1
|
Zhang Y, Wang Y, Chen Z, Hu C, Qu J. Recovering nutrients and unblocking the cake layer of an electrochemical anaerobic membrane bioreactor. Nat Commun 2024; 15:9111. [PMID: 39438474 PMCID: PMC11496669 DOI: 10.1038/s41467-024-53341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
The sustainable development strategy shifts water treatment from pollution removal to resource recovery. Here, an electrochemical resource-recovery anaerobic membrane bioreactor (eRAnMBR) that employed a magnesium plate and conductive membrane as dual anodes is presented and shows excellent performance in carbon, nitrogen, and phosphorus recovery, as well as 95% membrane anti-fouling. The Mg2+ released alters the physicochemical properties of sludge, unblocking the cake layer, and recovers ammonium and phosphate, yielding 60.64% purity and 0.08 g d-1 struvite deposited onto cathode to be separated from sludge. The enhanced direct interspecies electron transfer, along with hydrogen evolution and alkalinity increase due to the electrochemical reactions, significantly increase methane yield and purity (93.97%) of the eRAnMBR. This increased internal energy can cover the additional electricity and electrode consumption. This integrated eRAnMBR reactor boasts the benefits of short process, low maintenance, and low carbon footprint, introducing a concept for the next generation of wastewater treatment.
Collapse
Affiliation(s)
- Yuhan Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yongbin Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Zhibin Chen
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
2
|
Chen M, Wang P, Yan J, Qiu S, Zhang H, Xie H, Ma J. Enhanced Antifouling Capability of In Situ-Grown Hydrophilic-Hydrophobic Nanodomains on Membrane Surface in the Ultralow Pressurized Ultrafiltration Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16204-16214. [PMID: 39190017 DOI: 10.1021/acs.est.4c04850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Although hydrophilic modification of the membrane surface is widely adopted, polymeric membranes still suffer from irreversible fouling caused by hydrophilic components in surface water. Here, an ultrathin hydrogel layer (40 nm) with hydrophilic-hydrophobic textures was in situ grown onto the polysulfone ultrafiltration membrane surface using an organic-radical-initiated interfacial polymerization technique. The interfacial polymerization of hydrophilic and hydrophobic monomers ensured the molecular-scale distribution of hydrophilic and hydrophobic nanodomains on the membrane surface. These nanodomains, with their molecular lengths, facilitated dynamic repulsion interactions between the uniformly textured surface and foulant components with different degrees of hydrophilicity. Chemical force characterization confirmed that the adhesion force between the hydrophilic-hydrophobic textured membrane surface and foulants (dodecane, bovine serum albumin, and humic acid) was greatly reduced. Dynamic filtration experiments showed that a hydrophilic-hydrophobic textured membrane always possessed the largest water flux and the best antifouling performance. Furthermore, the foulant coverage ratio on the membrane surface was first evaluated by measuring changes in surface streaming potentials, which demonstrated a 69% reduction in the amount of foulant adhering to the hydrophilic-hydrophobic textured membrane surface. Therefore, the construction of hydrophilic-hydrophobic nanodomains on the membrane surface provides a promising strategy for alleviating membrane fouling caused by both hydrophobic and hydrophilic components during ultralow pressurized ultrafiltration processes.
Collapse
Affiliation(s)
- Mansheng Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Panpan Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- Chongqing Research Institute of HIT, Chongqing 401151, China
| | - Jiaying Yan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shiyi Qiu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Zhang
- The State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150080, China
| | - Hui Xie
- The State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150080, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
3
|
Lu Q, Wang Z, Zhang S, Wang J, Mao X, Xie L, Liu Q, Zeng H. Molecular interaction mechanism for humic acids fouling resistance on charged, zwitterion-like and zwitterionic surfaces. J Colloid Interface Sci 2024; 666:393-402. [PMID: 38603881 DOI: 10.1016/j.jcis.2024.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Humic acids (HA) are ubiquitous in surface waters, leading to significant fouling challenges. While zwitterion-like and zwitterionic surfaces have emerged as promising candidates for antifouling, a quantitative understanding of molecular interaction mechanism, particularly at the nanoscale, still remains elusive. In this work, the intermolecular forces between HA and charged, zwitterion-like or zwitterionic monolayers in aqueous environments were quantified using atomic force microscope. Compared to cationic MTAC ([2-(methacryloyloxy)ethyl]trimethylammonium chloride), which exhibited an adhesion energy of ∼1.342 mJ/m2 with HA due to the synergistic effect of electrostatic attraction and possible cation-π interaction, anionic SPMA (3-sulfopropyl methacrylate) showed a weaker adhesion energy (∼0.258 mJ/m2) attributed to the electrostatic repulsion. Zwitterion-like MTAC/SPMA mixture, driven by electrostatic attraction between opposite charges, formed a hydration layer that prevented the interaction with HA, thereby considerably reducing adhesion energy to ∼0.123 mJ/m2. In contrast, zwitterionic MPC (2-methacryloyloxyethyl phosphorylcholine) and DMAPS ([2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide) displayed ultralow adhesion energy (0.06-0.07 mJ/m2) with HA, arising from their strong dipole moments which could induce a tight hydration layer that effectively inhibited HA fouling. The pH-mediated electrostatic interaction resulted in the increased adhesion energy for MTAC but decreased adhesion energy for SPMA with elevated pH, while the adhesion energy for zwitterion-like and zwitterionic surfaces was independent of environmental pH. Density functional theory (DFT) simulation confirmed the strong binding capability of MPC and DMAPS with water molecules (∼-12 kcal mol-1). This work provides valuable insights into the molecular interaction mechanisms underlying humic-substance-fouling resistance of charged, zwitterion-like and zwitterionic materials at the nanoscale, shedding light on developing more effective strategy for HA antifouling in water treatment.
