic digestion (AD) is a promising technology to alleviate energy shortages. However, issues such as inefficient methane production and poor system stability remain for AD technology. Biochar-facilitated direct interspecies electron transfer (DIET) has recently been recognized as an important strategy to improve AD performance. Nonetheless, the underlying mechanisms of biochar-facilitated DIET are still largely unknown. For this reason, this review evaluated the role of biochar-facilitated DIET mechanism in enhancing AD performance. First, the evolution of DIET was introduced. Then, applications of biochar-facilitated DIET for alleviating antibiotic inhibition and enhancing methanogenesis were summarized. Next, the electrochemical mechanism of biochar-facilitated DIET including electrical conductivity, redox-active characteristics, and electron transfer system activity was discussed. It can be concluded that biochar increased the abundance of potential DIET microorganisms, facilitated microbial aggregation, and regulated DIET-associated gene expression as a microbial mechanism. Finally, we also discussed the challenges of biochar in practical application. This review elucidated the role of DIET facilitated by biochar in the AD system, which would advance our understanding of the DIET mechanism underpinning the interaction of biochar and anaerobic microorganisms. However, direct evidence for the occurrence of biochar-facilitated DIET still requires further investigation.
Collapse
Affiliation(s)
- Kaoming Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Yuepeng Deng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Zhiquan Liu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Yiping Feng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chun Hu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Zhu Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
44
|
Yu C, Zhu X, Mohamed A, Dai K, Cai P, Liu S, Huang Q, Xing B. Enhanced Cr(VI) bioreduction by biochar: Insight into the persistent free radicals mediated extracellular electron transfer. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:129927. [PMID: 36152545 DOI: 10.1016/j.jhazmat.2022.129927] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/14/2022] [Accepted: 09/04/2022] [Indexed: 05/22/2023]
Abstract
Biochar can act as a shuttle to accelerate the extracellular electron transfer (EET) by exoelectrogens. However, it is poorly understood how the persistent free radicals (PFRs) in biochar affected EET and the redox reaction. Herein, the effects of the biochar and chitosan modified biochar (CBC) on the Cr(VI) bioreduction by Shewanella oneidensis MR-1 (MR-1) was investigated. Kinetic study indicated that the Cr(VI) bioreduction rate constant by MR-1 was increased by 1.8-33.7 folds in the presence of biochar, and by 2.7-60.2 folds in the presence of CBC, respectively. Moreover, Cr(VI) bioreduction rates increased with the decreasing pH. Results suggested that the electrostatic attraction between Cr(VI) and redox-active particles could accelerate the EET by c-cytochrome due to the promotion of the Cr(VI) migration from aqueous phase to biochar or CBC. Electron paramagnetic resonance analysis suggested that the PFRs affected the electron transfer from the ·O2- generated by MR-1 to Cr(VI) and accelerate the Cr(VI) bioreduction. Remarkably, in the presence of PFRs, this electron shuttling process was dependent on the non-metal-reducing respiratory pathway. Our results offer new insights that free radicals may be widely involved in the EET and strongly impact on the redox reaction in the environment.
Collapse
Affiliation(s)
- Cheng Yu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiaoxi Zhu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Abdelkader Mohamed
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China; Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abou Zaabl 13759, Egypt
| | - Ke Dai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, PR China.
| | - Peng Cai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, PR China
| | - Qiaoyun Huang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
45
|
Zhang L, Chen Z, Zhu S, Li S, Wei C. Effects of biochar on anaerobic treatment systems: Some perspectives. BIORESOURCE TECHNOLOGY 2023; 367:128226. [PMID: 36328170 DOI: 10.1016/j.biortech.2022.128226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Many anaerobic activities involve carbon, nitrogen, iron, and sulfur cycles. As a well-developed porous material with abundant functional groups, pyrolytic biochar has been widely researched in efforts to promote microbial activities. However, the lack of consensus on the biochar mechanism has limited its practical application. This review summarizes the effects of different pyrolysis temperatures, particle sizes, and dosages of biochar on microbial activities and community in Fe(III) reduction, anaerobic digestion, nitrogen removal, and sulfate reduction systems. It was found that biochar could promote anaerobic activities by stimulating electron transfer, alleviating toxicity, and providing suitable habitats for microbes. However, it inhibits microbial activities by releasing heavy metal ions or persistent free radicals and adsorbing signaling molecules. Finding a balance between the promotion and inhibition of biochar is therefore essential. This review provides valuable perspectives on how to achieve efficient and stable use of biochar in anaerobic systems.
