1
|
Liu Q, Gao A, Wang W, Zhou C, Zhu L, Chen J. 2,2',4,4'-Tetrabromodiphenyl ether and copper disturbed the source-to-sink allocation of sucrose in rice through regulating the NAC23-Tre6P-SnRK1a signaling pathway. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138083. [PMID: 40184963 DOI: 10.1016/j.jhazmat.2025.138083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
The co-occurrence of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and copper (Cu) in agricultural fields pose significant implications for crop growth and grain production. This study explored their individual and combined effects on rice crops and elucidated the underlying mechanisms combining in vivo, in vitro, and in silico investigations. Both BDE-47 and Cu inhibited shoot biomass, whereas root biomass exhibited distinct profiles: BDE-47 inhibited it, while Cu promoted it, at environmentally relevant exposure concentrations. This phenomenon was attributed to differences in sucrose transport between the source (shoot) and sink (root). Furthermore, metabolic, transcriptional, and translational analyses unveiled that this process was modulated by the NAC23-Tre6P-SnRK1a signaling pathway, with the dysfunction of fructose-1,6-diphosphate aldolase (FBA) and alterations in intracellular sucrose level serving as the crucial negative factors. Both contaminants bound to FBA, disrupting glucose signal transmission and upregulating SnRK1a expression. Additionally, BDE-47 suppressed sucrose levels, thereby reducing NAC23 activity and inhibiting sucrose transport. Conversely, Cu significantly elevated sucrose levels, mitigating the adverse effects of SnRK1a on NAC23 and enhancing sucrose transport. Interestingly, the coexistence of Cu with BDE-47 synergistically inhibited sucrose transport, further reducing root biomass and lowering the toxicity threshold of BDE-47 on rice crops. This study offered novel insights into the signaling regulatory mechanisms governing the differential impacts of BDE-47 and Cu on rice growth and yield production, facilitating more accurate assessments of their phytotoxicity and informing scientific regulatory frameworks for croplands.
Collapse
Affiliation(s)
- Qian Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Anmin Gao
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wei Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China; Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chun Zhou
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China; Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jie Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, Zhejiang 314100, China.
| |
Collapse
|
2
|
Wu P, Du X, Liu H, Liang J, Wang X, Tao X, Zhou J, Dang Z, Lu G. Iron-mineral-induced visible-light-catalytic degradation of BDE-47 enhanced by low-dose persulfate: Kinetics, mechanisms, and intervention of environmental factors. ENVIRONMENTAL RESEARCH 2025; 276:121477. [PMID: 40139632 DOI: 10.1016/j.envres.2025.121477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/11/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Iron minerals and visible light are ubiquitous in the environment, which have crucial effects on the fate and migration of organic pollutants during in-situ remediation. In this work, the role of iron minerals in visible light-activated persulfate for BDE-47 degradation was systematically investigated. Under visible light irradiation, low-dose persulfate (PS) (10 μM) is capable of achieving the rapid elimination of BDE-47 in the presence of iron minerals, and goethite exhibited the best performance among selected iron minerals. In Goe/PS/vis system, the reactive species involved in the degradation of BDE-47 included ·OH, SO4·-, O2·-, h+ (photo-generated hole), and e-. The existence of O2 and S2O82- led to the synergy of ROS generation derived from h+/e-. Four oxidized intermediates of BDE-47 with lower estimated toxicity were identified by high-resolution mass spectrometry (HRMS), suggesting that PS-based in-situ remediation driven by goethite and visible light can achieve deep mineralization and detoxification of BDE-47. In addition, the Goe/PS/vis system adapts to various co-existing anions and NOMs. Co-existing heavy metals facilitated BDE-47 removal. Heavy metal ions adsorbed on goethite are reduced to zero valent metal by photoelectron during irradiation, which further promotes electron transfer. While heavy metals entering the goethite lattice in the form of isomorphous substitution introduce oxygen vacancy, further promoting BDE-47 degradation. These findings reveal the critical role of natural iron minerals in PS-based in-situ remediation for polluted water and soils under solar irradiation and provide new ideas for developing efficient strategies for the combined contamination of PBDEs and heavy metals.
Collapse
Affiliation(s)
- Peiwen Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - He Liu
- South China Institute of Environmental Sciences Guangzhou, Guangzhou, 510655, China
| | - Jiahao Liang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xun Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jiangmin Zhou
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
3
|
Dang TMT, Huynh TTT, Bui HM. Polybrominated diphenyl ethers in bivalves: metabolites, accumulation, quantification and ecological risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 980:179547. [PMID: 40319803 DOI: 10.1016/j.scitotenv.2025.179547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Polybrominated diphenyl ethers (PBDEs) are extensively used as flame retardants in plastics but have emerged as persistent environmental pollutants due to their bioaccumulation and toxicity. Analysis of 74 studies from 2000 to 2024 highlights the increasing research interest in PBDE contamination, particularly in aquatic ecosystems and bivalves. Recurring themes such as "health risk," "bioaccumulation," and "risk assessment" dominate the discourse, emphasizing the need for deeper investigations into PBDE pathways and impacts. This trend underscores the critical importance of evaluating PBDE contamination in seafood species like oysters, mussels and clams, which are integral to human diets and aquatic food chains. Building on these insights, this study focused on analyzing PBDEs and their metabolites (MeO-BDE, OH-BDE) in commonly consumed bivalve species. Advanced methods for extraction, purification and simultaneous analysis revealed significant variations in PBDE concentrations: oysters (29-101 ng/g lw), mussels (10-274.8 ng/g lw) and clams (23-64,900 ng/g lw). Notably, metabolites MeO-BDE and OH-BDE were frequently detected, sometimes surpassing PBDE levels, indicating complex bioaccumulation processes. Bioaccumulation and bio-sediment accumulation factors (BAF and BSAF) showed that PBDEs and their metabolites accumulate more effectively through water pathways than sediment. Trophic magnification factor (TMF) analysis further revealed higher TMF values for PBDEs compared to their metabolites, categorizing PBDEs and MeO-BDE as low-risk TMFs. These findings align with citation analysis trends, which emphasize "risk assessment" as a pivotal theme, particularly concerning human exposure. The human health risk assessment based on bivalve consumption highlights potential exposure concerns in regions with high seafood intake. This study not only enriches the understanding of PBDE distribution and bioaccumulation in bivalves but also emphasizes the importance of effective monitoring, regulatory control and continued investigation into their ecological and human health impacts.
Collapse
Affiliation(s)
- Tuan Minh Truong Dang
- Institute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung City 833301, Taiwan
| | - Thao Thu Thi Huynh
- Institute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung City 833301, Taiwan
| | - Ha Manh Bui
- Faculty of Engineering and Technology, Saigon University, 273 An Duong Vuong Street, District 5, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
4
|
Zhong G, Li Z, Jones KC, Zhu Y. Effects of global treaties on commercial chemicals widely used as additives: a meta-analysis of historical measurements of polybrominated diphenyl ethers. Lancet Planet Health 2025; 9:e538-e552. [PMID: 40516544 DOI: 10.1016/s2542-5196(25)00114-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/18/2025] [Accepted: 04/25/2025] [Indexed: 06/16/2025]
Abstract
BACKGROUND Commercial organic additives, many of which possess persistent, bioaccumulative, and toxic (PBT) features, are widely used in various products. Although some PBT chemicals have been restricted, the risks associated with long-term exposure remain. Polybrominated diphenyl ethers (PBDEs) are flame retardants in electronics, textiles, and many everyday products. They are a typical class of ubiquitous additive chemicals with PBT characteristics. PBDEs include three commercial formulations: penta-BDE, octa-BDE, and deca-BDE. Penta-BDE and octa-BDE were banned in most countries in the early 2000s and listed under the Stockholm Convention in 2009 with recycling exemptions. Deca-BDE was banned later, with the USA starting to phase it out in 2009, and was added to the Convention in 2017 only with exemption for inclusion in vehicle parts until 2036. We conducted a meta-analysis and systematic regression analysis to explore the impact of global policies and treaties on both internal (human) and external (environmental) exposure to PBDEs. METHODS On Jan 4, 2023, we conducted a search of electronic databases including Web of Science, Scopus, Embase, and PubMed, along with grey literature. The search results were updated on March 21, 2025. The inclusion criteria focused on studies reporting PBDE concentrations in indoor dust (a major source of external exposure) and in the human body (internal exposure). We collated concentration data of major PBDE congeners, which are present in different formulations of flame retardants used in different products, including BDE-47, BDE-99, BDE-153, BDE-183, and BDE-209. We used a breakpoint regression model to analyse the temporal trends of PBDEs and compared these trends with the timeline of national and regional policies. FINDINGS We identified 9782 studies, of which 343 were included, covering data from 94 countries worldwide. Marked differences were observed in PBDE internal and external exposure across countries. Using the EU, China, and the USA as examples, we summarised the general temporal patterns of large-scale indoor emissions (which dominate exposures of the general population) of different PBDE congeners and their effects on human exposure, correlating with treaty, production, and usage schedules. The results indicate that PBDE emissions in indoor environments have decreased following policy interventions, but reductions in human PBDE levels have been delayed and slow. Using breakpoint regression modelling, we identified a significant turning point in the concentrations of low-brominated PBDEs (BDE-47: 1996 [95% CI 1991-2001], p<0·0001; and BDE-99: 1997 [1992-2003], p<0·0001) in human milk in the EU. Significant decreases were observed in both China (BDE-47, p=0·0008; BDE-99, p=0·011) and the USA (BDE-47, p=0·0023; BDE-99, p=0·041). However, no decreasing trend over time was evident for BDE-153, nor for the higher-brominated BDE-183 (except in the EU: p=0·010) and BDE-209. In adult serum, PBDE concentrations showed minimal decreases, with only BDE-183 showing a significant decline in the EU (p=0·0099). INTERPRETATION Long-term emissions from treated products with large stocks of these chemicals after bans, along with the bioaccumulation of PBDEs (especially BDE-153), have significantly delayed the effectiveness of treaties in eliminating human exposure and health risks. Moreover, regionally varied policy enforcement and consumption patterns have further reduced effectiveness of these treaties on a global scale. The chemical diversity of different PBDE congeners also affects the effectiveness of the bans. Currently, there is a paucity of systematic longitudinal studies to evaluate the effectiveness of monitoring at both global and national levels. This study highlights the need for more cautious and stringent chemical regulations and a unified global monitoring and management framework in the future, to better regulate commercial additives. FUNDING National Natural Science Foundation of China (42377362) and Shanghai Oriental Talent Program-Youth Project.
Collapse
Affiliation(s)
- Guangbin Zhong
- State Key Laboratory of Green Papermaking and Resource Recycling, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Environmental Health Impact Assessment for Emerging Contaminants, Ministry of Ecology and Environment of the People's Republic of China, Shanghai, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, China; Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali, China
| | - Zengwei Li
- State Key Laboratory of Green Papermaking and Resource Recycling, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Environmental Health Impact Assessment for Emerging Contaminants, Ministry of Ecology and Environment of the People's Republic of China, Shanghai, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, China; Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali, China
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Ying Zhu
- State Key Laboratory of Green Papermaking and Resource Recycling, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Environmental Health Impact Assessment for Emerging Contaminants, Ministry of Ecology and Environment of the People's Republic of China, Shanghai, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, China.
| |
Collapse
|
5
|
Iakovides M, Bhowmick S, Stavroulas I, Iakovides G, Pikridas M, Biskos G, Mihalopoulos N, Sciare J. Thermal processes and secondary recycling regulate the atmospheric levels of the highly toxic polychlorinated naphthalenes in the urban environment of Eastern Mediterranean and Middle East. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138573. [PMID: 40393291 DOI: 10.1016/j.jhazmat.2025.138573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025]
Abstract
Although production of legacy industrial-grade persistent organic pollutants has been prohibited since the early 2000's, residues persist across all environmental compartments, with unintentional releases still documented globally. The present work explores comprehensively the atmospheric occurrence and fate of the scarcely monitored polychlorinated naphthalenes (PCNs), along with polybrominated diphenyl ethers (PBDEs), in the urban environment of Eastern Mediterranean and Middle East. Gaseous and particulate phase concentrations of PCNs and PBDEs (fifty-six and twelve congeners) were comparable to urban locations in the broader region. For PCNs, regressions of partial pressure against ambient temperature revealed secondary recycling from local contaminated surfaces. Enthalpies of surface-air exchange (∆HSA) were significantly correlated to vaporization enthalpies (∆HV), corroborating short-range revolatilization processes. Molecular concentration ratios suggested inputs from thermal processes, whereas potential evaporation from Aroclor-contaminated surfaces cannot be excluded. An inverse pattern for PBDEs was observed. The regression slopes were shallow, implying advective inflows of urban air, whereas ∆HSA were insignificantly correlated with ∆HV, suggesting that, unlike PCNs, volatilization sources for PBDEs were of minor importance. Gas/particle partitioning was also evaluated by utilizing a wide range of traditional and novel models. Additionally, temperature-dependent quantitative structure-property relationship (QSPR) models were constructed separately for PCNs and PBDEs. Mixed sorptive and absorptive models yielded adequate predictions for PCNs, while steady-state models performed better for PBDEs. Both QSPR models demonstrated robust predictive capabilities across the congener groups and could serve as reference for studies under similar temperature ranges worldwide.
Collapse
Affiliation(s)
- Minas Iakovides
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, 20 Konstantinou Kavafi Street, Aglantzia 2121, Cyprus.
| | - Somnath Bhowmick
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, 20 Konstantinou Kavafi Street, Aglantzia 2121, Cyprus
| | - Iasonas Stavroulas
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, 20 Konstantinou Kavafi Street, Aglantzia 2121, Cyprus; Center for Atmospheric Research, University of Nova Gorica, Ajdovščina 5270, Slovenia; Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Palaia Penteli, Athens 15236, Greece
| | - Giannis Iakovides
- Chemical Processes and Energy Resources Institute (CPERI), Centre for Research and Technology Hellas (CERTH), Egialeias 52, Maroussi, Athens, Greece
| | - Michael Pikridas
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, 20 Konstantinou Kavafi Street, Aglantzia 2121, Cyprus
| | - George Biskos
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, 20 Konstantinou Kavafi Street, Aglantzia 2121, Cyprus
| | - Nikos Mihalopoulos
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, 20 Konstantinou Kavafi Street, Aglantzia 2121, Cyprus; Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Palaia Penteli, Athens 15236, Greece; Chemistry Department, University of Crete, Heraklion Crete 71003, Greece
| | - Jean Sciare
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, 20 Konstantinou Kavafi Street, Aglantzia 2121, Cyprus
| |
Collapse
|
6
|
Wang Z, Du X, Wu X, Zhong Z, Liang J, Tao X, Zhu X, Dang Z, Yu Y, Lu G. Release mechanisms of decabromodiphenyl ether from typical e-waste microplastics into water: Insights from molecular dynamics simulations. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138507. [PMID: 40347604 DOI: 10.1016/j.jhazmat.2025.138507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/28/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025]
Abstract
E-waste-derived microplastics (MPs) serve as a significant source, have been releasing decabromodiphenyl ether (BDE-209) into aquatic environment. Conventional release kinetics experiments fail to effectively distinguish the three-stage release process, which includes internal diffusion, interfacial mass transfer, and diffusion in the environment. Herein, we took typical flame-retardant plastic (polystyrene, PS) as a paradigm to construct diffusion and release models corresponding to the three-stage release process, with large-scale all-atom molecular dynamics (MD) simulations providing insights into the release process. The level of BDE-209's self-diffusion coefficients (D) was calculated at different release stages: 10-14 (PS matrix), 10-12 (PS-water interface), and 10-10 m2 s-1 (bulk water). BDE-209 exhibits a confined diffusion mode within the PS matrix, significantly diminishing its release capability. At the interface, the strength of dispersion attraction between BDE-209 and the PS surface determines the ease of its release and the partition equilibrium between the two phases. Our findings elucidated the molecular-scale dynamic and thermodynamic mechanisms governing BDE-209 release from MPs into water, expanding the understanding of polybrominated diphenyl ether release from e-waste-derived MPs. Moreover, our established MD simulation methods can be adapted to explore the release or adsorption mechanisms of various additives in different kinds of MPs.