Collapse
Affiliation(s)
- Qiuyi Lu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Zhoujie Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China
| | - Shishuang Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China
| | - Jingyi Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xiaohui Mao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Lei Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China.
| | - Qi Liu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
4
|
Miao R, Ran H, Yang Y, Li Y, Ma Z, Lv Y, Meng X, He M, Wang L. In situ acid production by organic matter induced with trace homogeneous Fenton reagent for membrane fouling control. WATER RESEARCH 2024; 258:121752. [PMID: 38761591 DOI: 10.1016/j.watres.2024.121752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
The homogeneous Fenton process involves both coagulation and oxidation, but it requires added acidity, so it is rarely used to control membrane fouling. This work found that the pH of neutral simulated wastewater sharply declined to 4.1 after pre-treatment with 0.1 mM Fenton reagent (Fe2+:H2O2=1:1) without added acidity. This occurred mainly because the trace homogeneous Fenton reagent induced in situ acid production by organic matter in the wastewater, which supplied the acidic conditions required for the Fenton reaction and ensured that the reaction could proceed continuously. Then, oxidation during the pre-Fenton process enhanced the electrostatic repulsion forces and effectively weakened the hydrogen bonds of organic matter at the membrane surface by altering the net charge and hydroxyl content of organic matter, while coagulation caused the foulants to gather and form large aggregates. These changes diminished the deposition of foulants onto the membrane surface and resulted in a looser fouling layer, which eventually caused the membrane fouling rate to decline from 83 % to 24 % and the flux recovery rate to increase from 44 % to 98 % during 2 h of filtration. This membrane fouling mitigation ability is much superior to that of pre-H2O2, pre-Fe2+ or pre-Fe3+ processes with equivalent doses.
Collapse
Affiliation(s)
- Rui Miao
- Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China; Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China
| | - Haoxue Ran
- Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China
| | - Yifan Yang
- Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China
| | - Yanfei Li
- Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China
| | - Zhuowen Ma
- Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China
| | - Yongtao Lv
- Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China; Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China
| | - Xiaorong Meng
- Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China; Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China
| | - Miaolu He
- Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China; Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China
| | - Lei Wang
- Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Key Laboratory of Environmental Engineering of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China; Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road No. 13, Xi'an 710055, China.
| |
Collapse
|
5
|
Liang S, Fu K, Li X, Wang Z. Unveiling the spatiotemporal dynamics of membrane fouling: A focused review on dynamic fouling characterization techniques and future perspectives. Adv Colloid Interface Sci 2024; 328:103179. [PMID: 38754212 DOI: 10.1016/j.cis.2024.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/12/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Membrane technology has emerged as a crucial method for obtaining clean water from unconventional sources in the face of water scarcity. It finds wide applications in wastewater treatment, advanced treatment, and desalination of seawater and brackish water. However, membrane fouling poses a huge challenge that limits the development of membrane-based water treatment technologies. Characterizing the dynamics of membrane fouling is crucial for understanding its development, mechanisms, and effective mitigation. Instrumental techniques that enable in situ or real-time characterization of the dynamics of membrane fouling provide insights into the temporal and spatial evolution of fouling, which play a crucial role in understanding the fouling mechanism and the formulation of membrane control strategies. This review consolidates existing knowledge about the principal advanced instrumental analysis technologies employed to characterize the dynamics of membrane fouling, in terms of membrane structure, morphology, and intermolecular forces. Working principles, applications, and limitations of each technique are discussed, enabling researchers to select appropriate methods for their specific studies. Furthermore, prospects for the future development of dynamic characterization techniques for membrane fouling are discussed, underscoring the need for continued research and innovation in this field to overcome the challenges posed by membrane fouling.
Collapse
Affiliation(s)
- Shuling Liang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Kunkun Fu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Xuesong Li
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
| | - Zhiwei Wang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
6
|
You X, Shen L, Zhao Y, Zhao DL, Teng J, Lin H, Li R, Xu Y, Zhang M. Quantifying interfacial interactions for improved membrane antifouling: A novel approach using triangulation and surface element integration method. J Colloid Interface Sci 2023; 650:775-783. [PMID: 37441970 DOI: 10.1016/j.jcis.2023.06.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/28/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023]
Abstract
To gain a thorough understanding of interfacial behaviors such as adhesion and flocculation controlling membrane fouling, it is necessary to simulate the actual membrane surface morphology and quantify interfacial interactions. In this work, a new method integrating the rough membrane morphology reconstruction technology (atomic force microscopy (AFM) combining with triangulation technique), the surface element integration (SEI) method, the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, the compound Simpson's approach, and the computer programming was proposed. This new method can exactly mimic the real membrane surface in terms of roughness and shape, breaking the limitation of previous fractal theory and Gaussian method where the simulated membrane surface is only statistically similar to the real rough surface, thus achieving a precise description of the interfacial interactions between sludge foulants and the real membrane surface. This method was then applied to assess the antifouling propensity of a polyvinylidene fluoride (PVDF) membrane modified with Ni-ZnO particles (NZPs). The simulated results showed that the interfacial interactions between sludge foulants in a membrane bioreactor (MBR) and the modified PVDF-NZPs membrane transformed from an attractive force to a repulsive force. The phenomenon confirmed the significant antifouling propensity of the PVDF-NZPs membrane, which is highly consistent with the experimental findings and the interfacial interactions described in previous literature, suggesting the high feasibility and reliability of the proposed method. Meanwhile, the original programming code of the quantification was also developed, which further facilitates the widespread use of this method and enhances the value of this work.
Collapse
Affiliation(s)
- Xiujia You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Ying Zhao
- Teachers' Colleges, Beijing Union University, 5 Waiguanxiejie Street, Chaoyang District, Beijing 100011, China.
| | - Die Ling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
7
|
Jia Y, Guan K, Mai Z, Fang S, Li Z, Zhang P, Zou D, Jiang X, He G, Matsuyama H. Thin continuous membrane coating with high surface energy for comprehensive antifouling seawater distillation. WATER RESEARCH 2023; 244:120439. [PMID: 37579566 DOI: 10.1016/j.watres.2023.120439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
Membrane distillation (MD) has prominent advantages such as treating high-salinity wastewater with a low-grade thermal energy, high salt rejection, and zero discharge. However, organic fouling and mineral scaling are two major challenges for hydrophobic MD membranes when used for practical applications. Commonly, improving organic fouling- and mineral scaling-resistance require oppositely enhanced wetting properties of membrane, thus is difficult to simultaneously realize dual resistance with one membrane. Here, we proposed to use underwater thermodynamically stable high-surface-energy coating to modify the hydrophobic membrane with Janus structures comprising different surface energy. The underlayered structure meets the hydrophobicity requirements of the MD membrane, while the coating layer realizes dual resistance to organic and inorganic foulants. Theoretical analysis and experimental proof reveal that the membrane with the high-surface-energy coating layer outperforms the pristine one with approximately 10 times of longevity. This strategy provides a new way for the use of high-surface-energy materials in versatilely fouling-resistant MD process.
