1
|
Zhao S, Xiao S, Qian Y, Huang CH, Aleksander-Kwaterczak U, Liu T, Zou Z, Chen J. Overlooked Role of Iodate in Micropollutant Degradation by UV/Periodate: Kinetic Modeling and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9312-9320. [PMID: 40309783 DOI: 10.1021/acs.est.4c14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The periodate (PI, IO4-) is known as an emerging oxidant and disinfectant in water treatment with iodate (IO3-) as the benign end product. However, new results herein strongly suggest that IO3- could contribute to pollutant degradation and trigger disinfection byproduct (DBP) formation in the UV/IO4- process. The degradation of micropollutants, e.g., 17α-ethinylestradiol (EE2), followed two-stage pseudo-first-order kinetics along with the conversion of IO4- (stage I) to IO3- (stage II) in the UV/IO4- process. The radical scavenging experiments and electron spin resonance technique confirmed both reactive oxygen species (e.g., •OH and O3) and reactive iodine species (RIS) (e.g., IO3•), contributing to contaminant degradation in the UV/IO4- system. A kinetic model based on first-principles was further developed to simulate reaction kinetics, revealing that •OH was the primary reactive species responsible for EE2 degradation in stage I, while RIS, especially IO3•, played major contributions in stage II. The photolysis of IO3- in stage II could increase the risk of iodinated DBP (I-DBP) formation, especially under acidic conditions. The new findings of this work broaden the mechanistic knowledge on the UV/IO4- process and highlight the overlooked role of IO3- in the worrisome I-DPB formation in the wastewater treatment.
Collapse
Affiliation(s)
- Shirong Zhao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shaoze Xiao
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yajie Qian
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Urszula Aleksander-Kwaterczak
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, Krakow, 30-059, PolandFaculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, A1. Mickiewicza 30, Krakow, 30-059, Poland
| | - Tongcai Liu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ziyu Zou
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiabin Chen
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Bai Q, Wu QY, Ye B, Wu YP, Lee JW, Lee MY, Wang WL. Assessing excimer far-UVC (222 nm) irradiation for advanced oxidation processes: Oxidants photochemistry and micropollutants degradation. WATER RESEARCH 2024; 267:122505. [PMID: 39378730 DOI: 10.1016/j.watres.2024.122505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/15/2024] [Accepted: 09/22/2024] [Indexed: 10/10/2024]
Abstract
The KrCl* excimer lamp (UV222) is a promising alternative of low-pressure mercury lamp (UV254) for UV-based advanced oxidation processes (UV-AOPs), because it is mercury-free and has high photon energy. But there lacks a comprehensive assessment of UV222-AOPs based on different radicals. Herein, the properties (e.g., oxidant decay and innate radical quantum yield), and micropollutant degradation, were comprehensively studied for representative oxidants (i.e., hydrogen peroxide, persulfate (PDS), monochloramine, and free active chlorine (FAC)) under UV222 irradiation. UV222 outperformed UV254 for the activation of oxidants with 2.6-14.4 times fluence-based kinetic constant (kF). The main reason of enhanced activation varied with oxidants: higher UV absorbance for H2O2, higher innate quantum yield for monochloramine and FAC, and both reasons for PDS. Overall, PDS was the optimum oxidant under UV222 for the degradation of 8 representative micropollutants because of effective promotion of radical formation, as confirmed by radical competitive kinetics and modeling simulations. In real water, UV222/PDS still show advantages than UV254/PDS in terms of micropollutant elimination efficacy (3.2-5.3 times) and energy consumption (33.9 %-57.6 % lower) though it was more inhibited by water constituents via competing for UV222 photons. This study fills gaps in photochemistry knowledge and will facilitate engineering practice of UV222-AOPs.
Collapse
Affiliation(s)
- Qing Bai
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bei Ye
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yun-Peng Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ju-Won Lee
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Min-Yong Lee
- Division of Chemical Research, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
3
|
Yin R, Dao PU, Zhao J, Wang K, Lu S, Shang C, Ren H. Reactive Nitrogen Species Generated from Far-UVC Photolysis of Nitrate Contribute to Pesticide Degradation and Nitrogenous Byproduct Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20676-20686. [PMID: 39504477 DOI: 10.1021/acs.est.4c05332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Climate change has resulted in increased use of pesticides and fertilizers in agriculture, leading to elevated pesticide and nitrate levels in aquatic ecosystems that receive agricultural runoff. In this study, we demonstrate that far-UVC (UV222) photolysis of nitrate rapidly degrades four pesticides in surface water, with a degradation rate constant 37.1-144.75 times higher than that achieved by UV254 photolysis of nitrate. The improved pesticide degradation is due not only to the enhanced direct photolysis by UV222 compared to UV254 but also to the increased generation of hydroxyl radicals (HO•) and reactive nitrogen species (e.g., NO2• and ONOO-) in the UV222/nitrate process. We determined the innate quantum yields of nitrate photolysis at 222 nm and incorporated these values into a kinetic model, allowing for the accurate prediction of nitrate photodecay and reactive species generation. While reactive nitrogen species predominantly contribute to pesticide degradation in the UV222/nitrate process, they also lead to the formation of nitration byproducts. Using stable isotope-labeled nitrate (15NO3-) combined with mass spectrometry, we confirmed that the nitration byproducts are formed from the reactive nitrogen species generated from nitrate photolysis. Additionally, we demonstrate that the UV222/nitrate process increases the formation potential of highly toxic nitrogenous chlorinated products (e.g., trichloronitromethane) during postchlorination in real surface water.
Collapse
Affiliation(s)
- Ran Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Institute for the Environment and Health, Nanjing University Suzhou Campus, Suzhou 215163, China
| | - Phuong Uyen Dao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Jing Zhao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Kun Wang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Senhao Lu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Institute for the Environment and Health, Nanjing University Suzhou Campus, Suzhou 215163, China
| |
Collapse
|
4
|
Zhou D, Liu H, Huang Y, Li Y, Wang N, Wang J. Overlooked role of CO 3· - reactivity with different dissociation forms of organic micropollutants in degradation kinetics modeling: A case study of fluoxetine degradation in a UV/peroxymonosulfate system. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135538. [PMID: 39173383 DOI: 10.1016/j.jhazmat.2024.135538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/27/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Selective oxidizing agent carbonate radical (CO3•-) is an important secondary radical in radical-based advanced oxidation technology for wastewater treatment. However, the role of CO3•- in removing ionizable organic micropollutants (OMs) under environmentally relevant conditions remains unclear. Herein we investigated CO3•- effect on degradation kinetics of fluoxetine in UV/peroxymonosulfate (PMS) system based on a built radical model considering CO3•- reactivity differences with its different dissociation forms. Results revealed that the model, which incorporated CO3•- selective reactivity (with determined second-order rate constants, ksrc,CO3·-, of 7.33 ×106 and 2.56 ×108 M-1s-1 for cationic and neutral fluoxetine, respectively) provided significantly more accurate predictions of fluoxetine degradation rates (k). A good linear correlation was observed between ksrc,CO3·- from experiments and literatures for 24 ionizable OMs and their molecular orbital energy gaps and oxidation potentials, suggesting the possible electron transfer reaction mechanism. Cl- slightly reduced the degradation rates of fluoxetine owing to rapid transformation of Cl• with HCO3- into CO3•-, which partially compensated for the quenching effects of Cl- on HO• and SO4•-. Dissolved organic matter significantly quenched reactive radicals. The constructed kinetic model successfully predicted fluoxetine degradation rates in real waters, with CO3•- being the dominant contributor (∼90 %) to this degradation process.
Collapse
Affiliation(s)
- Die Zhou
- School of Resources and Environment, Linyi University, Linyi, Shandong 276000, China; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Huaying Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yixi Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yingjie Li
- School of Resources and Environment, Linyi University, Linyi, Shandong 276000, China; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Nian Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jin Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
5
|
Wang Y, Xu G, Chen X, Shang Y, Lu G. Changes in combined toxicity of benzophenone-3 and humic acid on Daphnia magna and zebrafish during chlorination disinfection process. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135280. [PMID: 39059296 DOI: 10.1016/j.jhazmat.2024.135280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Conventional wastewater treatment methods cannot completely remove the ultraviolet (UV) filters or dissolved organic matter. The transformation characteristics of these substances during chlorination disinfection and the varying species-specific toxicities of their combinations remain unclear. Here, Daphnia magna and zebrafish were exposed to benzophenone-3 (BP-3) and humic acid (HA) before and after chlorination disinfection. The results from chemical indicators showed that chlorination treatment decreased UV254 values and changed the intensity of parallel factors in three-dimensional fluorescence. Based on chemical analysis, the chlorine concentration and chlorination time for the toxicity experiments were set at 5 mg/L and 6 h, respectively. Exposure to HA and BP-3 before and after chlorination decreased the heart rate (by 1.37-28.12 %) in both species. However, species-specific responses, including survival rate, swimming distance, and expression of genes related to neurodevelopment, growth, and oxidative stress, were induced by chlorination. Chlorination reduced the impact of HA exposure but worsened the effects of HA and BP-3 co-exposure on D. magna. However, in zebrafish, the toxic effects intensified in most of the exposure groups after chlorination. Correlation analysis showed that the parallel factors of three-dimensional fluorescence were correlated with toxic effects on zebrafish, whereas UV254 was more significantly correlated with toxic effects on D. magna. This study provides insights into the combined toxicity of UV filters and dissolved organic matter in different aquatic organisms during chlorination, which is useful for risk control and optimization of the chlorination process.
Collapse
Affiliation(s)
- Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Guanhua Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xi Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yujia Shang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
6
|
Tu X, Bai Y, Fu Q, Chang S, Zhang K, Pan Y, Xiao R, Fu Y, Zhang Q. Degradation behaviors of Nabumetone and its metabolite during UV/monochloramine process: Experimental and theoretical study. J Environ Sci (China) 2024; 142:103-114. [PMID: 38527876 DOI: 10.1016/j.jes.2023.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 03/27/2024]
Abstract
This study investigated degradation behaviors of a nonsteroidal anti-inflammatory drug Nabumetone (NMT) and its major metabolite 6-methoxy-2-naphthylacetic acid (MNA) in the coupling process of ultraviolet and monochloramine (UV/NH2Cl). The second-order rate constants of the contaminants reacting with reactive radicals (HO•, Cl•, Cl2•⁻, and CO3•⁻) were determined by laser flash photolysis experiments. HO• and Cl• contributed predominantly with 52.3% and 21.7% for NMT degradation and 60.8% and 22.3% for MNA degradation. The presence of chlorides retarded the degradation of NMT, while promoted the destruction of MNA, which was ascribed to the photosensitization effects of MNA under UV irradiation. Density functional theory (DFT) calculations revealed that radical adduct formation (RAF) was dominant pathway for both HO• and Cl• reacting with the contaminants, and hydrogen atom transfer (HAT) preferred to occur on side chains of NMT and MNA. NMT reacted with NO2• through single electron transfer (SET) with the second-order rate constant calculated to be 5.35 × 107 (mol/L)-1 sec-1, and the contribution of NO2• was predicted to be 13.0% of the total rate constant of NMT in pure water, which indicated that NO2• played a non-negligible role in the degradation of NMT. The acute toxicity and developmental toxicity of NMT were enhanced after UV/NH2Cl treatment, while those of MNA were alleviated. The transformation products of both NMT and MNA exhibited higher mutagenicity than their parent compounds. This study provides a deep understanding of the mechanism of radical degradation of NMT and MNA in the treatment of UV/NH2Cl.