Collapse
Affiliation(s)
- Zhengdong Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaoqing Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zijuan Zhong
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jiahao Liang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaohui Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Yunjiang Yu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
7
|
Lu D, Lin Y, Le S, Chen Y, Feng C, Qian Z, Wang G, Li J, Xiao P. Assessment of POPs in foods from western China: Machine learning insights into risk and contamination drivers. ENVIRONMENT INTERNATIONAL 2025; 199:109458. [PMID: 40250238 DOI: 10.1016/j.envint.2025.109458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/05/2025] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
Persistent organic pollutants (POPs), including PCDD/Fs, PCBs, and PBDEs, are major environmental and food safety concerns due to their bioaccumulative and toxic properties. However, comprehensive research on the concentrations and influencing factors of POPs across different food types and regions, particularly in underdeveloped regions of western China, remains scarce. This study conducted a comprehensive assessment of POPs contamination in six food types (pig liver, pork, freshwater fish, marine fish, beef, and eggs) from western China by integrating environmental, geographical, socio-economic data, and food POP concentrations with machine learning and multivariate analyses to evaluate distribution patterns, key influencing factors, and associated health risks. The results showed distinct contamination patterns across food types and regions. Among all food, pig liver exhibited the highest levels of ∑PCDD/Fs, while marine fish showed elevated PBDEs and ndl-PCBs, highlighting the influence of organ-specific bioaccumulation and global oceanic pollution. Freshwater fish displayed higher ∑PCDD/Fs due to localized agricultural and industrial pollution. Regional differences were most pronounced in pork, with higher contamination in Yunnan and Sichuan, driven by industrial emissions, biomass burning, and geographical factors. Regression models, particularly Random Forest and SHAP analyses, identified food type, latitude, GDP, and climatic conditions as key predictors of POP variability. Risk assessments indicated that dietary exposure to POPs from high-consumption foods remained within safety thresholds, posing no significant health risks to the general population. This study highlights the utility of advanced analytical tools in understanding contamination dynamics and emphasizes the need for systematic monitoring, targeted interventions, and enhanced food safety regulations, particularly in western China.
Collapse
Affiliation(s)
- Dasheng Lu
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Yuanjie Lin
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Sunyang Le
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Yuhang Chen
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Chao Feng
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Zixin Qian
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China; School of Public Health, Fudan University, Shanghai 200032, China
| | - Guoquan Wang
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China.
| | - Jingguang Li
- China National Center For Food Safety Risk Assessment, Beijing 100022, China.
| | - Ping Xiao
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| |
Collapse
|
8
|
Xu G, He H, Tang D, Lu Q, Mai B, He Z, Adrian L, He J, Dolfing J, Wang S. High-Throughput Screening of Microbial Reductive Dechlorination of Polychlorinated Biphenyls: Patterns in Reactivity and Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7712-7721. [PMID: 40193699 DOI: 10.1021/acs.est.4c13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Polychlorinated biphenyls (PCBs) are pervasive pollutants that pose risks to ecosystems and human health. Microbial reductive dehalogenation plays crucial roles in attenuating PCBs, but comprehensive insights into PCB dechlorination pathways, reactivity, and governing factors are limited by the vast number of congeners and costly experimental approaches. We address this challenge by establishing a high-throughput in vitro assay approach of reductive dehalogenation (HINVARD), which increases dechlorination test throughput by 30-fold and enhances reagents and cell utilization efficiency by over 10-fold compared to conventional assay methods. Using HINVARD, we screened 61 PCB congeners across 9 enrichment cultures and 3 Dehalococcoides isolates, identifying active dechlorination of 31-44 congeners. Results showed that PCB congener properties (chlorine substitution patterns, steric hindrance, and solubility) primarily determine the dechlorination potential, leading to consistent reactivity trends across cultures. In contrast, different organohalide-respiring bacteria catalyzed distinct dechlorination pathways, preferentially removing para- or meta-chlorines. Structural modeling of reductive dehalogenases revealed unique binding orientations governing substrate specificity, offering molecular insights into these pathways. This study provides a high-efficiency strategy for investigating microbial reductive dehalogenation, yielding the first comprehensive understanding of PCB dechlorination patterns and mechanisms. These findings guide the design of tailored microbial consortia for effective PCB bioremediation.
Collapse
Affiliation(s)
- Guofang Xu
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Haozheng He
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Daoyu Tang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Qihong Lu
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, The People's Republic of China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, The People's Republic of China
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, The People's Republic of China
| | - Lorenz Adrian
- UFZ Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research, Permoserstraße 15, Leipzig 04318, Germany
- Chair of Geobiotechnology, Technische Universität Berlin, Ackerstraße 76, Berlin 13355, Germany
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jan Dolfing
- Faculty of Energy and Environment, Northumbria University, Newcastle upon Tyne NE1 8QH, UK
| | - Shanquan Wang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, The People's Republic of China
| |
Collapse
|
9
|
García-Suastegui WA, Navarro-Mabarak C, Silva-Adaya D, Dolores-Raymundo HG, Alvarez-Gonzalez MY, León-Olea M, Ramos-Chávez LA. Neurotransmitter Systems Affected by PBDE Exposure: Insights from In Vivo and In Vitro Neurotoxicity Studies. TOXICS 2025; 13:316. [PMID: 40278631 PMCID: PMC12030920 DOI: 10.3390/toxics13040316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 04/26/2025]
Abstract
Polybrominated diphenyl ethers (PBDEs) are synthetic halogen compounds, industrially used as flame retardants in many flammable products. PBDEs are environmentally persistent and bioaccumulative substances that were used from the 1970s and discontinued in the 1990s. PBDEs are present in air, soil, water, and food, where they remain stable for a long time. Chronic exposure to PBDEs is associated with adverse human health effects, including cancer, immunotoxicity, hepatotoxicity, reproductive and metabolic disorders, motor and hormonal impairments, and neurotoxicity, especially in children. It has been demonstrated that PBDE exposure can cause mitochondrial and DNA damage, apoptosis, oxidative stress, epigenetic modifications, and changes in calcium and neurotransmitter levels. Here, we conduct a comprehensive review of the molecular mechanisms of the neurotoxicity of PBDEs using different approaches. We discuss the main neurotransmitter pathways affected by exposure to PBDEs in vitro and in vivo in different mammalian models. Excitatory and inhibitory signaling pathways are the putative target where PBDEs carry out their neurotoxicity. Based on this evidence, environmental PBDEs are considered a risk to human public health and a hazard to biota, underscoring the need for environmental monitoring to mitigate exposure to PBDEs.
Collapse
Affiliation(s)
- Wendy Argelia García-Suastegui
- Departamento de Biología y Toxicología de la Reproducción, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla C.P. 72570, Mexico; (W.A.G.-S.); (H.G.D.-R.)
| | - Cynthia Navarro-Mabarak
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City C.P. 04510, Mexico;
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico;
- Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Ciudad de Mexico C.P. 14330, Mexico
| | - Heidy Galilea Dolores-Raymundo
- Departamento de Biología y Toxicología de la Reproducción, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla C.P. 72570, Mexico; (W.A.G.-S.); (H.G.D.-R.)
| | - Mhar Yovavyn Alvarez-Gonzalez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de Mexico C.P. 14370, Mexico;
| | - Martha León-Olea
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de Mexico C.P. 14370, Mexico;
| | - Lucio Antonio Ramos-Chávez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de Mexico C.P. 14370, Mexico;
| |
Collapse
|
10
|
Akinrinade OE, Rosa AH. Current levels, sources, and risks of human exposure to PAHs, PBDEs and PCBs in South American outdoor air: A critical review. ENVIRONMENTAL RESEARCH 2025; 270:120941. [PMID: 39862950 DOI: 10.1016/j.envres.2025.120941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/25/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
This study provides a comprehensive overview of the current levels, sources and human exposure risks to hazardous polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) in South American outdoor air. Research documents were obtainable for only 6 countries within the target period (2014-2024). For all contaminants, urban concentrations exceeded that of rural/remote locations. PAHs were extensively reported with concentration reaching 1100 ∑16PAHs/m3 in Southwest of Buenos Aires province, Argentina. The health risk data also exceeded the threshold level in several locations. The profiles and seasonal fluctuations across all studies were widely influenced by the prevalent local/domestic sources. Biomass combustion (particularly of sugar cane/agricultural wastes and wood/coal for residential heating), vehicular emission, and industrial emission were accounted for most PAH sources. Regulations targeting biomass combustion for improved air quality seem not to currently have significant impacts on current PAH levels. PBDEs were widely reported within 0.3-55 pg ∑4-14BDE/m3, albeit high concentrations were documented in Concepción Bay, Chile (maximum = 1100 pg ∑4BDE/m3) and Córdoba, Argentina (maximum = 120 pg ∑4BDE/m3). Most notable source of PBDEs is solid municipal wastes. Similar to other global studies, BDE-47, 99 and 209 dominated the congeners reported. PCBs were reported with the highest concentrations measured in Córdoba, Argentina (maximum = 1700 pg ∑30PCBs/m3), but data remain limited in other important locations such as São Paulo, Brazil. Sources of PCBs were broadly associated with solid wastes, electric transformers, and re-volatilization from polluted environment. PAHs, PCBs and PBDEs were all within average to top global concentrations. This study underscores potential rise in atmospheric level of the target contaminants without sustainable regulatory structure and the need for continuous monitoring of these contaminants as a measure of policy impacts. We provide sustainable recommendations.
Collapse
Affiliation(s)
- Olumide Emmanuel Akinrinade
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180, Sorocaba, SP, Brazil.
| | - André Henrique Rosa
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180, Sorocaba, SP, Brazil.
| |
Collapse
|
11
|
Svobodová P, Jílková SR, Kohoutek J, Audy O, Šenk P, Melymuk L. High levels of flame retardants in vehicle dust indicate ongoing use of brominated and organophosphate flame retardants in vehicle interiors. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:396. [PMID: 40088345 PMCID: PMC11910445 DOI: 10.1007/s10661-025-13822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025]
Abstract
Vehicles are unique indoor environments, with interiors dominated by plastic/synthetic materials and exposure to extremes of temperature and radiation, leading to substantial potential for emissions of plastic additives from vehicle materials and subsequent exposure to drivers and passengers. Flame retardants (FRs) and per- and polyfluoroalkyl substances (PFAS) were measured in 30 dust samples collected from dashboards, seats, and trunks of cars of the same make and model (year of manufacture 1996-2021) to evaluate levels in dust and time patterns in additive use across cars of different ages. PFAS were detected in all dust samples at low levels, while FRs were detected in all samples, with some compounds consistently exceeding µg/g levels, especially tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and decabromodiphenyl ether (BDE-209), substantially higher than in other indoor environments. Although cars were of the same model, large variations were observed in FR concentrations in dust between cars, emphasizing the challenge in generalizing FR exposures from vehicle dust. Concentrations of BDE-209 in vehicle dust did not decrease over the 1996-2021 period, suggesting that restrictions on DecaBDE have had limited impact, likely due to exemptions in regulations for the automotive industry. The high FR levels indicate ongoing use of both organophosphate and brominated FRs in vehicles on the European market, although flammability standards for interior car materials are not mandated by European regulations, and the continued presence of long-restricted FRs suggests the presence of recycled plastics in vehicles; this potential exposure source may be increasing as vehicle producers aim to improve material circularity.
Collapse
Affiliation(s)
- Petra Svobodová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czechia
| | | | - Jiří Kohoutek
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czechia
| | - Ondřej Audy
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czechia
| | - Petr Šenk
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czechia
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czechia.
| |
Collapse
|
12
|
Zeng Q, Pu Y, Liu Q, Li Y, Sun Y, Hao Y, Yang Q, Yang B, Wu Y, Shi S, Gong Z. Effects of decabromodiphenyl ethane (DBDPE) exposure on soil microbial community: Nitrogen cycle, microbial defense and repair and antibiotic resistance genes transfer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124503. [PMID: 39946809 DOI: 10.1016/j.jenvman.2025.124503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
DBDPE, a widely used brominated flame retardant, is frequently detected in soil. However, the toxic effects of DBDPE on soil microbial communities remain unclear. This study investigated the effects of DBDPE on the microbial community shifts, the nitrogen cycle, microbial defense and repair, and antibiotic resistance genes (ARGs) transfer. After 28 days of DBDPE exposure, the soil microbial community was altered. Denitrifier were enriched by 4.07-78.22% under DBDPE exposure concentrations of 100-1000 ng/g. Additionally, the abundances of genes encoding enzymes involved in nitrification and denitrification processes were up-regulated at 100 ng/g DBDPE exposure, and further promoted at 1000 ng/g DBDPE exposure. Meanwhile, DBDPE exposure at concentrations of 100-1000 ng/g stimulated the production of extracellular polymers substances (EPS) (2155-2347 mg/kg), increased the accumulation of reactive oxygen species (ROS) (by 97.95-108.38%), and activated the antioxidant defense system of soil microorganisms, which correspondingly down-regulated catalase (CAT) genes (by 4.65-4.91%), while up-regulated superoxide dismutase (SOD) (by 0.52-2.63%) and glutathione (GSH) genes (by 19.03%-44.61%). Genes related to the tricarboxylic acid (TCA) cycle, glycerophospholipid metabolism, and peptidoglycan biosynthesis were up-regulated, enhancing cell membrane repair in response to DBDPE exposure. Moreover, the increase in DBDPE concentration selectively enriched and promoted the transmission of ARGs. The co-occurrence network of ARGs and mobile genetic elements (MGEs) revealed that DBDPE facilitated the horizontal gene transfer (HGT)-mediated transmission of transposase, ist, and insertion sequence-associated ARGs.
