1
|
Lan T, Zhao L, Xiong J, Wang R, Yang P, Sun W, Su S, Gan Z, Tian Z. Occurrence, ecology and health risk assessment of organophosphate triesters and diesters in surface and ground water from southwest of China. ENVIRONMENTAL RESEARCH 2025; 279:121868. [PMID: 40381713 DOI: 10.1016/j.envres.2025.121868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 05/07/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
The occurrence of organophosphate triesters (OPEs) and organophosphate diesters (m-OPEs) in ground water is still unclear. To fill the blank, ground water samples in dry and wet seasons, surface river water and paired sediment samples were collected in Sichuan province and analyzed for 14 kinds of OPEs and 7 m-OPEs. Except Trimethyl phosphate was scarcely detected, the other OPEs were extensively found in aquatic environment. The concentrations of Ʃ14OPEs and Ʃ7m-OPEs ranged from 45.0 to 231 ng/L and from 1.25 to 62.3 ng/L in ground water and ranged from 2.20 to 1709 and from 0.08 to 35.5 ng/L in surface water, respectively. Compared to other reports, the pollution in Minjiang and Tuojiang river was at medium level. The concentration ratios and correlation analysis between OPEs and m-OPEs indicated that OPEs in ground water had three main sources, and m-OPEs mainly came from direct usage. Low ecological risk was found for surface water. The carcinogenic and non-carcinogenic risks of OPEs in surface and ground water via ingestion and dermal contact in moderate and high exposure scenarios were assessed, and results suggested the risks to human which mainly caused by Tri(2-chloroisopropyl) phosphate could be negligible.
Collapse
Affiliation(s)
- Tianyang Lan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Li Zhao
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Jie Xiong
- Sichuan Province Ecological Environment Monitoring Station, Chengdu, 610074, China
| | - Ruonan Wang
- Sichuan Province Ecological Environment Monitoring Station, Chengdu, 610074, China
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Weiyi Sun
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Shijun Su
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Zhiwei Gan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Zhiren Tian
- China National Environmental Monitoring Centre, Beijing, 100012, China.
| |
Collapse
|
2
|
Wan YY, Cheng XM, Li XH, Wang FS, Li YY, Li J, Qin ZF. Evaluating the impact of dermal absorption on internal doses of dechlorane plus in Chinese e-waste recycling employees. CHEMOSPHERE 2024; 369:143883. [PMID: 39631690 DOI: 10.1016/j.chemosphere.2024.143883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/22/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
E-waste recycling employees represent a specific population with a high potential for exposure to dechlorane plus (DP). However, the impact of skin-adherent DP on human exposure within this group has not been well characterized. This study aimed to address this gap by collecting handwipe and matched serum samples (n = 86 pairs) of Chinese e-waste recycling employees. In vivo human dermal bioavailability of DP was also examined to achieve effective exposure estimation. As a result, DP was detected in all handwipe and serum samples, indicating the occurrence of widespread exposure in the study population. For all the participants, the median level of ∑DP (the sum of syn-DP and anti-DP) in the serum was 45.1 ng g-1 lipid weight (lw), while handwipe samples showed the loading of 10.8 ng per wipe. Notably, significant associations were found between DP handwipe loadings and matched serum levels (p<0.05). Next, the in vivo human dermal bioavailability was estimated to be 9.54% for ∑DP. Based on this value, the estimated average daily dose was 0.231 ng kg-1 d-1 (median values), contributing 10.9% to serum levels of ∑DP. The significant associations and 10.9% percentage contribution together underscore the non-negligible influence of dermal absorption on DP internal doses in the e-waste recycling employees. Moreover, the extremely high levels of DP (up to 3.64E+04 ng g-1 lw) detected in serum highlight the extent of DP accumulation in humans. Continuous monitoring and assessment are warranted among e-waste workers due to the persistent organic pollutant properties of DP.
Collapse
Affiliation(s)
- Yao-Yuan Wan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, PR China
| | - Xiao-Meng Cheng
- Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, PR China
| | - Xing-Hong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, PR China.
| | - Feng-Shuang Wang
- Taizhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenling, 317200, PR China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, PR China
| | - Jing Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, PR China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, PR China
| |
Collapse
|
3
|
Wang E, Zhang Y, Li T, Jiang J, Fan Y, Wang Y, Hu J, Jin J. Dechlorane plus in dust, hair and urine: Exposure, excretion and level change. ENVIRONMENTAL RESEARCH 2024; 262:119807. [PMID: 39222731 DOI: 10.1016/j.envres.2024.119807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Dechlorane plus (DP) has been detected in a variety of environmental media and in human. Measurement of DPs in hair, urine, and house dust across different habitats allows for the assessment of short-term spatial changes in human exposure to DPs, as well as their excretion in urine. This offers a significant reference point for further research on the behavior of persistent pollutants within organisms. We measured and analyzed the concentrations of DP in the hair and urine of 32 students from a university in Beijing during school and home phases, and in indoor dust from dormitories and some home environments. The results indicated that the concentrations of DP in three types of samples were higher during the home phase compared to the school phase. We compared the fanti values and identified selective enrichment of syn-DP in hair, along with selective excretion of syn-DP in urine. Utilizing molecular docking technique, we simulated the binding effect between DP and the Megalin protein. The results demonstrated that the binding energy of anti-DP to Megalin was higher than that of syn-DP, suggesting that anti-DP has a greater propensity to bind to Megalin and be reabsorbed. This results in higher levels of syn-DP excretion in urine. Finally, we categorized students based on their participation in the organic exposure experiment and their BMI. The results indicated that the concentrations of DP in hair and urine were higher in the exposed group compared to the non-exposed group during the school year. After excluding the effect of exposure, habitat changes were more likely to affect the accumulation and excretion of DP in normal-weight students (BMI ≤24 kg/m2, n = 28), while overweight students (BMI >24 kg/m2, n = 4) were less affected by the effect of habitat because of their higher body fat percentage and their greater ability to accumulate DP.
Collapse
Affiliation(s)
- Erde Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Yan Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Tianwei Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Junjie Jiang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Yuhao Fan
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Ying Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Jicheng Hu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Engineering Research Center of Food Environment and Public Health, Beijing, 100081, China.
| |
Collapse
|
4
|
Qin RX, Cao X, Zhang SY, Li H, Tang B, Liao QL, Cai FS, Peng XZ, Zheng J. Decontamination promotes the release of incorporated organic contaminants in hair: Novel insights into non-invasive biomonitoring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124696. [PMID: 39122174 DOI: 10.1016/j.envpol.2024.124696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Human hair is increasingly employed as a non-invasive biomonitoring matrix for exposure to organic contaminants (OCs). Decontamination procedures are generally needed to remove external contamination from hair prior to analysis of OCs. Despite various existing decontamination protocols, their impacts on internally incorporated (endogenous) OCs in hair remain poorly understood. This study aims to quantitatively assess the impact of decontamination procedures on endogenous OCs in hair, and investigate optimal decontamination processes and factors influencing the removal of endogenous OCs. In this study, guinea pig was exposed to 6 OCs (triphenyl phosphate (TPHP), tris(1,3-dichloro-2-propyl) phosphate (TDCPP), and tri-n-butyl phosphate (TNBP), bisphenol A (BPA), perfluorooctanoic acid (PFOA), and phenanthrene (PHE)), and 6 decontamination procedures with different solvents (methanol, n-hexane, acetone, ultrapure water, Triton X-100, and sodium dodecyl sulfate) were used to rinse exposed guinea pig hair. All OCs and three metabolites (diphenyl phosphate (DPHP), dibutyl phosphate (DBP), and bis(1,3-dichloro-2-propyl) phosphate (BDCPP)) were detected in the majority of washing solutions. The decontamination procedures apparently resulted in the release of endogenous OCs from hair. The percentages of residual OCs in hair exhibited a linear or exponential decrease with more washing cycles. Furthermore, the residuals of OCs in hair washed with organic and aqueous solvents showed negative correlations with molecular weight, polarizability, and their initial concentrations. Although these findings need to be validated with a broader range of OCs, the results obtained in this study provide compelling evidence that current hair decontamination procedures have significant impacts on the analysis of endogenous OCs in hair. Therefore, it is important to interpret quantitative data on hair OC concentrations with caution and to thoroughly consider each decontamination procedure during analysis.
Collapse
Affiliation(s)
- Rui-Xin Qin
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xue Cao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China; School of Public Health, China Medical University, Liaoning, 110122, PR China
| | - Shi-Yi Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health and Wellness, Guizhou Medical University, Guiyang, 550025, PR China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China
| | - Qi-Long Liao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China
| | - Feng-Shan Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China
| | - Xian-Zhi Peng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China.
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health and Wellness, Guizhou Medical University, Guiyang, 550025, PR China.
| |
Collapse
|
5
|
Zheng J, Zhang S, Luo W, Yang Q, Qin R, Tang B, Zhang Y, Xia X, Luo X, Mai B, Yu Y. Tracing semi-quantitatively the absorption and removal of organic pollutants in human hair based on secondary ion mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135278. [PMID: 39047566 DOI: 10.1016/j.jhazmat.2024.135278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Human hair has become a promising non-invasive matrix in assessing exposure to environmental organic pollutants (OPs). However, exogenous contaminants, which were absorbed into the hair via sweat, sebum, and air particles/dust, could contribute to OP levels in hair and interfere with the precise exposure assessment. So far, the microscopic mechanisms underlying the absorption of exogenous OPs into hair remain inadequately understood. This study focused on the in-situ investigation of the diffusion processes of exogenous OPs into the hair structure using secondary ion mass spectrometry (SIMS) and isotopic tracer techniques. Results showed that the relative signal intensities of deuterium-labeled tris(1,3-dichloro-2-propyl) phosphate (TDCPP), 1-hydroxypyrene (1-OH-Pry), and bisphenol A (BPA) in the hair cortex were notably elevated after a 6-hour exposure. Diffusion coefficients of contaminants were related to their molecular weight, and absorption volumes to their water solubility and molecular structures. Exposure duration and solvent influenced the rate of diffusion and absorption volumes. The distribution of deuterium-labeled molecules in exposed hair samples after washing with two different solvents (acetone or water) was similar to that before washing. Our findings revealed the diffusion of OPs in hair cross-sections, indicating exogenous contributions to contaminants that are biologically incorporated into the hair.
Collapse
Affiliation(s)
- Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Shiyi Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| | - Weikeng Luo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| | - Qing Yang
- State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, PR China
| | - Ruixin Qin
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yanqiang Zhang
- State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, PR China
| | - Xiaoping Xia
- State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou 510640, PR China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou 510640, PR China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| |
Collapse
|
6
|
Yang J, Yao Y, Li X, He A, Chen S, Wang Y, Dong X, Chen H, Wang Y, Wang L, Sun H. Nontarget Identification of Novel Organophosphorus Flame Retardants and Plasticizers in Indoor Air and Dust from Multiple Microenvironments in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7986-7997. [PMID: 38657129 DOI: 10.1021/acs.est.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The indoor environment is a typical source for organophosphorus flame retardants and plasticizers (OPFRs), yet the source characteristics of OPFRs in different microenvironments remain less clear. This study collected 109 indoor air samples and 34 paired indoor dust samples from 4 typical microenvironments within a university in Tianjin, China, including the dormitory, office, library, and information center. 29 target OPFRs were analyzed, and novel organophosphorus compounds (NOPs) were identified by fragment-based nontarget analysis. Target OPFRs exhibited the highest air and dust concentrations of 46.2-234 ng/m3 and 20.4-76.0 μg/g, respectively, in the information center, where chlorinated OPFRs were dominant. Triphenyl phosphate (TPHP) was the primary OPFR in office air, while tris(2-chloroethyl) phosphate dominated in the dust. TPHP was predominant in the library. Triethyl phosphate (TEP) was ubiquitous in the dormitory, and tris(2-butoxyethyl) phosphate was particularly high in the dust. 9 of 25 NOPs were identified for the first time, mainly from the information center and office, such as bis(chloropropyl) 2,3-dichloropropyl phosphate. Diphenyl phosphinic acid, two hydroxylated and methylated metabolites of tris(2,4-ditert-butylphenyl) phosphite (AO168), and a dimer phosphate were newly reported in the indoor environment. NOPs were widely associated with target OPFRs, and their human exposure risk and environmental behaviors warrant further study.