Collapse
Affiliation(s)
- Yuandong Jia
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Kecheng Guan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan.
| | - Zhaohuan Mai
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan.
| | - Shang Fang
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Zhan Li
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Pengfei Zhang
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Dong Zou
- School of Environmental Science and Engineering, Nanjing Tech University, No.30 South Puzhu Road, Nanjing 211816, China
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
8
|
Sun C, Lin B, Zheng X, Dong Y, Zhao M, Tang CY. Robust ceramic-based graphene membrane for challenging water treatment with enhanced fouling and scaling resistance. WATER RESEARCH 2023; 243:120348. [PMID: 37516075 DOI: 10.1016/j.watres.2023.120348] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/31/2023]
Abstract
Membrane fouling and scaling are two challenges for efficient treatment of hypersaline wastewater, greatly hindering separation performance and operation stability of desalination membranes. In this work, we report a smooth ceramic-based graphene desalination membrane, exhibiting enhanced anti-fouling and anti-scaling ability and operational performance for efficient treatment of both synthetic and real industrial wastewaters, outperforming polypropylene (PP) membrane. For treatment of hypersaline waters containing organic or inorganic substance, we demonstrate that the graphene membrane exhibits more stable water flux and almost complete salt rejection (>99.9%) during constant operation. Enhanced anti-fouling and desalination performance of graphene membrane could be attributed to the lower attractive interaction force with foulant (-4.65 mJ m-2), lower surface roughness (Ra = 2.2 ± 0.1 nm) and higher affinity with water than PP membrane. Furthermore, an anti-scaling mechanism enabled by graphene membrane is evidenced, with a highlight on the roles of smooth graphene surface with lower roughness, less nucleation sites and lower binding force with scaling crystals. Importantly, even for industrial petrochemical wastewater, such a graphene membrane also exhibits relatively more stable water flux and promising oil and ions rejection during long-term operation, outperforming PP membrane. This study further confirms a promising practical application potential of robust ceramic-based graphene membrane for efficient treatment of more challenging hypersaline wastewater with complicated compositions, which is not feasible by conventional desalination membranes.
Collapse
Affiliation(s)
- Chunyi Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Bin Lin
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China
| | - Xiangyong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Min Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
9
|
Ding M, Xu H, Yao C, Chen W, Song N, Zhang Q, Lin T, Xie Z. Understanding the membrane fouling control process at molecular level in the heated persulfate activation- membrane distillation hybrid system. WATER RESEARCH 2023; 229:119465. [PMID: 36513019 DOI: 10.1016/j.watres.2022.119465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/18/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Sulfate radical (SO4●-) based advanced oxidation is considered as a promising pretreatment strategy to degrade organic pollutants and thereby mitigate the membrane fouling in the membrane process. In this study, heat-activated persulfate (PS) activation was integrated with the membrane distillation (MD) process for the alleviation of membrane fouling in treatment of wastewater treatment plant (WWTP) secondary effluent and surface water. In-depth understanding of the molecular fate during membrane fouling control process was performed by using a non-targeted screening method of two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOF-MS) coupling with multiple characterizations. It was found that the heat-activated PS activation pretreatment could effectively degrade the dissolved organic matter (DOM) and change its molecular conformation, wherein the relative abundance of oxygen-containing substances was remarkably increased through oxygenation reactions. Moreover, the refractory organics with higher molecular weight (MW) and unsaturation degree were more inclined to be destroyed, following by partial mineralization during pretreatment process. It was also identified that oxygen-deficient compounds and the molecular formulas featuring higher double bond equivalent (DBE) values and lower MW tended to be deposited on the membrane surface to cause the membrane fouling. In particular, the aliphatic substances were the predominant components irrespective of membrane foulant samples from secondary effluent or surface water. Meanwhile, the complexation between organic compounds and high valence cations as well as the precipitation of inorganics were restrained owing to the reduction of DOM concentration and the transformation of molecular structure, consequently leading to reduced membrane fouling. This study is believed to further provide new insight into the membrane fouling control mechanism at molecular level.
Collapse
Affiliation(s)
- Mingmei Ding
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hang Xu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Chen Yao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Weihang Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Ninghui Song
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Qian Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zongli Xie
- CSIRO Manufacturing, Private Bag 10, Clayton South, VIC 3169, Australia.
| |
Collapse
|
10
|
Feng LJ, Shi ZL, Duan JL, Han Y, Sun XD, Ma JY, Liu XY, Zhang HX, Guo N, Song C, Zong WS, Yuan XZ. Using colloidal AFM probe technique and XDLVO theory to predict the transport of nanoplastics in porous media. CHEMOSPHERE 2023; 311:136968. [PMID: 36283429 DOI: 10.1016/j.chemosphere.2022.136968] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/02/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The plastic concentration in terrestrial systems is orders of magnitude higher than that found in marine ecosystems, which has raised global concerns about their potential risk to agricultural sustainability. Previous research on the transport of nanoplastics in soil relied heavily on the qualitative prediction of the mean-field extended Derjaguin-Landau-Verwey-Overbeek theory (XDLVO), but direct and quantitative measurements of the interfacial forces between single nanoplastics and porous media are lacking. In this study, we conducted multiscale investigations ranging from column transport experiments to single particle measurements. The maximum effluent concentration (C/C0) of amino-modified nanoplastics (PS-NH2) was 0.94, whereas that of the carboxyl-modified nanoplastics (PS-COOH) was only 0.33, indicating PS-NH2 were more mobile than PS-COOH at different ionic strengths (1-50 mM) and pH values (5-9). This phenomenon was mainly attributed to the homogeneous aggregation of PS-COOH. In addition, the transport of PS-NH2 in the quartz sand column was inhibited with the increase of ionic strength and pH, and pH was the major factor governing their mobility. The transport of PS-COOH was inhibited with increasing ionic strength and decreasing pH. Hydrophilicity/hydrophobicity-mediated interactions and particle heterogeneity strongly interfered with interfacial forces, leading to the qualitative prediction of XDLVO, contrary to experimental observations. Through the combination of XDLVO and colloidal atomic force microscopy, accurate and quantitative interfacial forces can provide compelling insight into the fate of nanoparticles in the soil environment.