Collapse
Affiliation(s)
- Qianzhi Zeng
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Yunhong Pu
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Qiangwei Liu
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Yuxin Li
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Yanan Sun
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Yiming Hao
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Qing Yang
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Bowen Yang
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Yaxuan Wu
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China
| | - Shengnan Shi
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China.
| | - Zheng Gong
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, 116081, China.
| |
Collapse
|
13
|
Bai Y, Ma R, Cui Z, Liu L, Ding D, Hu Q, Xia B, Li Z, Zhang H, Qu K. Ecological risk assessment for BDE-47 in marine environment based on species sensitivity distribution method. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106967. [PMID: 39827713 DOI: 10.1016/j.marenvres.2025.106967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/03/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
BDE-47 is the most abundant and toxic congener in the marine environment. Assessing the ecological risk of BDE-47 in seawater is of great importance to protect the marine species. However, the ecological risks of BDE-47 on marine species is still limited. In the present study, the hazardous concentrations for 5 % of species (HC5) values of BDE-47 were derived by species sensitivity distributions (SSD), the short-term water quality criteria (SWQC) and long-term water quality criteria (LWQC) were acquired from HC5. Moreover, the marine ecological risk of BDE-47 was assessed by the risk quotient (RQ) method in the coastal area of China. The SWQC and LWQC were 1.06 μg/L and 0.61 μg/L, respectively. According to published literature, the concentrations of BDE-47 ranged from undetected to 9.06 ng/L, BDE-47 has no risk to marine species in most coastal areas, but might show low risk for a long exposure time in the coastal mariculture area of China. This study provides a new approach for the derivation of the WQC and the ecological risk assessment of BDE-47, which is essential for the protection of marine species and provides guidance to manage the concentration of BDE-47 for administrative department.
Collapse
Affiliation(s)
- Ying Bai
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China
| | - Ruijie Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China; School of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Zhengguo Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China.
| | - Liping Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China
| | - Dongsheng Ding
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China
| | - Qingjing Hu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China
| | - Bin Xia
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China
| | - Zhaochuan Li
- National Marine Environmental Monitoring Center, Dalian, Liaoning, 116023, China
| | - Haibo Zhang
- National Marine Environmental Monitoring Center, Dalian, Liaoning, 116023, China
| | - Keming Qu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China
| |
Collapse
|
14
|
Wang J, Chan FKS, Johnson MF, Chan HK, Cui Y, Chen J, Chen WQ. Material Cycles, Environmental Emissions, and Ecological Risks of Bisphenol A (BPA) in China and Implications for Sustainable Plastic Management. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1631-1646. [PMID: 39723815 PMCID: PMC11780737 DOI: 10.1021/acs.est.4c09876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Bisphenol A (BPA) is a high-production-volume plastic chemical, with ∼98% of its usage in China allocated to producing polycarbonate and epoxy resin, and its fugitive release threatens ecosystems. However, knowledge of its anthropogenic cycles, environmental emissions, and ecological risks remains incomplete, hindering effective plastic lifecycle management. Herein, material flow analysis, multimedia environmental modeling, and ecological risk assessment were integrated to comprehensively map BPA dynamics in China. Results reveal a ∼ 90-fold increase in BPA consumption between 1992 and 2022 and major applications shifted from optics and packaging to automotive, construction, and electronics. China held ∼34 Mt of in-use BPA stock in 2022 (∼24 kg per capita), with no indication of reaching saturation. BPA release occurred throughout its lifecycle, and soil and water were primary sinks. Aquatic BPA concentrations exceeded the limit in national pollutant emission standards in ∼8.4% of Chinese mainland areas in 2022, and ∼4.5% of areas suffered very high chronic ecological risks to aquatic organisms. Scenario analysis indicates that a 90% reduction in BPA emission factors would be required to avoid BPA contamination in all areas of focus. Our findings contribute as a scientific basis for sustainable plastic management and highlight the need for updated techniques, intensified monitoring, and standardized regulations.
Collapse
Affiliation(s)
- Jiayu Wang
- Key
Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Nottingham
University Business School China, University
of Nottingham Ningbo China, Ningbo 315100, China
| | - Faith Ka Shun Chan
- School
of Geographical Sciences, University of
Nottingham Ningbo China, Ningbo 315100, China
- Water@Leeds
and School of Geography, University of Leeds, Leeds LS2 9JT, U.K.
| | | | - Hing Kai Chan
- Nottingham
University Business School China, University
of Nottingham Ningbo China, Ningbo 315100, China
| | - Yunhan Cui
- Key Laboratory
of Industrial Ecology and Environmental Engineering (Ministry of Education),
Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention
Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory
of Industrial Ecology and Environmental Engineering (Ministry of Education),
Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention
Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wei-Qiang Chen
- Key
Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Guo J, Yang M, Huang R, Yu J, Peng K, Cai C, Huang X, Wu Q, Liu J. The combined effects of microplastics and their additives on mangrove system: From the sinks to the sources of carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178336. [PMID: 39754942 DOI: 10.1016/j.scitotenv.2024.178336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Mangrove ecosystems, a type of blue carbon ecosystems (BCEs), are vital to the global carbon cycle. However, the combined effects of microplastics (MPs) and plastic additives on carbon sequestration (CS) in mangroves remain unclear. Here, we comprehensively review the sources, occurrence, and environmental behaviors of MPs and representative plastic additives in mangrove ecosystems, including flame retardants, such as polybrominated diphenyl ethers (PBDEs), and plasticizers, such as phthalate esters (PAEs). Mangrove ecosystems have a complex influence on the behaviors of MPs and additives. Under the action of natural and unnatural factors, these pollutants exhibit complex behaviors including migration, interception, deposition and transformation, that are closely linked to those of particulate carbon, particularly carbon sequestration processes. MPs and additives hinder the CS function of mangroves by harming the growth of flora and fauna, influencing microbial nitrogen and sulfur cycles, and enhancing the degradation of organic matter in the sediment. The increasing accumulation and widespread occurrence of MPs and additives will greatly influence the carbon cycle. Future work is encouraged on systematic investigation of new alternatives to plastics and additives, and research methods to uncover the impact mechanisms of MPs and additives on BCEs. The developments of management measures and engineering technologies are also required to enhance pollutant control and mangrove CS.
Collapse
Affiliation(s)
- Junru Guo
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China
| | - Mingqing Yang
- Fuzhou Urban and Rural Construction Group Company Limited, Fuzhou 350007, China
| | - Ruohan Huang
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China
| | - Junyi Yu
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China
| | - Kaiming Peng
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China
| | - Chen Cai
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China
| | - Xiangfeng Huang
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China
| | - Qiaofeng Wu
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Fuzhou City Construction Investment Group Company Limited, Fuzhou 350014, China.
| | - Jia Liu
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China.
| |
Collapse
|
16
|
Denys ME, Kozlova EV, Liu R, Bishay AE, Do EA, Piamthai V, Korde YV, Luna CN, Lam AA, Hsiao A, Currás-Collazo M. Maternal probiotic supplementation protects against PBDE-induced developmental, behavior and metabolic reprogramming in a sexually dimorphic manner: Role of gut microbiome. Arch Toxicol 2025; 99:423-446. [PMID: 39520540 PMCID: PMC11748483 DOI: 10.1007/s00204-024-03882-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are endocrine-disrupting persistent organic pollutants (POPs) used as flame retardants in a wide range of commercial applications. We have previously reported neurobehavioral and metabolic reprogramming produced by developmental PBDEs. PBDEs perturb the microbiome, an influencer of life-long health, while probiotic supplementation with Limosilactobacillus reuteri (LR) can avert neurobehavioral and endocrine disruption. We, therefore, tested the hypothesis that perinatal maternal LR supplementation would protect gut microbiome richness and diversity, developmental milestones, adult neurobehavior and metabolic homeostasis in PBDE-exposed offspring. C57BL/6N dams were orally exposed to a commercial penta-mixture of PBDEs, DE-71, at 0.1 mg/kg/day, or corn oil vehicle (VEH/CON) during gestation and lactation. Mice offspring received DE-71 or VEH/CON with or without co-administration of LR (ATCC-PTA-6475) indirectly via their mother from gestational day (GD) 0 until postnatal day (P)21 (Cohort 1), or continued to receive LR directly from P22 through adulthood (Cohort 2). Results of fecal 16S rRNA sequencing indicated age- and sex-dependent effects of DE-71 on gut microbial communities. Maternal LR treatment protected against DE-71-induced reduction in α-diversity in P22 females and against β-diversity alterations in P30 males. In females, DE-71 changed the relative abundance of specific bacterial taxa, such as Tenericutes and Cyanobacteria (elevated) and Deferribacterota (reduced). In males, several Firmicutes taxa were elevated, while Proteobacteria, Chlamydiae, and several Bacteroidota taxa were reduced. The number of disrupted taxa normalized by maternal LR supplementation was as follows: 100% in P22 females and 33% in males at P22 and 25% at P30. Maternal LR treatment protected against DE-71-induced delay of postnatal body weight gain in males and ameliorated the abnormal timing of incisor eruption in both sexes. Further, DE-71 produced exaggerated digging in both sexes as well as locomotor hyperactivity in females, effects that were mitigated by maternal LR only in females. Other benefits of LR therapy included normalization of glucose tolerance, insulin-to-glucose ratio and plasma leptin in adult DE-71 females (Cohort 2). This study provides evidence that probiotic supplementation can mitigate POP-induced reprogramming of neurodevelopment, adult neurobehavior, and glucose metabolism in association with modified gut microbial community structure in a sex-dependent manner.
Collapse
Affiliation(s)
- Maximillian E Denys
- Department of Molecular Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Elena V Kozlova
- Department of Molecular Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA, USA
| | - Rui Liu
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Anthony E Bishay
- Department of Molecular Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Elyza A Do
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Varadh Piamthai
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Yash V Korde
- Department of Molecular Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Crystal N Luna
- Department of Molecular Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Artha A Lam
- Department of Molecular Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Margarita Currás-Collazo
- Department of Molecular Cell and Systems Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
17
|
Hu P, Zhong S, Guo J, Wang M, Shi S, Liu D, Yu H, Zhu F, Li YF, Cao Z. Global human exposure of atmospheric polybrominated diphenyl ethers: Variation patterns of exposure pathways and phase contributions. ENVIRONMENT INTERNATIONAL 2025; 195:109248. [PMID: 39793319 DOI: 10.1016/j.envint.2024.109248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
At present, there are still certain limitations in the research on the pathways and phase contributions of semi-volatile organic compounds (SVOCs) to human exposure in the atmosphere. This study clarified the contribution rates of inhalation and dermal exposure of particulate and gaseous polybrominated diphenyl ethers (PBDEs) on a global scale, as well as their influencing factors and mechanisms. Data on gaseous PBDEs were collected from 125 cities across 38 countries and regions to predict size-resolved particulate exposure levels, utilizing our previous method for inhalation alongside a size-dependent prediction method for dermal exposure developed in this study. The global distribution of PBDEs in gas phase showed a significant negative correlation (r = - 0.40, p < 0.05) with the level of per capita GDP, resulting in a similar pattern of human exposure to atmospheric PBDEs. The highest daily intake was found in Africa (75.4 pg/(kg·day)), followed by Asia (21.8 pg/(kg·day)), North America (5.38 pg/(kg·day)) and Europe (1.92 pg/(kg·day)). Inhalation pathways dominated human exposure to atmospheric PBDEs. The contributions of particle phase to the total human exposure presented a pattern of Europe (26.8 %) < North America (33.5 %) < Asia (43.7 %) < Africa (59.8 %), exhibiting a significant positive correlation with TSP (r = 0.79, p < 0.01). An important finding was that the fluctuation of TSP around 70 μg/m3 may lead to alterations in the primary exposure phase for humans. Temperature exerted negative effects on the particulate contribution of low-brominated PBDEs varying in different individuals. In this study, a web platform was also developed, which offered predictions of inhalation and dermal exposures to SVOCs, obviously improving the efficiency of evaluating human exposure to atmospheric PBDEs and researching their exposure patterns.
Collapse
Affiliation(s)
- Pengtuan Hu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Huanghuai Laboratory, Zhengzhou, Henan 450003, China
| | - Shimin Zhong
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Jin Guo
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Mengyao Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Shiyu Shi
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Donghai Liu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Hao Yu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Huanghuai Laboratory, Zhengzhou, Henan 450003, China
| | - Fujie Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yi-Fan Li
- IJRC-PTS-NA, Toronto, Ontario M2N 6X9, Canada
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Huanghuai Laboratory, Zhengzhou, Henan 450003, China.
| |
Collapse
|
18
|
Xu F, Su M, Tang S, Li S. Regional BDE-209 emission, environmental fate and risks: Methods establishment, data filling and feature analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176817. [PMID: 39396795 DOI: 10.1016/j.scitotenv.2024.176817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024]
Abstract
BDE-209 is an emerging environmental contaminant that poses a significant threat to human health. Despite its inclusion in the Stockholm Convention, the current regional emission levels, environmental fate, and corresponding risks remain unclear, especially with the ongoing release of BDE-209 during the disposal of waste electrical and electronic equipment. The significant gaps in BDE-209 emission data highlight the need for a regional approach to better understand these issues. Therefore, we established a method to identify regional BDE-209 emissions, environmental fate, and risks in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) using a substance flow analysis framework, fugacity model, and risk model. Our results showed: (1) Despite the increasing pressure of electronic waste, emissions have decreased with gradual strengthening of restrictions. The stage with the highest contribution to emissions is flame-retardant plastic production, which accounts for 41 % of emissions, followed by informal treatment (36 %). (2) The largest BDE-209 emissions are into air and soil, at 7.23 t and 4.56 t, respectively, and the highest reserves are in soil and sediment. (3) Infants and young children have the highest levels of exposure and cancer risk. This research helps fill the multi-regional data gap for BDE-209 and clarify the complex regional emission situation in the GBA.
Collapse
Affiliation(s)
- Fangping Xu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Meirong Su
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Shaoyu Tang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shiting Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
19
|
Kostenko O, Flores del Pino L, Jorge-Montalvo P, Visitación-Figueroa L. Management of waste containing polybrominated diphenyl ethers: A review. Heliyon 2024; 10:e40229. [PMID: 39584110 PMCID: PMC11585757 DOI: 10.1016/j.heliyon.2024.e40229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are substances used as flame retardants that can be released into the environment through volatilization, leaching, and abrasion throughout the useful life of the articles that contain them, especially at the end of their life cycle because PBDEs do not chemically bind to the initial materials (electrical and electronic equipment, textiles, materials used in transport vehicles, toys, among others). Research has shown that the toxic effects and risks of PBDEs to ecosystems and human health are greater than their benefits owing to their neurotoxicity, toxicity to the endocrine and reproductive systems, and possible carcinogenicity. This review shows the current situation of management of waste containing PBDEs (plastics, sludge, soil, and ash) and the characterization, valorization, treatment, and final disposal of these wastes, to minimize their impacts on ecosystems and human health are analyzed. Wastes with concentrations greater than 1000 mg/kg of PBDE should be considered as hazardous waste. This research identifies the methods available to reduce the risk in their management; at the same time, it provides innovative ideas for the integrated management of PBDE-containing wastes, prioritizing their valorization and disposal.