Collapse
Affiliation(s)
- Ji Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ana He
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shijie Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yulong Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoyu Dong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
7
|
Robin J, Lefeuvre S, Guihenneuc J, Cambien G, Dupuis A, Venisse N. Analytical methods and biomonitoring results in hair for the assessment of exposure to endocrine-disrupting chemicals: A literature review. CHEMOSPHERE 2024; 353:141523. [PMID: 38417485 DOI: 10.1016/j.chemosphere.2024.141523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/03/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Endocrine-disrupting chemicals (EDC) are compounds that alter functions of the endocrine system due to their ability to mimic or antagonize endogenous hormones, or that alter their synthesis and metabolism, causing adverse health effects. Human biomonitoring (HBM) is a reliable method to assess human exposure to chemicals through measurement in human body fluids and tissues. It identifies new sources of exposure and determines their distribution, thereby enabling detection of the most exposed populations. Blood and urine are commonly used for HBM of EDC, but their interest is limited for compounds presenting short half-lives. Hair appears as an interesting alternative insofar as it provides a large exposure window. For the present study, we evaluated the relevance of hair in determining EDC exposure. With this in mind, we undertook a literature review focusing on the bioanalytical aspects and performances of methods developed to determine EDC in hair. The literature review was performed through methodical bibliographical research. Relevant articles were identified using two scientific databases: PubMed and Web of Science, with search equations built from a combination of keywords, MeSH terms and Boolean operators. The search strategy identified 2949 articles. After duplicates were removed, and following title, abstract, and full-text screenings, only 31 were included for qualitative synthesis. Hair collection was mainly performed in the back of the head and preparation involved two processes: cutting into small pieces or grounding to powder. The off-line LC-MS/MS method remains the main technique used to assess EDC through hair. Differences regarding the validation of analytical methods and interpretation of HBM results were highlighted, suggesting a need for international harmonisation to obtain reliable and comparable results. External contamination of hair was identified as a main limitation in the interpretation of results, highlighting the need to better understand EDC transfers through hair and to develop relevant hair decontamination processes.
Collapse
Affiliation(s)
- Julien Robin
- Université de Poitiers, CNRS, Laboratoire EBI, Équipe IHES, F-86000 Poitiers, France; CHU de Poitiers, CIC-Inserm, Axe EATHER, F-86000 Poitiers, France
| | - Sandrine Lefeuvre
- Université de Poitiers, CNRS, Laboratoire EBI, Équipe IHES, F-86000 Poitiers, France; CHU de Poitiers, CIC-Inserm, Axe EATHER, F-86000 Poitiers, France
| | - Jérémy Guihenneuc
- Université de Poitiers, CNRS, Laboratoire EBI, Équipe IHES, F-86000 Poitiers, France; CHU de Poitiers, CIC-Inserm, Axe EATHER, F-86000 Poitiers, France
| | - Guillaume Cambien
- Université de Poitiers, CNRS, Laboratoire EBI, Équipe IHES, F-86000 Poitiers, France; CHU de Poitiers, CIC-Inserm, Axe EATHER, F-86000 Poitiers, France
| | - Antoine Dupuis
- Université de Poitiers, CNRS, Laboratoire EBI, Équipe IHES, F-86000 Poitiers, France; CHU de Poitiers, CIC-Inserm, Axe EATHER, F-86000 Poitiers, France
| | - Nicolas Venisse
- Université de Poitiers, CNRS, Laboratoire EBI, Équipe IHES, F-86000 Poitiers, France; CHU de Poitiers, CIC-Inserm, Axe EATHER, F-86000 Poitiers, France.
| |
Collapse
|
8
|
Junaid M, Sultan M, Liu S, Hamid N, Yue Q, Pei DS, Wang J, Appenzeller BMR. A meta-analysis highlighting the increasing relevance of the hair matrix in exposure assessment to organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170535. [PMID: 38307287 DOI: 10.1016/j.scitotenv.2024.170535] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
Owing to a wide range of advantages, such as stability, non-invasiveness, and ease of sampling, hair has been used progressively for comprehensive biomonitoring of organic pollutants for the last three decades. This has led to the development of new analytical and multi-class analysis methods for the assessment of a broad range of organic pollutants in various population groups, ranging from small-scale studies to advanced studies with a large number of participants based on different exposure settings. This meta-analysis summarizes the existing literature on the assessment of organic pollutants in hair in terms of residue levels, the correlation of hair residue levels with those of other biological matrices and socio-demographic factors, the reliability of hair versus other biomatrices for exposure assessment, the use of segmental hair analysis for chronic exposure evaluation and the effect of external contamination on hair residue levels. Significantly high concentrations of organic pollutants such as pesticides, flame retardants, polychlorinated biphenyls and polycyclic aromatic hydrocarbon were reported in human hair samples from different regions and under different exposure settings. Similarly, high concentrations of pesticides (from agricultural activities), flame retardants (E-waste dismantling activities), dioxins and furans were observed in various occupational settings. Moreover, significant correlations (p < 0.05) for hair and blood concentrations were observed in majority of studies featuring pesticides and flame retardants. While among sociodemographic factors, gender and age significantly affected the hair concentrations in females and children in general exposure settings, whereas adult workers in occupational settings. Furthermore, the assessment of the hair burden of persistent organic pollutants in domestic and wild animals showed high concentrations for pesticides such as HCHs and DDTs whereas the laboratory-based studies using animals demonstrated strong correlations between exposure dose, exposure duration, and measured organic pollutant levels, mainly for chlorpyrifos, diazinon, terbuthylazine, aldrin, dieldrin and pyrethroid metabolites. Considering the critical analysis of the results obtained from literature review, hair is regarded as a reliable matrix for organic pollutant assessment; however, some limitations, as discussed in this review, need to be overcome to reinforce the status of hair as a suitable matrix for exposure assessment.
Collapse
Affiliation(s)
- Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Marriya Sultan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Naima Hamid
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Qiang Yue
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - De-Sheng Pei
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China.
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| |
Collapse
|
9
|
Zhang S, Yang R, Zhao M, Li S, Yin N, Zhang A, Faiola F. Typical neonicotinoids and organophosphate esters, but not their metabolites, adversely impact early human development by activating BMP4 signaling. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133028. [PMID: 38006857 DOI: 10.1016/j.jhazmat.2023.133028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
Recent studies have highlighted the presence of potentially harmful chemicals, such as neonicotinoids (NEOs) and organophosphate esters (OPEs), in everyday items. Despite their potential threats to human health, these dangers are often overlooked. In a previous study, we discovered that NEOs and OPEs can negatively impact development, but liver metabolism can help mitigate their harmful effects. In our current research, our objective was to investigate the toxicity mechanisms associated with NEOs, OPEs, and their liver metabolites using a human embryonic stem cell-based differentiation model that mimics early embryonic development. Our transcriptomics data revealed that NEOs and OPEs significantly influenced the expression of hundreds of genes, disrupted around 100 biological processes, and affected two signaling pathways. Notably, the BMP4 signaling pathway emerged as a key player in the disruption caused by exposure to these pollutants. Both NEOs and OPEs activated BMP4 signaling, potentially impacting early embryonic development. Interestingly, we observed that treatment with a human liver S9 fraction, which mimics liver metabolism, effectively reduced the toxic effects of these pollutants. Most importantly, it reversed the adverse effects dependent on the BMP4 pathway. These findings suggest that normal liver function plays a crucial role in detoxifying environmental pollutants and provides valuable experimental insights for addressing this issue.
Collapse
Affiliation(s)
- Shuxian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaomiao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shichang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Ma Y, Stubbings WA, Jin J, Cline-Cole R, Abdallah MAE, Harrad S. Impact of Legislation on Brominated Flame Retardant Concentrations in UK Indoor and Outdoor Environments: Evidence for Declining Indoor Emissions of Some Legacy BFRs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4237-4246. [PMID: 38386008 PMCID: PMC10919073 DOI: 10.1021/acs.est.3c05286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Concentrations of polybrominated diphenyl ethers, hexabromocyclododecane (HBCDD), and novel brominated flame retardants (NBFRs) were measured in indoor dust, indoor air, and outdoor air in Birmingham, UK. Concentrations of ΣBFRs ranged from 490 to 89,000 ng/g, 46-14,000 pg/m3, and 22-11,000 pg/m3, respectively, in UK indoor dust, indoor air, and outdoor air. BDE-209 and decabromodiphenyl ethane (DBDPE) were the main contributors. The maximum concentration of DBDPE (10,000 pg/m3) in outdoor air is the highest reported anywhere to date. In contrast with previous studies of outdoor air in Birmingham, we observed significant correlations between concentrations of tri- to hepta-BDEs and HBCDD and temperature. This may suggest that primary emissions from ongoing use of these BFRs have diminished and that secondary emissions (e.g., evaporation from soil) are now a potentially major source of these BFRs in outdoor air. Conversely, the lack of significant correlations between temperature and concentrations of BDE-209 and DBDPE may indicate that ongoing primary emissions from indoor sources remain important for these BFRs. Further research to clarify the relative importance of primary and secondary sources of BFRs to outdoor air is required. Comparison with earlier studies in Birmingham reveals significant (p < 0.05) declines in concentrations of legacy BFRs, but significant increases for NBFRs over the past decade. While there appear minimal health burdens from BFR exposure for UK adults, dust ingestion of BDE-209 may pose a significant risk for UK toddlers.
Collapse
Affiliation(s)
- Yulong Ma
- School
of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - William A. Stubbings
- School
of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Jingxi Jin
- School
of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Reginald Cline-Cole
- Department
of African Studies & Anthropology, School of History and Cultures, University of Birmingham, Birmingham B15 2TT, U.K.
| | | | - Stuart Harrad
- School
of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
11
|
Zhang S, Zhao M, Li S, Yang R, Yin N, Faiola F. Developmental toxicity assessment of neonicotinoids and organophosphate esters with a human embryonic stem cell- and metabolism-based fast-screening model. J Environ Sci (China) 2024; 137:370-381. [PMID: 37980023 DOI: 10.1016/j.jes.2023.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 11/20/2023]
Abstract
In recent years, neonicotinoids (NEOs) and organophosphate esters (OPEs) have been widely used as substitutes for traditional pesticides and brominated flame-retardants, respectively. Previous studies have shown that those compounds can be frequently detected in environmental and human samples, are able to penetrate the placental barrier, and are toxic to animals. Thus, it is reasonable to speculate that NEOs and OPEs may have potential adverse effects in humans, especially during development. We employed a human embryonic stem cell differentiation- and liver S9 fraction metabolism-based fast screening model to assess the potential embryonic toxicity of those two types of chemicals. We show that four NEO and five OPE prototypes targeted mostly ectoderm specification, as neural ectoderm and neural crest genes were down-regulated, and surface ectoderm and placode markers up-regulated. Human liver S9 fraction's treatment could generally reduce the effects of the chemicals, except in a few specific instances, indicating the liver may detoxify NEOs and OPEs. Our findings suggest that NEOs and OPEs interfere with human early embryonic development.
Collapse
Affiliation(s)
- Shuxian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaomiao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shichang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Li Z, Li Z, Zhou Y, Meng W, Li J, Zhou Y, He C, Dong G, Yu Y. Co-occurrence of tetrabromobisphenol a and debromination products in human hair across China: Implications for exposure sources and health effects on metabolic syndrome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168514. [PMID: 37977374 DOI: 10.1016/j.scitotenv.2023.168514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
The large usage of Tetrabromobisphenol A (TBBPA) in consumer products leads to ubiquitous distribution globally, however, studies on the occurrence of their debromination compounds were rather scarce. Also, though many studies illustrate the effectiveness of hair analysis to assess human exposure to organic pollutants, evidence on the associations with health implications is still fairly limited. Herein, 598 participants from across China were employed to investigate chronic, low-level exposure to TBBPA and debromination products by hair analysis. The geomean concentrations of TBBPA, 2,2',6-tribromobisphenol A (Tri-BBPA), 2,2'- and 2,6-dibromobisphenol A (Di-BBPA), and 2-monobromobisphenol A (Mo-BBPA) were 1.07, 0.145, 0.135, and 0.894 ng/g, respectively, indicating nonnegligible health risks of debromination products. Hair analyte levels correlated with population age and population density among sampling regions. Sexual- and spatial-variations were observed with higher concentrations in females and in E-waste recycling sites. Logistic regression models showed that TBBPA exposure (adjusted odds ratio (OR): 1.02, 95 % confidential interval (CI): 1.01-1.05) was positively associated with risk of metabolic syndrome by adjusting for various covariates. These findings imply usefulness of hair as an alternative biomonitoring tool to assess human exposure to TBBPA and relative health effects, which highlights public concerns on co-exposure to these chemicals.