Collapse
Affiliation(s)
- Xiang Tu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yunsong Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qing Fu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Sheng Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kunfeng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Yifu Fu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Qi Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
7
|
Wu L, Liu S, Liu H. Dichloramine Hydrolysis in Membrane Desalination Permeate: Mechanistic Insights and Implications for Oxidative Capacity in Potable Reuse Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13157-13167. [PMID: 38996057 PMCID: PMC11270831 DOI: 10.1021/acs.est.4c04547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
Dichloramine (NHCl2) naturally exists in reverse osmosis (RO) permeate due to its application as an antifouling chemical in membrane-based potable reuse treatment. This study investigated mechanisms of background NHCl2 hydrolysis associated with the generation of oxidative radical species in RO permeate, established a kinetic model to predict the oxidative capacity, and examined its removal efficiency on trace organic contaminants in potable reuse. Results showed that NHCl2 hydrolysis generated transient peroxynitrite (ONOO-) and subsequently dissociated into hydroxyl radical (HO•). The maximal HO• exposure was observed at an RO permeate pH of 8.4, higher than that from typical ultraviolet (UV)-based advanced oxidation processes. The HO• exposure during NHCl2 hydrolysis also peaked at a NH2Cl-to-NHCl2 molar ratio of 1:1. The oxidative capacity rapidly degraded 1,4-dioxane, carbamazepine, atenolol, and sulfamethoxazole in RO permeate. Furthermore, background elevated carbonate in fresh RO permeate can convert HO• to carbonate radical (CO3•-). Aeration of the RO permeate removed total carbonate, significantly increased HO• exposure, and enhanced the degradation kinetics of trace organic contaminants. The kinetic model of NHCl2 hydrolysis predicted well the degradation of contaminants in RO permeate. This study provides new mechanistic insights into NHCl2 hydrolysis that contributes to the oxidative degradation of trace organic contaminants in potable reuse systems.
Collapse
Affiliation(s)
- Liang Wu
- Environmental
Toxicology Program, University of California, Riverside, California 92521, United States
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Sitao Liu
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Haizhou Liu
- Environmental
Toxicology Program, University of California, Riverside, California 92521, United States
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
8
|
Dong F, Zhu J, Lou J, Chen Z, He Z, Song S, Zhu L, Crittenden JC. Unveiling the Mechanism and Kinetics of Pollutant Attenuation by Free Radicals Triggered from Goethite in Water Distribution Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12664-12673. [PMID: 38953777 DOI: 10.1021/acs.est.4c04022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Investigating the fate of persistent organic pollutants in water distribution systems (WDSs) is of great significance for preventing human health risks. The role of iron corrosion scales in the migration and transformation of organics in such systems remains unclear. Herein, we determined that hydroxyl (•OH), chlorine, and chlorine oxide radicals are generated by Fenton-like reactions due to the coexistence of oxygen vacancy-related Fe(II) on goethite (a major constituent of iron corrosion scales) and hypochlorous acid (HClO, the main reactive chlorine species of residual chlorine at pH ∼ 7.0). •OH contributed mostly to the decomposition of atrazine (ATZ, model compound) more than other radicals, producing a series of relatively low-toxicity small molecular intermediates. A simplified kinetic model consisting of mass transfer of ATZ and HClO, •OH generation, and ATZ oxidation by •OH on the goethite surface was developed to simulate iron corrosion scale-triggered residual chlorine oxidation of organic compounds in a WDS. The model was validated by comparing the fitting results to the experimental data. Moreover, the model was comprehensively applicable to cases in which various inorganic ions (Ca2+, Na+, HCO3-, and SO42-) and natural organic matter were present. With further optimization, the model may be employed to predict the migration and accumulation of persistent organic pollutants under real environmental conditions in the WDSs.
Collapse
Affiliation(s)
- Feilong Dong
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, Peoples Republic of China
| | - Jiani Zhu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, Peoples Republic of China
| | - Jinxiu Lou
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, Peoples Republic of China
| | - Zefang Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhiqiao He
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, Peoples Republic of China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, Peoples Republic of China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Peoples Republic of China
| | - John C Crittenden
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
9
|
Zhang H, Jiang M, Su P, Lv Q, Zeng G, An L, Ma J, Yang T. Novel sunlight-induced monochloramine activation system for efficient microcontaminant abatement. WATER RESEARCH 2024; 258:121798. [PMID: 38820990 DOI: 10.1016/j.watres.2024.121798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
As an eco-friendly and sustainable energy, solar energy has great application potential in water treatment. Herein, simulated sunlight was for the first time utilized to activate monochloramine for the degradation of environmental organic microcontaminants. Various microcontaminants could be efficiently degraded in the simulated sunlight/monochloramine system. The average innate quantum yield of monochloramine over the wavelength range of simulated sunlight was determined to be 0.068 mol/Einstein. With the determined quantum yield, a kinetic model was established. Based on the good agreement between the simulated and measured photolysis and radical contributions to the degradation of ibuprofen and carbamazepine, the major mechanism of monochloramine activation by simulated sunlight was proposed. Chlorine radical (Cl∙) and hydroxyl radical (HO∙) were major radicals responsible for microcontaminant degradation in the system. Moreover, the model facilitated a deep investigation into the effects of different reaction conditions (pH, monochloramine concentration, and water matrix components) on the degradation of ibuprofen and carbamazepine, as well as the roles of the involved radicals. The differences between simulated and measured degradation data of each microcontaminant under all conditions were less than 10 %, indicating the strong reliability of the model. The model could also make good prediction for microcontaminant degradation in the natural sunlight/monochloramine system. Furthermore, the formation of disinfection byproducts (DBPs) was evaluated at different oxidation time in simulated sunlight/monochloramine with and without post-chloramination treatment. In real waters, organic components showed more pronounced suppression on microcontaminant degradation efficiency than inorganic ions. This study provided a systematic investigation into the novel sunlight-induced monochloramine activation system for efficient microcontaminant degradation, and demonstrated the potential of the system in practical applications.
Collapse
Affiliation(s)
- Haochen Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Maoju Jiang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Peng Su
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Qixiao Lv
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Ge Zeng
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Linqian An
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Tao Yang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong Province 529020, China; Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, Guangdong Province, China.
| |
Collapse
|
10
|
Hernández-Freyle C, Castilla-Acevedo SF, Harders AN, Acosta-Herazo R, Acuña-Bedoya JD, Santoso M, Torres-Ceron DA, Amaya-Roncancio S, Mueses MA, Machuca-Martínez F. Ultraviolet activation of monochloramine to treat contaminants of emerging concern: reactions, operating parameters, byproducts, and opportunities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40758-40777. [PMID: 38819507 DOI: 10.1007/s11356-024-33681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024]
Abstract
The presence of CECs in aquatic systems has raised significant concern since they are potentially harmful to the environment and human health. Eliminating CECs has led to the development of alternatives to treat wastewater, such as advanced oxidation processes (AOPs). The ultraviolet-mediated activation of monochloramine (UV/NH2Cl) is a novel and relatively unexplored AOPs for treating pollutants in wastewater systems. This process involves the production of amino radicals (•NH2) and chlorine radicals (Cl•) from the UV irradiation of NH2Cl. Studies have demonstrated its effectiveness in mitigating various CECs, exhibiting advantages, such as the potential to control the amount of toxic disinfection byproducts (TDBPs) formed, low costs of reagents, and low energy consumption. However, the strong influence of operating parameters in the degradation efficiency and existence of NH2Cl, the lack of studies of its use in real matrices and techno-economic assessments, low selectivity, and prolonged treatment periods must be overcome to make this technology more competitive with more mature AOPs. This review article revisits the state-of-the-art of the UV/NH2Cl technology to eliminate pharmaceutical and personal care products (PPCPs), micropollutants from the food industry, pesticides, and industrial products in aqueous media. The reactions involved in the production of radicals and the influence of operating parameters are covered to understand the formation of TDBPs and the main challenges and limitations of the UV/NH2Cl to degrade CECs. This review article generates critical knowledge about the UV/NH2Cl process, expanding the horizon for a better application of this technology in treating water contaminated with CECs.
Collapse
Affiliation(s)
- Carlos Hernández-Freyle
- Natural and Exact Sciences Department, Universidad de La Costa, Calle 58 #55 - 66, 080002, Barranquilla, Colombia
| | - Samir F Castilla-Acevedo
- Natural and Exact Sciences Department, Universidad de La Costa, Calle 58 #55 - 66, 080002, Barranquilla, Colombia.
- Chemical & Petroleum Engineering Department, The University of Kansas, Lawrence, KS, 66047, USA.
| | - Abby N Harders
- Chemical & Petroleum Engineering Department, The University of Kansas, Lawrence, KS, 66047, USA
| | - Raúl Acosta-Herazo
- Photocatalysis and Solar Photoreactors Engineering, Modeling & Applications of Advanced Oxidation Technologies, Department of Chemical Engineering, Universidad de Cartagena, Zip code 1382 - Postal 195, Cartagena, Colombia
- Centro de Desarrollo Tecnológico en Ingeniería Sostenible, Laboratorio de Simulación y Procesos - Simprolab, Turbaco, Colombia
| | - Jawer D Acuña-Bedoya
- Faculty of Chemical Sciences, Universidad Autónoma de Nuevo León, Ciudad Universitaria, Av. Universidad S/N. C. P., 66455, San Nicolás de los Garza, Nuevo León, México
| | - Melvin Santoso
- Chemical & Petroleum Engineering Department, The University of Kansas, Lawrence, KS, 66047, USA
| | - Darwin A Torres-Ceron
- Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, 170003, Manizales, Colombia
- Departamento de Física, Universidad Tecnológica de Pereira (UTP), 660003, Pereira, Colombia
- Gestión & Medio Ambiente, 170004, Manizales, Colombia
| | - Sebastián Amaya-Roncancio
- Natural and Exact Sciences Department, Universidad de La Costa, Calle 58 #55 - 66, 080002, Barranquilla, Colombia
| | - Miguel A Mueses
- Photocatalysis and Solar Photoreactors Engineering, Modeling & Applications of Advanced Oxidation Technologies, Department of Chemical Engineering, Universidad de Cartagena, Zip code 1382 - Postal 195, Cartagena, Colombia
| | - Fiderman Machuca-Martínez
- Escuela de Ingeniería Química, CENM, Universidad del Valle, Calle 13 #100-00, 76001 GAOX, Cali, Colombia
| |
Collapse
|
11
|
Zhang H, Jiang M, Su P, Lv Q, Zeng G, An L, Cao J, Zhou Y, Snyder SA, Ma J, Yang T. Refinement of kinetic model and understanding the role of dichloride radical (Cl 2•-) in radical transformation in the UV/NH 2Cl process. WATER RESEARCH 2024; 254:121440. [PMID: 38479170 DOI: 10.1016/j.watres.2024.121440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
The ultraviolet/monochloramine (UV/NH2Cl) process is an emerging advanced oxidation process with promising prospects in water treatment. Previous studies developed kinetic models of UV/NH2Cl for simulating radical concentrations and pollutant degradation. However, the reaction rate constants of Cl2•- with bicarbonate and carbonate (kCl2•-, HCO3- and kCl2•-, CO32-) were overestimated in literature. Consequently, when dosing 1 mM chloride and 1 mM bicarbonate, the current models of UV/NH2Cl severely under-predicted the experimental concentrations of three important radicals (i.e., hydroxyl radical (HO•), chlorine radical (Cl•), and dichloride radical (Cl2•-)) with great deviations (> 90 %). To investigate this issue, the transformation reactions among these three radicals in UV/NH2Cl were systematically studied. For the first time, it was found that in addition to Cl•, Cl2•- was also an important parent radical of HO• in the presence of chloride, and chloride could effectively compensate the inhibitory effect of bicarbonate on HO• generation in the system. Moreover, reactions and rate constants in current models were scrutinized from corresponding literature, and the reaction rate constants of Cl2•- with bicarbonate and carbonate (kCl2•-, HCO3- and kCl2•-, CO32-) were reevaluated to be 1.47 × 105 and 3.78 × 106 M-1s-1, respectively, by laser flash photolysis. With the newly obtained rate constants, the refined model could accurately simulate concentrations of all three radicals under different chloride and bicarbonate dosages with satisfactory deviations (< 30 %). Meanwhile, the refined model performed much better in predicting pollutant degradation and radical contribution compared with the unrefined model (with the previously estimated kCl2•-, HCO3- and kCl2•-, CO32-). The results of this study enhanced the accuracy and applicability of the kinetic model of UV/NH2Cl, and deepened the understanding of radical transformation in the process.