Collapse
Affiliation(s)
- Olga Kostenko
- Center for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
- Department of Environmental Engineering, Scientific University of the South, Lima, Peru
| | - Lisveth Flores del Pino
- Center for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| | - Paola Jorge-Montalvo
- Center for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| | - Lizardo Visitación-Figueroa
- Center for Research in Chemistry, Toxicology, and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| |
Collapse
|
20
|
Li H, Zhong L, Wang L, Geng N, Xing W, Wang Z, Shi L, Sun S. Legacy and novel brominated flame retardants in outdoor settled dusts and pine needles in a megacity of Eastern China: Interpretation of plant uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175488. [PMID: 39147053 DOI: 10.1016/j.scitotenv.2024.175488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/03/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
Brominated flame retardants, considered emerging contaminants, are widespread and persist in the environment. This study investigated the contamination of legacy and novel brominated flame retardants in paired outdoor settled dusts and pine needles sampled from a megacity in the Eastern China. The measured total concentrations of PBDEs (∑27PBDEs) in outdoor settled dusts and pine needles were in the range of 77.4-345.2 ng/g dw and 20.7-120.0 ng/g dw, respectively, and equivalent ranges for novel brominated flame retardants (∑11NBFRs) were 25.7-1917.2 ng/g dw and 9.4-38.7 ng/g dw, respectively. BDE-209 and DBDPE dominated PBDEs and NBFRs profiles, respectively, in both dusts and pine needles. Outdoor settled dusts exhibited greater potentials to accumulate high-brominated PBDE homologues and EH-TBB while pine needles tended to accumulate low-brominated PBDE homologues, BTBPE and TBC. The plant uptake of BFRs was interpreted by McLachlan's framework on the assumption that the levels of BFRs in outdoor settled dusts and particle phase of air were positively correlated. The accumulation of PBDEs in pine needles was dominated by equilibrium partitioning between the vegetation and the gas phase when log KOA values <10 and by particle-bound deposition when log KOA values >13. However, NBFRs exhibited more complicated accumulation behavior. The predicted 50th percentile of the estimated daily intakes of ∑27PBDEs via outdoor settled dusts exposure for adults and children were 3.5 × 10-2 and 1.4 × 10-1 ng/kg body weight (bw)/day, respectively, and equivalent values for ∑11NBFRs were 1.6 × 10-2 ng/kg bw/day and 6.3 × 10-2 ng/kg bw/day, respectively. The calculated hazard index (HI) values were far <1, indicating exposure of BFRs via outdoor settled dust intake would not pose potential non-carcinogenic health risks to both adults and children.
Collapse
Affiliation(s)
- He Li
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Liangchen Zhong
- School of Civil Engineering, Southeast University, Nanjing 211189, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Lei Wang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weilong Xing
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Zhen Wang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Lili Shi
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Shuai Sun
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China.
| |
Collapse
|
21
|
Benmammar RK, Bouberka Z, Malas C, Carpentier Y, Haider KM, Mundlapati VR, Ziskind M, Focsa C, Khelifi S, Poutch F, Laoutid F, Supiot P, Foissac C, Maschke U. Degradation of Decabromodiphenyl Ether Dispersed in Poly (Acrylo-Butadiene-Styrene) Using a Rotatory Laboratory Pilot Under UV-Visible Irradiation. Molecules 2024; 29:5037. [PMID: 39519678 PMCID: PMC11547912 DOI: 10.3390/molecules29215037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
The growing volume of plastics derived from electronic waste (e-waste) underscores the imperative for environmentally sustainable strategies for the management of this waste. In light of the paramount importance of this issue, a pilot demonstrator for the decontamination of polymers containing Brominated Flame Retardants (BFRs) has been developed. The objective is to investigate the potential for decontaminating BFR-containing polymers from e-waste via UV-visible irradiation using a rotatory laboratory pilot operating under primary vacuum conditions. This report focuses on binary model blends composed of 90 weight% (wt%) poly(Acrylo-Butadiene-Styrene) (ABS) pellets and 10 wt% Deca-Bromo-Diphenyl Ether (DBDE), which is one of the most toxic BFRs. The efficiency of the irradiation process was evaluated as a function of pellet diameter and irradiation time using Fourier Transform InfraRed spectroscopy (FTIR) and High-Resolution Laser Desorption/Ionization Mass Spectroscopy (HR-LDI-MS). As a consequence, ABS + DBDE achieved a decontamination efficiency of 97% when irradiated with pellets of less than 1 mm in diameter for a period of 4 h. Additionally, the thermal behavior of the irradiated samples was investigated through thermogravimetric analysis and differential scanning calorimetry. It was thus established that the application of UV-visible irradiation had no significant impact on the overall thermal properties of ABS.
Collapse
Affiliation(s)
- Rachida Khadidja Benmammar
- Unité Matériaux et Transformations (UMET), UMR 8207, CNRS, INRAE, Université de Lille, 59000 Lille, France
| | - Zohra Bouberka
- Laboratoire Physico-Chimique des Matériaux, Catalyse et Environnement (LPMCE), Université des Sciences et de la Technologie d’Oran «Mohamed Boudiaf» (USTO-MB), Oran 31000, Algeria
| | - Christian Malas
- Institut Chevreul, CNRS, INRAE, Université de Lille, 59850 Villeneuve d’Ascq, France
| | - Yvain Carpentier
- Physique des Lasers Atomes et Molécules (PhLAM), UMR 8523, CNRS, Université de Lille, 59000 Lille, France
| | - Kawssar Mujtaba Haider
- Physique des Lasers Atomes et Molécules (PhLAM), UMR 8523, CNRS, Université de Lille, 59000 Lille, France
| | - Venkateswara Rao Mundlapati
- Physique des Lasers Atomes et Molécules (PhLAM), UMR 8523, CNRS, Université de Lille, 59000 Lille, France
- Department of Chemistry, School of Applied Science, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Michael Ziskind
- Physique des Lasers Atomes et Molécules (PhLAM), UMR 8523, CNRS, Université de Lille, 59000 Lille, France
| | - Cristian Focsa
- Physique des Lasers Atomes et Molécules (PhLAM), UMR 8523, CNRS, Université de Lille, 59000 Lille, France
| | - Skander Khelifi
- CREPIM, Rue Christophe Colomb, Parc de la Porte Nord, 62700 Bruay-la-Buissière, France
| | - Franck Poutch
- CREPIM, Rue Christophe Colomb, Parc de la Porte Nord, 62700 Bruay-la-Buissière, France
| | - Fouad Laoutid
- Materia Nova Innovation Center, Avenue Copernic 3, 7000 Mons, Belgium
| | - Philippe Supiot
- Unité Matériaux et Transformations (UMET), UMR 8207, CNRS, INRAE, Université de Lille, 59000 Lille, France
| | - Corinne Foissac
- Unité Matériaux et Transformations (UMET), UMR 8207, CNRS, INRAE, Université de Lille, 59000 Lille, France
| | - Ulrich Maschke
- Unité Matériaux et Transformations (UMET), UMR 8207, CNRS, INRAE, Université de Lille, 59000 Lille, France
| |
Collapse
|
22
|
Bai C, Ge X, Huang Z, Qi Z, Ren H, Yu Y, An T. Polybrominated diphenyl ethers and their alternatives in soil cores from a typical flame-retardant production park: Vertical distribution and potential influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124597. [PMID: 39047890 DOI: 10.1016/j.envpol.2024.124597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
With the prohibition on the production and use of polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE) and organophosphate flame retardants (OPFRs) have emerged as their alternatives. However, the vertical transport and associated influencing factors of these chemicals into soil are not clearly understood. To clarify the vertical distribution of the pollutants and related influencing factors, surface soil and soil core samples were collected at a depth in the range of 0.10-5.00 m in a typical 20-year-old flame-retardant production park and surrounding area. PBDEs and DBDPE show a clear point source distribution around the production park with their central concentrations up to 2.88 × 104 and 8.46 × 104 ng/g, respectively. OPFRs are mainly found in residential areas. The production conversion of PBDEs to DBDPE has obvious environmental characteristics. The vertical distribution revealed that most of the pollutants have penetrated into the soil 5.00 m or even deeper. The median concentrations of deca-BDE and DBDPE reached 50.9 and 9.85 × 103 ng/g, respectively, even at a depth of 5.00 m. Soil organic matter plays a crucial role in determining the vertical distribution, while soil clay particles have a greater impact on the high molecular weight and/or highly brominated compounds.
Collapse
Affiliation(s)
- Chifei Bai
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xiang Ge
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zhaofa Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zenghua Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Helong Ren
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
23
|
Qian W, Yang Y, Xinyue D, Hanqi L, Lanlan C, Wenhui H, Juan-Ying L. Reducing baseline toxicity in fishery product-related sediments from land to sea: Region-specific solutions are required. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174024. [PMID: 38906300 DOI: 10.1016/j.scitotenv.2024.174024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/22/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
Eastern China is a major producer of fishery products (including inland aquaculture, coastal mariculture, and coastal fishing products). The quality of the products is affected by hydrophobic organic contaminants (HOCs) in the sediments. Based on in-vitro luminescent bacterial assay, the baseline toxicity (BEQBio) of 56 common HOCs were assessed in the present study. Specifically, the BEQBio of sediments declined from land (31-400 mg/kg) to sea (9.1-270 mg/kg). However, the toxicity contribution explained by the HOCs increased gradually from land (0.70 %) to sea (10 %) using Iceberg Modeling. In the inland pond, current use HOCs (pyrethroid pesticide (PEs), organic tin (OTCs), and antibiotic) exhibited considerable concentrations, although their toxicity contribution was very small (0.076 %), thus more regulations on the use of HOCs should be proposed and further screening is needed to confirm the major toxicants. In coastal mariculture area, the toxicity contribution of current use HOCs further declined (0.010 %), whereas environmental background HOCs, such as polycyclic aromatic hydrocarbons (PAHs), became increasingly significant, with the contribution ratio increasing from 0.37 % to 2.4 %. To minimize the negative impacts of PAHs, optimization of energy structure in transportation and coastal industry is required. In the coastal fishing area, the phased-out persistent organic pollutants (POPs) remained a major concern, in terms of both concentration and toxicity contribution. The phased-out POPs explained 7.0 % of the toxic effects of the sediments from the coastal fishing area, due to historical residue, industrial emissions, and their high toxicities. For this reason, it is critical to improve the relevant emission regulations and standards, so as to eventually reduce the unintentional discharges of POPs.
Collapse
Affiliation(s)
- Wang Qian
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China
| | - Yu Yang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China
| | - Dong Xinyue
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China
| | - Liu Hanqi
- East China Sea Ecological Center, MNR (Ministry of Natural Resources), Shanghai 201206, China
| | - Chu Lanlan
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China
| | - He Wenhui
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai 201702, China
| | - Li Juan-Ying
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai 201702, China.
| |
Collapse
|
24
|
Li C, Tian Z, Li X, Sun Y, Tian J, Wu Y, Cai J, He Y, Sanganyado E, Li P, Liang B, Liu W. Toxicogenomic assessment of hydroxylated metabolites of PBDEs on cetaceans: An in vitro study. CHEMOSPHERE 2024; 366:143350. [PMID: 39326706 DOI: 10.1016/j.chemosphere.2024.143350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Despite their ban, polybrominated diphenyl ethers (PBDEs) are frequently detected in various environmental compartments including marine and coastal ecosystems due to their persistence, bio-accumulative, high production volumes, and widespread use. One of the major concerns from PBDEs is the transformation products, such as hydroxylated polybrominated diphenyl ethers (OH-BDEs), which are more bioactive than the parent compounds. For example, 6-hydroxy-2,2',4',4-tetrabromodiphenyl ether (6-OH-BDE-47) is a typical metabolite of PBDEs and cause endocrine system disruption, developmental toxicity, and neurotoxicity in different species. Despite being widely detected in marine environments, investigations on the toxicological mechanisms of 6-OH-BDE-47 in cetaceans remain scarce. High concentrations of PBDEs accumulate in cetaceans due to the long lifespan and large fat reserve. The accumulated PBDEs have become the major source of OH-BDEs in cetaceans. We exposed immortalized fibroblast cell lines from the skin of pygmy killer whales (PKW-LWHT) and Indo-Pacific finless porpoises (FP-LWHT) to 6-OH-BDE-47 and analyzed changes in cellular function using transcriptomic data, along with enzymatic activity. Exposure to the body-relevant body burdens of 6-OH-BDE-47 (250 and 500 ng mL-1) significantly decreased cell viability. Differentially expressed genes in FP-LWHT exposed to 6-OH-BDE-47 were primarily enriched in the pathways associated with steroid metabolism. Total cholesterol was decreased by 6-OH-BDE-47, whereas low-density lipoprotein cholesterol and triglyceride levels were significantly increased in FP-LWHT cells. In contrast, glycolysis was the main enriched function of differentially expressed genes in PKW-LWHT cells exposed to 6-OH-BDE-47, and the enzyme activity of phosphofructokinase and hexokinase was upregulated. Thus, even though the cell viability of both cell lines from these two species was significantly suppressed by 6-OH-BDE-47, the cellular response or affected cellular function was different between the Pygmy killer whale and the Indo-Pacific Finless Porpoise, suggesting a diverse response towards OH-BDEs exposure.