Collapse
Affiliation(s)
- Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zhenchi Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ying Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Wenjie Meng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jincheng Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chang He
- Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guanghui Dong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
13
|
Huang C, Zeng Y, Liu YE, Zhang Y, Guo J, Luo X, Mai B. Historical Occurrence and Composition of Novel Brominated Flame Retardants and Dechlorane Plus in Sediments from an Electronic Waste Recycling Site in South China. TOXICS 2024; 12:84. [PMID: 38251039 PMCID: PMC10821507 DOI: 10.3390/toxics12010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Novel brominated flame retardants (NBFRs) and dechlorane plus (DP) have been widely used as alternatives to traditional BFRs. However, little is known about the temporal trends of NBFR and DP pollution in e-waste recycling sites. In the current study, three composite sediment cores were collected from an e-waste-polluted pond located in a typical e-waste recycling site in South China to investigate the historical occurrence and composition of NBFRs and DP. The NBFRs and DP were detected in all layers of the sediment cores with concentration ranges of 5.71~180,895 and 4.95~109,847 ng/g dw, respectively. Except for 2,3,5,6-tetrabromo-p-xylene (pTBX) and 2,3,4,5,6-pentabromoethylbenzene (PBEB), all the NBFR compounds and DP showed a clear increasing trend from the bottom to top layers. These results implied the long-term and severe contamination of NBFRs and DP. Decabromodiphenyl ethane (DBDPE) was the most abundant NBFR with the contribution proportions of 58 ± 15%, 73 ± 15%, and 71 ± 18% in three sediment cores, followed by 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE) and pentabromobenzene (HBB). The ratios of BTBPE/Octa-BDEs and DBDPE/Deca-BDEs varied from 0.12 to 60 and from 0.03 to 0.49, respectively, which had no clear increase trends with a decrease in sediment depth. As for DP, the fanti values (the concentration ratios of anti-DP to the sum of anti-DP and syn-DP) in sediment cores ranged from 0.41 to 0.83, almost falling in the range of those in DP technical products, suggesting that DP degradation did not occur in sediment cores. The environmental burdens of DBDPE, BTBPE, HBB, PBT, PBEB, pTBX, and DP were estimated to be 34.0, 5.67, 10.1, 0.02, 0.02, 0.01, and 34.8 kg, respectively. This work provides the first insight into the historical contamination status of NBFRs and DP in the sediments of an e-waste recycling site.
Collapse
Affiliation(s)
- Chenchen Huang
- School of Environmental Science & Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, China
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Yin-E Liu
- School of Environmental Science & Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, China
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yanting Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jian Guo
- Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| |
Collapse
|
14
|
Sanguos CL, García LG, Suárez OL, Picáns-Leis R, Martínez-Carballo E, Couce ML. Non-invasive biomonitoring of infant exposure to environmental organic pollutants in north-western Spain based on hair analysis. Identification of potential sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122705. [PMID: 37827353 DOI: 10.1016/j.envpol.2023.122705] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/03/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Recent years have seen growing interest in hair sample analysis to detect organic pollutants (OPs). This biological matrix can be analysed non-invasively for biomonitoring of OPs over a wide exposure window. Obtaining hair sample amounts that meet the needs of the analytical methodology required for the determination of the POs of interest can be challenging, especially in infants. As a result, studies assessing organic pollutants in infant hair have been very scarce. We quantified levels of about 60 OPs, including persistent organic pollutants (POPs), in 110 hair samples from a patient cohort (60 mothers and 50 infants) from Santiago de Compostela (north-western Spain). For each participant we examined relationship between OP levels and corresponding epidemiological parameters using correlations, principal component analysis (PCA), hierarchical cluster analysis, and Multivariate analysis of variance (MANOVA). For many OPs we observed significant correlations with place of residence, parity, and maternal age, as well as pet ownership. Evaluation of dietary habits showed significant associations between levels some OPs and the consumption of fish, molluscs, and cereal. There were significant associations between chlorpyrifos and deltamethrin levels and infant birth characteristics such as birthweight and head circumference. Relations between OP levels in the hair of mothers and their infants were also examined, revealing common sources of exposure for dioxin-like polychlorinated biphenyls (DLPCBs), non-dioxin-like polychlorinated biphenyls (NDLPCBs), polybrominated diphenyl ethers (PBDEs), and polycyclic aromatic hydrocarbons (PAHs). Levels of fluoranthene (F), pyrene (P), endrin, and some PBDEs in maternal hair were significantly correlated with those in infant hair. Our findings identified common sources of exposure to OPs of distinct chemical classes.
Collapse
Affiliation(s)
- Carolina López Sanguos
- Department of Neonatology, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, 15704, Spain; IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain.
| | - Laura Gallego García
- IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain.
| | - Olalla López Suárez
- Department of Neonatology, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, 15704, Spain; IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain.
| | - Rosaura Picáns-Leis
- Department of Neonatology, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, 15704, Spain; IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain.
| | - Elena Martínez-Carballo
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain; Food and Health Omics, Department of Analytical and Food Chemistry, Faculty of Sciences, Campus da Auga, University of Vigo, Ourense, 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Campus Auga, Universidade de Vigo, Ourense, 32004, Spain.
| | - María Luz Couce
- Department of Neonatology, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, 15704, Spain; IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
15
|
Bao J, Ren H, Han J, Yang X, Li Y, Jin J. Levels, tissue distribution and isomer stereoselectivity of Dechlorane Plus in humans: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166156. [PMID: 37572901 DOI: 10.1016/j.scitotenv.2023.166156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Exposure of human tissues to Dechlorane Plus (DP) has raised public concern because of the multiple health threats it may pose to humans. Therefore, it is important to summarize the main findings of previous studies on DP in human tissues and to provide potential guidance for future studies. In this paper, DP levels in different populations and human tissues worldwide since 2009 were systematically reviewed. DP levels in human tissues of workers in e-waste dismantling sites in Guangdong Province, China (median 190 ng·g-1 lw in serum) and DP manufacturing plants in Jiangsu Province, China (mean 857 ng·g-1 lw in whole-blood) are the highest reported worldwide. DP levels in tissues of the general population in recent studies are close to those of residents near e-waste dismantling sites, which should be of concern. DP levels in different human tissues were found to be positively correlated with a pattern of blood > breast milk > adipose tissue. The distribution of DP in different human tissues is mainly lipid-driven and may also be influenced by the interaction of DP with proteins such as human serum albumin. Most of the past studies determined the isomer stereoselectivity of DP in human tissues only by comparing the composition of DP in commercial DP products and human tissues, which lacks evidence of mechanism. Recently, a significantly different affinity of DP isomers for proteins was found, which seems to confirm the isomer selectivity of DP in human tissues. We simulated the binding of DP to human serum albumin and DP to thyroid hormone receptor β by molecular docking and found differences in the binding behavior of syn-DP and anti-DP to the selected proteins. Molecular docking seems to be a feasible approach for future studies to predict and reveal the mechanisms of DP behavior and health effects in human tissues.
Collapse
Affiliation(s)
- Junsong Bao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Hongmin Ren
- Department of Chemical Engineering, Hebei Petroleum University of Technology, 2 Xueyuanlu Street, Shuangqiao District, Chengde 067000, China
| | - Jiali Han
- College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Xinrui Yang
- Hainan Ecological Environmental Monitoring Center, 98 Baiju Avenue, Haikou 571126, China
| | - Yingxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Street, Haidian District, Beijing 100081, China.
| |
Collapse
|
16
|
Guo Y, Chen M, Liao M, Su S, Sun W, Gan Z. Organophosphorus flame retardants and their metabolites in paired human blood and urine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115696. [PMID: 37979363 DOI: 10.1016/j.ecoenv.2023.115696] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Organophosphorus flame retardants (OPFRs) have been shown to be carcinogenic, neurotoxic, and endocrine disruptive, so it is important to understand the levels of OPFRs in human body as well as the modes of external exposure. In this study, we investigated the levels of 13 OPFRs and 7 phosphodiester metabolites in paired human blood and urine, as well as the influencing factors (region, age and gender), and studied the relationship between OPFRs and oxidative stress by urinary metabolites. We found that the concentrations of triphenyl phosphate (TPhP) and tris-(2-ethylhexyl) phosphate (TEHP) in the blood of urban populations were higher than those of rural populations, and that younger populations suffered higher TPhP and 2-ethylhexyl diphenyl phosphate (EHDPP) exposures than older populations. In addition, we found that tris-(2-chloroethyl) phosphate (TCEP), tributyl phosphate (TnBP), TPhP and EHDPP exposure induced oxidative stress. The results of the internal load principal component analysis indicated that dust ingestion, skin exposure, respiration and dietary intake may be the most important sources of TCEP, tris(2-butoxyethyl) phosphate (TBOEP), tri(2-chloroisopropyl) phosphate (TCIPP) and TEHP, respectively, and dust ingestion and skin exposure may be the main sources of TPhP for humans.
Collapse
Affiliation(s)
- Yantao Guo
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Mengqin Chen
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610207, China.
| | - Mengxi Liao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Shijun Su
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Weiyi Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhiwei Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
17
|
Li Y, Zheng N, Sun S, Wang S, Li X, Pan J, Li M, Lang L, Yue Z, Zhou B. Exposure estimates of parabens from personal care products compared with biomonitoring data in human hair from Northeast China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115635. [PMID: 37897980 DOI: 10.1016/j.ecoenv.2023.115635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Parabens (PBs), a class of endocrine-disrupting chemicals (EDCs), are extensively used as additives in personal care products (PCPs); however, distinguishing between endogenous and exogenous contamination from PCPs in hair remains a challenge. We conducted a comprehensive analysis of the levels, distribution patterns, impact factors, and sources of PBs in 119 human hair samples collected from Changchun, northeast China. The detection rates of methylparaben (MeP), propylparaben (PrP), and ethylparaben (EtP) in hair samples were found to be 100%. The concentration of PBs in hair followed the order of MeP (57.48 ng/g) > PrP (46.40 ng/g) > EtP (6.80 ng/g). The concentration of PrP in female hair was significantly higher (65.38 ng/g) than that observed in male hair (7.82 ng/g) (p < 0.05). The levels of excretion rates of MeP (ERMeP) and excretion rates of PrP (ERPrP) in the hair-dying samples (ERMeP: 17.89 ng/day; ERPrP: 14.15 ng/day) were found to be 2.52 and 2.40 times higher, respectively, compared to the non-hair-dying samples (ERMeP: 7.09 ng/day; ERPrP: 6.05 ng/day). However, the system exposure dosage (SED) results revealed that although hair dyes exhibited higher PBs, human exposure was found to be lower than certain PCPs. The results of the correlation analysis revealed that toner, face cream, body lotion, and hair conditioner were identified as the primary sources of PBs in male hair. Furthermore, the human exposure resulting from the utilization of female hair dye and serum exhibited a positive correlation with hair ERMeP and ERPrP levels, indicating in the screening of samples, excluding hair samples using hair dye and haircare essential oil can effectively avoid the interference caused by exogenous contamination from PCPs.
Collapse
Affiliation(s)
- Yunyang Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China; University of Chinese Academy of Sciences, Beijing, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China.
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Jiamin Pan
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China; University of Chinese Academy of Sciences, Beijing, China
| | - Muyang Li
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| | - Le Lang
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| | - Zelin Yue
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| | - Binbin Zhou
- Changchun Sci-Tech University, Shuangyang District, Changchun, China
| |
Collapse
|
18
|
Liu H, Bai Y, Yu Y, Qi Z, Zhang G, Li G, Yu Y, An T. Maternal transfer of resorcinol-bis(diphenyl)-phosphate perturbs gut microbiota development and gut metabolism of offspring in rats. ENVIRONMENT INTERNATIONAL 2023; 178:108039. [PMID: 37336026 DOI: 10.1016/j.envint.2023.108039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Resorcinol-bis(diphenyl)-phosphate (RDP), an emerging organophosphate flame retardant, is increasingly used as a primary alternative for decabromodiphenyl ether and is frequently detected in global environmental matrices. However, the long-term effects of its exposure to humans remain largely unknown. To investigate its intergenerational transfer capacity and health risks, female Sprague Dawley rats were orally exposed to RDP from the beginning of pregnancy to the end of the lactation period. The RDP content, gut microbiota homeostasis, and metabolic levels were determined. RDP accumulation occurred in the livers of maternal rats and offspring and increased with exposure time. 16S rRNA gene sequencing showed that exposure to RDP during pregnancy and/or lactation significantly disrupted gut microbiota homeostasis, as evidenced by decreased abundance and diversity. In particular, the abundance of Turicibacter, Adlercreutzia, and YRC22 decreased, correlating significantly with glycollipic metabolism. This finding was consistent with the reduced levels of short-chain fatty acids, the crucial gut microbial metabolites. Meanwhile, RDP exposure resulted in changes in gut microbiome-related metabolism. Nine critical overlapping KEGG metabolic pathways were identified, and the levels of related differential metabolites decreased. Our results suggest that the significant adverse impacts of RDP on gut microbiota homeostasis and metabolic function may increase the long-term risks related to inflammation, obesity, and metabolic diseases.