Collapse
Affiliation(s)
- Haochen Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 637141, Singapore
| | - Maoju Jiang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Peng Su
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Qixiao Lv
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Ge Zeng
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Linqian An
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Jiachun Cao
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Yang Zhou
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Shane Allen Snyder
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 637141, Singapore
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tao Yang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong Province 529020, China; Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen, Guangdong Province 529020, China.
| |
Collapse
|
12
|
Liu W, Chen B, Yang Y, Li B, Pan H, Luo W. Photo-anammox by vacuum ultraviolet tandem chlorine. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132876. [PMID: 37944232 DOI: 10.1016/j.jhazmat.2023.132876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/15/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Excessive ammonia (NH4+) discharge can lead to algal blooms and disrupt water sustainability, so its control is imperative. Although microbiology-triggered anammox process is promising, its application is limited due to time-consuming cultivation of specific microorganisms and need for skilled operation. To bypass these barriers, this study proposed and verified a photo-induced anammox technology that removes NH4+ and total nitrogen (TN) from water by ultraviolet (UV)/vacuum UV (VUV)/chlorine under anoxic conditions. Under the Cl/N mass ratio of 5:1, the anoxic VUV/UV/chlorine process achieved 66.8% removal of 10 mg-N/L NH4+ within 10 min along with 57.8% reduction in TN. Besides the evidence from TN loss, this study confirmed nitrogen gas (N2) as the primary degradation product at low dissolved oxygen (DO) concentration of 2.0 mg/L. The selective conversion of NH4+ into N2 was mainly attributed to reactive nitrogen species (RNS, 42.5%) and reactive chlorine species (RCS, 57.5%). The TN removal efficiency was insensitive to certain variations of pH (7.0-9.0), NH4+ concentration (1-30 mg-N/L), chloride (50-125 mg/L), and sulfate (25-100 mg/L), but sensitive to DO and bicarbonate (25-100 mg/L). Given its robustness and high efficiency, the anoxic VUV/UV/chlorine technology may serve as a potentially promising alternative for NH4+ and TN alleviation in wastewater.
Collapse
Affiliation(s)
- Wenzhe Liu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Baiyang Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Yang Yang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Boqiang Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Huimei Pan
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Wang Luo
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
13
|
Seah ZQ, Leow S, Snyder SA. The role of reactive chlorine and nitrogen species in micropollutant degradation in UV/monochloramine. CHEMOSPHERE 2024; 347:140542. [PMID: 37926167 DOI: 10.1016/j.chemosphere.2023.140542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Monochloramine (NH2Cl) is applied upstream of reverse osmosis (RO) membranes for biofouling control. Residual NH2Cl can undergo UV photolysis downstream, generating reactive species for an AOP to occur. At the bench-scale, NH2Cl is typically generated from combining sodium hypochlorite and ammonium chloride or sulfate. This study investigated the degradation of four compounds of interest - acetaminophen, caffeine, sucralose and 1,4-dioxane - in UV/NH2Cl at the bench scale to study their reactivity with reactive chlorine species (RCS) and reactive nitrogen species (RNS). With methanol acting as a scavenger of •OH radicals, the performance of UV/NH2Cl was compared to UV/H2O2 and UV/HOCl. In UV/H2O2, dioxane was severely inhibited at 1-2 mg/L H2O2 and comparable at 5 mg/L to UV/NH2Cl. When ammonium sulfate ((NH4)2SO4) was used as the ammonia source over ammonium chloride (NH4Cl), the overall degradation of micropollutants was higher and caffeine was exclusively degraded. At 1-2 mg/L NH2Cl, dioxane degraded by 16.2-17.8% and 2.92-5.29% from (NH4)2SO4 and NH4Cl respectively while caffeine degraded by 7.45-9.61% with NH2Cl ((NH4)2SO4), but not degrade with NH2Cl (NH4Cl). The higher concentration of chloride ions from NH4Cl significantly influenced the speciation of generated radicals and impacted micropollutant degradation. This suggests that the reactivity of more selective RCS (Cl2•-, •ClO, ClOH•-) and RNS (•NH2, •NO, •NO2, etc.) varies with micropollutants of interest. The presence of higher chloride concentration from the ammonia source inhibited the generation of •OH radicals with •OH consumed by RNS to form NO3- (μg/L levels), showing the impact of the choice of ammonia source and the water matrix on UV/NH2Cl performance.
Collapse
Affiliation(s)
- Zi Quan Seah
- School of Civil & Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Shijie Leow
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Shane A Snyder
- School of Civil & Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore.
| |
Collapse
|
14
|
Wang J, Zheng M, Du E, Chu W, Guo H. A Novel Source of Radicals from UV/Dichloroisocyanurate for Surpassing Abatement of Emerging Contaminants Versus Conventional UV/Chlor(am)ine Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18452-18461. [PMID: 36668904 DOI: 10.1021/acs.est.2c06327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ultraviolet (UV)/chlor(am)ine processes are emerging advanced oxidation processes (AOPs) for water decontamination and raising continuous attention. However, limitations appear in the UV/hypochlorite and UV/monochloramine for removing specific contaminants ascribed to the differences in the sorts and yields of free radicals. Here, this study reports UV/dichloroisocyanurate (NaDCC) as a novel source of radicals. NaDCC was demonstrated to be a well-balanced compound between hypochlorite and monochloramine, and it had significant UV absorption and a medium intrinsic quantum yield. The UV/NaDCC produced more substantial hydroxyl radicals (·OH) and reactive chlorine species (RCSs, including Cl·, ClO·, and Cl2·-) than conventional UV/chlor(am)ine, thereby generating a higher oxidation efficiency. The reaction mechanisms, environmental applicability, and energy requirements of the UV/NaDCC process for emerging contaminants (ECs) abatement were further investigated. The results showed that ·OH and ·NH2 attacked ECs mostly through hydrogen atom transfer (HAT) and radical adduct formation, whereas Cl· destroyed ECs mainly through HAT and single electron transfer, with ClO· playing a certain role through HAT. Kinetic model analyses revealed that the UV/NaDCC outperformed the conventional UV/chlor(am)ine in a variety of water matrices with superior degradation efficiency, significantly saving up to 96% electrical energy per order. Overall, this study first demonstrates application prospects of a novel AOP using UV/NaDCC, which can compensate for the deficiency of the conventional UV/chlor(am)ine AOPs.
Collapse
Affiliation(s)
- Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Erdeng Du
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute, Sichuan University, Yibin 644000, China
| |
Collapse
|
15
|
Wang K, Shang C, Yin R, Xiang Y. Generation of Reactive Nitrogen Species in UV Photolysis of Dichloramine and Their Incorporation into Nitrogenous Byproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18735-18743. [PMID: 37126657 DOI: 10.1021/acs.est.2c08810] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Dichloramine (NHCl2) often coexists with monochloramine (NH2Cl) in reverse osmosis (RO) permeate in potable reuse scenarios when NH2Cl is added upstream of RO for membrane fouling control such that UV photolysis of NHCl2 occurs during the downstream UV/chloramine process. However, the formation of reactive nitrogen species (RNS) and their incorporation into byproducts during the UV/NHCl2 process are largely unknown. This study quantitatively evaluated the generation of RNS in the UV/NHCl2 process and investigated the role of RNS in micropollutant transformation. UV photolysis of NHCl2 produced comparable RNS concentration to that of NH2Cl at the same oxidant dosage (100 μM) at pH 5.5. Under the experimental conditions, the RNS contributed greatly (40.6%) to N,N-diethyl-3-methylbenzamide (DEET) degradation. By using 15N-labeling and mass spectrometry methods, seven nitrogenous byproducts of DEET degradation with the incorporation of nitrogen originating from the RNS were detected. Among these seven byproducts, six were identified to contain a nitro group (-NO2). While the UV/NHCl2 process formed comparable intensities of -NO-containing products to those in the UV/NH2Cl process, the later process formed 3-91% higher intensities of -NO2-containing products. These findings are essential in furthering our understanding of the contribution of the UV/NHCl2 process in potable reuse scenarios.
Collapse
Affiliation(s)
- Kun Wang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000, Hong Kong, SAR, China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000, Hong Kong, SAR, China
- Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000, Hong Kong, SAR, China
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000, Hong Kong, SAR, China
| | - Yingying Xiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000, Hong Kong, SAR, China
| |
Collapse
|
16
|
Qi X, Rao D, Zhang J, Sun B. The altered treatment efficiency of the bisulfite/permanganate process by chloride. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132173. [PMID: 37531765 DOI: 10.1016/j.jhazmat.2023.132173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/23/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
Bisulfite-activated permanganate (S(IV)/Mn(VII)) process has proven to be a promising method for rapidly degrading micropollutants. Previous studies have shown that the treatment efficiency of the S(IV)/Mn(VII) process suffer from significant water matrix effects while the mechanism still remains unclear. This study systematically investigates the influence of chloride, which is a common water constituent, on the S(IV)/Mn(VII) process. Addition of chloride decreased the removal of methyl phenyl sulfoxide, phenol, benzoic acid and carbamazepine by the S(IV)/Mn(VII) process but increased dimethoxybenzene removal. The distribution of reactive species in the S(IV)/Mn(VII) process in the absence and presence of chloride was determined with relative rate method. The S(IV)/Mn(VII) process primarily relies on SO4•- and reactive manganese species (RMnS) for pollutant abatement while dosing chloride decreased the concentration of these reactive species. Reactive chlorine species (RCS), such as Cl2•- and ClO•, are formed through the reaction of SO4•- with chloride, and become more important at high concentrations of chloride. RMnS includes Mn(VI), Mn(V) and Mn(III), but none of these species are capable of oxidizing chloride. However, chloride retarded the consumption of bisulfite which reduced RMnS and RCS in turn. DOM inhibited pollutant removal by the S(IV)/Mn(VII) process while the impact mechanism was significantly altered by chloride. Additionally, the study observed a synergistic inhibition of DOM and chloride on the degradation of pollutants that are highly reactive towards Cl2•- and ClO•.