Collapse
Affiliation(s)
- Li-Juan Feng
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong 250014, PR China; Sino-French Research Institute for Ecology and Environment (ISFREE), School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Hebei Key Laboratory of Wetland Ecology and Conservation, Hengshui, Heibei 053000, PR China
| | - Zong-Lin Shi
- Hebei Key Laboratory of Wetland Ecology and Conservation, Hengshui, Heibei 053000, PR China; Department of Life Science, Hengshui College, Hengshui, Heibei, 053000, PR China
| | - Jian-Lu Duan
- Sino-French Research Institute for Ecology and Environment (ISFREE), School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Yi Han
- Sino-French Research Institute for Ecology and Environment (ISFREE), School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xiao-Dong Sun
- Sino-French Research Institute for Ecology and Environment (ISFREE), School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Jing-Ya Ma
- Sino-French Research Institute for Ecology and Environment (ISFREE), School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xiao-Yu Liu
- Sino-French Research Institute for Ecology and Environment (ISFREE), School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Huan-Xin Zhang
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong 250014, PR China
| | - Ning Guo
- Sino-French Research Institute for Ecology and Environment (ISFREE), School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Chao Song
- Sino-French Research Institute for Ecology and Environment (ISFREE), School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Wan-Song Zong
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong 250014, PR China.
| | - Xian-Zheng Yuan
- Sino-French Research Institute for Ecology and Environment (ISFREE), School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
11
|
He Y, Xing S, Jiang P, Zhao Y, Chen L. Volume Overlap Variation within Hyperbranched Polymer Brushes Resolves Topology Effects against Protein Fouling. Biomacromolecules 2022; 23:4924-4933. [PMID: 36239027 DOI: 10.1021/acs.biomac.2c01106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hyperbranched polymer brushes with a three-dimensional dendritic structure are used in antifouling applications to obtain bioinert and compact dendritic structures. Though hyperbranched polyglycerol (HPG) is extensively utilized in the antifouling layer, there is still a lack of direct studies on the relationship between the interfacial properties and topology effect of hyperbranched polymer brushes. Here, we established the degree of chain volume overlap (Dv) to characterize the spatial shielding efficiency generated by HPG brushes and investigated the impact mechanism of the variable chain length on the interfacial physicochemical properties. The results revealed the Dv-relevant feature of performance that the most densely packed HPG brushes for a medium-length LHPG3.07 enable the functional surface to display optimal antifouling performance toward protein adsorption by forming the most effective space barrier and hydrated layer in appropriate molecular weights and graft density. Moreover, we clarified the advance of hyperbranched polymer brushes exhibited in topology effects for imparting surface-enhanced resistance to biofouling relies on the generable higher steric hindrance as compared with linear analogs. This study established a Dv-relevant evaluation model for acquiring an optimized antifouling surface based on the appropriate choice of polymer structure, topology morphologies, and grafting parameters.
Collapse
Affiliation(s)
- Yang He
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin300387, China.,Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
| | - Songlin Xing
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin300387, China
| | - Peng Jiang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin300387, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin300387, China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin300387, China
| |
Collapse
|
12
|
A novel Cu-BTC@PVA/PVDF Janus membrane with underwater-oleophobic/hydrophobic asymmetric wettability for anti-fouling membrane distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Fan S, Blevins A, Martinez J, Ding Y. Effects of Co-diluent on the pore structure, patterning fidelity, and properties of membranes fabricated by lithographically templated thermally induced phase separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Koishi A, Lee SS, Fenter P, Fernandez-Martinez A, Bourg IC. Water Adsorption on Mica Surfaces with Hydrophilicity Tuned by Counterion Types (Na, K, and Cs) and Structural Fluorination. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:16447-16460. [PMID: 37881644 PMCID: PMC10597534 DOI: 10.1021/acs.jpcc.2c04751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/26/2022] [Indexed: 10/27/2023]
Abstract
The stability of adsorbed water films on mineral surfaces has far-reaching implications in the Earth, environmental, and materials sciences. Here, we use the basal plane of phlogopite mica, an atomically smooth surface of a natural mineral, to investigate water film structure and stability as a function of two features that modulate surface hydrophilicity: the type of adsorbed counterions (Na, K, and Cs) and the substitution of structural OH groups by F atoms. We use molecular dynamics simulations combined with in situ high-resolution X-ray reflectivity to examine surface hydration over a range of water loadings, from the adsorption of isolated water molecules to the formation of clusters and films. We identify four regimes characterized by distinct adsorption energetics and different sensitivities to cation type and mineral fluorination: from 0 to 0.5 monolayer film thickness, the hydration of adsorbed ions; from 0.5 to 1 monolayer, the hydration of uncharged regions of the siloxane surface; from 1 to 1.5 monolayer, the attachment of isolated water molecules on the surface of the first monolayer; and for >1.5 monolayer, the formation of an incipient electrical double layer at the mineral-water interface.
Collapse
Affiliation(s)
- Ayumi Koishi
- Department
of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Sang Soo Lee
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United
States
| | - Paul Fenter
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United
States
| | | | - Ian C. Bourg
- Department
of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- High
Meadows Environmental Institute, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
15
|
Wei-Hsin Sun E, Bourg IC. Impact of organic solutes on capillary phenomena in water-CO2-quartz systems. J Colloid Interface Sci 2022; 629:265-275. [DOI: 10.1016/j.jcis.2022.08.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
|
16
|
Kim J, Yun ET, Tijing L, Shon HK, Hong S. Mitigation of fouling and wetting in membrane distillation by electrical repulsion using a multi-layered single-wall carbon nanotube/polyvinylidene fluoride membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Cao T, Rolf J, Wang Z, Violet C, Elimelech M. Distinct impacts of natural organic matter and colloidal particles on gypsum crystallization. WATER RESEARCH 2022; 218:118500. [PMID: 35512535 DOI: 10.1016/j.watres.2022.118500] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Gypsum scaling via crystallization is a major obstacle limiting the applications of membrane-based technologies and heat exchangers in engineered systems. Herein, we perform the first comparative investigation on the impacts of natural organic matter (Suwannee River humic acid, SRHA) and colloidal particles on the gypsum crystallization process in terms of induction time and crystal morphology. Results show that the presence of SRHA significantly increases the induction time of gypsum crystallization. Specifically, at a solution saturation index of 4.92, the induction time increases 6.5-fold in the presence of 6 mg/L SRHA, compared to the case without SRHA. SRHA also alters the morphology of the formed calcium sulfate crystals, resulting in a polygon-like shape, differing from the characteristic needle-like shape of gypsum in the absence of additives. These changes in crystal morphology are attributed to the adsorption of SRHA on the gypsum crystal surface, blocking the active sites for gypsum growth. In contrast, in the presence of colloidal particles, the observed induction time of gypsum crystallization either decreases or increases, depending on the competitive interplay between the enhancement effect in the nucleation step and the inhibition effect in the subsequent crystal growth step. Furthermore, the formed gypsum crystals in the presence of colloidal particles exhibit a needle-like morphology similar to the crystals formed in the absence of any additives. Our study provides fundamental understanding of gypsum crystallization in feedwaters containing natural organic matter and colloidal particles, highlighting the importance of feedwater composition in gypsum scaling.