Collapse
Affiliation(s)
- Hongli Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yixiu Bai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingying Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zenghua Qi
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guoxia Zhang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
19
|
Shen M, Liu G, Zhou L, Yin H, Arif M. Comparison of pollution status and source apportionment for PCBs and OCPs of indoor dust from an industrial city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2473-2494. [PMID: 36006579 DOI: 10.1007/s10653-022-01360-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
In this study, the pollution status of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) was investigated in indoor and outdoor dust from three different functional areas of Hefei, China. The relationship between the concentrations of PCBs and OCPs and different influencing factors in dwellings was studied. The results showed that the concentrations of PCBs and OCPs were higher in samples from dwellings with higher smoking frequency, lower cleaning frequency, higher floors and smaller household size. The results of Spearman's correlation coefficient analysis indicated that PCBs and OCPs were not consistently associated with each other, while sources of low-chlorinated PCBs and high-chlorinated PCBs were different. Scanning electron microscopy (SEM) shows the shape of indoor dust was a mixture of blocky, flocculated, spherical structures, and irregular shapes. The results of principal component analysis (PCA) and positive matrix factorization model (PMF) showed that the PCBs and OCPs of indoor dust came from both indoor and outdoor sources between local and regional transport. Carbon (δ13C) and Nitrogen (δ15N) stable isotope results indicate or show that the indoor dust (δ13C: - 24.37‰, δ15N: 6.88‰) and outdoor dust (δ13C: - 12.65‰, δ15N: 2.558‰) is derived from fossil fuel, coal combustion, road dust, fly ash, C4 biomass and soil. Potential source contribution factor (PSCF) and concentration weighted-trajectory analysis suggest that sources of pollutants were local and regional transport from surrounding provinces and marine emissions. The average daily dose (adult: 8.20E-04, children: 2.37E-03) of pollutants and the carcinogenic risks (adult: 1.23E-02, children: 2.65E-02) were relatively greater for children than adults. This study demonstrates the utility of SEM to characterize indoor dust morphology while combining PMF, PSCF, and stable isotope methods in identifying indoor PCBs and OCPs sources and regions.
Collapse
Affiliation(s)
- Mengchen Shen
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, 710075, Shaanxi, China
- State Key Laboratory of Marine Pollution (SKLMP), Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
- Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, 215123, Jiangsu, China
| | - Guijian Liu
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China.
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, 710075, Shaanxi, China.
| | - Li Zhou
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, 710075, Shaanxi, China
- State Key Laboratory of Marine Pollution (SKLMP), Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
- Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, 215123, Jiangsu, China
| | - Hao Yin
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, 710075, Shaanxi, China
| | - Muhammad Arif
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan
| |
Collapse
|
20
|
Li M, Tang B, Zheng J, Luo W, Xiong S, Ma Y, Ren M, Yu Y, Luo X, Mai B. Typical organic contaminants in hair of adult residents between inland and coastal capital cities in China: Differences in levels and composition profiles, and potential impact factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161559. [PMID: 36649778 DOI: 10.1016/j.scitotenv.2023.161559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/20/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
The growing of urbanization, industrialization, and agricultural production have resulted in the increasing contamination of typical organic contaminants (OCs) in China. However, data on differences in exposure characteristics of typical OCs between the coastal and inland cities among residents in China are limited. In this study, hair samples were collected from adult residents in 10 and 17 provincial capital cities in coastal and inland China, respectively, to investigate the differences in the levels and composition profiles of typical OCs. The potential factors impacting the human exposure to OCs were also examined based on the relationship among the hair OC levels and the population characteristics and statistical indicators. The median concentrations of dichlorodiphenyltrichloroethane's (DDTs), polybrominated diphenyl ethers (PBDEs), and organophosphorus flame retardants (PFRs) in hair of coastal urban residents were 3.64, 5.58, and 268 ng/g, respectively, while their concentrations in samples from inland urban residents were 1.84, 3.85, and 202 ng/g, respectively. Coastal residents showed significantly higher hair OC concentrations than inland residents (p < 0.05). BDE209 and p,p'-DDE were the predominant chemicals for PBDEs and DDTs, respectively, in both coastal and inland cities. Tris(2-chloroisopropyl) phosphate (TCIPP) was the dominant PFR in coastal residents' hair, while triphenyl phosphate (TPHP) was the major PFR in inland residents' hair, possibly owing to the different usages of the PFRs. Significant gender differences were observed in the levels and composition profiles of OCs (p < 0.05). The levels of p,p'-DDE and TCIPP were significantly related to the gross domestic product (GDP), gross secondary industry product, and the per capita consumption of aquatic products (p < 0.05). This study provides scientific data for evaluating human exposure to OCs in urban residents at a large scale and its associations with statistical indicators including urbanization, industrialization, agricultural production, and diet in China.
Collapse
Affiliation(s)
- Min Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| | - Weikeng Luo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Shimao Xiong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yan Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Mingzhong Ren
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| |
Collapse
|
21
|
Chenchen H, Keqi H, Yanhong Z, Yiye J, Yankuan T, Xiaojun L, Bixian M. In vitro hepatic metabolism of polychlorinated biphenyls with different chlorine-substituted structures in rats and humans: Kinetics, metabolism, and potential nuclear receptor affinities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161043. [PMID: 36549545 DOI: 10.1016/j.scitotenv.2022.161043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
In this study, the biotransformation behavior and potential nuclear receptor affinities of polychlorinated biphenyls (PCBs) with different chlorine-substituted structures (PCB 77/110/136/174) were explored using human and rat liver microsomes (HLM and RLM). The rate constants (kobs) of PCBs showed the variations in the order patterns for the HLM (PCB 136 > PCB 110 > PCB 174 > PCB 77) and RLM (PCB 110 > PCB 136 > PCB 174 > PCB 77). However, studied PCBs showed similar metabolite profiles and enantioselective of PCBs between HLM and RLM. The Mono-OH-PCBs were the major metabolites of PCB 77/174, whereas mono-OH- and di-OH-PCBs were the major metabolites of PCB 110/136 for the HLM and RLM, indicating that OH-PCBs could be further oxidized. Enantiomeric enrichment of (-)-PCB 136 and (+)-PCB 174 was observed in microsomal metabolism. Moreover, the inflection point of the enantiomer fraction for PCB 136 metabolized by the HLM suggests a competitive metabolism between individual atropisomers. Furthermore, molecular docking results demonstrated the relatively high affinity between PCBs (or OH-PCBs) and certain nuclear receptors, indicating that abnormal metabolic enzyme expression and endocrine disruption occur in PCB-exposed humans.
Collapse
Affiliation(s)
- Huang Chenchen
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; China University of Mining & Technology, School of Environmental Science & Spatial Informatics, Xuzhou 221116, Jiangsu, China
| | - Hu Keqi
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zeng Yanhong
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Jiang Yiye
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian Yankuan
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Luo Xiaojun
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Mai Bixian
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
22
|
Tang J, Ma S, Hu X, Lin M, Li G, Yu Y, An T. Handwipes as indicators to assess organophosphate flame retardants exposure and thyroid hormone effects in e-waste dismantlers. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130248. [PMID: 36327841 DOI: 10.1016/j.jhazmat.2022.130248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Dermal exposure is increasingly recognized as an important pathway for organic pollutant exposure. However, data on dermal exposure are limited, particularly with respect to the health effects. This study evaluated association between organophosphorus flame retardants (OPFRs) in handwipes and internal body burden on workers and adult residents in an electronic waste (e-waste) dismantling area. The impact of dermal exposure to OPFRs on thyroid hormones (THs) served as a biomarker for early effects. Triphenyl phosphate (TPhP) was the most detected compound in handwipes, with median levels of 1180, 200, and 24.0 ng in people identified as e-waste bakers, e-waste dismantlers, and adult residents. Among e-waste dismantlers, TPhP levels in handwipes were positively correlated with paired serum TPhP and urinary diphenyl phosphate (DPhP) levels. In multiple linear regression models controlling for sex, age and smoking, TPhP levels in handwipes of e-waste dismantlers were significantly negatively correlated with three THs used to evaluate thyroid function: serum reverse 3,3',5-triiodo-L-thyronine (rT3), 3,3'-diiodo-L-thyronine (3,3'-T2), and 3,5-diiodo-L-thyronine (3,5-T2). These findings suggest that handwipes can act as non-invasive exposure indicators to assess body burden of dermal exposure to TPhP and health effects on THs of e-waste dismantlers. This study highlights importance of OPFR effect on human THs through dermal exposure.
Collapse
Affiliation(s)
- Jian Tang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xin Hu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Meiqing Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
23
|
Li X, Wang Y, Bai W, Zhang Q, Zhao L, Cheng Z, Zhu H, Sun H. Novel Brominated Flame Retardants in Dust from E-Waste-Dismantling Workplace in Central China: Contamination Status and Human Exposure Assessment. TOXICS 2023; 11:58. [PMID: 36668783 PMCID: PMC9864280 DOI: 10.3390/toxics11010058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Novel brominated flame retardants (NBFRs) have been widely used as alternatives to legacy BFRs. However, information on the contamination status and human exposure risks of electronic waste (e-waste)-derived NBFRs in the e-waste workplace is limited. In this study, six NBFRs and the legacy BFRs, hexabromocyclododecanes (HBCDs), were analyzed in 50 dust samples from an e-waste-dismantling workplace in Central China. The dust concentration of NBFRs in e-waste-dismantling workshops (median, 157−169 ng/g) was found to be significantly higher than those in an outdoor environment (17.3 ng/g) (p < 0.01). Differently, the highest median concentration of HBCDs was found in dust from the dismantling workshop for cellphones and computers (367 ng/g) among studied areas. The bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (BEHTBP) was the predominant compound, which contributed 66.0−88.0% of measured NBFR concentrations. NBFRs might originate from plastic and rubber materials in wastes based on the correlation and principal component analysis. Moreover, the total estimated daily intakes (average scenario) of NBFRs were calculated at 2.64 × 10−2 ng/kg bw/d and 2.91× 10−2 ng/kg bw/d for the male and female dismantling workers, respectively, via dust ingestion, inhalation, and dermal contact pathways, which were lower than the reference dose values, and thus indicated a limited human exposure risk for NBFRs at the current level. Although the dust concentrations and daily intakes of NBFRs were still lower than those of other emerging pollutants (e.g., organophosphate and nitrogenous flame retardants) measured in the same sampling set, the elevated levels of NBFRs suggested the progressive BFR replacement process in China, which deserves more attention regarding their adverse effects on both the environment and human health.
Collapse
|
24
|
Tang B, Zheng J, Xiong SM, Cai FS, Li M, Ma Y, Gao B, Du DW, Yu YJ, Mai BX. The accumulation of organic contaminants in hair with different biological characteristics. CHEMOSPHERE 2023; 312:137064. [PMID: 36334734 DOI: 10.1016/j.chemosphere.2022.137064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Human hair has increasingly been used as a noninvasive biomonitoring matrix for assessment of human exposure to various organic contaminants (OCs). However, the accumulation processes of OCs in hair remains unclear thus far, which raised concerns on the reliability of hair analysis results for OCs. Herein, Chinese population was selected as the study subject, the effects of changes in hair biological characteristics, including length and color, on the accumulation of OCs in hair was investigated. With the growing of hair shaft and the increased distance from the scalp, a significant increasing trend was found for levels of polychlorinated biphenyls (PCBs) and organophosphate flame retardants (PFRs) along the hair shafts (p < 0.05). Source identification using Chemical Mass Balance model indicated that PCBs in hair were mainly from exogenous sources (air and dust). The accumulation rates of PCB and PFR individuals in the hair shaft decreased with increasing of log Kow values. Additionally, the levels of OCs in hair decreased with the change in color from black to white, probably because of the loss of melanin in white hair. The ratios (R) of Cblack/Cwhite were significantly correlated with the log Kow values for individual chemicals (p < 0.05), implying that OCs with high log Kow values tend to accumulate more readily in black hair. The results of this study demonstrated the growth and change in colors of hair, as well as the physicochemical properties of chemicals, play vital roles in the accumulation of OCs in hair. The present study provides fundamental basis for the precise assessment of human exposure to OCs using hair as a biomonitoring matrix in future studies.
Collapse
Affiliation(s)
- Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China; School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang 550000, PR China.
| | - Shi-Mao Xiong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China; School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang 550000, PR China
| | - Feng-Shan Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China; State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Min Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Yan Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Bo Gao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Dong-Wei Du
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou 510640, PR China
| |
Collapse
|
25
|
Cai FS, Tang B, Zheng J, Yan X, Luo WK, He M, Luo XJ, Ren MZ, Yu YJ, Mai BX. Fetal exposure to organic contaminants revealed by infant hair: A preliminary study in south China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120536. [PMID: 36367513 DOI: 10.1016/j.envpol.2022.120536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Fetal exposure to multiple organic contaminants (OCs) is a public concern because of the adverse effects of OCs on early life development. Infant hair has the potential to be used as an alternative matrix to identify susceptible fetuses, owing to its reliability, sensitivity, and advantages associated with sampling, handling, and ethics. However, the applicability of infant hair for assessing in utero exposure to OCs is still limited. In this study, 57 infant hair samples were collected in Guangzhou, South China, to evaluate the levels and compositions of typical OCs in the fetus. Most of the target OCs were detected in infant hair, with medians of 144 μg/g, 17.7 μg/g, 192 ng/g, 46.9 ng/g, and 1.36 ng/g for phthalate esters (PAEs), alternative plasticizers (APs), organophosphorus flame retardants (OPFRs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (OCPs), respectively. Meanwhile, paired maternal hair (0-9 cm from the scalp) was collected to examine the associations between maternal and infant hair for individual compounds. Low-brominated PBDEs tended to deposit in infant hair, with median concentrations approximately two times higher than those in maternal samples. Levels of PBDEs and 4,4'-dichlorodiphenyldichloroethylene (p,p'-DDE) in paired maternal and infant hair showed strong positive correlations (p < 0.05), while most plasticizers (PAEs and APs) were poorly correlated between paired hair samples. Exposure sources were responsible for the variation in correlation between OC levels in the paired infant and maternal samples. Crude relationships between fetal exposure to OCs and birth size were examined using the Bayesian kernel machine regression (BKMR) model. BDE-28 was found to be adversely associated with the birth size. This study provides referential information for evaluating in utero exposure to OCs and their health risks based on infant hair.