Collapse
Affiliation(s)
- Liqiu Zhang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China
| | - Zhuokun Chen
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Shishu Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shugeng Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Chunhai Wei
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
46
|
Chen Y, Wang Y, Xie H, Cao W, Zhang Y. Varied promotion effects and mechanisms of biochar on anaerobic digestion (AD) under distinct food-to-microorganism (F/M) ratios and biochar dosages. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:118-128. [PMID: 36368261 DOI: 10.1016/j.wasman.2022.10.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/26/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Biochar (BC) promotes the performance of anaerobic digestion (AD) through different routes, such as enriching microbes, buffering pH and promoting electron transfer. However, the mechanisms and processes of AD that enhanced by BC under various food to microorganism (F/M) ratios are still unclear. The organic transformations, bioelectrochemical characteristics and microbial consortia under the different BC dosages and F/M ratios were studied to reveal the role of BC in an AD process. The electron transfer system (ETS) was proportional to BC dosage and considered to be a key for AD promotion. At the F/M ratios of 0.5 and 1.0, BC accelerated methane production mainly by promoting ETS. The most enhanced specific methanation activities (SMAs) were obtained with 10.0 g/L BC, and the promotion efficiency under the F/M ratio of 1.0 was significantly higher (P < 0.05) than that under the F/M ratio of 0.5. Under the higher F/M ratio of 2.0, BC shortened the entire AD duration for 5.0 ∼ 13.0 days and guaranteed the resilience of AD by expanding the thermodynamic window of syntrophic methanogenesis via direct interspecies electron transfer (DIET). The COD balance analysis and the ecological functional profiles of microbes demonstrated that BC promoted both the anabolism and catabolism of anaerobes, and enhanced the DIET by converting hydrotrophic methanogenesis into acetolastic methanogenesis pathway. Besides, excessive BC enhanced SMA and simultaneously triggered superfluous biomass growth and thus decreased CH4 yield. This study provided an important reference for further application of BC under various F/M ratios and dosages in AD.
Collapse
Affiliation(s)
- Yuqi Chen
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China
| | - Yuzheng Wang
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China
| | - Hongyu Xie
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China
| | - Wenzhi Cao
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China
| | - Yanlong Zhang
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control (CPPC), College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
47
|
Jin HY, He ZW, Ren YX, Tang CC, Zhou AJ, Liu W, Sun Q, Li Z, Wang A. Role of extracellular polymeric substances in methane production from waste activated sludge induced by conductive materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158510. [PMID: 36063954 DOI: 10.1016/j.scitotenv.2022.158510] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Conductive materials have been widely used to establish direct interspecies electron transfer (DIET) for enhancing methane production potential from anaerobic digestion of waste activated sludge (WAS). However, the roles of extracellular polymeric substances (EPSs) affected by conductive materials on anaerobic digestion have been rarely reported. This study selected four widely used conductive materials, i.e., granular active carbon (GAC), biochar (BC), zero-valent iron (ZVI), and magnetite (Mag), to reveal the roles of EPSs. Results showed that methane production potentials were increased by BC, ZVI and Mag compared to that of control, with increase ratios of 13.4 %, 22.2 %, and 12.2 %, while a decrease was observed by GAC. The contents, components and characteristics of EPSs were all affected by conductive materials. The contents of EPSs were increased by ZVI and Mag, while they were decreased by BC and GAC. The ratios between proteins and polysaccharides (PN/PS) in loosely bound EPSs (LB-EPSs) were reduced in all groups, while they were similar in tightly bound EPSs (TB-EPSs) of ZVI and Mag groups. In addition, the cytochrome C and redox properties were remarkably promoted in suspension rather than in LB- and TB-EPSs. It was found that the correlation relationships between the maximal methane production potential (Pmax) and PN/PS in EPSs were positive, as well as fluorescent substances, especially tyrosine-like and tryptophan-like substances, with R2 of 0.96 and 0.98. Furthermore, the correlation relationships also existed between EPSs and microbial communities. Clostridium and Methanobacterium, potential DIET partners, presented significant positive correlation relationships (P < 0.05) with Pmax, PN/PS and fluorescent substances in EPSs. The findings may provide some new insights for mechanism investigation of anaerobic digestion induced by conductive materials.
Collapse
Affiliation(s)
- Hong-Yu Jin
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Qian Sun
- Environmental Science Academy of Shaanxi Province, Xi'an 710061, China
| | - Zhihua Li
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| |
Collapse
|
48
|
Liu Q, Zhong L, Hu Y, Fu L, Hu X, Gu Y, Xie Q, Liang F, Liu Q, Lu Y. Effects of modified biochars on the shifts of short-chain fatty acid profile, iron reduction, and bacterial community in paddy soil. FEMS Microbiol Ecol 2022; 98:6823699. [PMID: 36367530 DOI: 10.1093/femsec/fiac131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/08/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
Biochar is well known as an effective means for soil amendment, and modification on biochar with different methods could improve the benefits for environmental remediation. In this study, two modified biochars were generated with nitric acid (NBC) and hydrogen peroxide (OBC) pretreatment, and a control biochar was produced after washing with deionized water (WBC). The dynamics of short-chain fatty acids (SCFAs), iron concentration and bacterial community in rice paddy soil amended with different biochars or without adding biochar (CK) were studied during 70 days of anaerobic incubation. Compared to CK treatment, the accumulation of SCFAs was largely inhibited by the amendment of biochars. Besides, OBC and WBC increased the accumulation of Fe(II) at the initial stage of incubation. Via 16S rRNA gene sequencing, modified biochars caused significant response of bacterial community in comparison to WBC at Day 0-1, and three biochars favored bacterial α-diversity in the paddy soil at the end of the incubation. Interestingly, positive and negative correlations between NBC and several bacteria taxa (e.g. Geobacter, Fonticella and Clostridium) were observed. The study revealed that modified biochars had significant effects on the shifts of SCFAs, Fe(III) reduction and bacterial diversity, which provides fundamental information for future application of modified biochars in rice cropping ecosystem.