Collapse
Affiliation(s)
- Tianchi Cao
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Julianne Rolf
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Zhangxin Wang
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Camille Violet
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States.
| |
Collapse
|
18
|
Zhong L, Zhang X, Ma J, Liu D, Liu D, Wang Y, Cui F, Wang W. Synergy of feed-side aeration and super slippery interface in membrane distillation for enhanced water flux and scaling mitigation. WATER RESEARCH 2022; 215:118246. [PMID: 35259560 DOI: 10.1016/j.watres.2022.118246] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Membrane distillation (MD) is an acknowledged promising technology for desalinating hypersaline brine, and as such can be a suitable candidate to further concentrate the seawater discharged from reverse osmosis process. Mineral scaling represents a major constraint against the application of MD for further desalination of concentrated seawater, especially when considering CaSO4 (gypsum) and NaCl. Up until now, it has been difficult to rely solely on membrane modification to mitigate CaSO4 scaling. Permeate-side aeration can lessen CaSO4 scaling, but does not permit to increase the water flux. Herein, we proposed the synergy of feed-side aeration and super slippery interface to perform concentrated seawater desalination via direct contact membrane distillation. The results of this study show that this synergistic effect could significantly increase the water flux, which was approximately 1.5 times higher in comparison to the membrane without aeration. Moreover, the synergistic effect effectively alleviates the complex scaling of concentrated seawater, achieving 90 wt% water recovery rate. Based on the observed results, we elucidated the mechanisms governing the enhanced water flux and scaling mitigation driven by the synergistic effect. In addition, we studied the optimal working condition for this system, unveiling that low-intensity large bubbles are more suitable as they lead to a better equilibrium between the economics and functionality of the process.
Collapse
Affiliation(s)
- Lingling Zhong
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaoxin Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiaxiang Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongqing Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Wang
- School of Materials Science and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Fuyi Cui
- College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
19
|
Zhang L, Feng Y, Li Y, Jiang Y, Wang S, Xiang J, Zhang J, Cheng P, Tang N. Stable construction of superhydrophobic surface on polypropylene membrane via atomic layer deposition for high salt solution desalination. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Liu C, Zhu L, Pan M. Seasonal shift of water quality in China Yangtze River and its impacts on membrane fouling development during the drinking water supply by membrane distillation system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152298. [PMID: 34896505 DOI: 10.1016/j.scitotenv.2021.152298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Membrane distillation (MD) technique is increasingly regarded as a promising process for drinking water supply and wastewater treatment owing to its great water purification and usage of renewable energy. Like other membrane separation processes, the membrane fouling issue is widely considered as the main obstacle for real applications of large-scale MD systems. Feedwater characteristics, as the predominant factors for membrane fouling layer formation, mostly determined the membrane fouling trend of MD. Thus the impacts of seasonal shifts of initial feedwater quality on the MD membrane fouling were detailedly researched in this study, and the biofilm development mechanism was especially explored. The bacterial community structure of membrane biofilms was clearly clarified in MD runs of Yangtze River waters that collected in four seasons. The results revealed that the winter run posed a quite sharp flux drop, while a relatively milder flux decline behaviour was seen for other groups despite of the higher bacteria concentration of initial feedwaters. The poorer water quality in winter induced the establishment of a rather thick biofilm on the MD membrane, in which the biofilm-forming bacteria (Gammaproteobacteria and Alphaproteobacteria) and organic matters (EPS) were remarkably observed. Comparatively, a relatively thin biofilm containing abundant live cells and fewer organics finally formed in summer and autumn runs, causing a mitigated flux decline trend. Hence, it can be inferred that the membrane flux decline of MD was likely to be more sensitive to the organic attachment on the membrane in comparison with the bacteria adhesion. Finally, a three-phase pretreatment method was suggested for MD fouling control, including heating course, sterilization course, and filtration course.
Collapse
Affiliation(s)
- Chang Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China.
| | - Liang Zhu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Mei Pan
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224003, China
| |
Collapse
|
21
|
Mitigating membrane wetting in the treatment of unconventional oil and gas wastewater by membrane distillation: A comparison of pretreatment with omniphobic membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Xu D, Zheng J, Zhang X, Lin D, Gao Q, Luo X, Zhu X, Li G, Liang H, Van der Bruggen B. Mechanistic Insights of a Thermoresponsive Interface for Fouling Control of Thin-Film Composite Nanofiltration Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1927-1937. [PMID: 35007424 DOI: 10.1021/acs.est.1c06156] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In spite of extensive research, fouling is still the main challenge for nanofiltration membranes, generating an extra transport resistance and requiring a larger operational pressure in practical applications. We fabricated a highly antifouling nanofiltration membrane by grafting poly(N-isopropylacrylamide) (PNIPAM) chains on a bromine-containing polyamide layer. The resulting membrane was found to have a double permeance compared to the pristine membrane, while the rejection of multivalent ions remained the same. In addition, PNIPAM chains yielded a better deposition resistance and adhesion resistance, thereby mitigating the increase of fouling and promoting the recovery of flux during the filtration and traditional cleaning stages, respectively. Moreover, PNIPAM chains shrank when the water temperature was above the lower critical solution temperature (LCST), indicating the formation of a buffer layer between the membrane and pollutants. The buffer layer would eliminate the membrane-foulant interaction energy, thus further enhancing the detachment of pollutants. This simple and efficient cleaning method could act as an enhanced cleaning procedure to remove irreversible fouling. This provides new insights into the fabrication of enhanced antifouling membranes using smart responsive polymer chains.