Collapse
Affiliation(s)
- Xianhu Qi
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Dandan Rao
- Department of Chemical & Environmental Engineering, University of California, Riverside, CA 92521, United States
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China; School of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| | - Bo Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
17
|
Li B, Pan H, Chen B. A review of factors affecting the formation and roles of primary and secondary reactive species in UV 254-based advanced treatment processes. WATER RESEARCH 2023; 244:120537. [PMID: 37683496 DOI: 10.1016/j.watres.2023.120537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/10/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
The presence of organic micropollutants (OMPs) in water has been threatening human health and aquatic ecosystems worldwide. Ultraviolet-based advanced treatment processes (UV-ATPs) are one of the most effective and promising technologies to transform OMPs in water; therefore, an increasing number of emerging UV-ATPs are proposed. However, appropriate selection of UV-ATPs for practical applications is challenging because each UV-ATP generates different types and concentrations of reactive species (RSs) that may not be sufficient to degrade specific types of OMPs. Furthermore, the concentrations and types of RSs are highly influenced by anions and dissolved organic matter (DOM) coexisting in real waters, making systematic understandings of their interfering mechanisms difficult. To identify and address the knowledge gaps, this review provides a comparison of the generations and variations of various types of RSs in different UV-ATPs. These analyses not only prove the importance of water matrices on formation and consumption of primary and secondary RSs under different conditions, but also highlight the non-negligible roles of optical properties and reactivities of DOM and anions. For example, different UV-ATPs may be applicable to different target OMPs under different conditions; and the concentrations and roles of secondary RSs may outperform those of primary RSs in OMP degradation for real applications. With continuous progress and outstanding achievements in the UV-ATPs, it is hoped that the findings and conclusions of this review could facilitate further research and application of UV-ATPs.
Collapse
Affiliation(s)
- Boqiang Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Huimei Pan
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Baiyang Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
18
|
Cheng Z, Shang C, Westerhoff P, Ling L. Novel polymer optical fibers with high mass-loading g-C 3N 4 embedded metamaterial porous structures achieve rapid micropollutant degradation in water. WATER RESEARCH 2023; 242:120234. [PMID: 37354840 DOI: 10.1016/j.watres.2023.120234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
The performance of conventional photocatalytic reactors suffers from low photocatalyst mass-loading densities affixed to surfaces and light scattering losses or light attenuation in slurry reactors. These limitations are overcome by fabrication of high mass-loading g-C3N4 embedded metamaterial porous structures on flexible polymeric optical fibers (g-C3N4-POFs). In this study, the fabricated g-C3N4-POFs contain g-C3N4 with mass-loading 100-1000x higher than previouly reported, enabling efficient light delivery to g-C3N4 and improved pollutant mass transport within metamaterial porous structures. The key fabrication step involved using acetone, based on its high saturated vapor pressure and low dielectric constant, making roll-to-roll mass production of high mass-loading photocatalyst-embedded metamaterial POFs possible at room-temperature within seconds. Using bundles of 150 individual g-C3N4-POFs in the reactors, we achieved 4x higher degradation rates for micropollutants under visible light irradiation at 420 nm compared with equivalent mass-to-volume ratios of photocatalysts in a slurry suspension reactor. The bundled g-C3N4-POF reactor showed no degradation in the structural integrity or loss of pollutant degradation using deionized or model drinking water under accumulated HO• exposures of ∼4.5 × 10-9 M•s after 20 cycles of treatment. It operates continuously at g-C3N4 dosages equivalent to 100-1000 g/L and a water depth over 40 cm, making it a feasible alternative to conventional photocatalytic reactors.
Collapse
Affiliation(s)
- Zihang Cheng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and The Built Environment, Arizona State University, Tempe, AZ 85287 USA
| | - Li Ling
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China.
| |
Collapse
|
19
|
Shan P, Lin J, Zhai Y, Dong S, How ZT, Qin R. Transformation and toxicity studies of UV filter diethylamino hydroxybenzoyl hexyl benzoate in the swimming pools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163498. [PMID: 37068670 DOI: 10.1016/j.scitotenv.2023.163498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 06/01/2023]
Abstract
Diethylamino hydroxybenzoyl hexyl benzoate (DHHB), an ultraviolet (UV) filter, can be found in sunscreens and other personal care products and thus can be introduced into swimming pools through the swimmers. In outdoor pools, DHHB will inevitably interact with free chlorine and sunlight. Therefore, the mechanism of solar‑chlorine chemical transformation of DHHB, as well as the environmental risk, were investigated in this work. In chlorinated with solar (Cl + solar) process, free chlorine was the dominant contributor to 85% of the DHHB degradation, while hydroxyl radicals and reactive chlorine species contributed only 15% because of low free radical generation and fast DHHB and free chlorine reaction rates. Scavenging matrices, such as Cl-, NH4+, and dissolved organic matter (DOM), inhibited the degradation of DHHB in the Cl + solar process, while Br-, HCO3-, NO3-, and urea promoted DHHB degradation. DHHB degradation was inhibited in tap water swimming pool samples, while it was enhanced in seawater pool samples by the Cl + solar process. Seven transformation by-products (TBPs) including mono-, dichlorinated, dealkylate, and monochloro-hydroxylated TBPs were identified. Three degradation pathways, chlorine substitution, chlorine and hydroxyl substitution, and dealkylation were proposed for DHHB transformation in the Cl + solar process. Both Quantitative structure-activity relationship and Aliivibrio fischeri toxicity tests demonstrated increased toxicity for the chlorinated TBPs. A risk assessment of the DHHB and its TBPs suggested that both DHHB and its chlorinated TBPs pose a significant health risk.
Collapse
Affiliation(s)
- Panduo Shan
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Haikou, Hainan 570228, PR China
| | - Jiayi Lin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Haikou, Hainan 570228, PR China
| | - Yanbo Zhai
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Haikou, Hainan 570228, PR China
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, PR China
| | - Zuo Tong How
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Haikou, Hainan 570228, PR China
| | - Rui Qin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Haikou, Hainan 570228, PR China.
| |
Collapse
|
20
|
Sánchez-Montes I, Santos GOS, Dos Santos AJ, Fernandes CHM, Souto RS, Chelme-Ayala P, El-Din MG, Lanza MRV. Toxicological aspect of water treated by chlorine-based advanced oxidation processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163047. [PMID: 36958544 DOI: 10.1016/j.scitotenv.2023.163047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 05/13/2023]
Abstract
As well established in the literature, residual toxicity is an important parameter for evaluating the sanitary and environmental safety of water treatment processes, and this parameter becomes even more crucial when chlorine-based processes are applied for water treatment. Eliminating initial toxicity or preventing its increase after water treatment remains a huge challenge mainly due to the formation of highly toxic disinfection by-products (DBPs) that stem from the degradation of organic contaminants or the interaction of the chlorine-based oxidants with different matrix components. In this review, we present a comprehensive discussion regarding the toxicological aspects of water treated using chlorine-based advanced oxidation processes (AOPs) and the recent findings related to the factors influencing toxicity, and provide directions for future research in the area. The review begins by shedding light on the advances made in the application of free chlorine AOPs and the findings from studies conducted using electrochemical technologies based on free chlorine generation. We then delve into the insights and contributions brought to the fore regarding the application of NH2Cl- and ClO2-based treatment processes. Finally, we broaden our discussion by evaluating the toxicological assays and predictive models employed in the study of residual toxicity and provide an overview of the findings reported to date on this subject matter, while giving useful insights and directions for future research on the topic.
Collapse
Affiliation(s)
- Isaac Sánchez-Montes
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil; Department of Civil and Environmental Engineering, University of Alberta, T6G 1H9 Edmonton, AB, Canada.
| | - Géssica O S Santos
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Alexsandro J Dos Santos
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Carlos H M Fernandes
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Robson S Souto
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Pamela Chelme-Ayala
- Department of Civil and Environmental Engineering, University of Alberta, T6G 1H9 Edmonton, AB, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, T6G 1H9 Edmonton, AB, Canada
| | - Marcos R V Lanza
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil.
| |
Collapse
|
21
|
Cheng X, Cheng Z, Jing B, Ao Z, Shang C, Ling L. Visible light-driven NH 2Cl activation by g-C 3N 4 photocatalysis producing reactive nitrogen species to degrade bisphenol A. WATER RESEARCH 2023; 235:119889. [PMID: 36966682 DOI: 10.1016/j.watres.2023.119889] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/26/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
The photolysis of monochloramine (NH2Cl), a widely used disinfectant, under UVC irradiation produces different radicals for the micropollutant degradation. For the first time, this study demonstrates the degradation of bisphenol A (BPA) via the NH2Cl activation by graphitic carbon nitride (g-C3N4) photocatalysis using visible light-LEDs at 420 nm, termed as the Vis420/g-C3N4/NH2Cl process. The process produces •NH2, •NH2OO, •NO and •NO2 via the eCB-- and O2•--induced activation pathways and •NHCl and NHClOO• via the hVB+-induced activation pathway. The produced reactive nitrogen species (RNS) enhanced 100% of the BPA degradation compared with the Vis420/g-C3N4. Density functional theory calculations confirmed the proposed NH2Cl activation pathways and further demonstrated that eCB-/O2•- and hVB+ induced the cleavage of N-Cl and N-H bonds in NH2Cl, respectively. The process converted 73.5% of the decomposed NH2Cl to nitrogen-containing gas, compared with that of approximately 20% in the UVC/NH2Cl process, leaving much less ammonia, nitrite and nitrate in water. Among different operating conditions and water matrices tested, of particular significance is natural organic matter of 5 mgDOC/L only reduced 13.1% of the BPA degradation compared against that of at least 46% reduction in the UVC/NH2Cl process. Only 0.017-0.161 µg/L of disinfection byproducts were produced, two orders of magnitudes lower than that in the UVC/chlorine and UVC/NH2Cl processes. The combined use of visible light-LEDs, g-C3N4 and NH2Cl significantly improves the micropollutant degradation and reduces the energy consumption and byproduct formation of the NH2Cl-based AOP.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 000, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Zihang Cheng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 000, China; School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Binghua Jing
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 000, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control Guangdong University of Technology, Guangzhou 510006, China
| | - Zhimin Ao
- Advanced interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 000, China; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 000, China.
| | - Li Ling
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 000, China; Advanced interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China.
| |
Collapse
|
22
|
Mackey E, Hofmann R, Festger A, Vanyo C, Moore N, Chen T, Wang C, Taylor-Edmonds L, Andrews S. UV-chlorine advanced oxidation for potable water reuse: A review of the current state of the art and research needs. WATER RESEARCH X 2023; 19:100183. [PMID: 37292177 PMCID: PMC10245334 DOI: 10.1016/j.wroa.2023.100183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
This paper reports conclusions from a recent study completed for the Water Research Foundation and the State of California to offer guidance on UV-chlorine advanced oxidation for potable water reuse. The fundamentals of UV-chlorine advanced oxidation are discussed, and lessons learned from some of the early adopters of this technology are presented. Important highlights include the significant impact of ammonia and chloramines on UV-chlorine treatment, challenges associated with predicting UV-chlorine performance due to complex photochemistry, and an ongoing need to monitor potential byproducts and transformation products when employing any form of advanced oxidation for potable reuse.