Collapse
Affiliation(s)
- Feng-Shan Cai
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, PR China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, PR China; School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang, 550000, PR China.
| | - Xiao Yan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, PR China; School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang, 550000, PR China
| | - Wei-Keng Luo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, PR China
| | - Mian He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Ming-Zhong Ren
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, PR China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, PR China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| |
Collapse
|
26
|
Liu M, Li A, Meng L, Zhang G, Guan X, Zhu J, Li Y, Zhang Q, Jiang G. Exposure to Novel Brominated Flame Retardants and Organophosphate Esters and Associations with Thyroid Cancer Risk: A Case-Control Study in Eastern China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17825-17835. [PMID: 36468700 DOI: 10.1021/acs.est.2c04759] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Novel brominated flame retardant (NBFR) and organophosphate ester (OPE) exposure may engender adverse effects on human health. However, present epidemiological information regarding the effects of such exposure is limited and controversial. In this case-control study, 481 serum samples were collected from patients with thyroid cancer (n = 242) and healthy controls (n = 239) in Shandong Province, eastern China. The levels of NBFRs and OPEs, thyroid hormones, and serum lipid parameters were measured in all the participants. Pentabromotoluene, 2,3-dibromopropyl 2,4,6 tribromophenyl ether, decabromodiphenylethane (DBDPE), tris (2-chloroethyl) phosphate (TCEP), and triphenyl phosphate (TPP) were widely detected (detection frequency > 60%) in all the participants. A significantly high risk association was found between exposure of NBFRs and OPEs (namely 1,2,3,4,5-pentabromobenzene, DBDPE, tri-n-propyl phosphate, tri[(2R)-1-chloro-2-propyl] phosphate, tris (1,3-dichloro-2-propyl) phosphate, and tris (2-butoxyethyl) phosphate) and thyroid cancer in both males and females. In the females of the control group, TCEP levels exhibited a significantly positive association with thyroid-stimulating hormone and a negative association with triiodothyronine (T3), free triiodothyronine (FT3), and free thyroxine (FT4) levels. Weighted quantile sum regression evaluated the mixed effects of the compounds on thyroid hormones levels and thyroid cancer. As a result, TPP accounted for the majority of the T3, thyroxine, and FT3 amounts. Our results suggest that NBFR and OPE exposure contributes to alterations in thyroid function, thereby increasing thyroid cancer risk.
Collapse
Affiliation(s)
- Mei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - An Li
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Lingling Meng
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xiaoling Guan
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Jiang Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Zhejiang, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Zhejiang, Hangzhou 310000, China
| |
Collapse
|
27
|
Zhou Y, Li Z, Zhu Y, Chang Z, Hu Y, Tao L, Zheng T, Xiang M, Yu Y. Legacy and alternative flame retardants in indoor dust from e-waste industrial parks and adjacent residential houses in South China: Variations, sources, and health implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157307. [PMID: 35839871 DOI: 10.1016/j.scitotenv.2022.157307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Many studies have elucidated health concerns of informal e-waste recycling activities, yet few has evaluated the effectiveness of the regulations as well as the human exposure risks to adjacent residents. Herein, legacy polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCDs), and alternative organophosphate esters (OPEs) were investigated in indoor dust collected from three e-waste industrial parks and five adjacent villages located in south China. The levels and composition patterns varied significantly between workshop and home dust. BDE209 showed much higher (p < 0.01) concentrations in workshop dust versus home dust, while relatively comparable levels were found for OPEs and HBCDs. Principal component analysis revealed that OPEs and PBDEs were mainly related to home and workshop dust, respectively. Results strongly indicated that e-waste dismantling activities still contribute to a high burden of BDE209 to surrounding residents, whilst the sources of OPEs may also originated from household products, especially for TCEP. The estimated daily intakes (EDIs) via dust ingestion and dermal absorption for occupational worker and nearby toddlers were below available reference dose (RfD) values even at worst case scenario. This study highlights the significance of deca-BDEs rather than alternative OPEs in e-waste generated in China, which could provide scientific suggestions for policy formulation.
Collapse
Affiliation(s)
- Ying Zhou
- The Postgraduate Training Base of Jinzhou Medical University (South China Institute of Environmental Sciences, Ministry of Ecology and Environment), Guangzhou 510530, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Yu Zhu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Zhaofeng Chang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Yongxia Hu
- West Center, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Chongqing 400714, China
| | - Lin Tao
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Tong Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Yunjiang Yu
- The Postgraduate Training Base of Jinzhou Medical University (South China Institute of Environmental Sciences, Ministry of Ecology and Environment), Guangzhou 510530, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China.
| |
Collapse
|
28
|
Hoang AQ, Karyu R, Tue NM, Goto A, Tuyen LH, Matsukami H, Suzuki G, Takahashi S, Viet PH, Kunisue T. Comprehensive characterization of halogenated flame retardants and organophosphate esters in settled dust from informal e-waste and end-of-life vehicle processing sites in Vietnam: Occurrence, source estimation, and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119809. [PMID: 35931384 DOI: 10.1016/j.envpol.2022.119809] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Information about the co-occurrence of halogenated flame retardants (HFRs) and organophosphate esters (OPEs) in the environment of informal waste processing areas is still limited, especially in emerging and developing countries. In this study, OPEs and HFRs including polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), and chlorinated flame retardants (CFRs) were determined in settled dust from Vietnamese e-waste recycling (WR) and vehicle processing (VP) workshops. Pollutant concentrations decreased in the order: OPEs (median 1500; range 230-410,000 ng/g) ≈ PBDEs (1200; 58-250,000) > NBFRs (140; not detected - 250,000) > CFRs (13; 0.39-2200). HFR and OPE levels in the WR workshops for e-waste and obsolete plastic were significantly higher than in the VP workshops. Decabromodiphenyl ether and decabromodiphenyl ethane are major HFRs, accounting for 60 ± 26% and 25 ± 29% of total HFRs, respectively. Triphenyl phosphate, tris(2-chloroisopropyl) phosphate, and tris(1,3-dichloroisopropyl) phosphate dominated the OPE profiles, accounting for 30 ± 25%, 25 ± 16%, and 24 ± 18% of total OPEs, respectively. The OPE profiles differed between WR and VP dust samples, implying different usage patterns of these substances in polymer materials for electric/electronic appliance and automotive industries. Human health risk related to dust-bound HFRs and OPEs in the study areas was low.
Collapse
Affiliation(s)
- Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 11000, Viet Nam
| | - Ryogo Karyu
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan; Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Viet Nam
| | - Akitoshi Goto
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Le Huu Tuyen
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Viet Nam
| | - Hidenori Matsukami
- Material Cycles Division, National Institute for Environmental Studies, Tsukuba, 305- 8506, Japan
| | - Go Suzuki
- Material Cycles Division, National Institute for Environmental Studies, Tsukuba, 305- 8506, Japan
| | - Shin Takahashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Pham Hung Viet
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Viet Nam
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.
| |
Collapse
|
29
|
López M, Reche C, Pérez-Albaladejo E, Porte C, Balasch A, Monfort E, Eljarrat E, Viana M. E-waste dismantling as a source of personal exposure and environmental release of fine and ultrafine particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:154871. [PMID: 35364180 DOI: 10.1016/j.scitotenv.2022.154871] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/01/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Electronic waste (WEEE; from TV screens to electric toothbrushes) is one of the fastest growing waste streams in the world. Prior to recycling, e-waste components (metals, wood, glass, etc.) are processed by shredding, grinding and chainsaw cutting. These activities generate fine and ultrafine particle emissions, containing metals as well as organics (e.g., flame retardants), which have high potential for human health impacts as well as for environmental release. In this work, release of fine and ultrafine particles, and their exposure impacts, was assessed in an e-waste recycling facility under real-world operating conditions. Parameters monitored were black carbon, particle mass concentrations, ultrafine particles, and aerosol morphology and chemical composition. Potential health impacts were assessed in terms of cytotoxicity (cell viability) and oxidative stress (ROS) on <2 μm particles collected in liquid suspension. Environmental release of WEEE aerosols was evidenced by the higher particle concentrations monitored outside the facility when compared to the urban background (43 vs.11 μgPM2.5/m3, respectively, or 2.4 vs. 0.2 μgCa/m3). Inside the facility, concentrations were higher in the top than on the ground floor (PM2.5 = 147 vs. 78 μg/m3, N = 15.4 ∗ 104 vs. 8.7 ∗ 104/cm3, BC = 12.4 vs. 7.2 μg/m3). Ventilation was a key driver of human exposure, in combination with particle emissions. Key chemical tracers were Ca (from plastic fillers) and Fe (from wiring and other metal components). Y, Zr, Cd, Pb, P and Bi were markers of cathode TV recycling, and Li and Cr of grinding activities. While aerosols did not evidence cytotoxic effects, ROS generation was detected in 4 out of the 12 samples collected, associated to the ultrafine fraction. We conclude on the need for studies on aerosol emissions from WEEE facilities, especially in Europe, due to their demonstrable environmental and human health impacts and the rapidly growing generation of this type of waste.
Collapse
Affiliation(s)
- M López
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18, 08034 Barcelona, Spain; Barcelona University, Chemistry Faculty, C/ de Martí i Franquès, 1-11, 08028 Barcelona, Spain.
| | - C Reche
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18, 08034 Barcelona, Spain
| | - E Pérez-Albaladejo
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18, 08034 Barcelona, Spain
| | - C Porte
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18, 08034 Barcelona, Spain
| | - A Balasch
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18, 08034 Barcelona, Spain; Barcelona University, Chemistry Faculty, C/ de Martí i Franquès, 1-11, 08028 Barcelona, Spain
| | - E Monfort
- Institute of Ceramic Technology (ITC)-AICE - Universitat Jaume I, Campus Universitario Riu Sec, Av. Vicent Sos Baynat s/n, 12006 Castellón, Spain
| | - E Eljarrat
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18, 08034 Barcelona, Spain
| | - M Viana
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18, 08034 Barcelona, Spain
| |
Collapse
|
30
|
Lin S, Ali MU, Zheng C, Cai Z, Wong MH. Toxic chemicals from uncontrolled e-waste recycling: Exposure, body burden, health impact. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127792. [PMID: 34802823 DOI: 10.1016/j.jhazmat.2021.127792] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Uncontrolled electronic-waste (e-waste) recycling processes have induced serious environmental pollution and human health impacts. This paper reviewed studies on the wide range of toxic chemicals through the use of primitive recycling techniques, their transfer to various ecological compartments, and subsequent health impacts. Results indicated that local food items were heavily polluted by the pollutants emitted, notably heavy metals in vegetables, rice, fish and seafood, and persistent organic pollutants (POPs) in livestock. Dietary exposure is the most important exposure pathway. The associations between exposure to e-waste and high body burdens of these pollutants were evident. It seems apparent that toxic chemicals emitted from e-waste activities are causing a number of major illnesses related to cardiovascular, digestive and respiratory systems, according to the information provided by a local hospital (Taizhou, an e-waste recycling hot spot in China). More epidemiological data should be made available to the general public. It is envisaged that there are potential dangers of toxic chemicals passing on to the next generation via placental transfer and lactation. There is a need to monitor the development and health impacts of infants and children, born and brought up in the e-waste sites.