Collapse
Affiliation(s)
- Qian Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Linrui Zhong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Yingju Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Leiling Fu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Xingxin Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Yujing Gu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Qingqing Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Fangyi Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Qi Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Yue Lu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| |
Collapse
|
49
|
Yang Z, Sun T, Kappler A, Jiang J. Biochar facilitates ferrihydrite reduction by Shewanella oneidensis MR-1 through stimulating the secretion of extracellular polymeric substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157560. [PMID: 35901870 DOI: 10.1016/j.scitotenv.2022.157560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Biochar can mediate extracellular electron transfer (EET) of Shewanella oneidensis MR-1 and subsequently facilitate dissimilatory reduction of iron(III) minerals. Previous studies mainly focused on the interaction of biochar and membrane cytochrome complexes to reveal the mediating mechanisms between biochar and S. oneidensis MR-1. However, the influence of biochar on the production and activity of extracellular polymeric substances (EPS) has long been neglected, despite the fact that EPS are commonly exudated by S. oneidensis MR-1 and can participate in a variety of electron transfer processes due to their redox activity. Here, we performed a series of microbial ferrihydrite reduction experiments in combination with electrochemical voltametric and impedance analyses to investigate the role of biochar in the formation and transformation of cell EPS during EET. Results showed that the added biochar not only functioned as an electron shuttle facilitating electron transfer, but also induced the secretion of five times more EPS by S. oneidensis MR-1, leading to a 1.4-fold faster ferrihydrite reduction in comparison with biochar-free setups. We further extracted the secreted EPS and found that the proportion of redox-active exoproteins was significantly (p < 0.05) increased in the EPS and resulted in a higher electron exchange capacity in secreted EPS. Such increased exoprotein content also induced a higher ratio of exoprotein to exopolysaccharide, which largely dropped diffusion and electron transfer impedance of EPS to 1.1 and 18 Ω, respectively, and accelerated the EET and thus the ferrihydrite reduction. Overall, our findings revealed the interactions between biochar and EPS matrices, which could potentially play a critical role in EET processes in both environmental or biotechnological systems.
Collapse
Affiliation(s)
- Zhen Yang
- College of Urban and Environmental Science, Peking University, Beijing 100781, China; Geomicrobiology, Center for Applied Geoscience, Tuebingen 72076, Germany.
| | - Tianran Sun
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geoscience, Tuebingen 72076, Germany; Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Jie Jiang
- College of Environmental Science and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
50
|
Qian J, Zhang Y, Bai L, Yan X, Du Y, Ma R, Ni BJ. Revealing the mechanisms of polypyrrole (Ppy) enhancing methane production from anaerobic digestion of waste activated sludge (WAS). WATER RESEARCH 2022; 226:119291. [PMID: 36323214 DOI: 10.1016/j.watres.2022.119291] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/16/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic digestion (AD) is a promising method for treating waste activated sludge (WAS), but the low methane yield limits its large-scale application. The addition of conductive nanomaterials has been demonstrated to enhance the activity of AD via promoting the direct interspecies electron transfer (DIET). In this study, novel conductive polypyrrole (Ppy) was prepared to effectively improve the AD performance of WAS. The results showed that the accumulative methane production was enhanced by 27.83% by Ppy, with both acidogenesis and methanogenesis being efficiently accelerated. The microbial community analysis indicated that the abundance of bacteria associated with acidogenesis process was significantly elevated by Ppy. Further investigation by metatranscriptomics revealed that fadE and fadN genes (to express the key enzymes in fatty acid metabolism) were highly expressed in the Ppy-driven AD, suggesting that Ppy promoted electron generation during acid production. For methanogenesis metabolism, genes related to acetate utilization and CO2 utilization methanogenesis were also up-regulated by Ppy, illustrating that Ppy facilitates the utilization of acetate and electrons by methanogenic archaea, thus potentially promoting the methanogenesis through DIET.
Collapse
Affiliation(s)
- Jin Qian
- Research & Development Institute in Shenzhen & School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, PR China.
| | - Yichu Zhang
- Research & Development Institute in Shenzhen & School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, PR China
| | - Linqin Bai
- Research & Development Institute in Shenzhen & School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, PR China
| | - Xueqian Yan
- Research & Development Institute in Shenzhen & School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, PR China
| | - Yufei Du
- Research & Development Institute in Shenzhen & School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, PR China
| | - Rui Ma
- Research & Development Institute in Shenzhen & School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, PR China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|