Collapse
Affiliation(s)
- E. Mackey
- Brown and Caldwell, 201N Civic Dr. #300, Walnut Creek, CA 94596, USA
| | - R. Hofmann
- University of Toronto, 35St. George Street, Ontario M5S 1A4, Canada
| | - A. Festger
- Brown and Caldwell, 2N. Central Ave, Phoenix, AZ 85004, USA
| | - C. Vanyo
- Hazen & Sawyer, 1400 E Southern Ave Suite 340, Tempe, AZ 85282, USA
| | - N. Moore
- Department of Civil and Mineral Engineering, University of Toronto, 35St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - T. Chen
- University of Toronto, 35St. George Street, Ontario M5S 1A4, Canada
| | - C. Wang
- Department of Civil Engineering, University of Manitoba, 15 Gillson Street, Winnipeg, Manitoba R3T 5V6, Canada
| | | | - S.A. Andrews
- University of Toronto, 35St. George Street, Ontario M5S 1A4, Canada
| |
Collapse
|
23
|
Yaghoot-Nezhad A, Wacławek S, Madihi-Bidgoli S, Hassani A, Lin KYA, Ghanbari F. Heterogeneous photocatalytic activation of electrogenerated chlorine for the production of reactive oxygen and chlorine species: A new approach for Bisphenol A degradation in saline wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130626. [PMID: 36588018 DOI: 10.1016/j.jhazmat.2022.130626] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
UV-E-chlorination/hematite nanoparticles (UV/E-Cl/HNs) as a heterogeneous photocatalytic activation of electrogenerated chlorine was assessed for the degradation of bisphenol A (BPA) as a new approach based on the generation of reactive chlorine and oxygen species. The prepared sample was characterized using multiple techniques, such as XRD, FTIR, FESEM, EDS, and BET-BJH. An excellent decontamination efficiency of 99.4% was achieved within 40 min of electrolysis under optimum conditions (pH of 5, HNs dosage 100 mg/L, current density of 20 mA/cm2, and NaCl concentration of 50 mM). The HOCl content was reduced more swiftly in the presence of ultraviolet (UV) irradiation and hematite, resulting in the production of oxidative radicals (i.e., •OH, Cl•, and Cl2•-). The scavenging experiments also verified the vital role of these radicals in oxidative treatment. The UV/E-Cl/HNs process is readily supplied with hydroxyl radicals through several mechanisms. Bicarbonate ions showed a noticeable inhibitory impact, whereas nitrate and sulfate anions only slightly affected BPA degradation. The HNs were a recoverable and stable catalyst for six cycles. Furthermore, the ECOSAR program predicted that the UV/E-Cl/HNs can be labeled as an environmental-friendly process. Eventually, reasonable degradation pathways were proposed based on the identified by-products through experimental and theoretical approaches.
Collapse
Affiliation(s)
- Ali Yaghoot-Nezhad
- Department of Chemical Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan 63187-14331, Iran
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic
| | - Soheila Madihi-Bidgoli
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan.
| | - Farshid Ghanbari
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
24
|
Xu B, Deng L, Zhang S, Luo W, Hu J, Tan C, Singh RP. Analysis of degradation kinetic modeling and mechanism of chlorinated-halonitromethanes under UV/monochloramine treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120972. [PMID: 36584856 DOI: 10.1016/j.envpol.2022.120972] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Chlorinated-halonitromethanes (Cl-HNMs) including chloronitromethane (CNM), dichloronitromethane (DCNM), and trichloronitromethane (TCNM) are nitrogenous disinfection by-products, which have high cytotoxicity and genotoxicity to human. This study aimed to investigate the degradation kinetic modeling and mechanism of Cl-HNMs under monochloramine activated by ultraviolet of 254 nm (UV/NH2Cl) treatment. The first-principle kinetic model of UV/NH2Cl process was developed to simulate Cl-HNMs degradation. Of note, the second-order rate constants of Cl-HNMs reacting with HO• (∼108 M-1 s-1), Cl• (kCl•,CNM or DCNM = ∼1010 M-1 s-1, kCl•,TCNM = ∼102 M-1 s-1), Cl2•- (kCl•,CNM or DCNM = ∼109 M-1 s-1, kCl•,TCNM = ∼101 M-1 s-1), ClO• (∼105-106 M-1 s-1) and CO3•- (∼106-107 M-1 s-1) were obtained by the first-principle kinetic model. Overall, Cl-HNMs degradation under UV/NH2Cl treatment was successfully predicted by the kinetic model under various conditions. It was found that UV (>60%) was dominant in Cl-HNMs degradation, followed by HO• (3.8%-24.5%), reactive chlorine species (RCS, 0.9%-28.8%) and CO3•- (0-26.1%). Among the contributions of RCS, Cl• and Cl2•- were main radicals in the degradation of CNM and DCNM, while ClO• was responsible for the abatement of TCNM. The minimum EE/O values under UV/NH2Cl treatment were approximately 30% lower than those under UV treatment. Finally, the possible degradation pathways were proposed, including hemolytic/heterolytic cleavage of Cl-HNMs by UV irradiation, hydrogen abstraction/electron transfer of CNM and DCNM and adduct reaction of TCNM by free radicals. This study based on the kinetic model is beneficial to predict and control the concentrations of Cl-HNMs under UV/NH2Cl treatment.
Collapse
Affiliation(s)
- Bohui Xu
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China.
| | - Shizheng Zhang
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China
| | - Wei Luo
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China
| | - Jun Hu
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China; College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chaoqun Tan
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China
| | | |
Collapse
|
25
|
Huang C, Yang T, Li M, Mai J, Wu S, Li J, Ma G, Liu C, Jia J, Ma J. Generation of hydroxyl radicals via activation of Cr(VI) by UVA-LED for rapid decontamination: The important role of Cr(V). JOURNAL OF HAZARDOUS MATERIALS 2023; 442:129913. [PMID: 36152544 DOI: 10.1016/j.jhazmat.2022.129913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/19/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Hexavalent chromium (Cr(VI)) was activated by ultraviolet-A light-emitting diode (UVA-LED), resulting in efficient removal of various pollutants, including dye, pharmaceuticals, and pesticides, with pseudo-first-order rate constants of 0.0610-0.159 min-1. Comparatively, UVA-LED or Cr(VI) alone barely degraded selected pollutants. Both HO• and Cr(V) were produced in the UVA-LED/Cr(VI) system based on scavenging and probing experiments, UV-visible and electron spin resonance spectra analysis. HO• was demonstrated to be the dominant reactive species via stepwise regeneration of Cr(V) to Cr(VI). The quantum yield of HO• was determined to be 7.79 × 10-4 mol Es-1 at a Cr(VI) dosage of 0.5 mM and pH of 6.0. Additionally, the degradation efficiency of sulfamethoxazole (SMX) as a model compound decreased linearly as UVA-LED wavelengths increased from 365 to 405 nm, while SMX was barely degraded at visible light irradiation wavelength ranges (449-505 nm). SMX degradation efficiency increased from 71.0 % to 97.5 % as Cr(VI) dosage increased from 0.05 to 0.7 mM. pH displayed a negative impact on SMX degradation with its removal efficiency decreasing from 99.4 % to 13.3 % as pH increased from 3.0 to 9.0. This study first reported that HO• was generated via activation of Cr(VI) by UVA-LED, which is instructive for the removal of pollutants co-existed in chromium-containing wastewater.
Collapse
Affiliation(s)
- Cui Huang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China.
| | - Mingwei Li
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Jiamin Mai
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Sisi Wu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University at Zhu Hai, Zhu Hai 519087, China
| | - Guobiao Ma
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Changyu Liu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Jianbo Jia
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
26
|
Lu S, Shang C, Sun B, Xiang Y. Dominant Dissolved Oxygen-Independent Pathway to Form Hydroxyl Radicals and the Generation of Reactive Chlorine and Nitrogen Species in Breakpoint Chlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:150-159. [PMID: 36512687 DOI: 10.1021/acs.est.2c05540] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to the complexities of the interactions between ammonia, chlor(am)ine, and intermediate species such as ONOOH, the radical formation in breakpoint chlorination and the consequential removal of micropollutants remain largely unexplored. In this study, the dominant generation pathway of HO•, as a primary radical in breakpoint chlorination, was examined, and the generations of HO•, reactive chlorine species (RCS), and reactive nitrogen species (RNS) were quantitatively evaluated. A dissolved oxygen (DO)-independent pathway was verified by 18O labeling and contributed over 90% to HO• generation. The commonly believed pathway, the decomposition of ONOOH involving DO, contributed only 7% to HO• formation in breakpoint chlorination. The chlorine to nitrogen (Cl/N) ratio and pH greatly affected the generations and speciations of the reactive species. An optimum Cl/N mass ratio for HO•, Cl2•-, and RNS generations occurred at the breakpoint (i.e., Cl/N mass ratio = 9), whereas excessive free chlorine shifted the radical speciation toward ClO• at Cl/N mass ratios above the breakpoint. Basic conditions inhibited the generations of HO• and RNS but significantly promoted that of ClO•. These findings improved the fundamental understanding of the radical chemistry of breakpoint chlorination, which can be extended to estimate the degradations of micropollutants of known rate constants toward the reactive species with influences from the Cl/N ratio and pH in real-world applications.
Collapse
Affiliation(s)
- Senhao Lu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon000, Hong Kong SAR, China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon000, Hong Kong SAR, China
- Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon000, Hong Kong SAR, China
| | - Bo Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong26637, China
| | - Yingying Xiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon000, Hong Kong SAR, China
| |
Collapse
|
27
|
Wang J, Qu D, Bu L, Zhu S. Inactivation efficiency of P. Aeruginosa and ARGs removal in UV/NH2Cl process: Comparisons with UV and NH2Cl. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Zhang H, Li Z, Zhou X, Lu X, Gu H, Ma J. Insight into the performance of UV/chlorine/TiO 2 on carbamazepine degradation: The crucial role of chlorine oxide radical (ClO •). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158345. [PMID: 36037890 DOI: 10.1016/j.scitotenv.2022.158345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
The UV/chlorine (UC) system is a homogeneous advanced oxidation process with increasing attention in water decontamination. The addition of TiO2 is a newly found strategy to enhance the generation of hydroxyl radical (HO•) and chlorine radical (Cl•) in the UC system. However, the crucial role of chlorine oxide radical (ClO•, generated by the reactions of HO• and Cl• with chlorine) on pollutant degradation, has not been noticed in UV/chlorine/TiO2 (UCT), the heterogeneous photocatalytic system for chlorine activation. Herein, the role of ClO• in UCT was clarified through quenching experiments combined with model simulations during carbamazepine degradation. Tert-butyl alcohol completely inhibited while bicarbonate only partly suppressed carbamazepine degradation in UCT, indicating the important role of ClO•. The second-order reaction rate constant between ClO• and carbamazepine (kClO•,carbamazepine) was fitted to be (1.21 ± 0.08) × 107 M-1 s-1 by the kinetic model, which avoided the influence of carbonate radical (CO3•-), whose contribution couldn't be excluded during kClO•,carbamazepine determination in commonly used competitive kinetic methods with bicarbonate. With the obtained kClO•,carbamazepine, model simulation suggested that ClO• contributed about 50 % to carbamazepine degradation in UCT, and its concentration was less affected under varied conditions (solution pH, chlorine, bicarbonate, and chloride concentration) to keep an efficient carbamazepine degradation. On the contrary, pollutant degradation dominated by HO• in UCT was largely inhibited with the increase of pH, chlorine, and bicarbonate concentration. In addition to the promotion of degradation efficiency, less disinfection byproducts and lower energy requirement were found in UCT compared with UC. Furthermore, UCT could maintain satisfactory degradation efficiency and energy saving in ground water and surface water samples. Results of this study unraveled the crucial role of ClO• for pollutant degradation in UCT, and showed bright prospects and great potentials of the system in water treatment.