Collapse
Affiliation(s)
- Siyi Lin
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Muhammad Ubaid Ali
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chunmiao Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Ming Hung Wong
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China.
| |
Collapse
|
31
|
Critical review of analytical methods for the determination of flame retardants in human matrices. Anal Chim Acta 2022; 1193:338828. [PMID: 35058002 DOI: 10.1016/j.aca.2021.338828] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 11/21/2022]
Abstract
Human biomonitoring is a powerful approach in assessing exposure to environmental pollutants. Flame retardants (FRs) are of particular concern due to their wide distribution in the environment and adverse health effects. This article reviews studies published in 2009-2020 on the chemical analysis of FRs in a variety of human samples and discusses the characteristics of the analytical methods applied to different FR biomarkers of exposure, including polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), novel halogenated flame retardants (NHFRs), bromophenols, incl. tetrabromobisphenol A (TBBPA), and organophosphorous flame retardants (PFRs). Among the extraction techniques, liquid-liquid extraction (LLE) and solid phase extraction (SPE) were used most frequently due to the good efficiencies in the isolation of the majority of the FR biomarkers, but with challenges for highly lipophilic FRs. Gas chromatography-mass spectrometry (GC-MS) is mainly applied in the instrumental analysis of PBDEs and most NHFRs, with recent inclusions of GC-MS/MS and high resolution MS techniques. Liquid chromatography-MS/MS is mainly applied to HBCD, bromophenols, incl. TBBPA, and PFRs (including metabolites), however, GC-based analysis following derivatization has also been used for phenolic compounds and PFR metabolites. Developments are noticed towards more universal analytical methods, which enable widening method scopes in the human biomonitoring of FRs. Challenges exist with regard to sensitivity required for the low concentrations of FRs in the general population and limited sample material for some human matrices. A strong focus on quality assurance/quality control (QA/QC) measures is required in the analysis of FR biomarkers in human samples, related to their variety of physical-chemical properties, low levels in most human samples and the risk of contamination.
Collapse
|
32
|
Tang B, Chen SJ, Zheng J, Xiong SM, Yan X, Luo WK, Mai BX, Yu YJ. Changes in human hair levels of organic contaminants reflecting China's regulations on electronic waste recycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150411. [PMID: 34563899 DOI: 10.1016/j.scitotenv.2021.150411] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
To assess the impacts of regulations and laws enhancing the management of e-waste in China, hair samples of local residents and dismantling workers in a former e-waste area in 2016 and 2019, five and eight years after the implementation of legislation and regulations in this area since 2011, respectively. The temporal changes in levels of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organophosphorus flame retardants (OPFRs) in the hair samples were investigated. Besides, the levels of these organic contaminants in hair samples collected from the same area in 2009, 2011, and 2015 reported in previous studies were used as comparison. The highest median levels of Σ9PCBs (719 ng/g), Σ3Penta-BDEs (16.1 ng/g), and Σ3Octa-BDEs (8.46 ng/g) in hair were found in 2011, with a significant decrease trend was observed from 2011 to 2019 (p < 0.05). As for Deca-BDE, the levels reached the maximum in 2015 (133 ng/g), following by a significant decrease to 2016 (7.46 ng/g) and 2019 (2.61 ng/g) (p < 0.05). The median levels of Σ8OPFRs, also decreased significantly (p < 0.05) from 2015 (357 ng/g) to 2016 (264 ng/g) and 2019 (112 ng/g). Moreover, a significantly increasing trend was observed for the ratios of triphenyl phosphate (TPHP) and tris(2-chloropropyl) phosphate (TCIPP), two predominant OPFRs, to Deca-BDE from 2015 to 2019 (p < 0.01), suggesting a shift of "legacy" to "emerging" contaminants released from e-waste recycling in this area. The temporal changes in hair levels of typical organic contaminants in residents and dismantling workers indicated the effectiveness of the regulations on informal e-waste recycling activities and solid waste in China.
Collapse
Affiliation(s)
- Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - She-Jun Chen
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China; School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang 550000, PR China.
| | - Shi-Mao Xiong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China; School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang 550000, PR China
| | - Xiao Yan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Wei-Keng Luo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| |
Collapse
|
33
|
Zhu M, Yuan Y, Yin H, Guo Z, Wei X, Qi X, Liu H, Dang Z. Environmental contamination and human exposure of polychlorinated biphenyls (PCBs) in China: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150270. [PMID: 34536863 DOI: 10.1016/j.scitotenv.2021.150270] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Polychlorinated biphenyls (PCBs), together with 11 other organic compounds, were initially listed as persistent organic pollutants (POPs) by the Stockholm Convention because of their potential threat to ecosystems and humans. In China, many monitoring studies have been undertaken to reveal the level of PCBs in environment since 2005 due to the introduced stricter environmental regulations. However, there are still significant gaps in understanding the overall spatial and temporal distributions of PCBs in China. This review systematically discusses the occurrence and distribution of PCBs in environmental matrices, organisms, and humans in China. Results showed that PCB contamination in northern and southern China was not significantly different, but the PCB levels in East China were commonly higher than those in West China, which might have been due to the widespread consumption of PCBs and intensive human activities in East China. Serious PCB contamination was found in e-waste disassembling areas (e.g., Taizhou of Zhejiang Province and Qingyuan and Guiyu of Guangdong Province). Higher PCB concentrations were also chronicled in megalopolises and industrial clusters. The unintentionally produced PCBs (UP-PCBs) formed during industrial thermal processes may play an increasingly significant role in PCB pollution in China. Low PCB levels were recorded in rural and underdeveloped districts, particularly in remote and high-altitude localities such as the Tibetan Plateau and the South China Sea. However, these data are limited. Human exposure to PCBs is closely related to the characteristics of environmental pollution. This review also discusses existing issues and future research prospects on PCBs in China. For instance, the accumulation characteristics and migration regularities of PCBs in food webs should be further studied. More investigations should be undertaken to assess the quantitative relationship between external and internal exposure to PCBs. For example, bioaccessibility and bioavailability studies should be supplemented to evaluate human health risks more accurately.
Collapse
Affiliation(s)
- Minghan Zhu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Yibo Yuan
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Zhanyu Guo
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Xipeng Wei
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Xin Qi
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hang Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
34
|
Recycling Plastics from WEEE: A Review of the Environmental and Human Health Challenges Associated with Brominated Flame Retardants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020766. [PMID: 35055588 PMCID: PMC8775953 DOI: 10.3390/ijerph19020766] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 01/27/2023]
Abstract
Waste electrical and electronic equipment (WEEE) presents the dual characteristic of containing both hazardous substances and valuable recoverable materials. Mainly found in WEEE plastics, brominated flame retardants (BFRs) are a component of particular interest. Several actions have been taken worldwide to regulate their use and disposal, however, in countries where no regulation is in place, the recovery of highly valuable materials has promoted the development of informal treatment facilities, with serious consequences for the environment and the health of the workers and communities involved. Hence, in this review we examine a wide spectrum of aspects related to WEEE plastic management. A search of legislation and the literature was made to determine the current legal framework by region/country. Additionally, we focused on identifying the most relevant methods of existing industrial processes for determining BFRs and their challenges. BFR occurrence and substitution by novel BFRs (NBFRs) was reviewed. An emphasis was given to review the health and environmental impacts associated with BFR/NBFR presence in waste, consumer products, and WEEE recycling facilities. Knowledge and research gaps of this topic were highlighted. Finally, the discussion on current trends and proposals to attend to this relevant issue were outlined.
Collapse
|
35
|
Zhao C, Li JFT, Li XH, Dong MQ, Li YY, Qin ZF. Measurement of polychlorinated biphenyls with hand wipes and matched serum collected from Chinese E-waste dismantling workers: Exposure estimates and implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149444. [PMID: 34365263 DOI: 10.1016/j.scitotenv.2021.149444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
To date, dermal/hand-to-mouth exposure to chemicals in the e-waste recycling environment has not been sufficiently understood, and the importance of dermal absorption of chemicals in e-waste dismantling workers remains controversial. In this study, we utilized hand wipes and matched sera to characterize dermal/hand-to-mouth exposure to PCBs for e-waste dismantling workers, and potential effects on thyroid hormones were also assessed. PCB loadings in hand wipes varied from 0.829-265 ng wipe-1 (11.3-2850 ng m-2 wipe-1), with 37.2 ng wipe-1 (432 ng m-2 wipe-1) as the median value. Serum concentrations of PCBs ranged from 32.3-3410 ng g-1 lipid weight (lw) with 364 ng g-1 lw as the median value. Between wipes and sera, lower-chlorinated congeners (e.g. CB-28, -66, -74, -99,-105 and -118) showed significant associations (p < 0.01), but higher-chlorinated congeners (e.g. CB-138, -153, -156, -170, and -180) did not. These lower-chlorinated CBs were the major contributors to estimated dermal/hand-to-mouth average daily doses (ADDs) and the hazard index (HI). Correspondingly, their estimated contributions to serum levels by dermal absorption were also significant, with the contribution of CB-28 being as high as 21.4%. As a consequence, dermal absorption of some low-chlorinated congeners was a non-negligible route for e-waste dismantling workers. Although insignificant association was shown between serum PCBs and thyroid hormones, the potential health risk should be of concern due to the high levels of PCBs observed in workers' sera.
Collapse
Affiliation(s)
- Chen Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China; College of Earth Sciences, Guilin University of Technology, Guilin 541006, PR China
| | - Ji-Fang-Tong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Xing-Hong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, PR China.
| | - Meng-Qi Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, PR China
| |
Collapse
|
36
|
Han X, Chen H, Shen M, Deng M, Du B, Zeng L. Hair and nails as noninvasive bioindicators of human exposure to chlorinated paraffins: Contamination patterns and potential influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149257. [PMID: 34315053 DOI: 10.1016/j.scitotenv.2021.149257] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Most of the studies on short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) in human tissues have focused on human milk and blood. However, little is known about the occurrence of CPs in human hair and nails. In this study, SCCPs and MCCPs were analyzed in 62 pairs of human hair and nails from North China. Median concentrations (range) of SCCPs and MCCPs in human hair were 239 (19.2-877) and 325 (16.9-893) ng/g dw, respectively, all of which were significantly higher than 154 (57.7-355) and 233 (61.0-476) ng/g dw, respectively, in nail samples (p < 0.05). The homologue profiles of CPs in human hair were similar to those in nails, where SCCPs and MCCPs were dominated by C10Cl6-7 and C14Cl7-8, respectively. A significant positive relationship was observed between CP levels and age of people for hair, whereas negative linear correlations were observed for nails. The redundancy analysis indicated that age of people might be the main influencing factor on the accumulation of CPs in hair and nails. The present study performed comprehensive evaluation of CP exposure levels in human hair and nail and highlights the need for more data on relationship between internal and external exposure to CPs.
Collapse
Affiliation(s)
- Xu Han
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Hui Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Mingjie Shen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Man Deng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Bibai Du
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
37
|
Tang J, Lin M, Ma S, Yang Y, Li G, Yu Y, Fan R, An T. Identifying Dermal Uptake as a Significant Pathway for Human Exposure to Typical Semivolatile Organic Compounds in an E-Waste Dismantling Site: The Relationship of Contaminant Levels in Handwipes and Urine Metabolites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14026-14036. [PMID: 34596389 DOI: 10.1021/acs.est.1c02562] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dermal exposure to semivolatile organic compounds (SVOCs) has recently attracted widespread attention; understanding these exposures is particularly important for people whose skin is frequently exposed to different pollution surfaces. In this study, handwipes were collected from exposed occupational workers and local residents near a typical electronic waste (e-waste) dismantling area; urine samples were also sampled. The wipes were analyzed for three typical SVOCs: polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), and organophosphate flame retardants (OPFRs). The median levels of PAHs, OPFRs, and PBDEs in handwipes from e-waste dismantlers were 96.0, 183, and 238 ng, respectively. The analytes were higher in the handwipes collected from workers than those from residents, indicating that they were subjected to greater dermal exposure during primitive e-waste dismantling activities. Among the three SVOCs, the strongest correlation was found between triphenyl phosphate (TPhP) in handwipes and diphenyl phosphate (DPhP) in paired urine; the next strongest correlations were between PAHs and PBDEs and their corresponding urinary metabolites. The results showed that TPhP contributed the highest exposure to e-waste dismantlers via dermal exposure. Our research highlights the importance of dermal exposure to TPhP, which should be considered in future exposure risk assessments.