Collapse
Affiliation(s)
- Chengzhang Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Ziyao Tian
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Xinying Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yajing Sun
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Jiashen Tian
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Yuqi Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Jingting Cai
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yijie He
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE2 4PB, UK
| | - Ping Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Bo Liang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| |
Collapse
|
25
|
Jagić K, Dvoršćak M, Tariba Lovaković B, Klinčić D. Polybrominated diphenyl ethers in paired dust-breast milk samples: Levels, predictors of contamination, and health risk assessment for infants and mothers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104547. [PMID: 39218329 DOI: 10.1016/j.etap.2024.104547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
An integrated study on the levels of 7 polybrominated diphenyl ethers (PBDEs) in house dust and breast milk samples from women (N = 30) living in these households was conducted. ∑PBDEs ranged from
Collapse
Affiliation(s)
- Karla Jagić
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia
| | - Marija Dvoršćak
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia
| | - Blanka Tariba Lovaković
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia
| | - Darija Klinčić
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia.
| |
Collapse
|
26
|
Liu Q, Wang S, Wang W, Chen J, Zhu L. Polybrominated diphenyl ethers and polychlorinated biphenyls induced rice "diabetes" by disturbing the transport and decomposition of soluble sugars. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124523. [PMID: 38986763 DOI: 10.1016/j.envpol.2024.124523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
Halogenated flame retardants in farmlands were observed to inhibit the growth of exposed crops. This study aimed to elucidate the mechanism of inhibition on rice by employing four representative polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs). The exposure to these contaminants at 200 nM led to a decrease of 0.63-0.95 fold in rice below-ground biomass and 0.49-0.66 fold in yield, and a corresponding 4%-10% increase in soluble sugars in leaves. PBDEs and PCBs were found to significantly disrupt the synthesis, decomposition, and transport of sugars in leaves, the three pivotal determinants of crop growth. Notably, these compounds promoted a 1.41- to 7.60-fold upregulation of the triose phosphate translocator, significantly enhancing soluble sugar synthesis. Conversely, a 0.45-0.97 fold downregulation was observed for sucrose transporters, thus impeding the leaf-to-shoot efflux of soluble sugars. Furthermore, PBDEs and PCBs were favorably bound to fructose-1,6-bisphosphate aldolase (FBA), inducing its substrate-specific dysfunction in fructose-1,6-diphosphate decomposition (3%-14%). Overall, PBDE and PCB exposure promoted a notable intracellular accumulation of soluble sugars in rice leaves, a typical symptom of plant diabetes, since the intensified synthesis of soluble sugars in leaves and the repressed decomposition and transportation of soluble sugars to other storage organs, thus impeding crop growth. This study provided an insightful understanding of the toxic effects and molecular mechanisms of halogenated flame retardants, highlighting their role in abnormal sugar accumulation and growth inhibition in crops and offering vital information for the risk assessment and administration of these compounds to guarantee the safety of agricultural products.
Collapse
Affiliation(s)
- Qian Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Shuyuan Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Wei Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China; Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jie Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China; Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China; Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
27
|
Ma H, Wang C, Suo H, Huang Y, Huo Y, Yang G, Yan Y, Huang T, Gao H, Ma J, Xie Z. Global Gridded Emission Inventory of Organophosphate Flame Retardants from 2010 to 2020. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39251583 PMCID: PMC11428127 DOI: 10.1021/acs.est.4c06504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
As a substitute for brominated flame retardants, organophosphate flame retardants (OPFRs) have become a global concern due to their high toxicity and bioaccumulation. To paint an overall picture of OPFRs in the global environment, the present study develops a gridded global emission inventory of OPFRs on a spatial resolution of 1 × 1° from 2010 to 2020. Revealing a 3.31% average annual increase in emissions, totaling 21,324.42 tons. The production process is the primary source, accounting for 55.43% of emissions, with consumption processes making up the rest. Major sources are in Asia, North America, and Europe. The inventory is verified by implementing emission data into a global atmospheric transport model to predict OPFR concentrations in the global environment and comparing modeled concentrations with field sampled data. The results indicate that the inventory is reliable except for the pristine polar region, where the emission inventory and modeled concentrations underestimate OPFR levels in the atmosphere, likely resulting from ignorance of chemical reactions and the secondary derivative of parent OPFRs during their global long-distance atmospheric transport in the model. This comprehensive data set aids in formulating OPFR emission control policies and assessing health risks.
Collapse
Affiliation(s)
- Haibo Ma
- Key
Laboratory for Environmental Pollution Prediction and Control, Gansu
Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chao Wang
- Key
Laboratory for Environmental Pollution Prediction and Control, Gansu
Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Huabing Suo
- Key
Laboratory for Environmental Pollution Prediction and Control, Gansu
Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yandi Huang
- Key
Laboratory for Environmental Pollution Prediction and Control, Gansu
Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuanhui Huo
- Key
Laboratory for Environmental Pollution Prediction and Control, Gansu
Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Gang Yang
- Key
Laboratory for Environmental Pollution Prediction and Control, Gansu
Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yu Yan
- Key
Laboratory for Environmental Pollution Prediction and Control, Gansu
Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tao Huang
- Key
Laboratory for Environmental Pollution Prediction and Control, Gansu
Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hong Gao
- Key
Laboratory for Environmental Pollution Prediction and Control, Gansu
Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jianmin Ma
- Laboratory
for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, P. R. China
| | - Zhiyong Xie
- Helmholtz-Zentrum
Hereon, Institute of Coastal Environmental
Chemistry, Geesthacht 21502, Germany
| |
Collapse
|
28
|
Okeke ES, Nwankwo CE, Ezeorba TPC, Iloh VC, Enochoghene AE. Occurrence and ecotoxicological impacts of polybrominated diphenyl ethers (PBDEs) in electronic waste (e-waste) in Africa: Options for sustainable and eco-friendly management strategies. Toxicology 2024; 506:153848. [PMID: 38825032 DOI: 10.1016/j.tox.2024.153848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent contaminants used as flame retardants in electronic products. PBDEs are contaminants of concern due to leaching and recalcitrance conferred by the stable and hydrophobic bromide residues. The near absence of legislatures and conscious initiatives to tackle the challenges of PBDEs in Africa has allowed for the indiscriminate use and consequent environmental degradation. Presently, the incidence, ecotoxicity, and remediation of PBDEs in Africa are poorly elucidated. Here, we present a position on the level of contamination, ecotoxicity, and management strategies for PBDEs with regard to Africa. Our review shows that Africa is inundated with PBDEs from the proliferation of e-waste due to factors like the increasing growth in the IT sector worsened by the procurement of second-hand gadgets. An evaluation of the fate of PBDEs in the African environment reveals that the environment is adequately contaminated, although reported in only a few countries like Nigeria and Ghana. Ultrasound-assisted extraction, microwave-assisted extraction, and Soxhlet extraction coupled with specific chromatographic techniques are used in the detection and quantification of PBDEs. Enormous exposure pathways in humans were highlighted with health implications. In terms of the removal of PBDEs, we found a gap in efforts in this direction, as not much success has been reported in Africa. However, we outline eco-friendly methods used elsewhere, including microbial degradation, zerovalent iron, supercritical fluid, and reduce, reuse, recycle, and recovery methods. The need for Africa to make and implement legislatures against PBDEs holds the key to reduced effect on the continent.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China; Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; College of Medicine and Veterinary Medicine, Deanery of Molecular, Genetic and Population Health Sciences, University of Edinburgh, United Kingdom.
| | - Chidiebele Emmanuel Nwankwo
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Microbiology, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Veronica Chisom Iloh
- School of Pharmacy and Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | | |
Collapse
|
29
|
Xu G, Zhao S, He J. Underexplored Organohalide-Respiring Bacteria in Sewage Sludge Debrominating Polybrominated Diphenyl Ethers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39031078 DOI: 10.1021/acs.est.4c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants prevalent in the environment. Organohalide-respiring bacteria (OHRB) can attenuate PBDEs via reductive debromination, but often producing toxic end-products. Debromination of PBDEs to diphenyl ether remains a rare phenomenon and is so far specifically associated with Dehalococcoides isolated from e-waste polluted sites. The occurrence of PBDE debromination in other ecosystems and underpinning OHRB are underexplored. Here we found that debromination of PBDEs is a common trait of sewage sludge microbiota, and diphenyl ether was produced as the end-product at varying quantities (0.6-52.9% mol of the parent PBDEs) in 76 of 84 cultures established with bioreactor sludge. Diverse debromination pathways converting PBDEs to diphenyl ether, including several new routes, were identified. Although Dehalococcoides contributed to PBDE debromination, Dehalogenimonas, Dehalobacter, and uncultivated Dehalococcoidia likely played more important roles than previously recognized. Multiple reductive dehalogenase genes (including bdeA, pcbA4, pteA, and tceA) were also prevalent and coexisted in bioreactor sludge. Collectively, these findings contribute to enhancing our comprehension of the environmental fate of PBDEs, expanding the diversity of microorganisms catalyzing PBDE debromination, and developing consortia for bioremediation application.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, 117576 Singapore
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, 117576 Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, 117576 Singapore
| |
Collapse
|
30
|
Kuprijanov I, Buhhalko N, Eriksson U, Sjöberg V, Rotander A, Kolesova N, Lipp M, Buschmann F, Hashmi A, Liblik T, Lehtonen KK. A case study on microlitter and chemical contaminants: Assessing biological effects in the southern coast of the Gulf of Finland (Baltic sea) using the mussel Mytilus trossulus as a bioindicator. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106628. [PMID: 38968804 DOI: 10.1016/j.marenvres.2024.106628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/09/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024]
Abstract
Chemical and microlitter (ML) pollution in three Estonian coastal areas (Baltic Sea) was investigated using mussels (Mytilus trossulus). Polycyclic aromatic hydrocarbons (PAH) in mussel tissues were observed in moderate levels with high bioaccumulation factors for the more hydrophilic and low molecular weight PAH (LMW PAH), namely anthracene and fluorene. Tissue concentrations of polybrominated diphenyl ethers (PBDE) and cadmium within mussel populations exceeded the Good Environmental Status thresholds by more than 200% and 60%, respectively. Multiple contamination at the Muuga Harbour site by tributyltin, high molecular weight PAH, including the highly toxic benzo[c]fluorene and PBDE, coincided with the inhibition of acetylcholinesterase activity and a lower condition index of the mussels. The metabolization and removal of bioaccumulated LMW PAH, reflected in the dominance of oxy-PAH such as anthracene-9,10-dione, is likely associated with the increased activity of glutathione S-transferase in caged mussels. Only a few microplastic particles were observed among the ML in mussel tissues, with coloured cellulose-based microfibers being the most prevalent. The average concentration of ML in mussels was significantly higher at the harbour area than at other sites. The integrated biomarker response index values allowed for the differentiation of pollution levels across studied locations representing high, intermediate, and low pollution levels within the studied area.
Collapse
Affiliation(s)
- Ivan Kuprijanov
- Department of Marine Systems, Tallinn University of Technology, Akadeemia Tee 15a, 12618, Tallinn, Estonia.
| | - Natalja Buhhalko
- Department of Marine Systems, Tallinn University of Technology, Akadeemia Tee 15a, 12618, Tallinn, Estonia
| | - Ulrika Eriksson
- School of Science and Technology, Örebro University, Grenadjärgatan 8, 703 65, Örebro, Sweden
| | - Viktor Sjöberg
- School of Science and Technology, Örebro University, Grenadjärgatan 8, 703 65, Örebro, Sweden
| | - Anna Rotander
- School of Science and Technology, Örebro University, Grenadjärgatan 8, 703 65, Örebro, Sweden
| | - Natalja Kolesova
- Department of Marine Systems, Tallinn University of Technology, Akadeemia Tee 15a, 12618, Tallinn, Estonia
| | - Maarja Lipp
- Department of Marine Systems, Tallinn University of Technology, Akadeemia Tee 15a, 12618, Tallinn, Estonia
| | - Fred Buschmann
- Department of Marine Systems, Tallinn University of Technology, Akadeemia Tee 15a, 12618, Tallinn, Estonia
| | - Arslan Hashmi
- School of Science and Technology, Örebro University, Grenadjärgatan 8, 703 65, Örebro, Sweden
| | - Taavi Liblik
- Department of Marine Systems, Tallinn University of Technology, Akadeemia Tee 15a, 12618, Tallinn, Estonia
| | - Kari K Lehtonen
- Marine and Freshwater Solutions Unit, Finnish Environment Institute (Syke), Agnes Sjöbergin Katu 2, FI-00790, Helsinki, Finland
| |
Collapse
|
31
|
Tian Z, Li J, Tang H, Liu W, Hou H, Wang C, Li D, Chen G, Xia T, Wang A. ZLN005 alleviates PBDE-47 induced impairment of mitochondrial translation and neurotoxicity through PGC-1α/ERRα axis. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134331. [PMID: 38677116 DOI: 10.1016/j.jhazmat.2024.134331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Recent studies are identified the mitochondria as critical targets of 2, 2', 4, 4'-tetrabromodiphenyl ether (PBDE-47) induced neurotoxicity. This study aimed at examining the impact of PBDE-47 exposure on mitochondrial translation, and its subsequent effect on PBDE-47 neurotoxicity. The Sprague-Dawley (SD) rat model and neuroendocrine pheochromocytoma (PC12) cells were adopted for the measurements of mitochondrial ATP levels, mitochondrial translation products, and expressions of important mitochondrial regulators, such as required meiotic nuclear division 1 (RMND1), estrogen-related receptor α (ERRα), and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α). To delve into the role of PGC-1α/ERRα axis in mitochondrial translation, 2-(4-tert-butylphenyl) benzimidazole (ZLN005) was employed. Both cellular and animal model results shown that PBDE-47 impeded PGC-1α/ERRα axis and mitochondrial translation. PBDE-47 suppressed mitochondrial function in rat hippocampus and PC12 cells by decreasing relative mitochondrial DNA (mtDNA) content, mitochondrial translation products, and mitochondrial ATP levels. Particularly, ZLN005 reversed PBDE-47 neurotoxicity by enhancing mitochondrial translation through activation of PGC-1α/ERRα axis, yet suppressing PGC-1α with siRNA attenuates its neuroprotective effect in vitro. In conclusion, this work highlights the importance of mitochondrial translation in PBDE-47 neurotoxicity by presenting results from cellular and animal models and suggests a potential therapeutic approach through activation of PGC-1α/ERRα axis. ENVIRONMENTAL IMPLICATION: PBDEs have attracted extensive attention because of their high lipophilicity, persistence, and detection levels in various environmental media. Increasing evidence has shown that neurodevelopmental disorders in children are associated with PBDE exposure. Several studies have also found that perinatal PBDE exposure can cause long-lasting neurobehavioral abnormalities in experimental animals. Our recent studies have also demonstrated the impact of PBDE-47 exposure on mitochondrial biogenesis and dynamics, leading to memory and neurobehavioral deficits. Therefore, we explore whether the pathological mechanism of PBDE-47-induced neurotoxicity involves the regulation of mitochondrial translation through the PGC-1α/ERRα axis.