Collapse
Affiliation(s)
- Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Junfeng Zheng
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Xin Zhang
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Dachao Lin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany
| | - Qieyuan Gao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Xinsheng Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, P. R. China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
- Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|
23
|
Colloidal interactions between model foulants and engineered surfaces: Interplay between roughness and surface energy. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
24
|
Feng D, Chen Y, Wang Z, Lin S. Janus Membrane with a Dense Hydrophilic Surface Layer for Robust Fouling and Wetting Resistance in Membrane Distillation: New Insights into Wetting Resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14156-14164. [PMID: 34597031 DOI: 10.1021/acs.est.1c04443] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although membrane distillation (MD) has been identified as a promising technology to treat hypersaline wastewaters, its practical applications face two prominent challenges: membrane wetting and fouling. Herein, we report a facile and scalable approach for fabricating a Janus MD membrane comprising a dense polyvinyl alcohol (PVA) surface layer and a hydrophobic polyvinylidene fluoride (PVDF) membrane substrate. By testing the Janus membrane in direct contact MD experiments using feeds containing a sodium dodecyl sulfate (SDS) surfactant or/and mineral oil, we demonstrated that the dense Janus membrane can simultaneously resist wetting and fouling. This method represents the simplest approach to date for fabricating MD membranes with simultaneous wetting and fouling resistance. Importantly, we also unveil the mechanism of wetting resistance by measuring the breakthrough pressure and surfactant permeation (through the PVA layer) and found that wetting resistance imparted by a dense hydrophilic layer is attributable to capillary pressure. This new insight will potentially change the paradigm of fabricating wetting-resistant membranes and enable robust applications of MD and other membrane contactor processes facing challenges of pore wetting or/and membrane fouling.
Collapse
Affiliation(s)
- Dejun Feng
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuanmiaoliang Chen
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Zhangxin Wang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watershed, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| |
Collapse
|
25
|
Zhang P, Liu W, Rajabzadeh S, Jia Y, Shen Q, Fang C, Kato N, Matsuyama H. Modification of PVDF hollow fiber membrane by co-deposition of PDA/MPC-co-AEMA for membrane distillation application with anti-fouling and anti-scaling properties. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119596] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Lyly L, Chang Y, Ng W, Lim J, Derek C, Ooi B. Development of membrane distillation by dosing SiO2-PNIPAM with thermal cleaning properties via surface energy actuation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Zhu S, Zhao W, Wang P, Zhao L, Jin C, Qiu R. Co-transport and retention of zwitterionic ciprofloxacin with nano-biochar in saturated porous media: Impact of oxidized aging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146417. [PMID: 33743454 DOI: 10.1016/j.scitotenv.2021.146417] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
While biochar (BC) is used for contaminant remediation (i.e. antibiotics) in the field, geochemical aging can alter its chemical structure, releasing nano-sized BC (NBC, sizes ranging from approximately 200 nm to 500 nm), and further influence the environmental behaviour of antibiotics affiliated with BC. In this study, we comprehensively examined the sorption behaviour of NBCs with and without aging toward ciprofloxacin (CIP), their aggregation performance, and transport behaviour in porous media. The results showed that aging improved the oxygen-containing groups within the NBCs and made their surfaces more negatively charged. The thermodynamic enhancements of specific interactions (i.e. π-π interaction or Coulombic force) with CIP resulted in the enhancement of slow sorption (from 60-64% to 40-58%) and a higher normalised sorption capacity (Qe). The aggregation of NBCs was affected by changes in individual specific interactions and interfacial forces between the NBCs before and after CIP sorption. Further, aging could enhance the transport of NBCs both in the absence and presence of CIP. In addition to the interaction with the quartz sand surface, the contributions of aggregation and chemical heterogeneity caused by rebalanced specific interactions with CIP, may explain the observed transport behaviours of the aged NBCs in porous media. Additionally, the presence of NBCs, regardless of aging, suppressed the transport of CIP. Thus, mechanisms such as increased sorption sites due to aggregation and competitive sorption between NBCs and CIP, rather than the contribution of co-transport from NBCs, might play an important role in determining the fate of CIP in the natural environment.
Collapse
Affiliation(s)
- Shishu Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Weigao Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Pan Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Lingan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chao Jin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
28
|
Miao R, Zhou Y, Wang P, Lu W, Li P, Li X, Wang L. A comparison of effect mechanisms of chlorination and ozonation on the interfacial forces of protein at membrane surfaces and the implications for membrane fouling control. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Ma Y, Zydney AL, Wang R, Chew JW. Molecular dynamics study on membrane fouling by oppositely charged proteins. AIChE J 2021. [DOI: 10.1002/aic.17335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yunqiao Ma
- School of Chemical and Biomedical Engineering Nanyang Technological University Singapore Singapore
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute Nanyang Technological University Singapore Singapore
| | - Andrew L. Zydney
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute Nanyang Technological University Singapore Singapore
- School of Civil and Environmental Engineering Nanyang Technological University Singapore Singapore
| | - Jia Wei Chew
- School of Chemical and Biomedical Engineering Nanyang Technological University Singapore Singapore
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute Nanyang Technological University Singapore Singapore
| |
Collapse
|
30
|
Xie B, Xu G, Jia Y, Gu L, Wang Q, Mushtaq N, Cheng B, Hu Y. Engineering carbon nanotubes enhanced hydrophobic membranes with high performance in membrane distillation by spray coating. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118978] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Cavitt TB, Carlisle JG, Brooks RA, Scott LG, Patel PR. Quantifying interfacial substrate interactions via surface energy analyses. STAR Protoc 2021; 2:100476. [PMID: 33997808 PMCID: PMC8091927 DOI: 10.1016/j.xpro.2021.100476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Determination of a substrate’s surface energy profile is a facile and inexpensive method to indicate the substrate’s interfacial thermodynamics with another substance (e.g., microorganisms, biomacromolecules, medical devices, etc). The following protocol details a goniometric method to calculate a substrate’s surface energy profile which (1) directly correlates to a substrate’s interfacial Gibbs energy (ΔG) and (2) predicts the interfacial interactions with other substances. We also provide a calculation template using advanced mathematics to expedite surface energy profile determination. For complete details on the use and execution of this protocol, please refer to Cavitt et al. (2020). Surface energy (SE) describes interfacial substrate interactions Every material or biological substrate has a unique, five-component (5K) SE profile The 5K SE profile may be experimentally determined goniometrically A calculation template helps determine the 5K SE profile from contact angle data
Collapse
Affiliation(s)
- T Brian Cavitt
- Department of Chemistry and Biochemistry, Lipscomb University, One University Park Drive, Nashville, TN 37217 USA
| | - Jasmine G Carlisle