Collapse
Affiliation(s)
- Jian Tang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Meiqing Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Synergy Innovation Institute of GDUT, Shantou 515041, P. R. China
| | - Yan Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Synergy Innovation Institute of GDUT, Shantou 515041, P. R. China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Ruifang Fan
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, P. R. China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
38
|
Martinez G, Niu J, Takser L, Bellenger JP, Zhu J. A review on the analytical procedures of halogenated flame retardants by gas chromatography coupled with single quadrupole mass spectrometry and their levels in human samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117476. [PMID: 34082369 PMCID: PMC8355089 DOI: 10.1016/j.envpol.2021.117476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Halogenated flame retardants (HFRs) market is continuously evolving and have moved from the extensive use of polybrominated diphenyl ether (PBDE) to more recent introduced mixtures such as Firemaster 550, Firemaster 680, DP-25, DP-35, and DP-515. These substitutes are mainly composed of non-PBDEs HFRs such as 2-ethyl-hexyl tetrabromobenzoate (TBB), bis(2-ethylhexyl) tetrabromophthalate (TBPH), 1,2-bis-(2,4,6-tribromophenoxy) ethane (BTBPE) and decabromodiphenyl ethane (DBDPE). Other HFRs commonly being monitored include Dechlorane Plus (DP), Dechlorane 602 (Dec602), Dechlorane 603 (Dec603), Dechlorane 604 (Dec604), 5,6-dibromo-1,10, 11, 12,13,13-hexachloro- 11-tricyclo[8.2.1.02,9]tridecane (HCDBCO) and 4,5,6,7-tetrabromo-1,1,3-trimethyl-3-(2,3,4,5-tetrabromophenyl)-2,3-dihydro-1H-indene (OBTMPI). This review aims at highlighting the advances in the past decade (2010-2020) on both the analytical procedures of HFRs in human bio-specimens using gas chromatography coupled with single quadrupole mass spectrometry and synthesizing the information on the levels of these HFRs in human samples. Human specimen included in this review are blood, milk, stool/meconium, hair and nail. The review summarizes the analytical methods, including extraction and clean-up techniques, used for measuring HFRs in biological samples, which are largely adopted from those for analysing PBDEs. In addition, new challenges in the analysis to include both PBDEs and a wide range of other HFRs are also discussed in this review. Review of the levels of HFRs in human samples shows that PBDEs are still the most predominant HFRs in many cases, followed by DP. However, emerging HFRs are also being detected in human despite of the fact that both their detection frequencies and levels are lower than PBDEs and DP. It is clearly demonstrated in this review that people working in the industry or living close to the industrial areas have higher HFR levels in their bodies.
Collapse
Affiliation(s)
- Guillaume Martinez
- Département de Chimie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jianjun Niu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Larissa Takser
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-Phillipe Bellenger
- Département de Chimie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jiping Zhu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
39
|
Ma S, Zeng Z, Lin M, Tang J, Yang Y, Yu Y, Li G, An T. PAHs and their hydroxylated metabolites in the human fingernails from e-waste dismantlers: Implications for human non-invasive biomonitoring and exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117059. [PMID: 33845288 DOI: 10.1016/j.envpol.2021.117059] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Non-invasive human biomonitoring methods using hair and fingernails as matrices are widely used to assess the exposure of organic contaminants. In this work, a total of 72 human fingernails were collected from workers and near-by residents from a typical electronic waste (e-waste) dismantling site, and were analyzed for human exposure to polycyclic aromatic hydrocarbons (PAHs) and their mono-hydroxyl metabolites (OH-PAHs). The concentrations of PAHs and OH-PAHs were obtained as 7.97-551 and 39.5-3280 ng/g for e-waste workers (EW workers), 7.05-431 and 27.3-3320 ng/g for non-EW workers, 7.93-289 and 124-779 ng/g for adult residents, and 8.88-1280 and 181-293 ng/g for child residents, respectively. The composition profiles of PAHs in the human fingernails of the four groups were similar, with isomers of Phe, Pyr and Fluo being the predominated congeners, while 2-OH-Nap accounted for more than 70% of the total OH-PAHs. These contaminants were found most in the fingernails of EW workers, followed by non-EW workers, adult residents, and child residents, indicating e-waste dismantling activities are the major sources of PAH exposure. However, significantly higher levels of PAHs with 4-6 rings were observed only in workers as opposed to the residents, and a significant correlation between 3-OH-Flu (p < 0.05) and 2-OH-Phe (p < 0.01) in the fingernails and urine was observed, but no significant correlation was found between the concentration of OH-PAHs in matched hair and fingernail samples. In addition, the levels of PAHs in fingernails increased with the age of EW workers. This is the first study to explore the accumulation and distribution of PAHs and OH-PAHs in human fingernails, which would provide valuable insight into non-invasive biomonitoring and health risk assessment of PAHs.
Collapse
Affiliation(s)
- Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515041, PR China
| | - Zihuan Zeng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Meiqing Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jian Tang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yan Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515041, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
40
|
Li X, Yu Y, Zheng N, Wang S, Sun S, An Q, Li P, Li Y, Hou S, Song X. Exposure of street sweepers to cadmium, lead, and arsenic in dust based on variable exposure duration in zinc smelting district, Northeast China. CHEMOSPHERE 2021; 272:129850. [PMID: 33592512 DOI: 10.1016/j.chemosphere.2021.129850] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/07/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
Street dust is an important contributor to heavy metal exposure in street sweepers. In this work, the levels of cadmium (Cd), lead (Pb), and arsenic (As) in street dust were evaluated, and the corresponding health implications for street sweepers in the smelting district of Huludao city northeast China were assessed. The contributions of dietary sources and dust to total metal exposure in street sweepers were compared. Because street sweepers are exposed to street dust both during work and nonwork hours, the health risks faced by street sweepers are uncertain. Therefore, variable exposure duration was considered using a deterministic model. A probabilistic risk assessment model was developed to explore the health effects of street dust on street sweepers via Monte Carlo simulation. The various exposure parameters that affect risk were analyzed using sensitivity analysis. The average Cd, Pb, and As levels in the hair of street sweepers were 2.04, 20.12, and 0.52 mg·kg-1, respectively. These values were higher than those for residents (i.e., not street sweepers) of Huludao. Strong correlations were found between the logarithms (base 10) of the Cd, Pb, and As contents in dust and hair (rCd = 0.581, p < 0.01; rPb = 0.428, p < 0.01; rAs = 0.378, p < 0.01; n = 62). Based on analysis using deterministic models, the maximum exposures to Cd and Pb via dust through the alimentary canal were nearly three and six times higher than the dietary exposures, respectively. Sensitivity analysis indicated that exposure duration is an important parameter.
Collapse
Affiliation(s)
- Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Yan Yu
- Department of Dermatology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China; Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China.
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Pengyang Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Yunyang Li
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Shengnan Hou
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Xue Song
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| |
Collapse
|
41
|
Chen X, Zhao X, Shi Z. Organophosphorus flame retardants in breast milk from Beijing, China: Occurrence, nursing infant's exposure and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145404. [PMID: 33548720 DOI: 10.1016/j.scitotenv.2021.145404] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/01/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Organophosphorus flame retardants (OPFRs) are widely used chemicals, whereas data on OPFRs in human being is limited. In this study, thirteen OPFRs were measured in 105 breast milk samples collected from Beijing mothers in 2018. The ∑13OPFRs ranged from <LOD to 106 ng mL-1 (<LOD-6700 ng g-1 lipid weight (lw)), with a median value 10.6 ng mL-1 (157 ng g-1 lw). The most abundant compound was tris(2-ethylhexyl) phosphate (TEHP), followed by triphenyl phosphate (TPhP) and 2-ethylhexyl diphenyl phosphate (EHDPP). The detecting frequencies and contamination levels of OPFRs in our study were higher than those reported in other studies, which indicated that China is one of the most affected regions by OPFRs. In addition, OPFR levels in our study were found to be higher than levels of brominated flame retardants (BFRs) in human milk from China. Based on regression analyses, mothers' personal characters, including age, pregnancy, residing/working location, and educational level were found to be impact factors of some OPFRs in breast milk. Estimated daily intakes (EDI) of the OPFRs for nursing infants via human milk ingest were calculated, and the mean EDIs of the 13 OPFRs ranged from 2.62 to 1640 ng kg-1 bw d-1. Since the mean and max EDIs of most OPFRs were lower than corresponding reference doses (RfDs), the daily OPFR intake for most nursing infants would not cause significant health concerns. However, the max EDIs of two OPFRs, TPhP and EHDPP, with values of 1.09 × 104 and 2190 ng kg-1 bw d-1, respectively, were higher than their corresponding RfDs. To our knowledge, this is the first report on the occurrence of OPFRs in human milk from China.
Collapse
Affiliation(s)
- Xuelei Chen
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xuezhen Zhao
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
42
|
Anh HQ, Watanabe I, Minh TB, Takahashi S. Unintentionally produced polychlorinated biphenyls in pigments: An updated review on their formation, emission sources, contamination status, and toxic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142504. [PMID: 33035974 DOI: 10.1016/j.scitotenv.2020.142504] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/31/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The formation, emission, environmental occurrence, and potential adverse effects of unintentionally produced polychlorinated biphenyls (PCBs) in pigments are reviewed, providing a comprehensive and up-to-date picture on these pollutants. PCBs are typically formed during manufacturing of organic pigments that involve chlorinated intermediates and reaction solvents, rather than those of inorganic pigments. Concentrations and profiles of PCBs vary greatly among pigment types and producers, with total PCB levels ranging from lower than detection limits to several hundred ppm; major components can be low-chlorinated (e.g., CB-11) or high-chlorinated congeners (e.g., CB-209). Pigment-derived PCBs can be released into the environment through different steps including pigment production, application, and disposal. They can contaminate atmospheric, terrestrial, and aquatic ecosystems, and then affect organisms living there. This situation garners scientific and public attention to nonlegacy emissions of PCBs and suggests the need for appropriate monitoring, management, and abatement strategies regarding these pollutants.
Collapse
Affiliation(s)
- Hoang Quoc Anh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 100000, Viet Nam.
| | - Isao Watanabe
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Tu Binh Minh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 100000, Viet Nam
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan.
| |
Collapse
|
43
|
Yao B, Luo Z, Zhi D, Hou D, Luo L, Du S, Zhou Y. Current progress in degradation and removal methods of polybrominated diphenyl ethers from water and soil: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123674. [PMID: 33264876 DOI: 10.1016/j.jhazmat.2020.123674] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 06/12/2023]
Abstract
The widespread of polybrominated diphenyl ethers (PBDEs) in the environment has caused rising concerns, and it is an urgent endeavor to find a proper way for PBDEs remediation. Various techniques such as adsorption, hydrothermal and thermal treatment, photolysis, photocatalytic degradation, reductive debromination, advanced oxidation processes (AOPs) and biological degradation have been developed for PBDEs decontamination. A comprehensive review of different PBDEs remediation techniques is urgently needed. This work focused on the environmental source and occurrence of PBDEs, their removal and degradation methods from water and soil, and prospects for PBDEs remediation techniques. According to the up-to-date literature obtained from Web of Science, it could be concluded that (i) photocatalysis and photocatalytic degradation is the most widely reported method for PBDEs remediation, (ii) BDE-47 and BDE-209 are the most investigated PBDE congeners, (iii) considering the recalcitrance nature of PBDEs and more toxic intermediates could be generated because of incomplete degradation, the combination of different techniques is the most potential solution for PBDEs removal, (iv) further researches about the development of novel and effective PBDEs remediation techniques are still needed. This review provides the latest knowledge on PBDEs remediation techniques, as well as future research needs according to the up-to-date literature.
Collapse
Affiliation(s)
- Bin Yao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Zirui Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Dan Zhi
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Dongmei Hou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Shizhi Du
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
44
|
Tang B, Xiong SM, Zheng J, Wang MH, Cai FS, Luo WK, Xu RF, Yu YJ. Analysis of polybrominated diphenyl ethers, hexabromocyclododecanes, and legacy and emerging phosphorus flame retardants in human hair. CHEMOSPHERE 2021; 262:127807. [PMID: 32763577 DOI: 10.1016/j.chemosphere.2020.127807] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Human hair has been identified as a non-invasive alternative matrix for assessing the human exposure to specific organic contaminants. In the present study, a solvent-saving analytical method for the simultaneous determination of 8 polybrominated diphenyl ethers (PBDEs), 3 hexabromocyclododecanes (HBCDDs), 12 phosphorus flame retardants (PFRs), and 4 emerging PFRs (ePFRs) has been developed and validated for the first time. Hair sample preparation protocols include precleaning with Milli-Q water, digestion with HNO3/H2O2 (1:1, v/v), liquid-liquid extraction with hexane:dichloromethane (4:1, v/v), and fractionation and cleanup on a Florisil cartridge. The method was validated by using two levels of spiked hair samples of 3 replicates for each spiking group. Limits of quantification (LOQs) were 0.12-22.4 ng/g for all analytes, average values of accuracies were ranging between 88 and 115%, 82-117%, 81-128%, and 81-95% for PBDEs, HBCDDs, PFRs, and ePFRs, respectively; and precision was also acceptable (RSD < 20%) for all analytes. Eventually, this method was applied to measure the levels of the targeted analytes in hair samples of e-waste dismantling workers (n = 14) from Qingyuan, South China. Median values ranged between 3.00 and 18.1 ng/g for PBDEs, 0.84-4.04 ng/g for HBCDDs, 2.13-131 ng/g PFRs, and 1.49-29.4 ng/g for ePFRs, respectively. PFRs/ePFRs constitute the major compounds in human hair samples, implying the wide use of PFRs/ePFRs as replacements of PBDEs and HBCDDs, as well the potential high human exposure risks of PFRs/ePFRs. Overall, this work will allow to a comprehensive assessment of human exposure to multiple groups of FRs using hair as a non-invasive bioindicator.