Collapse
Affiliation(s)
- Zhiyuan Tian
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jing Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Huayang Tang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wenhui Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Haoqi Hou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chenxi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Dongjie Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Gaoshuai Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Tao Xia
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Aiguo Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
32
|
Jin M, Guo Z, Ye N, Sun L, Guo J. Polybrominated diphenyl ethers in student dormitory microenvironments: Concentrations, sources, and human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124010. [PMID: 38648964 DOI: 10.1016/j.envpol.2024.124010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Microenvironments, such as student dormitories, differ from general residential environments. They are characterized by small spaces, poor air circulation, high personnel densities, and electronic products, such as computers that are turned on for extended periods, leading to increased pollution concentrations. The limited space and poor air circulation reduce migration of contaminants, such as polybrominated diphenyl ethers (PBDEs), making it easier for PBDEs to accumulate. However, few studies have been conducted on small group dwellings, including student dormitory dwellings. We collected dust samples from student dormitories of a university to analyze the characteristics and traceability of PBDEs in dormitory microenvironments. The results showed that PBDE congeners were widely present in university dormitories and the order of median concentration of ∑10PBDEs was as follows: male old-fashioned dormitory (273 ng/g) > female four-person dormitory (132 ng/g) > female two-person dormitory (132 ng/g) > male two-person dormitory (96.2 ng/g) > female old-fashioned dormitory (91.6 ng/g) > male four-person apartment (51.8 ng/g). BDE-209 was the most abundant PBDE congener, followed by BDE-47, and BDE-28. PBDEs were also found in typical electrical appliances, with higher concentrations in laptops than in desktops, and higher concentrations in desktops than in idle ones. According to Spearman correlation and Principal Component Analysis (PCA), we also found that boards and wallpaper materials were common sources of contamination in the microenvironment of student dormitories, and that female dormitories had more sources of PBDE emissions. Human exposure to PBDEs in students is below the US Environmental Protection Agency reference dose. Although exposure to PBDEs generated in dormitories does not pose a significant health risk, the potential hazards of PBDEs to the reagent environment remain to be investigated.
Collapse
Affiliation(s)
- Mantong Jin
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Zhaoxuan Guo
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Nanxi Ye
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingjing Guo
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
33
|
Gautam K, Pandey N, Yadav D, Parthasarathi R, Turner A, Anbumani S, Jha AN. Ecotoxicological impacts of landfill sites: Towards risk assessment, mitigation policies and the role of artificial intelligence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171804. [PMID: 38513865 DOI: 10.1016/j.scitotenv.2024.171804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Waste disposal in landfills remains a global concern. Despite technological developments, landfill leachate poses a hazard to ecosystems and human health since it acts as a secondary reservoir for legacy and emerging pollutants. This study provides a systematic and scientometric review of the nature and toxicity of pollutants generated by landfills and means of assessing their potential risks. Regarding human health, unregulated waste disposal and pathogens in leachate are the leading causes of diseases reported in local populations. Both in vitro and in vivo approaches have been employed in the ecotoxicological risk assessment of landfill leachate, with model organisms ranging from bacteria to birds. These studies demonstrate a wide range of toxic effects that reflect the complex composition of leachate and geographical variations in climate, resource availability and management practices. Based on bioassay (and other) evidence, categories of persistent chemicals of most concern include brominated flame retardants, per- and polyfluorinated chemicals, pharmaceuticals and alkyl phenol ethoxylates. However, the emerging and more general literature on microplastic toxicity suggests that these particles might also be problematic in leachate. Various mitigation strategies have been identified, with most focussing on improving landfill design or leachate treatment, developing alternative disposal methods and reducing waste volume through recycling or using more sustainable materials. The success of these efforts will rely on policies and practices and their enforcement, which is seen as a particular challenge in developing nations and at the international (and transboundary) level. Artificial intelligence and machine learning afford a wide range of options for evaluating and reducing the risks associated with leachates and gaseous emissions from landfills, and various approaches tested or having potential are discussed. However, addressing the limitations in data collection, model accuracy, real-time monitoring and our understanding of environmental impacts will be critical for realising this potential.
Collapse
Affiliation(s)
- Krishna Gautam
- Ecotoxicology Laboratory, REACT Division, CSIR-Indian Institute of Toxicology Research, CRK Campus, Lucknow 226008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Namrata Pandey
- Ecotoxicology Laboratory, REACT Division, CSIR-Indian Institute of Toxicology Research, CRK Campus, Lucknow 226008, Uttar Pradesh, India
| | - Dhvani Yadav
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Ramakrishnan Parthasarathi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, REACT Division, CSIR-Indian Institute of Toxicology Research, CRK Campus, Lucknow 226008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
34
|
Marhoon A, Hernandez MLH, Billy RG, Müller DB, Verones F. Mapping Plastic and Plastic Additive Cycles in Coastal Countries: A Norwegian Case Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8336-8348. [PMID: 38703133 PMCID: PMC11097394 DOI: 10.1021/acs.est.3c09176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
The growing environmental consequences caused by plastic pollution highlight the need for a better understanding of plastic polymer cycles and their associated additives. We present a novel, comprehensive top-down method using inflow-driven dynamic probabilistic material flow analysis (DPMFA) to map the plastic cycle in coastal countries. For the first time, we covered the progressive leaching of microplastics to the environment during the use phase of products and modeled the presence of 232 plastic additives. We applied this methodology to Norway and proposed initial release pathways to different environmental compartments. 758 kt of plastics distributed among 13 different polymers was introduced to the Norwegian economy in 2020, 4.4 Mt was present in in-use stocks, and 632 kt was wasted, of which 15.2 kt (2.4%) was released to the environment with a similar share of macro- and microplastics and 4.8 kt ended up in the ocean. Our study shows tire wear rubber as a highly pollutive microplastic source, while most macroplastics originated from consumer packaging with LDPE, PP, and PET as dominant polymers. Additionally, 75 kt of plastic additives was potentially released to the environment alongside these polymers. We emphasize that upstream measures, such as consumption reduction and changes in product design, would result in the most positive impact for limiting plastic pollution.
Collapse
Affiliation(s)
- Ahmed Marhoon
- Industrial
Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim NO-7034, Norway
| | | | - Romain Guillaume Billy
- Industrial
Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim NO-7034, Norway
| | - Daniel Beat Müller
- Industrial
Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim NO-7034, Norway
| | - Francesca Verones
- Industrial
Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim NO-7034, Norway
| |
Collapse
|
35
|
Jiang L, Lv J, Jones KC, Yu S, Wang Y, Gao Y, Wu J, Luo L, Shi J, Li Y, Yang R, Fu J, Bu D, Zhang Q, Jiang G. Soil's Hidden Power: The Stable Soil Organic Carbon Pool Controls the Burden of Persistent Organic Pollutants in Background Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8490-8500. [PMID: 38696308 DOI: 10.1021/acs.est.4c00028] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Persistent organic pollutants (POPs) tend to accumulate in cold regions by cold condensation and global distillation. Soil organic matter is the main storage compartment for POPs in terrestrial ecosystems due to deposition and repeated air-surface exchange processes. Here, physicochemical properties and environmental factors were investigated for their role in influencing POPs accumulation in soils of the Tibetan Plateau and Antarctic and Arctic regions. The results showed that the soil burden of most POPs was closely coupled to stable mineral-associated organic carbon (MAOC). Combining the proportion of MAOC and physicochemical properties can explain much of the soil distribution characteristics of the POPs. The background levels of POPs were estimated in conjunction with the global soil database. It led to the proposition that the stable soil carbon pools are key controlling factors affecting the ultimate global distribution of POPs, so that the dynamic cycling of soil carbon acts to counteract the cold-trapping effects. In the future, soil carbon pool composition should be fully considered in a multimedia environmental model of POPs, and the risk of secondary release of POPs in soils under conditions such as climate change can be further assessed with soil organic carbon models.
Collapse
Affiliation(s)
- Lu Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jitao Lv
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Kevin C Jones
- Centre for Chemicals Management, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K
| | - Shiyang Yu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, Hangzhou 310000, China
| | - Yan Gao
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Jing Wu
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Lun Luo
- South-East Tibetan plateau Station for integrated observation and research of alpine environment, Chinese Academy of Sciences, Beijing 100101, China
- Research Center of Applied Geology of China Geological Survey, Beijing 100037, China
| | - Jianbo Shi
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, Hangzhou 310000, China
| | - Yingming Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, Hangzhou 310000, China
| | - Ruiqiang Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, Hangzhou 310000, China
| | - Jianjie Fu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, Hangzhou 310000, China
| | - Duo Bu
- College of Science, Tibet University, Tibet Autonomous Region, Lhasa 850000, PR China
| | - Qinghua Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, Hangzhou 310000, China
| | - Guibin Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, Hangzhou 310000, China
| |
Collapse
|
36
|
Yang Y, Tang X, Hu H, Zhan X, Zhang X, Zhang X. Molecular insight into the binding properties of marine algogenic dissolved organic matter for polybrominated diphenyl ethers and their combined effect on marine zooplankton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171131. [PMID: 38387578 DOI: 10.1016/j.scitotenv.2024.171131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widespread in marine ecosystems, despite the limits placed on several congeners, and pose a threat to marine organisms. Many coexisting factors, especially dissolved organic matter (DOM), affect the environmental behavior and ecological risk of PBDEs. Since blooms frequently occur in coastal waters, we used algogenic DOM (A-DOM) from the diatom Skeletonem costatum and examined the interaction of A-DOM with 2,2',4,4'-tetrabromodiphenyl ether (BDE-47). Moreover, their combined effect on the rotifer Brachionus plicatilis was analyzed. During the stationary period, A-DOM had more proteins than polysaccharides, and 7 extracellular proteins were identified. A-DOM fluorescence was statically quenched by BDE-47, and amide, carbonyl, and hydroxyl groups in A-DOM were involved. Molecular docking analysis showed that all 5 selected proteins of A-DOM could spontaneously bind with BDE-47 and that hydrophobic interactions, van der Waals forces and pi-bond interactions existed. The reproductive damage, oxidative stress and inhibition of mitochondrial activity induced by BDE-47 in rotifers were relieved by A-DOM addition. Transcriptomic analysis further showed that A-DOM could activate energy metabolic pathways in rotifers and upregulate genes encoding metabolic detoxification proteins and DNA repair. Moreover, A-DOM alleviated the interference effect of BDE-47 on lysosomes, the extracellular matrix pathway and the calcium signaling system. Alcian blue staining and scanning electron microscopy showed that A-DOM aggregates were mainly stuck to the corona and cuticular surface of the rotifers; this mechanism, rather than a real increase in uptake, was the reason for enhanced bioconcentration. This study reveals the complex role of marine A-DOM in PBDEs bioavailability and enhances the knowledge related to risk assessments of PBDE-like contaminants in marine environments.
Collapse
Affiliation(s)
- Yingying Yang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Hanwen Hu
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Xiaotong Zhan
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Xin Zhang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Xinxin Zhang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
37
|
Zhang M, Shi J, Li B, Ge H, Tao H, Zhang J, Li X, Cai Z. Thyroid Hormone Receptor Agonistic and Antagonistic Activity of Newly Synthesized Dihydroxylated Polybrominated Diphenyl Ethers: An In Vitro and In Silico Coactivator Recruitment Study. TOXICS 2024; 12:281. [PMID: 38668504 PMCID: PMC11053510 DOI: 10.3390/toxics12040281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024]
Abstract
Dihydroxylated polybrominated diphenyl ethers (DiOH-PBDEs) could be the metabolites of PBDEs of some organisms or the natural products of certain marine bacteria and algae. OH-PBDEs may demonstrate binding affinity to thyroid hormone receptors (TRs) and can disrupt the functioning of the systems modulated by TRs. However, the thyroid hormone disruption mechanism of diOH-PBDEs remains elusive due to the absence of diOH-PBDEs standards. This investigation explores the potential disruptive effects of OH/diOH-PBDEs on thyroid hormones via competitive binding and coactivator recruitment with TRα and TRβ. At levels of 5000 nM and 25,000 nM, 6-OH-BDE-47 demonstrated significant recruitment of steroid receptor coactivator (SRC), whereas none of the diOH-PBDEs exhibited SRC recruitment within the range of 0.32-25,000 nM. AutoDock CrankPep (ADCP) simulations suggest that the conformation of SRC and TR-ligand complexes, particularly their interaction with Helix 12, rather than binding affinity, plays a pivotal role in ligand agonistic activity. 6,6'-diOH-BDE-47 displayed antagonistic activity towards both TRα and TRβ, while the antagonism of 3,5-diOH-BDE-100 for TRα and TRβ was concentration-dependent. 3,5-diOH-BDE-17 and 3,5-diOH-BDE-51 exhibited no discernible agonistic or antagonistic activities. Molecular docking analysis revealed that the binding energy of 3,3',5-triiodo-L-thyronine (T3) surpassed that of OH/diOH-PBDEs. 3,5-diOH-BDE-100 exhibited the highest binding energy, whereas 6,6'-diOH-BDE-47 displayed the lowest. These findings suggest that the structural determinants influencing the agonistic and antagonistic activities of halogen phenols may be more intricate than previously proposed, involving factors beyond high-brominated PBDEs or hydroxyl group and bromine substitutions. It is likely that the agonistic or antagonistic propensities of OH/diOH-PBDEs are instigated by protein conformational changes rather than considerations of binding energy.
Collapse
Affiliation(s)
- Mengtao Zhang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (M.Z.); (H.G.); (H.T.); (J.Z.)
- China State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China;
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (B.L.); (X.L.)
| | - Jianghong Shi
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (M.Z.); (H.G.); (H.T.); (J.Z.)
| | - Bing Li
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (B.L.); (X.L.)
| | - Hui Ge
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (M.Z.); (H.G.); (H.T.); (J.Z.)
| | - Huanyu Tao
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (M.Z.); (H.G.); (H.T.); (J.Z.)
| | - Jiawei Zhang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (M.Z.); (H.G.); (H.T.); (J.Z.)
| | - Xiaoyan Li
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (B.L.); (X.L.)
| | - Zongwei Cai
- China State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China;
| |
Collapse
|
38
|
Greco M, Al-Enezi E, Amao A, Francescangeli F, Cavaliere M, Bucci C, Toscanesi M, Trifuoggi M, Pawlowski J, Frontalini F. Deciphering the impact of decabromodiphenyl ether (BDE-209) on benthic foraminiferal communities: Insights from Cell-Tracker Green staining and eDNA metabarcoding. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133652. [PMID: 38309158 DOI: 10.1016/j.jhazmat.2024.133652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/11/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
This study investigates the ecotoxicological effects of BDE-209, a persistent organic pollutant (POP) prevalent in Kuwait's coastal-industrial areas, on benthic foraminiferal communities. We conducted a mesocosm experiment in which we exposed benthic foraminiferal communities sampled from the coastal-industrial areas of Kuwait to a gradient of BDE-209 concentrations (0.01 to 20 mg/kg). The impact of exposure was assessed using live-staining and metabarcoding techniques. Despite the significantly different taxonomic compositions detected by the two techniques, our results show that BDE-209 significantly affects foraminiferal communities, with moderately high concentrations leading to reduced α-diversity and considerable taxonomic shifts in both molecular and morphological assemblages. At concentrations of 10 and 20 mg/kg, no living foraminifera were detected after 8 weeks, suggesting a threshold for their survival under BDE-209 exposure. The parallel responses of molecular and morphological communities confirm the reliability of both assessment methods. This study is the first to investigate the reaction of eukaryotic communities, specifically foraminifera, to POPs such as BDE-209, generating valuable insights that have the potential to enhance field studies and aid the refinement of sediment quality guidelines.