- Department of Chemistry and Biochemistry, Lipscomb University, One University Park Drive, Nashville, TN 37217 USA
| | - Rachel A Brooks
- Department of Chemistry and Biochemistry, Lipscomb University, One University Park Drive, Nashville, TN 37217 USA
| | - Lauren G Scott
- Department of Chemistry and Biochemistry, Lipscomb University, One University Park Drive, Nashville, TN 37217 USA
| | - Pooja R Patel
- Department of Chemistry and Biochemistry, Lipscomb University, One University Park Drive, Nashville, TN 37217 USA
| |
Collapse
|
32
|
Zhang M, Bradford SA, Klumpp E, Šimůnek J, Jin C, Qiu R. Non-monotonic contribution of nonionic surfactant on the retention of functionalized multi-walled carbon nanotubes in porous media. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124874. [PMID: 33373966 DOI: 10.1016/j.jhazmat.2020.124874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
The concentration of nonionic surfactants like Triton X-100 (TX100) can influence the transport and fate of emerging contaminants (e.g., carbon nanotubes) in porous media, but limited research has previously addressed this issue. This study investigates the co-transport of functionalized multi-walled carbon nanotubes (MWCNTs) and various concentrations of TX100 in saturated quartz sand (QS). Batch experiments and molecular dynamics simulations were conducted to investigate the interactions between TX100 and MWCNTs. Results indicated that the concentration ratio of MWCNTs and TX100 strongly influences the dispersion of MWCNTs and interaction forces between MWCNTs and QS during the transport. Breakthrough curves of MWCNTs and TX100 and retention profiles of MWCNTs were determined and simulated in column studies. MWCNTs strongly enhanced the retention of TX100 in QS due to the high affinity of TX100 for MWCNTs. Conversely, the concentration of TX100 had a non-monotonic impact on MWCNT retention. The maximum transport of MWCNTs in the QS occurred at an input concentration of TX100 that was lower than the critical micelle concentration. This suggests that the relative importance of factors influencing MWCNTs changed with TX100 sorption. Results from interaction energy calculations and modeling of competitive blocking indicate that the predictive ability of interaction energy calculations and colloid filtration theory may be lost because TX100 mainly altered intermolecular forces between the MWCNT and porous media. This study provides new insights into the co-transport of surfactants and MWCNTs in porous media, which can be useful for environmental applications and risk management.
Collapse
Affiliation(s)
- Miaoyue Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Scott A Bradford
- United States Department of Agriculture, Agricultural Research Service, U. S. Salinity Laboratory, Riverside, CA 92507, USA
| | - Erwin Klumpp
- Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Jirka Šimůnek
- Department of Environmental Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Chao Jin
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
33
|
Deka BJ, Guo J, An AK. Robust dual-layered omniphobic electrospun membrane with anti-wetting and anti-scaling functionalised for membrane distillation application. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119089] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Chang H, Liu B, Zhang Z, Pawar R, Yan Z, Crittenden JC, Vidic RD. A Critical Review of Membrane Wettability in Membrane Distillation from the Perspective of Interfacial Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1395-1418. [PMID: 33314911 DOI: 10.1021/acs.est.0c05454] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrophobic membranes used in membrane distillation (MD) systems are often subject to wetting during long-term operation. Thus, it is of great importance to fully understand factors that influence the wettability of hydrophobic membranes and their impact on the overall separation efficiency that can be achieved in MD systems. This Critical Review summarizes both fundamental and applied aspects of membrane wetting with particular emphasis on interfacial interaction between the membrane and solutes in the feed solution. First, the theoretical background of surface wetting, including the relationship between wettability and interfacial interaction, definition and measurement of contact angle, surface tension, surface free energy, adhesion force, and liquid entry pressure, is described. Second, the nature of wettability, membrane wetting mechanisms, influence of membrane properties, feed characteristics and operating conditions on membrane wetting, and evolution of membrane wetting are reviewed in the context of an MD process. Third, specific membrane features that increase resistance to wetting (e.g., superhydrophobic, omniphobic, and Janus membranes) are discussed briefly followed by the comparison of various cleaning approaches to restore membrane hydrophobicity. Finally, challenges with the prevention of membrane wetting are summarized, and future work is proposed to improve the use of MD technology in a variety of applications.
Collapse
Affiliation(s)
- Haiqing Chang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Zhewei Zhang
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ritesh Pawar
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian, 350116, China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Radisav D Vidic
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
35
|
Fabrication of a novel underwater-superoleophobic/hydrophobic composite membrane for robust anti-oil-fouling membrane distillation by the facile breath figures templating method. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118666] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Jaramillo H, Boo C, Hashmi SM, Elimelech M. Zwitterionic coating on thin-film composite membranes to delay gypsum scaling in reverse osmosis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118568] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
37
|
Realtime and in-situ monitoring of membrane fouling with fiber-optic reflectance UV-vis spectrophotometry (FORUS). CHEMICAL ENGINEERING JOURNAL ADVANCES 2020. [DOI: 10.1016/j.ceja.2020.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
38
|
Zhu Z, Zhong L, Chen X, Zheng W, Zuo J, Zeng G, Wang W. Monolithic and self-roughened Janus fibrous membrane with superhydrophilic/omniphobic surface for robust antifouling and antiwetting membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118499] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Investigating the effect of various foulants on the performance of intrinsically superhydrophobic polyvinylidene fluoride membranes for direct contact membrane distillation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
41
|
Chen YH, Chen G, Lee DJ. Synthesis of low surface energy thin film of polyepichlorohydrin-triazole-ols. J Colloid Interface Sci 2020; 575:452-463. [PMID: 32388291 DOI: 10.1016/j.jcis.2020.04.130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 10/24/2022]
Abstract
HYPOTHESIS The dispersive and polar components of surface energy are influenced by the effective molecular size and the intra-molecular configurations of the polar groups, respectively. The surface energy was hypothesized that the surface energy of a polyepichlorohydrin (PECH)-triazole polymer can be reduced by adding an end hydroxyl group (a polar group) which can interact with the nitrogen on the triazole group to reduce the net dipole of the molecule and to reduce the increase in dispersive surface energy by the addition of alkyl chain (dispersive group). EXPERIMENTS The chlorine atom on PECH rubber was firstly substituted by an azide group, which was then converted to triazole groups linked with alkyl-ol that contained 1-4 carbon atoms. The polymers thus-produced were then spin-coated onto a silicon wafer to form a thin film characterized by static contact angles (30 s contact) and dynamic contact angles for drops of water and diiodomethane. FINDINGS The newly synthesized materials have sufficient thin film-formation capacity. Dual interactions that involve interactions between alkyl-ol hydroxyl group and amine nitrogen and the interaction between ether oxygen and imine nitrogen cause the dispersive surface energy to decrease as the alkyl chain length increases. Consequently, a very low polar surface energy of 0.14 mJ/m2 was obtained for PECH-triazole-propyl-ol, a material without any halogen atoms.