Collapse
Affiliation(s)
- Haochen Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhuoyu Li
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xiaoqun Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaohui Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haiteng Gu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
29
|
Kovoor George N, Wols B, Santoro D, Borboudakis M, Bell K, Gernjak W. A novel approach to interpret quasi-collimated beam results to support design and scale-up of vacuum UV based AOPs. WATER RESEARCH X 2022; 17:100158. [PMID: 36325477 PMCID: PMC9619181 DOI: 10.1016/j.wroa.2022.100158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
UV-C at 254 nm and vacuum UV (VUV) at 185 nm are the two major emission lines of a low-pressure mercury lamp. Upon absorption of VUV photons, water molecules and selected inorganic anions generate hydroxyl (HO.) and other redox radicals, both capable of degrading organic micropollutants (OMPs), thereby offering the opportunity to reduce H2O2 and energy consumption in UV-based advanced oxidation process (AOP). To be successfully scaled-up, the dual-wavelength VUV+UV/H2O2 AOP requires laboratory-scale experiments to establish design criteria. The figures of merit typically used for reporting and interpreting quasi-collimated beam results for UV-based AOPs (time, dose, absorbed energy and EEO) are insufficient and inaccurate when employed for dual-wavelength AOP such as the VUV+UV/H2O2 AOP, and do not support system scale-up. In this study, we introduce a novel figure of merit, useful absorbed energy (uAE), defined as fraction of absorbed energy that results in the generation of oxidative radicals. Here, results of quasi-collimated beam VUV+UV/H2O2 AOP experiments on four different water matrices are used to introduce 2D plots that employ both uAEUV and uAEVUV as a novel method to represent laboratory-scale experiments of VUV+UV/H2O2 AOP and demonstrate how the 2D plots sufficiently support scale-up of the AOP.
Collapse
Affiliation(s)
- N. Kovoor George
- University of Girona, Plaça de Sant Domènec, 3, 17004 Girona, Spain
- Wetsus, European Center of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911MA Leeuwarden, the Netherlands
| | - B.A. Wols
- Wetsus, European Center of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911MA Leeuwarden, the Netherlands
- KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - D. Santoro
- Trojan Technologies, 3020 Gore Rd, London, ON N5V 4T7, Canada
- USP Technologies Canada ULC, 3020 Gore Rd, London, ON N5V 4T7, Canada
| | - M. Borboudakis
- Wetsus, European Center of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911MA Leeuwarden, the Netherlands
| | - K. Bell
- Brown and Caldwell, Walnut Creek, CA94596 , California, United States
| | - W. Gernjak
- Catalan Institute for Water Research (ICRA), 17003 Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08100 Barcelona, Spain
| |
Collapse
|
30
|
Comparison of sulfate radical with other reactive species. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Sun Q, Yang J, Fan Y, Cai K, Lu Z, He Z, Xu Z, Lai X, Zheng Y, Liu C, Wang F, Sun Z. The role of trace N-Oxyl compounds as redox mediator in enhancing antiviral ribavirin elimination in UV/Chlorine process. APPLIED CATALYSIS. B, ENVIRONMENTAL 2022; 317:121709. [PMID: 35812172 PMCID: PMC9254691 DOI: 10.1016/j.apcatb.2022.121709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/19/2022] [Accepted: 07/03/2022] [Indexed: 05/19/2023]
Abstract
Ribavirin (RBV) is an antiviral drug used for treating COVID-19 infection. Its release into natural waters would threaten the health of aquatic ecosystem. This study reports an effective approach to degrade RBV by the trace N-oxyl compounds (2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) and N-Hydroxyphthalimide (NHPI)) enhanced UV activated free chlorine (UV/Chlorine) process. The results indicated that TEMPO and NHPI at low concentrations (0.1 μM and 1 μM, respectively) could strongly enhance RBV degradation in both deionized water with different pHs and practical surface water. The enhancement was verified to be attributed to the transformation of TEMPO and NHPI into their reactive forms (i.e., TEMPO+ and PINO), which generations deeply relied on radicals. The two N-oxyl compounds inhibit ClO• yield by hindering the reaction of free chlorine vs. HO• and Cl•. The analyses on acute toxicities of RBV degradation products indicate that UV/Chlorine/N-oxyl compounds process can detoxify RBV more efficiently than UV/Chlorine process.
Collapse
Affiliation(s)
- Qiyuan Sun
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China
| | - Jing Yang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yongjie Fan
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Kaicong Cai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China
| | - Zhilei Lu
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Zhenle He
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Zeping Xu
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Xingteng Lai
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yuyi Zheng
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Changqing Liu
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Feifeng Wang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China
| | - Zhe Sun
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| |
Collapse
|
32
|
Meng T, Su X, Sun P. Degradation of geosmin and 2-methylisoborneol in UV-based AOPs for photoreactors with reflective inner surfaces: Kinetics and transformation products. CHEMOSPHERE 2022; 306:135611. [PMID: 35810865 DOI: 10.1016/j.chemosphere.2022.135611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/30/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Geosmin (GSM) and 2-methylisoborneol (2-MIB) are representative musty/earthy odor compounds commonly present in surface water. In present study, the degradation of GSM and 2-MIB subject to different UV-based advanced oxidation processes (AOPs), including UV/H2O2, UV/S2O82-, UV/chlorine, and UV/chloramine, in a phosphate-buffered saline (PBS) was conducted in a photoreactor with reflective inner surfaces and compared with that in an environmental water sample. A dynamic model to predict the degradation of GSM and 2-MIB in the photoreactor with reflective inner surfaces in the four UV-based AOPs was developed applying the second-order rate constants for the GSM and 2-MIB with primary reactive species (i.e., •OH, •Cl, and •SO4-) determined in this study. The model was proven to successfully simulate the degradation of GSM and 2-MIB. In addition, 8, 7, 8, and 11 degradation intermediates were detected from UV/H2O2, UV/S2O82-, UV/chlorine, and UV/chloramine in this study, and possible degradation pathways were proposed. This study is the first to report the degradation kinetics and formation products of GSM and 2-MIB in UV/chloramine. Research based on photoreactors with reflective inner surfaces may provide some guidance for eliminating GSM and 2-MIB in UV-based AOPs for full-scale engineering applications.
Collapse
Affiliation(s)
- Tan Meng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiao Su
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Tianjin Waterworks Group Co. Ltd., Tianjin, 300040, China; Tianjin Water Group Co. Ltd., Tianjin, 300042, China.
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
33
|
Li D, Feng Z, Zhou B, Chen H, Yuan R. Impact of water matrices on oxidation effects and mechanisms of pharmaceuticals by ultraviolet-based advanced oxidation technologies: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157162. [PMID: 35798102 DOI: 10.1016/j.scitotenv.2022.157162] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The binding between water components (dissolved organic matters, anions and cations) and pharmaceuticals influences the migration and transformation of pollutants. Herein, the impact of water matrices on drug degradation, as well as the electrical energy demands during UV, UV/catalysts, UV/O3, UV/H2O2-based, UV/persulfate and UV/chlorine processes were systemically evaluated. The enhancement effects of water constituents are due to the powerful reactive species formation, the recombination reduction of electrons and holes of catalyst and the catalyst regeneration; the inhibition results from the light attenuation, quenching effects of the excited states of target pollutants and reactive species, the stable complexations generation and the catalyst deactivation. The transformation pathways of the same pollutant in various AOPs have high similarities. At the same time, each oxidant also can act as a special nucleophile or electrophile, depending on the functional groups of the target compound. The electrical energy per order (EEO) of drugs degradation may follow the order of EEOUV > EEOUV/catalyst > EEOUV/H2O2 > EEOUV/PS > EEOUV/chlorine or EEOUV/O3. Meanwhile, it is crucial to balance the cost-benefit assessment and toxic by-products formation, and the comparison of the contaminant degradation pathways and productions in the presence of different water matrices is still lacking.
Collapse
Affiliation(s)
- Danping Li
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuqing Feng
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
34
|
Wang Y, Yin R, Tang Z, Liu W, He C, Xia D. Reactive Nitrogen Species Mediated Inactivation of Pathogenic Microorganisms during UVA Photolysis of Nitrite at Surface Water Levels. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12542-12552. [PMID: 35976624 DOI: 10.1021/acs.est.2c01136] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
UVA photolysis of nitrite (NO2-) occurs in a number of natural and engineered aquatic systems. This study reports for the first time that pathogenic microorganisms can be effectively inactivated during the coexposure of UVA irradiation and NO2- under environmentally relevant conditions. The results demonstrated that more than 3 log inactivation of Escherichia coli K-12, Staphylococcus aureus, and Spingopyxis sp. BM1-1 was achieved by UVA photolysis of 2.0 mg-N L-1 of NO2- in synthetic drinking water and real surface water. The inactivation was mainly attributed to the reactive species generated from UVA photolysis of NO2- rather than UVA irradiation or NO2- oxidation alone. The inactivation was predominantly contributed by the reactive nitrogen species (NO2• and ONOO-/HOONO) instead of the reactive oxygen species (HO• or O2•-). A kinetic model to simulate the reactive species generation from UVA photolysis of NO2- was established, validated, and used to predict the contributions of different reactive species to the inactivation under various environmental conditions. Several advanced tools (e.g., D2O - labeling with Raman spectroscopy) were used to demonstrate that the inactivation by the UVA/NO2- treatment was attributed to the DNA destruction by the reactive nitrogen species, which completely suppressed the viable but nonculturable (VBNC) states and the reactivation of bacteria. This study highlights a novel process for the inactivation of pathogenic microorganisms in water and emphasizes the critical role of reactive nitrogen species in water disinfection and purification.