Collapse
Affiliation(s)
- Mattia Greco
- Institut de Ciències del Mar, Passeig Marítim de la Barceloneta, 37-49, Barcelona, Spain.
| | - Eqbal Al-Enezi
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait.
| | - Abduljamiu Amao
- Center for Integrative Petroleum Research, College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals, P.O. Box 5070, 31261 Dhahran, Saudi Arabia.
| | - Fabio Francescangeli
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700 Fribourg/Freiburg, Switzerland.
| | - Marco Cavaliere
- Department of Pure and Applied Sciences, Urbino University, Campus Scientifico, via Ca le Suore 2/4, 61029 Urbino, Italy.
| | - Carla Bucci
- Department of Pure and Applied Sciences, Urbino University, Campus Scientifico, via Ca le Suore 2/4, 61029 Urbino, Italy.
| | - Maria Toscanesi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy.
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy.
| | - Jan Pawlowski
- ID-Gene ecodiagnostics Ltd, 109 ch. du Pont-du-Centenaire, 1228 Plan-les-Ouates, Switzerland; Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, Sopot 81-712, Poland.
| | - Fabrizio Frontalini
- Department of Pure and Applied Sciences, Urbino University, Campus Scientifico, via Ca le Suore 2/4, 61029 Urbino, Italy.
| |
Collapse
|
39
|
Zhang X, Huang Y, Yang L, Chen S, Liu Y, Tang N, Li Z, Zhang X, Li L, Chen D. Dietary exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) induces oxidative damage promoting cell apoptosis primarily via mitochondrial pathway in the hepatopancreas of carp, Cyprinus carpio. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116192. [PMID: 38461574 DOI: 10.1016/j.ecoenv.2024.116192] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
To investigate the mechanisms of BDE-47 on hepatotoxicity in fish, this study examined the effects of dietary exposure to BDE-47 (40 and 4000 ng/g) on carp for 42 days. The results showed that BDE-47 significantly increased carp's condition factor and hepatosomatic index. Pathological results revealed unclear hepatic cord structure, hepatocytes swelling, cellular vacuolization, and inflammatory cell infiltration in the hepatopancreas of carp. Further investigation showed that ROS levels significantly increased on days 7, 14, and 42. Moreover, the activities of antioxidant enzymes SOD, GSH, CAT, and GST increased significantly from 1 to 7 days, and the transcription levels of antioxidant enzymes CAT, Cu-Zn SOD, Mn-SOD, GST, and GPX, and antioxidant pathway genes Keap1, Nrf2, and HO-1 changed significantly at multiple time-points during the 42 days. The results of apoptosis pathway genes showed that the mitochondrial pathway genes Bax, Casp3, and Casp9 were significantly upregulated and Bcl2 was significantly downregulated, while the transcription levels of FADD and PERK were significantly enhanced. These results indicate that BDE-47 induced oxidative damage in hepatopancreas, then it promoted cell apoptosis mainly through the mitochondrial pathway. This study provides a foundation for analyzing the mechanism of hepatotoxicity induced by BDE-47 on fish.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, China
| | - Yujie Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, China
| | - Lei Yang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, China; Yuxi Agriculture Vocation-Technical College, 41 Xiangjiazhuang Road, Yuxi, Yunnan, China
| | - Shuhuang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, China
| | - Youlian Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, China
| | - Xiaoli Zhang
- Institute of Fisheries Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, Sichuan, China
| | - Liangyu Li
- Institute of Fisheries Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, Sichuan, China.
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
40
|
Ma Y, Stubbings WA, Jin J, Cline-Cole R, Abdallah MAE, Harrad S. Impact of Legislation on Brominated Flame Retardant Concentrations in UK Indoor and Outdoor Environments: Evidence for Declining Indoor Emissions of Some Legacy BFRs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4237-4246. [PMID: 38386008 PMCID: PMC10919073 DOI: 10.1021/acs.est.3c05286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Concentrations of polybrominated diphenyl ethers, hexabromocyclododecane (HBCDD), and novel brominated flame retardants (NBFRs) were measured in indoor dust, indoor air, and outdoor air in Birmingham, UK. Concentrations of ΣBFRs ranged from 490 to 89,000 ng/g, 46-14,000 pg/m3, and 22-11,000 pg/m3, respectively, in UK indoor dust, indoor air, and outdoor air. BDE-209 and decabromodiphenyl ethane (DBDPE) were the main contributors. The maximum concentration of DBDPE (10,000 pg/m3) in outdoor air is the highest reported anywhere to date. In contrast with previous studies of outdoor air in Birmingham, we observed significant correlations between concentrations of tri- to hepta-BDEs and HBCDD and temperature. This may suggest that primary emissions from ongoing use of these BFRs have diminished and that secondary emissions (e.g., evaporation from soil) are now a potentially major source of these BFRs in outdoor air. Conversely, the lack of significant correlations between temperature and concentrations of BDE-209 and DBDPE may indicate that ongoing primary emissions from indoor sources remain important for these BFRs. Further research to clarify the relative importance of primary and secondary sources of BFRs to outdoor air is required. Comparison with earlier studies in Birmingham reveals significant (p < 0.05) declines in concentrations of legacy BFRs, but significant increases for NBFRs over the past decade. While there appear minimal health burdens from BFR exposure for UK adults, dust ingestion of BDE-209 may pose a significant risk for UK toddlers.
Collapse
Affiliation(s)
- Yulong Ma
- School
of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - William A. Stubbings
- School
of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Jingxi Jin
- School
of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Reginald Cline-Cole
- Department
of African Studies & Anthropology, School of History and Cultures, University of Birmingham, Birmingham B15 2TT, U.K.
| | | | - Stuart Harrad
- School
of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
41
|
Martinez G, Zhu J, Takser L, Baccarelli AA, Bellenger JP. Indoor environment, physiological factors, and diet as predictors of halogenated flame retardant levels in stool and plasma of children from a Canadian cohort. CHEMOSPHERE 2024; 352:141443. [PMID: 38346512 DOI: 10.1016/j.chemosphere.2024.141443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
Exposure to halogenated flame retardants (HFRs) has been associated with various adverse effects on human health. Human exposure to HFRs mainly occurs through diet, ingesting contaminated dust, and inhaling contaminated air. Understanding and characterizing the variables linked to these exposure pathways is essential for developing effective risk assessment and mitigation strategies. We investigated indoor environment quality, physiological factors, and diet as potential predictors of HFRs concentration in children's plasma and stool. A selected number of HFRs, including polybrominated diphenyl ethers (PBDEs), Dechlorane-like compounds, and emerging halogenated flame retardants, were measured in children from eastern Quebec (Canada). Information on indoor environment quality, physiological factors, and diet was obtained through self-report questionnaires. Our results show that lower brominated compounds, which are more volatile, were primarily correlated to indoor environment quality. Notably, the use of air purifiers was associated with lower BDE47 and BDE100 levels in blood and newer residential buildings were associated with higher concentrations of BDE47. A significant seasonal variation was found in stool samples, with higher levels of lower brominated PBDEs (BDE47 and BDE100) in samples collected during summer. No association between household income or maternal education degree and HFRs was found. Among emerging compounds, Dec602 and Dec603 were associated with the most variables, including the use of air dehumidifiers, air conditioning, and air purifiers, and the child's age and body fat percentage.
Collapse
Affiliation(s)
- Guillaume Martinez
- Département de chimie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jiping Zhu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Larissa Takser
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | - Jean-Philippe Bellenger
- Département de chimie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
42
|
Li YF, Hao S, Ma WL, Yang PF, Li WL, Zhang ZF, Liu LY, Macdonald RW. Persistent organic pollutants in global surface soils: Distributions and fractionations. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 18:100311. [PMID: 37712051 PMCID: PMC10498191 DOI: 10.1016/j.ese.2023.100311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/30/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
The distribution and fractionation of persistent organic pollutants (POPs) in different matrices refer to how these pollutants are dispersed and separated within various environmental compartments. This is a significant study area as it helps us understand the transport efficiencies and long-range transport potentials of POPs to enter remote areas, particularly polar regions. This study provides a comprehensive review of the progress in understanding the distribution and fractionation of POPs. We focus on the contributions of four intermedia processes (dry and wet depositions for gaseous and particulate POPs) and determine their transfer between air and soil. These processes are controlled by their partitioning between gaseous and particulate phases in the atmosphere. The distribution patterns and fractionations can be categorized into primary and secondary types. Equations are developed to quantificationally study the primary and secondary distributions and fractionations of POPs. The analysis results suggest that the transfer of low molecular weight (LMW) POPs from air to soil is mainly through gas diffusion and particle deposition, whereas high molecular weight (HMW) POPs are mainly via particle deposition. HMW-POPs tend to be trapped near the source, whereas LMW-POPs are more prone to undergo long-range atmospheric transport. This crucial distinction elucidates the primary reason behind their temperature-independent primary fractionation. However, the secondary distribution and fractionation can only be observed along a temperature gradient, such as latitudinal or altitudinal transects. An animation is produced by a one-dimensional transport model to simulate conceptively the transport of CB-28 and CB-180, revealing the similarities and differences between the primary and secondary distributions and fractionations. We suggest that the decreasing temperature trend along latitudes is not the major reason for POPs to be fractionated into the polar ecosystems, but drives the longer-term accumulation of POPs in cold climates or polar cold trapping.
Collapse
Affiliation(s)
- Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology (PA-HIT), Harbin, 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
- IJRC-PTS-NA, Toronto, ON, M2J 3N8, Canada
| | - Shuai Hao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology (PA-HIT), Harbin, 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology (PA-HIT), Harbin, 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Pu-Fei Yang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology (PA-HIT), Harbin, 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Wen-Long Li
- College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology (PA-HIT), Harbin, 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology (PA-HIT), Harbin, 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Robie W. Macdonald
- Institute of Ocean Sciences, Department of Fisheries and Oceans, P.O. Box 6000, Sidney, BC, V8L 4B2, Canada
- Centre for Earth Observation Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| |
Collapse
|
43
|
Qin M, Ma WL, Yang PF, Li WL, Wang L, Shi LL, Li L, Li YF. A level IV fugacity-based multimedia model based on steady-state particle/gas partitioning theory and its application to study the spatio-temporal trends of PBDEs in atmosphere of northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168622. [PMID: 37979874 DOI: 10.1016/j.scitotenv.2023.168622] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
Particle/gas (P/G) partitioning can significantly affect the environmental behavior of atmospheric pollutants. In this study, we established a large-scale level IV fugacity-based multimedia model (the S-L4MF Model) based on the steady-state P/G partitioning theory. The spatial and temporal trends with the atmospheric contamination of polybrominated diphenyl ethers (PBDEs) in northeastern China under various climate conditions were simulated by the model. There is a reasonable agreement between the simulated and measured gaseous and particulate concentrations of 3 selected PBDE congeners (BDE-47, -99 and -209). For BDE-47, -99 and -209, 91.9 %, 94.8 % and 86.2 % of data points in the evaluation of the spatial trend, whereas 97.4 %, 98.2 % and 91.6 % of data points in the evaluation of the temporal trend, exhibit discrepancies between the modeled and measured data within 1 order of magnitude. The S-L4MF Model performed better than the other model with the same configuration but an equilibrium-state P/G partitioning assumption. The sensitivity and uncertainty analysis indicated that the air temperature and hexadecane-air partition coefficient were the dominant influencing factors on atmospheric concentrations. In addition, the model was successfully applied to study the inter-annual and seasonal variations of gaseous and particulate concentrations of the three PBDEs during 1971-2020 in Harbin, a northeastern Chinese city. Finally, we illustrated the potential to use the model to understand P/G partitioning behavior and the effects of snow and ice on atmospheric concentrations. In summary, the S-L4MF Model provided a powerful and effective tool for studying the environmental behavior of atmospheric organic pollutants, especially in cold regions.
Collapse
Affiliation(s)
- Meng Qin
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, HIT, Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, HIT, Harbin 150090, China.
| | - Pu-Fei Yang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, HIT, Harbin 150090, China
| | - Wen-Long Li
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Lei Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environmental, Nanjing 210042, China
| | - Li-Li Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environmental, Nanjing 210042, China
| | - Li Li
- School of Public Health, University of Nevada, Reno, Reno, NV 89557, USA
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, HIT, Harbin 150090, China; IJRC-PTS-NA, Toronto, Ontario M2J 3N8, Canada
| |
Collapse
|
44
|
Durante CA, Manhães B, Santos-Neto EB, Azevedo ADF, Crespo EA, Lailson-Brito J. Natural and anthropogenic organic brominated compounds in the southwestern Atlantic ocean: Bioaccumulation in coastal and oceanic dolphin species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:123005. [PMID: 37995959 DOI: 10.1016/j.envpol.2023.123005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Marine pollution is considered a current driver of change in the oceans and despite the urgency to develop more studies, there is limited information in the southern hemisphere. This study aimed to analyze the levels and profiles of natural (MeO-PBDEs) and anthropogenic (BFRs: PBDEs, HBB, PBEB) organic brominated compounds in adipose tissue of two species of dolphins with different distribution and trophic requirements from the Southwestern Atlantic Ocean; the short-beaked common dolphin (Delphinus delphis) and the Fraser's dolphin (Lagenodelphis hosei). In addition, we aim to investigate maternal transfer and biological pattern relationship (sex, age, sexual maturity) in short-beaked common dolphin bioaccumulation. The levels of both groups of contaminants were in the same order of magnitude as those reported for other marine mammals on both a regional and global scale. BFRs profiles were dominated by BDE 28 and BDE 47 in short-beaked common dolphin and Fraser's dolphin, respectively, whereas 2-MeO-BDE 68 was the most abundant natural compound in both species. Evidence of maternal transfer, temporary increase in BDE 154 levels and no influence of sex, age, or sexual maturity on brominated compound concentration was observed in short-beaked common dolphin. This study fills a gap in the knowledge of the Southwestern Atlantic Ocean providing new information on emerging organic pollutants bioavailability for dolphins and, therefore, for the different trophic webs. In addition, it serves as a baseline for further contamination assessments.