Collapse
Affiliation(s)
- Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China
| | - Shi-Mao Xiong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China; School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang, 550000, PR China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China; School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang, 550000, PR China.
| | - Mei-Huan Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China
| | - Feng-Shan Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China
| | - Wei-Keng Luo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China
| | - Rong-Fa Xu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
| |
Collapse
|
45
|
Ma Y, Stubbings WA, Cline-Cole R, Harrad S. Human exposure to halogenated and organophosphate flame retardants through informal e-waste handling activities - A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115727. [PMID: 33010546 DOI: 10.1016/j.envpol.2020.115727] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Informal electrical and electronic waste (e-waste) handling activities constitute a potentially important source of halogenated (HFRs) and organophosphate flame retardants (OPFRs) to the environment and humans. In this review, two electronic databases (ScienceDirect and Web of Science Core Collection) were searched for papers that addressed this topic. A total of 82 relevant studies (including 72 studies selected from the two databases and 10 studies located from the references of the first 72 selected studies) were identified that reported on human external and internal exposure to HFRs and OPFRs arising as a result of informal e-waste handling activities. Compared to the general population, higher levels of external exposure (i.e., inhalation, ingestion, and dermal absorption) and internal exposure (i.e., blood serum, hair, breast milk, urine, and other human matrices) to HFRs and OPFRs were identified for e-waste recyclers and residents inhabiting e-waste dismantling and recycling zones, especially for younger adults and children. Food intake and dust ingestion were the dominant exposure pathways for the majority of brominated flame retardants (BFRs) and dechlorane plus (DP); while inhalation was identified as the most significant pathway of human exposure to OPFRs in informal e-waste sites. The majority of research to date has focused on China and thus future studies should be conducted in other regions such as Africa and South Asia. Other suggested foci of future research are: examination of exposure via dermal contact with e-waste, dietary exposure of local populations to OPFRs, confirmation of the existence of and cause(s) of the higher body burdens of females compared with males amongst populations impacted by informal e-waste handling, and characterisation of exposure of such populations to chlorinated paraffins.
Collapse
Affiliation(s)
- Yulong Ma
- School of Geography, Earth and Environmental Sciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - William A Stubbings
- School of Geography, Earth and Environmental Sciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Reginald Cline-Cole
- Centre of West African Studies, Department of African Studies & Anthropology, School of History and Cultures, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Stuart Harrad
- School of Geography, Earth and Environmental Sciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
46
|
Hou M, Shi Y, Na G, Cai Y. A review of organophosphate esters in indoor dust, air, hand wipes and silicone wristbands: Implications for human exposure. ENVIRONMENT INTERNATIONAL 2021; 146:106261. [PMID: 33395927 DOI: 10.1016/j.envint.2020.106261] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 05/14/2023]
Abstract
The ubiquity of organophosphate esters (OPEs) in various environmental matrices inevitably pose human exposure risks. Numerous studies have investigated human exposure pathways to OPEs, including air inhalation, dust ingestion, dermal contact, and dietary and drinking water intake, and have indicated that indoor dust and indoor air routes are frequently the two main human exposure pathways. This article reviews the literature on OPE contamination in indoor air and dust from various microenvironments and on OPE particle size distributions and bioavailability in dust conducted over the past 10 years. Ways in which sampling strategies are related to the uncertainty of exposure assessment results and comparability among different studies in terms of sampling tools, sampling sites, and sample types are addressed. Also, the associations of OPEs in indoor dust/air with human biological samples were summarized. Studies on two emerging matrices, hand wipes and silicone wristbands, are demonstrated to be more comprehensive and accurate in reflecting personal human exposure to OPEs in microenvironments and are summarized. Given the direct application of some diester OPEs (di-OPEs) in numerous products, research on their existence in indoor dust and food and on their effects on human urine are also discussed. Finally, related research trends and avenues for future research are prospected.
Collapse
Affiliation(s)
- Minmin Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100083, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100083, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guangshui Na
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100083, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Peng FJ, Hardy EM, Béranger R, Mezzache S, Bourokba N, Bastien P, Li J, Zaros C, Chevrier C, Palazzi P, Soeur J, Appenzeller BMR. Human exposure to PCBs, PBDEs and bisphenols revealed by hair analysis: A comparison between two adult female populations in China and France. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115425. [PMID: 32882460 DOI: 10.1016/j.envpol.2020.115425] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/22/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Humans are exposed to various anthropogenic chemicals in daily life, including endocrine-disrupting chemicals (EDCs). However, there are limited data on chronic, low-level exposure to such contaminants among the general population. Here hair analysis was used to investigate the occurrence of four polychlorinated biphenyls (PCBs), seven polybrominated diphenyl ethers (PBDEs) and two bisphenols (BPs) in 204 Chinese women living in the urban areas of Baoding and Dalian and 311 pregnant French women. All the PCBs and PBDEs tested here were more frequently detected in the hair samples of the French women than in those of the Chinese women. In both cohorts, PCB 180 and BDE 47 were the dominant PCB and PBDE congener, respectively. PCB 180 was found in 82% of the French women and 44% of the Chinese women, while the corresponding values of BDE 47 were 54% and 11%, respectively. A discriminant analysis further demonstrated the difference in PCBs and PBDEs exposure profile between the two cohorts. These results demonstrate that hair analysis is sufficiently sensitive to detect exposure to these pollutants and highlight differences in exposure between populations even at environmental levels. Although BPA and BPS were found in 100% of the hair samples in both cohorts, the French women had significantly higher levels of BPA and BPS than the Chinese women. The median concentrations of BPA were one order of magnitude higher than BPS in both the Chinese (34.9 versus 2.84 pg/mg) and the French women (118 versus 8.01 pg/mg) respectively. Our results suggest that both French and Chinese populations were extensively exposed to BPA and BPS.
Collapse
Affiliation(s)
- Feng-Jiao Peng
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445, Strassen, Luxembourg.
| | - Emilie M Hardy
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445, Strassen, Luxembourg
| | - Rémi Béranger
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Sakina Mezzache
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller BP22, 93601, Aulnay-sous-Bois, France
| | - Nasrine Bourokba
- L'Oréal Research and Innovation, Biopolis Drive, Synapse, 138623, Singapore
| | - Philippe Bastien
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller BP22, 93601, Aulnay-sous-Bois, France
| | - Jing Li
- L'Oréal Research and Innovation, No. 550 JinYu Rd., Pudong New Area, China
| | - Cécile Zaros
- INSERM, Joint Unit INED-INSERM-EFS, Aubervilliers, France
| | - Cécile Chevrier
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Paul Palazzi
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445, Strassen, Luxembourg
| | - Jeremie Soeur
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller BP22, 93601, Aulnay-sous-Bois, France
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445, Strassen, Luxembourg
| |
Collapse
|
48
|
Wang G, Liu Y, Jiang N, Liu Y, Zhao X, Tao W, Lou Y, Li N, Wang H. Field study on bioaccumulation and translocation of polybrominated diphenyl ethers in the sediment-plant system of a national nature reserve, North China. CHEMOSPHERE 2020; 261:127740. [PMID: 32731024 DOI: 10.1016/j.chemosphere.2020.127740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are the ubiquitous contaminants in the coastal wetlands, with high persistence and toxicity. Environmental behaviors of PBDEs in sediment-plant system is a hot research area, where much uncertainties still occurred in field environment. In this study, the sediments and Suaeda heteroptera were synchronously collected to investigate the bioaccumulation and translocation of PBDEs in Liaohe coastal wetland. Mean concentrations of PBDEs in sediments, roots, stems and leaves were 8.37, 6.64, 2.42 and 1.40 ng/g d.w., respectively. Tissue-specific accumulation of PBDEs were detected in Suaeda heteroptera, with predominant accumulation in roots. Congener patterns of PBDEs were similar between sediments and roots, demonstrating root uptake as the key pathway of PBDE bioaccumulation. The proportions of lower brominated congeners increased from roots to leaves, implying the congener-specific translocation. Meanwhile, the lower brominated congeners exhibited higher sediment-tissue bioaccumulation (AFs) and translocation factors (TFs) compared to higher brominated congeners in Suaeda heteroptera, further verifying their preferential translocation. AFs and TFs of PBDEs were both not correlated with their log Kow, which was inconsistent with those of laboratory studies, reflecting the complicated behaviors of PBDEs in field environment. This is the first comprehensive report on bioaccumulation and translocation of PBDEs within Suaeda heteroptera in Liaohe coastal wetland.
Collapse
Affiliation(s)
- Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China; Environmental Information Institute, Dalian Maritime University, Dalian, 116026, China.
| | - Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China; Environmental Information Institute, Dalian Maritime University, Dalian, 116026, China
| | - Na Jiang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yuxin Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xinda Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Wei Tao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yadi Lou
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Na Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Haixia Wang
- Navigation College, Dalian Maritime University, Dalian, 116026, China
| |
Collapse
|
49
|
Cai K, Song Q, Yuan W, Ruan J, Duan H, Li Y, Li J. Human exposure to PBDEs in e-waste areas: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115634. [PMID: 33254638 DOI: 10.1016/j.envpol.2020.115634] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 06/12/2023]
Abstract
Polybrominated biphenyl ethers (PBDEs) are commonly added to electronic products for flame-retardation effects, and are attracting more and more attentions due to their potential toxicity, durability and bioaccumulation. This study conducts a sysmtematic review to understand the human exposure to PBDEs from e-waste recycling, especially exploring the exposure pathways and human burden of PBDEs as well as investigating the temporal trend of PBDEs exposure worldwide. The results show that the particular foods (contaminated fish, poultry, meat and breast milk) ingestion, indoor dust ingestion and indoor air inhalation may be key factors leading to human health risks of PBDEs exposure in e-waste recycling regions. Residents and some vulnerable groups (occupational workers and children) in e-waste recycling areas may face higher exposure levels and health risks. PBDE exposure is closely related to exposure level, exposure duration, e-waste recycling methods, and dietary customs. High levels of PBDEs are found in human tissues (breast milk, hair, blood (serum), placenta and other tissues) in e-waste areas, at far higher levels than in other areas. Existing data indicate that PBDE exposure levels do not present any apparent downward trend, and will possibly cause serious human diseases. More epidemiological studies are still needed to provide a solid basis for health risk assessment.
Collapse
Affiliation(s)
- Kaihan Cai
- Macau Environmental Research Institute, Macau University of Science and Technology, Macau, 999078, China; Macau Institute of Systems Engineering, Macau University of Science and Technology, Macau, 999078, China
| | - Qingbin Song
- Macau Environmental Research Institute, Macau University of Science and Technology, Macau, 999078, China.
| | - Wenyi Yuan
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Jujun Ruan
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Huabo Duan
- College of Civil Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ying Li
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Jinhui Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
50
|
Huang K, Liang J, Wang J, Ouyang Y, Wang R, Tang T, Luo Y, Tao X, Yin H, Dang Z, Lu G. Effect of nitrate on the phototreatment of Triton X-100 simulated washing waste containing 4,4'-dibromodiphenyl ether: Kinetics, products and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139247. [PMID: 32438183 DOI: 10.1016/j.scitotenv.2020.139247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/12/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to investigate the effects of nitrate on the ultraviolet (UV) treatment of simulated washing wastes containing Trion X-100 (TX-100) surfactant and 4,4'-dibromodiphenyl ether (BDE-15) pollutant. The presence of nitrate accelerated the photodegradation of BDE-15 and TX-100, because they reacted with reactive oxygen species (ROS) produced from conversion between nitrate and nitrite. Due to nitrite having a stronger radical quenching property than nitrate, nitrite hindered TX-100 decay while the photodegradation rate of BDE-15 was similar to that in the presence of nitrate. This indicated that nitrate/nitrite affected BDE-15 photodegradation by photosensitization and TX-100 loss by ROS attack. An increased TX-100 concentration increased the loss of total inorganic nitrogen possibly owing to an increase in organic nitrogen formation through TX-100 nitration reactions. At pH < 7 HOONO rapidly isomerized to NO3-, and at pH = 7-9 it homolyzed to ONOO-, which increased OH production to decay the BDE-15 and TX-100 and also increased NO2- formation. BDE-15 mainly underwent debromination, and some rearrangement, ring formation, nitration and hydroxylation products were detected, indicating that the produced OH and NO2 attacked the BDE-15 and products. Furthermore, broken-chain, carboxylation, hydroxylation and nitro products were detected by Liquid chromatography high resolution mass spectrometry (LC-HRMS). Escherichia coli was used to assess the toxicity of washing waste containing nitrate: the presence of nitrate will increase the wastes' toxicity during UV treatment. Therefore, the presence of nitrate is deleterious to the UV treatment of washing wastes, and it is important to remove nitrates and nitrites from washing waste before UV irradiation.
Collapse
Affiliation(s)
- Kaibo Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jiahao Liang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jin Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuanxi Ouyang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Rui Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ting Tang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yusen Luo
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xueqin Tao
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|