Collapse
Affiliation(s)
- Yongyi Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Zhuoyun Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Weiqi Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
35
|
Lu Z, Ling Y, Sun W, Liu C, Mao T, Ao X, Huang T. Antibiotics degradation by UV/chlor(am)ine advanced oxidation processes: A comprehensive review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119673. [PMID: 35760199 DOI: 10.1016/j.envpol.2022.119673] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/21/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics are emerging contaminants in aquatic environments which pose serious risks to the ecological environment and human health. Advanced oxidation processes (AOPs) based on ultraviolet (UV) light have good application prospects for antibiotic degradation. As new and developing UV-AOPs, UV/chlorine and derived UV/chloramine processes have attracted increasing attention due to the production of highly reactive radicals (e.g., hydroxyl radical, reactive chlorine species, and reactive nitrogen species) and also because they can provide long-lasting disinfection. In this review, the main reaction pathways of radicals formed during the UV/chlor (am)ine process are proposed. The degradation efficiency, influencing factors, generation of disinfection by-products (DBPs), and changes in toxicity that occur during antibiotic degradation by UV/chlor (am)ine are reviewed. Based on the statistics and analysis of published results, the effects caused by energy consumption, defined as electrical energy per order (EE/O), increase in the following order: UV/chlorine < UV/peroxydisulfate (PDS)< UV/H2O2 < UV/persulfate (PS) < 265 nm and 285 nm UV-LED/chlorine (EE/O). Some inherent problems that affect the UV/chlor (am)ine processes and prospects for future research are proposed. The use of UV/chlor (am)ine AOPs is a rich field of research and has promising future applications, and this review provides a theoretical basis for that.
Collapse
Affiliation(s)
- Zedong Lu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yanchen Ling
- School of Environment, Tsinghua University, Beijing, 100084, China; Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing, 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China.
| | - Chaoran Liu
- Beijing Waterworks Group Co., LTD, Beijing, 100031, China
| | - Ted Mao
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China; MW Technologies, Inc., London, Ontario, Canada
| | - Xiuwei Ao
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tianyin Huang
- Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
36
|
Yang X, Rosario-Ortiz FL, Lei Y, Pan Y, Lei X, Westerhoff P. Multiple Roles of Dissolved Organic Matter in Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11111-11131. [PMID: 35797184 DOI: 10.1021/acs.est.2c01017] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Advanced oxidation processes (AOPs) can degrade a wide range of trace organic contaminants (TrOCs) to improve the quality of potable water or discharged wastewater effluents. Their effectiveness is impacted, however, by the dissolved organic matter (DOM) that is ubiquitous in all water sources. During the application of an AOP, DOM can scavenge radicals and/or block light penetration, therefore impacting their effectiveness toward contaminant transformation. The multiple ways in which different types or sources of DOM can impact oxidative water purification processes are critically reviewed. DOM can inhibit the degradation of TrOCs, but it can also enhance the formation and reactivity of useful radicals for contaminants elimination and alter the transformation pathways of contaminants. An in-depth analysis highlights the inhibitory effect of DOM on the degradation efficiency of TrOCs based on DOM's structure and optical properties and its reactivity toward oxidants as well as the synergistic contribution of DOM to the transformation of TrOCs from the analysis of DOM's redox properties and DOM's transient intermediates. AOPs can alter DOM structure properties as well as and influence types, mechanisms, and extent of oxidation byproducts formation. Research needs are proposed to advance practical understanding of how DOM can be exploited to improve oxidative water purification.
Collapse
Affiliation(s)
- Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| |
Collapse
|
37
|
Wojnárovits L, Wang J, Chu L, Takács E. Rate constants of chlorine atom reactions with organic molecules in aqueous solutions, an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55492-55513. [PMID: 35688978 PMCID: PMC9374632 DOI: 10.1007/s11356-022-20807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/10/2022] [Indexed: 05/15/2023]
Abstract
Rate constants of chlorine atom (Cl•) reactions (kCl•) determined using a large variation of experimental methods, including transient measurements, steady-state and computation techniques, were collected from the literature and were discussed together with the reaction mechanisms. The kCl• values are generally in the 108-109 mol-1 dm3 s-1 range when the basic reaction between the Cl• and the target molecule is H-atom abstraction. When Cl• addition to double bonds dominates the interaction, the kCl• values are in the 1 × 109-2 × 1010 mol-1 dm3 s-1 range. In the kCl• = 1 × 1010-4 × 1010 mol-1 dm3 s-1 range, single-electron-transfer reactions may also contribute to the mechanism. The Cl• reactions with organic molecules in many respects are similar to those of •OH, albeit Cl• seems to be less selective as •OH. However, there is an important difference, as opposed to Cl• in the case of •OH single-electron-transfer reactions have minor importance. The uncertainty of Cl• rate constant determinations is much higher than those of •OH. Since Cl• reactions play very important role in the emerging UV/chlorine water purification technology, some standardization of the rate constant measuring techniques and more kCl• measurements are recommended.
Collapse
Affiliation(s)
- László Wojnárovits
- Institute for Energy Security and Environmental Safety, Centre for Energy Research, Radiation Chemistry Department, ELKH, Budapest, Hungary
| | - Jianlong Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Libing Chu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Erzsébet Takács
- Institute for Energy Security and Environmental Safety, Centre for Energy Research, Radiation Chemistry Department, ELKH, Budapest, Hungary.
| |
Collapse
|
38
|
Activation of Bisulfite with Pyrophosphate-Complexed Mn(III) for Fast Oxidation of Organic Pollutants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159437. [PMID: 35954793 PMCID: PMC9368537 DOI: 10.3390/ijerph19159437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022]
Abstract
Aqueous complexes of Mn(III) ion with ligands exist in various aquatic systems and many stages of water treatment works, while HSO3− is a common reductant in water treatment. This study discloses that their encounter results in a process that oxidizes organic contaminants rapidly. Pyrophosphate (PP, a nonredox active ligand) was used to prepare the Mn(III) solution. An approximate 71% removal of carbamazepine (CBZ) was achieved by the Mn(III)/HSO3− process at pH 7.0 within 20 s, while negligible CBZ was degraded by Mn(III) or HSO3− alone. The reactive species responsible for pollutant abatement in the Mn(III)/HSO3− process were SO4•− and HO•. The treatment efficiency of the Mn(III)/HSO3− process is highly related to the dosage of HSO3− because HSO3− acted as both the radical scavenger and precursor. The reaction of Mn(III) with HSO3− follows second-order reaction kinetics and the second-order rate constants ranged from 7.5 × 103 to 17 M−1 s−1 under the reaction conditions of this study, suggesting that the Mn(III)/HSO3− process is an effective process for producing SO4•−. The pH and PP:Mn(III) ratio affect the reactivity of Mn(III) towards HSO3−. The water background constituents, such as Cl− and dissolved organic matter, induce considerable loss of the treatment efficiency in different ways.
Collapse
|
39
|
Lu Z, Ling Y, Wang X, Li S, Ao X, Wang W, Li C, Sun W, Huang T. Insight into the degradation of ciprofloxacin by medium-pressure UV-activated monochloramine process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154850. [PMID: 35351514 DOI: 10.1016/j.scitotenv.2022.154850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The degradation efficiency and mechanisms of ciprofloxacin (CIP), a typical antibiotic, by a medium-pressure ultraviolet/chloramine (MPUV/NH2Cl) treatment were investigated. The results showed that CIP degradation by MPUV/NH2Cl was significantly higher than that by NH2Cl oxidation and MPUV photolysis, and that this degradation processes were consistent with pseudo-first-order kinetics. The initial CIP concentration (7.5-30.2 μM) and the presence of HCO3- (0.5-10 mM) significantly inhibited CIP degradation with kobs,CIP 0.0090-0.0069 and 0.0078-0.0048 cm2/mJ. In contrast, NO3- (50-500 μM) and Br- (0.5-10 mM) significantly promoted the degradation with kobs,CIP 0.0078-0.0102 and 0.0078-0.0124 cm2/mJ. The effect of Cl- (0.5-10 mM) and natural organic matter (1-5 mg/L) were negligible. The NH2Cl dosage (30-60 μM) presented a dual effect, in which its increase within the optimal concentration range (30-40 μM) accelerated CIP degradation due to the formation of reactive radicals, whereas an excessive increase (40-60 μM) quenched the free radicals, ultimately quenching the free radicals and inhibiting the degradation. The optimum pH for CIP degradation under MPUV/NH2Cl treatment was 7.0. The contribution of reactive halogen species (i.e., reactive chlorine species and reactive nitrogen species) to CIP degradation was substantially greater than that of hydroxyl radicals under acidic or neutral conditions. We identified the degradation products of CIP and proposed degradation pathways, which included defluorination and cracking of the piperazine ring, with the latter being dominant. Compared to haloacetic acid (HAA) and nitrogenous disinfection byproducts (N-DBPs), MPUV/NH2Cl significantly reduced trihalomethane (THM) production and theoretical cytotoxicity by 80.1% and 78.4% respectively, compared to the background experiment in natural water at a UV dose of 300 mJ/cm2.
Collapse
Affiliation(s)
- Zedong Lu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanchen Ling
- School of Environment, Tsinghua University, Beijing 100084, China; Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuelin Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Simiao Li
- Beijing General Municipal Engineering Design & Research Institute Co., Ltd, China
| | - Xiuwei Ao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Weibo Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Chen Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| | - Tianyin Huang
- Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
40
|
Scholes RC. Emerging investigator series: contributions of reactive nitrogen species to transformations of organic compounds in water: a critical review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:851-869. [PMID: 35546580 DOI: 10.1039/d2em00102k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reactive nitrogen species (RNS) pose a potential risk to drinking water quality because they react with organic compounds to form toxic byproducts. Since the discovery of RNS formation in sunlit surface waters, these reactive intermediates have been detected in numerous sunlit natural waters and engineered water treatment systems. This critical review summarizes what is known regarding RNS, including their formation, contributions to contaminant transformation, and products resulting from RNS reactions. Reaction mechanisms and rate constants have been described for nitrogen dioxide (˙NO2) reacting with phenolic compounds. However, significant knowledge gaps remain regarding reactions of RNS with other types of organic compounds. Promising methods to quantify RNS concentrations and reaction rates include the use of selective quenchers and probe compounds as well as electron paramagnetic resonance spectroscopy. Additionally, high resolution mass spectrometry methods have enabled the identification of nitr(os)ated byproducts that form via RNS reactions in sunlit surface waters, UV-based treatment systems, treatment systems that employ chemical oxidants such as chlorine and ozone, and certain types of biological treatment processes. Recommendations are provided for future research to increase understanding of RNS reactions and products, and the implications for drinking water toxicity.