Collapse
Affiliation(s)
- Cristian Alberto Durante
- Laboratorio de Mamíferos Marinos - Centro para el Estudio de Sistemas Marinos (CESIMAR - CONICET), Bv. Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina.
| | - Bárbara Manhães
- Laboratório de Mamíferos Aquáticos e Bioindicadores "Profa. Izabel Gurgel" (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro, 20530-013, Rio de Janeiro, RJ, Brazil.
| | - Elitieri Batista Santos-Neto
- Laboratório de Mamíferos Aquáticos e Bioindicadores "Profa. Izabel Gurgel" (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro, 20530-013, Rio de Janeiro, RJ, Brazil.
| | - Alexandre de Freitas Azevedo
- Laboratório de Mamíferos Aquáticos e Bioindicadores "Profa. Izabel Gurgel" (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro, 20530-013, Rio de Janeiro, RJ, Brazil.
| | - Enrique Alberto Crespo
- Laboratorio de Mamíferos Marinos - Centro para el Estudio de Sistemas Marinos (CESIMAR - CONICET), Bv. Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina.
| | - José Lailson-Brito
- Laboratório de Mamíferos Aquáticos e Bioindicadores "Profa. Izabel Gurgel" (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro, 20530-013, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
45
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
46
|
Williams RS, Brownlow A, Baillie A, Barber JL, Barnett J, Davison NJ, Deaville R, ten Doeschate M, Murphy S, Penrose R, Perkins M, Spiro S, Williams R, Jepson PD, Curnick DJ, Jobling S. Spatiotemporal Trends Spanning Three Decades Show Toxic Levels of Chemical Contaminants in Marine Mammals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20736-20749. [PMID: 38011905 PMCID: PMC10720377 DOI: 10.1021/acs.est.3c01881] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 11/29/2023]
Abstract
Despite their ban and restriction under the 2001 Stockholm Convention, persistent organic pollutants (POPs) are still widespread and pervasive in the environment. Releases of these toxic and bioaccumulative chemicals are ongoing, and their contribution to population declines of marine mammals is of global concern. To safeguard their survival, it is of paramount importance to understand the effectiveness of mitigation measures. Using one of the world's largest marine mammals strandings data sets, we combine published and unpublished data to examine pollutant concentrations in 11 species that stranded along the coast of Great Britain to quantify spatiotemporal trends over three decades and identify species and regions where pollutants pose the greatest threat. We find that although levels of pollutants have decreased overall, there is significant spatial and taxonomic heterogeneity such that pollutants remain a threat to biodiversity in several species and regions. Of individuals sampled within the most recent five years (2014-2018), 48% of individuals exhibited a concentration known to exceed toxic thresholds. Notably, pollutant concentrations are highest in long-lived, apex odontocetes (e.g., killer whales (Orcinus orca), bottlenose dolphins (Tursiops truncatus), and white-beaked dolphins (Lagenorhynchus albirostris)) and were significantly higher in animals that stranded on more industrialized coastlines. At the present concentrations, POPs are likely to be significantly impacting marine mammal health. We conclude that more effective international elimination and mitigation strategies are urgently needed to address this critical issue for the global ocean health.
Collapse
Affiliation(s)
- Rosie S. Williams
- Institute
of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, United Kingdom
- Department
of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, London WC1E 6BT, United
Kingdom
| | - Andrew Brownlow
- School
of Biodiversity One Health and Veterinary Medicine, College of Medical,
Veterinary & Life Sciences, University
of Glasgow, Glasgow G12 8QQ, United
Kingdom
| | - Andrew Baillie
- The
Natural
History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | - Jonathan L. Barber
- Centre
for Environment, Fisheries and Aquaculture
Science (Cefas), Pakefield Road, Lowestoft NR33 0HT, United Kingdom
| | - James Barnett
- Environment
and Sustainability Institute, University
of Exeter, Penryn Campus, Falmouth, Cornwall TR10 9FE, United Kingdom
| | - Nicholas J. Davison
- School
of Biodiversity One Health and Veterinary Medicine, College of Medical,
Veterinary & Life Sciences, University
of Glasgow, Glasgow G12 8QQ, United
Kingdom
| | - Robert Deaville
- Institute
of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, United Kingdom
| | - Mariel ten Doeschate
- School
of Biodiversity One Health and Veterinary Medicine, College of Medical,
Veterinary & Life Sciences, University
of Glasgow, Glasgow G12 8QQ, United
Kingdom
| | - Sinéad Murphy
- Marine
and Freshwater Research Centre, Department of Natural Science, School
of Science and Computing, Galway-Mayo Institute
of Technology, Galway H91 T8NW, Ireland
| | - Rod Penrose
- Marine
Environmental Monitoring, Penwalk, Llechryd, Cardigan, Ceredigion SA43 2PS, United
Kingdom
| | - Matthew Perkins
- Institute
of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, United Kingdom
| | - Simon Spiro
- Institute
of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, United Kingdom
| | - Ruth Williams
- Cornwall
Wildlife Trust, Truro, Cornwall TR4 9DJ, United Kingdom
| | - Paul D. Jepson
- Institute
of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, United Kingdom
| | - David J. Curnick
- Institute
of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, United Kingdom
| | - Susan Jobling
- Department
of Life Sciences, Institute of Health, Medicine and Environments, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| |
Collapse
|
47
|
van der Schyff V, Kalina J, Abballe A, Iamiceli AL, Govarts E, Melymuk L. Has Regulatory Action Reduced Human Exposure to Flame Retardants? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19106-19124. [PMID: 37992205 PMCID: PMC10702444 DOI: 10.1021/acs.est.3c02896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/10/2023] [Accepted: 09/29/2023] [Indexed: 11/24/2023]
Abstract
Flame retardant (FR) exposure has been linked to several environmental and human health effects. Because of this, the production and use of several FRs are regulated globally. We reviewed the available records of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDDs) in human breast milk from literature to evaluate the efficacy of regulation to reduce the exposure of FRs to humans. Two-hundred and seven studies were used for analyses to determine the spatial and temporal trends of FR exposure. North America consistently had the highest concentrations of PBDEs, while Asia and Oceania dominated HBCDD exposure. BDE-49 and -99 indicated decreasing temporal trends in most regions. BDE-153, with a longer half-life than the aforementioned isomers, typically exhibited a plateau in breast milk levels. No conclusive trend could be established for HBCDD, and insufficient information was available to determine a temporal trend for BDE-209. Breakpoint analyses indicated a significant decrease in BDE-47 and -99 in Europe around the time that regulation has been implemented, suggesting a positive effect of regulation on FR exposure. However, very few studies have been conducted globally (specifically in North America) after 2013, during the time when the most recent regulations have been implemented. This meta-analysis provides insight into global trends in human exposure to PBDEs and HBCDD, but the remaining uncertainty highlights the need for ongoing evaluation and monitoring, even after a compound group is regulated.
Collapse
Affiliation(s)
| | - Jiří Kalina
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech
Republic
| | - Annalisa Abballe
- Department
of Environment and Health, Italian National
Institute for Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Anna Laura Iamiceli
- Department
of Environment and Health, Italian National
Institute for Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Eva Govarts
- VITO
Health, Flemish Institute for Technological
Research (VITO), 2400 Mol, Belgium
| | - Lisa Melymuk
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech
Republic
| |
Collapse
|
48
|
Zhu L, Fauser P, Mikkelsen L, Sanderson H, Vorkamp K. Suspect and non-target screening of semi-volatile emerging contaminants in indoor dust from Danish kindergartens. CHEMOSPHERE 2023; 345:140451. [PMID: 37839752 DOI: 10.1016/j.chemosphere.2023.140451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Indoor dust is a sink of hundreds of organic chemicals, and humans may potentially be exposed to these via indoor activities. This study investigated potentially harmful semi-volatile organic contaminants in indoor dust from Danish kindergartens using suspect and non-target screening on gas chromatography (GC)-Orbitrap, supported by target analyses using GC-low resolution mass spectrometry (LRMS). A suspect list of 41 chemicals with one or more toxicological endpoints, i.e. endocrine disruption, carcinogenicity, neurotoxicity and allergenicity, known or suspected to be present in indoor dust, was established including phthalate and non-phthalate plasticizers, flame retardants, bisphenols, biocides, UV filters and other plastic additives. Of these, 29 contaminants were detected in the indoor dust samples, also including several compounds that had been banned or restricted for years. In addition, 22 chemicals were tentatively identified via non-target screening. Several chemicals have not previously been detected in Danish indoor dust. Most of the detected chemicals are known to be potentially harmful for human health while hazard assessment of the remaining compounds indicated limited risks to human. However, children were not specifically considered in this hazard assessment.
Collapse
Affiliation(s)
- Linyan Zhu
- Department of Environmental Science, Aarhus University, Denmark.
| | - Patrik Fauser
- Department of Environmental Science, Aarhus University, Denmark
| | - Lone Mikkelsen
- Green Transition Denmark, Kompagnistræde 22, Copenhagen K, 1208, Denmark
| | - Hans Sanderson
- Department of Environmental Science, Aarhus University, Denmark
| | - Katrin Vorkamp
- Department of Environmental Science, Aarhus University, Denmark
| |
Collapse
|
49
|
Martinez G, Zhu J, Takser L, Baccarelli AA, Bellenger JP. Complementarity of plasma and stool for the characterization of children's exposure to halogenated flame retardants: Update on analytical methods and application to a Canadian cohort. CHEMOSPHERE 2023; 344:140222. [PMID: 37734505 DOI: 10.1016/j.chemosphere.2023.140222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Sixteen halogenated flame retardants including Polybrominated diphenyl ethers (PBDEs), Dechlorane-like compounds, and emerging halogenated flame retardants were measured in stool and plasma samples from children aged 8.9-13.8 years old. Samples were obtained from a Canadian cohort investigating the effect of contaminants on children's neurodevelopment in the Estrie region, Québec, Canada. The method for stool analysis developed for this study showed good recovery for all targeted compounds (73%-93%) with associated relative standard deviation (RSD) in the range of 16.0%-30.7% for most compounds except for the thermosensitive BDE209, OBTMBI, and BTBPE, which showed slightly higher RSD, i.e., 49.3%, 37.2%, and 34.9% respectively. Complementarity investigation of stool and blood samples allowed us to better characterize human exposure to these halogenated flame retardants. Exposure patterns differed significantly between stool and blood, notably in the relative abundance of BDE47, BDE100, BDE99, and BDE153 and the detection frequencies of BDE209, syn-DP, anti-DP, and DBDPE. There was no correlation between the two matrices' PBDEs concentration levels except for BDE153 (rho = 0.44, p < 0.01). Our results indicate that future epidemiological studies may benefit from the use of stool as a complementary matrix to blood, especially investigations into chemical impacts on the gut microbiome. Results also revealed that children from the GESTE cohort, an Eastern Canadian semi-rural cohort, are exposed to both historical and emergent flame retardants.
Collapse
Affiliation(s)
- Guillaume Martinez
- Département de Chimie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jiping Zhu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Larissa Takser
- Département de Pédiatrie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | - Jean-Philippe Bellenger
- Département de Chimie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
50
|
de Oliveira-Ferreira N, Santos-Neto EB, Manhães BMR, Carvalho VL, Gonçalves L, de Castilho PV, Secchi ER, Botta S, Marcondes MCC, Colosio AC, Cremer MJ, Cunha HA, Azevedo AF, Bisi TL, Lailson-Brito J. The deep dive of organohalogen compounds: Bioaccumulation in the top predators of mesopelagic trophic webs, pygmy and dwarf sperm whales, from the Southwestern Atlantic ocean. CHEMOSPHERE 2023; 345:140456. [PMID: 37839740 DOI: 10.1016/j.chemosphere.2023.140456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Kogia sima and Kogia breviceps are apex predators of mesopelagic trophic webs being far from most anthropogenic threats. However, chemical pollutants and naturally synthesized compounds may travel long distances. This study aimed to use kogiid whales as sentinels of mesopelagic trophic webs in the Southwestern Atlantic Ocean. Persistent organic pollutants (POPs), e.g., polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and metabolites, mirex, hexachlorobenzene (HCB), polybrominated diphenylethers (PBDEs), pentabromoethylbenzene (PBEB) and hexabromobenzene (HBB), and the naturally produced methoxylated BDE (MeO-BDEs) were determined in the blubber of 16 K. sima and 15 K. breviceps. Among the organochlorine compounds, DDTs were the main group found in K. sima and in K. breviceps (1636.6 and 3983.3 ng g-1 lw, respective medians), followed by PCBs (425.9 and 956.1 ng g-1 lw, respectively), mirex (184.1 and 375.6 ng g-1 lw, respectively), and HCB (132.4 and 340.3 ng g-1 lw, respectively). As for the organobromine, the natural MeO-BDEs were predominant (1676.7 and 501.6 ng g-1 lw, respectively), followed by PBDEs (13.6 and 10.3 ng g-1 lw, respectively) and PBEB (2.2 and 2.9 ng g-1 lw, respectively). In general, POPs concentration was higher in K. breviceps than in K. sima. Conversely, MeO-BDEs concentration was higher in K. sima than in K. breviceps. Differences in concentrations in these sympatric odontocetes were attributed to distinct species, sampling sites, and biological parameters and suggest some level of niche segregation. It is noteworthy the long-range reach and bioaccumulation of these synthetic compounds in an unexplored habitat, that present an increasing economic interest.
Collapse
Affiliation(s)
- Nara de Oliveira-Ferreira
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas - Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, 21941-590, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Elitieri B Santos-Neto
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bárbara M R Manhães
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vitor L Carvalho
- Associação de Pesquisa e Preservação de Ecossistemas Aquáticos (AQUASIS), Av. Pintor João Figueiredo, S/N, 61627-250, Caucaia, Ceará, Brazil
| | - Letícia Gonçalves
- Associação de Pesquisa e Preservação de Ecossistemas Aquáticos (AQUASIS), Av. Pintor João Figueiredo, S/N, 61627-250, Caucaia, Ceará, Brazil
| | - Pedro V de Castilho
- Laboratório de Zoologia, Departamento de Engenharia de Pesca e Ciências Biológicas, Universidade do Estado de Santa Catarina (UDESC), Rua Coronel Fernandes Martins, 270, 88790-000, Laguna, Santa Catarina, Brazil
| | - Eduardo R Secchi
- Laboratório de Ecologia e Conservação da Megafauna Marinha (ECOMEGA), Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Avenida Itália s/n, 96203-900, Rio Grande, Rio Grande do Sul, Brazil
| | - Silvina Botta
- Laboratório de Ecologia e Conservação da Megafauna Marinha (ECOMEGA), Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Avenida Itália s/n, 96203-900, Rio Grande, Rio Grande do Sul, Brazil
| | - Milton C C Marcondes
- Instituto Baleia Jubarte (IBJ), Rua Barão do Rio Branco, 125, 45900-000, Caravelas, Bahia, Brazil
| | - Adriana C Colosio
- Instituto Baleia Jubarte (IBJ), Rua Barão do Rio Branco, 125, 45900-000, Caravelas, Bahia, Brazil
| | - Marta J Cremer
- Laboratório de Ecologia e Conservação de Tetrápodes Marinhos e Costeiros, Universidade da Região de Joinville (UNIVILLE), R. Rodovia Duque de Caxias, 6365, 89240-000, São Francisco do Sul, Santa Catarina, Brazil
| | - Haydée A Cunha
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, Rio de Janeiro, Brazil; Departamento de Genética, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre F Azevedo
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana L Bisi
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Lailson-Brito
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas - Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, 21941-590, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|