Collapse
Affiliation(s)
- Yu-Han Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan, Republic of China
| | - Guohua Chen
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan, Republic of China; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China; College of Engineering, Tunghai University, Taichung 40704, Taiwan, Republic of China.
| |
Collapse
|
42
|
Zhang Y, Zhu X, Chen B. Nanoscale Profiling of 2D Surface Hydrophobicity Recognition of Environmental Media via AFM Measurements In Situ. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9315-9324. [PMID: 32633943 DOI: 10.1021/acs.est.0c00211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The surface hydrophobicity and its heterogeneity are essential physicochemical properties of functional materials and environmental media, which directly influence many critical processes, such as the adsorption capacity of absorbents, water/fertilizer retention of soil and oil-water separation performances of membranes. The conventional method to characterize the surface hydrophobicity is based on the water/air/oil contact angle, which could only analyze the macroscale local hydrophobicity of the surfaces. Until now, it is impossible to profile two-dimensional surface hydrophobicity recognition in the nanoscale. Here we utilized an atomic force microscopy (AFM)-based chemical force spectroscopy to measure the topography and the local adhesion forces in the nanoscale. A novel approach is established to exploit adhesion forces to extract the hydrophobic attractions, enabling mapping of the surface hydrophobicity of environmental media in the nanoscale, which was validated by studying synthetic self-assembled monolayers of known composition. The new method was then applied to directly measure the hydrophobicity of porous biochar particles, to profile two-dimensional nanoscale hydrophobicity images of graphene oxide, and to observe the in situ variations of the graphite surface hydrophobicity in the adsorption process of benzylamine, which cannot be monitored by the conventional methods. The advantages of direct observations of the surface hydrophobicity recognition from a single AFM image dynamically and quantitatively may provide an in-depth insight into the surface hydrophobicity in the nanoscale.
Collapse
Affiliation(s)
- Yuyao Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, P. R. China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, P. R. China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
43
|
Zhao W, Zhao P, Tian Y, Shen C, Li Z, Peng P, Jin C. Investigation for Synergies of Ionic Strength and Flow Velocity on Colloidal-Sized Microplastic Transport and Deposition in Porous Media Using the Colloidal-AFM Probe. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6292-6303. [PMID: 32423217 DOI: 10.1021/acs.langmuir.0c00116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Studies that explore the transport and retention behavior of colloidal-sized microplastic (MP) with focusing on the governing mechanisms for their attachment and detachment process using colloidal-atomic force microscopy (C-AFM) were still limited. In the present study, multiscale investigations ranging from pore-scale column test to microscale visualization and eventually to nanoscale interfacial and adhesive force measurement were conducted. Pore- and microscale tests were conducted at various flow velocity and over a broad range of IS values and found that IS and flow velocity could synergically impact the deposition of MPs during filtration, in particular under unfavorable condition at small flow velocity. The net difference between the highest and lowest deposition conditions became smaller while flow velocity was decreasing in porous media. However, the net difference between the high and low IS conditions in parallel plate chamber were not sensitive to the change of flow velocity. The measurement from C-AFM suggested that not only the interfacial force but also the adhesive forces changed while MP was approaching/retracting to the collector surface. Information related to the magnitude, location, and occurrence of interfacial/adhesive forces were analyzed. Comparisons of the interaction energy determined from the measured force and ones derived from surface energy components using DLVO theory were conducted to explain the synergies of IS and flow velocity on pathogenic size MPs transport and deposition during filtration.
Collapse
Affiliation(s)
- Weigao Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Peng Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yimei Tian
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Chongyang Shen
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhipeng Li
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Peng Peng
- Department of Mechanics and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Chao Jin
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
44
|
Fan H, Gao A, Zhang G, Zhao S, Cui J, Yan Y. A facile strategy towards developing amphiphobic polysulfone membrane with double Re-entrant structure for membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117933] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Xiao Z, Guo H, He H, Liu Y, Li X, Zhang Y, Yin H, Volkov AV, He T. Unprecedented scaling/fouling resistance of omniphobic polyvinylidene fluoride membrane with silica nanoparticle coated micropillars in direct contact membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117819] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
46
|
Development of robust and superhydrophobic membranes to mitigate membrane scaling and fouling in membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117962] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Antifouling mechanism of the additive-free β-PVDF membrane in water purification process: Relating the surface electron donor monopolarity to membrane-foulant interactions. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117873] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Liu C, Zhu L, Chen L. Biofouling phenomenon of direct contact membrane distillation (DCMD) under two typical operating modes: Open-loop mode and closed-loop mode. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Kharraz JA, An AK. Patterned superhydrophobic polyvinylidene fluoride (PVDF) membranes for membrane distillation: Enhanced flux with improved fouling and wetting resistance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117596] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Liu C, Zhu L, Chen L. Mechanism of biofilm formation on a hydrophobic polytetrafluoroethylene membrane during the purification of surface water using direct contact membrane distillation (DCMD), with especial interest in the feed properties. BIOFOULING 2020; 36:14-31. [PMID: 31928216 DOI: 10.1080/08927014.2019.1710136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
The impact of feed water quality on biofilm formation during membrane distillation (MD) was investigated in this study, particularly emphasizing the interrelationship between organics, salts, and microbes. Two types of typical natural surface waters in Nanjing, China, were chosen as feed solutions for long-term MD operation, including the Qinhuai River and Xuanwu Lake. The biofilms that developed under different feed water qualities exhibited distinct Foulant compositions and structures, causing different flux decline trends for the MD system. Accordingly, two typical patterns of biofilm formation were suggested for the MD operation of the two different kinds of surface waters in this study. Organics from a primal feed solution and dead bacteria were the key to the establishment of a biofilm on the membrane, and this needs to be effectively removed from the MD system through pre-treatment and process control strategies. Finally, a feasible strategy for MD biofouling control was suggested.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, China
- College of Environment, Hohai University, Nanjing, China
| | - Liang Zhu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, China
- College of Environment, Hohai University, Nanjing, China
| | - Lin Chen
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, China
- College of Environment, Hohai University, Nanjing, China
| |
Collapse
|