Collapse
Affiliation(s)
- Rachel C Scholes
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| |
Collapse
|
41
|
Zhao J, Peng J, Yin R, Fan M, Yang X, Shang C. Multi-angle comparison of UV/chlorine, UV/monochloramine, and UV/chlorine dioxide processes for water treatment and reuse. WATER RESEARCH 2022; 217:118414. [PMID: 35429880 DOI: 10.1016/j.watres.2022.118414] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/31/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Advanced oxidation processes (AOPs) have been increasingly studied and practiced for micropollutant abatement in drinking water treatment and potable water reuse. This study conducted the multi-angle comparison of the UV/chlorine, UV/monochloramine (UV/NH2Cl), and UV/chlorine dioxide (UV/ClO2) AOPs with respect to reactive species generation, micropollutant degradation, byproduct formation, and toxicity change. The concentrations of radicals (HO·, Cl·, and ClO·) generated in the three AOPs followed the order of UV/chlorine > UV/NH2Cl > UV/ClO2 at an oxidant dose of 70 μM, an irradiation wavelength of 254 nm, and a pH of 7.5. The concentration of ozone generated in the UV/ClO2 AOP was higher than that in the UV/chlorine AOP, while ozone was not generated in the UV/NH2Cl AOP. The effects of pH (pH 6.0, 7.5, and 9.0) and UV wavelength (254 nm, 285 nm, and 300 nm) on the three AOPs were evaluated and compared. Using the radical and ozone concentrations determined in this study, the pseudo-first-order degradation rate constants of 24 micropollutants by the three AOPs were predicted and compared. When the three AOPs were used to treat the water containing the same concentration of natural organic matter, the formation of total organic chlorine (TOCl) and the organic byproduct-associated toxicity followed the same order of UV/chlorine > UV/NH2Cl > UV/ClO2. On the contrary, the inorganic byproduct-associated toxicity followed the order of UV/ClO2 > UV/chlorine > UV/NH2Cl, due to the high concentrations of chlorite and chlorate formed in the UV/ClO2 AOP. Findings in this study offer fundamental information useful for the selection and operation of AOPs for micropollutant abatement in drinking water treatment and potable water reuse.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jiadong Peng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Mengge Fan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
42
|
Zhu C, Fang Q, Liu R, Dong W, Song S, Shen Y. Insights into the Crucial Role of Electron and Spin Structures in Heteroatom-Doped Covalent Triazine Frameworks for Removing Organic Micropollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6699-6709. [PMID: 35475353 DOI: 10.1021/acs.est.2c01781] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The water shortage crisis, characterized by organic micropollutants (OMPs), urgently requires new materials and methods to deal with it. Although heteroatom doping has been developed into an effective method to modify carbon nanomaterials for various heterogeneous adsorption and catalytic oxidation systems, the active source regulated by intrinsic electron and spin structures is still obscure. Here, a series of nonmetallic element-doped (such as P, S, and Se) covalent triazine frameworks (CTFs) were constructed and applied to remove organic pollutants using the adsorption-photocatalysis process. The external mass transfer model (EMTM) and the homogeneous surface diffusion model (HSDM) were employed to describe the adsorption process. It was found that sulfur-doped CTF (S-CTF-1) showed a 25.6-fold increase in saturated adsorption capacity (554.7 μmol/g) and a 169.0-fold surge in photocatalytic kinetics (5.07 h-1), respectively, compared with the pristine CTF-1. A positive correlation between electron accumulation at the active site (N1 atom) and adsorption energy was further demonstrated with experimental results and theoretical calculations. Meanwhile, the photocatalytic degradation rates were greatly enhanced by forming a built-in electric field driven by spin polarization. In addition, S-CTF-1 still maintained a 98.3% removal of 2,2',4,4'-tetrahydroxybenzophenone (BP-2) micropollutants and 97.6% regeneration after six-cycle sequencing batch treatment in real water matrices. This work established a relation between electron and spin structures for adsorption and photocatalysis, paving a new way to design modified carbon nanomaterials to control OMPs.
Collapse
Affiliation(s)
- Chao Zhu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Qile Fang
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhais, Zhuhai 519087, P. R. China
| | - Renlan Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, P. R. China
| | - Wen Dong
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Yi Shen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| |
Collapse
|
43
|
Sun T, Su Y, Song H, Lv Y. New advanced oxidation progress with chemiluminescence behavior based on NaClO triggered by WS 2 nanosheets. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128329. [PMID: 35101764 DOI: 10.1016/j.jhazmat.2022.128329] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
As one integral part of coping strategies for addressing water pollution, advanced oxidation progresses (AOPs) get enormous attentions in recent years. However, the complex synthesis and high cost of H2O2 and K2S2O8 hampered their developments. Herein, a novel AOP with the chemiluminescence (CL) property based on economic NaClO and WS2 nanosheets was proposed to achieve efficient decomposition of organic pollutants. In this AOP, WS2 nanosheets exhibited a dual-function feature of the catalyst and energy acceptor. It demonstrated that the reaction order of WS2 nanosheets was equal to 0.8271 and enormous singlet oxygen (1O2),·ClO and hydroxyl radical (·OH) were generated in rhodamine B (RhB) degradation process. Interestingly, a strong CL emission was observed and reflected the relative concentration of 1O2 and·OH for adjusting the oxidizing capability in WS2 nanosheets-NaClO system. Through a series of degradation tests, RhB, methylene blue (MB), p-nitrophenol and phenol were decomposed and the degradation efficiency of over 90% was achieved. Therefore, this study not only builds a chemiluminescent AOPs to eliminate organic pollutants, but also broadens the applications of WS2 nanomaterials and CL in environmental field.
Collapse
Affiliation(s)
- Tong Sun
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Yingying Su
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Hongjie Song
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China; Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
44
|
Mechanistic Insight into Degradation of Cetirizine under UV/Chlorine Treatment: Experimental and Quantum Chemical Studies. WATER 2022. [DOI: 10.3390/w14091323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
UV/chlorine treatment is an efficient technology for removing organic pollutants in wastewater. Nevertheless, degradation of antihistamines in the UV/chlorine system, especially the underlying reaction mechanism, is not yet clear. In this study, the degradation of cetirizine (CTZ), a representative antihistamine, under UV/chlorine treatment was investigated. The results showed that CTZ could undergo fast degradation in the UV/chlorine system with an observed reaction rate constant (kobs) of (0.19 ± 0.01) min−1, which showed a first-increase and then-decrease trend with its initial concentration increased. The degradation of CTZ during the UV/chlorine treatment was attributed to direct UV irradiation (38.7%), HO• (35.3%), Cl• (7.3%), and ClO• (17.1%). The kobs of CTZ decreased with the increase in pH and the increase in concentrations of a representative dissolved organic matter, Suwannee River natural organic matter (SRNOM), due to their negative effects on the concentrations of reactive species generated in the UV/chlorine system. The detailed reaction pathways of HO•, ClO•, and Cl• with CTZ were revealed using quantum chemical calculation. This study provided significant insights into the efficient degradation and the underlying mechanism for the removal of CTZ in the UV/chlorine system.
Collapse
|
45
|
Qiao Q, Chen Y, Wang Y, Ren Y, Cao J, Huang F, Bian Z. Surface modification of phosphate ion to promote photocatalytic recovery of precious metals. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Peng A, Wang Y, Yin L, Chen Z, Gu C. Halide salts induced the photodegradation of a fat-burning compound 2, 4-dinitrophenol by iron-montmorillonite. CHEMOSPHERE 2022; 291:132694. [PMID: 34743870 DOI: 10.1016/j.chemosphere.2021.132694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/08/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Natural montmorillonite clay and anthropogenic organic pollutants frequently coexist in the estuarine environment where freshwater from rivers mixes with saltwater from the ocean. In this environment, the sharply changed aqueous chemistry especially salt content could significantly alter the photochemical behaviors of pollutants. However, this process was rarely investigated. In this study, the photodegradation of a representative anthropogenic weight-loss compound 2,4-dinitrophenol in the presence of Fe3+-montmorillonite and different halide salts was systematically investigated. Results show that 2,4-dinitrophenol was resistant to photodegradation by Fe3+-montmorillonite alone, but the presence of NaCl, NaBr, and sea salts in the system can evoke significant 2,4-dinitrophenol degradation. The enhancement effect was further elucidated as the replacement reaction between the clay associated Fe3+ and Na + which leads to the release of more interlayer Fe3+ from montmorillonite, resulting in increased production of high active hydroxyl radicals (˙OH) that can substantially damage 2,4-dinitrophenol molecule. In addition, halogen radicals from the reaction of halide ions with ˙OH were also confirmed to participate in 2,4-dinitrophenol degradation. Overall, this study implied that the changed salty condition in the estuarine water could induce the rapid transformation of organic pollutants that move from freshwater and have relatively stable photochemical properties.
Collapse
Affiliation(s)
- Anping Peng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Yi Wang
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, Jiangsu, 211167, China
| | - Lichun Yin
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Zeyou Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
47
|
Cao Z, Yu X, Zheng Y, Aghdam E, Sun B, Song M, Wang A, Han J, Zhang J. Micropollutant abatement by the UV/chloramine process in potable water reuse: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127341. [PMID: 34634702 DOI: 10.1016/j.jhazmat.2021.127341] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The need in using reclaimed water increased significantly to address the water shortage and its continuing quality deterioration in sustaining societal development. Degrading micropollutants in wastewater treatment plant effluents is one of the most important tasks in supplying safe drinking water, which is often achieved by full advanced treatment technologies (FATs), including reverse osmosis (RO) and the UV-based advanced oxidation process (AOP). As an emerging AOP, UV/chloramine process shows many noteworthy advantages in the scenario of potable water reuse, including membrane biological fouling control by chloramine, producing highly reactive radicals (e.g., Cl•, HO•, Cl2•-, and reactive nitrogen-containing species) to degrade the RO permeated pollutants, and acting as long-lasting disinfectant in the potable water distribution system. In addition, chloramine is often designedly produced by taking advantage of the ammonia in source. Thus, UV/chloramine processes gather much attention from researcher and published papers on UV/chloramine process have drastically increased since 2016, which were thoroughly reviewed in this paper. The fundamentals of chloramine photolysis, including the photolysis kinetics, the quantum yield, the generation and transformation of radicals and the final products, were scrutinized. Further, the impacts of reaction conditions such as pH, chloramine dosage and water matrix on the degradation of micropollutants by the UV/chloramine process are discussed. Moreover, the formation potential of disinfection by-products is debated. The opportunity of application of the UV/chloramine process in real-world practice is also presented, emphasizing the need for extensive efforts to remove currently prevalent knowledge roadblocks.
Collapse
Affiliation(s)
- Zhenfeng Cao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Ximing Yu
- Taiwei Energy Group Co., Ltd., Jinan, Shandong 250001, PR China
| | - Yuzhen Zheng
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Ehsan Aghdam
- Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Bo Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Mingming Song
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Jinglong Han
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
48
|
Wang Z, Zheng X, Chen P, Li D, Zhang Q, Liu H, Zhong J, Lv W, Liu G. Synchronous construction of a porous intramolecular D-A conjugated polymer via electron donors for superior photocatalytic decontamination. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127379. [PMID: 34655871 DOI: 10.1016/j.jhazmat.2021.127379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/12/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
The development of conjugated polymers with intramolecular donor-acceptor (D-A) units has the capacity to enhance the photocatalytic performance of carbon nitride (g-C3N4) for the removal of antibiotics from ambient ecosystems. This strategy addresses the challenge of narrowing the band gap of g-C3N4 while maintaining its high LUMO position. For this study, we introduced the above donor units into g-C3N4 to construct intramolecular D-A structures through the copolymerization of dicyandiamide with creatinine, which strategically extended light absorption into the green region and expedited photoelectron separation. The introduction of electron donor blocks kept the LUMO distributed on the melem, which maintained the high LUMO energy level of the copolymer with the potential to generate oxygen radicals. The as-prepared porous D-A conjugated polymer enhanced the photocatalytic degradation of sulfisoxazole with kinetic constants 5.6 times higher than that of g-C3N4 under blue light and 15.3 times higher under green light. Furthermore, we surveyed the degradation mechanism including the effective active species and degradation pathways. This study offers a new perspective for the synchronous construction of a porous intramolecular D-A conjugated polymer to enhance water treatment and environmental remediation capacities.
Collapse
Affiliation(s)
- Zhongquan Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoshan Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ping Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Daguang Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Qianxin Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Haijin Liu
- Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Jiapeng Zhong
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenying Lv
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guoguang Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
49
|
Wang X, Ao X, Zhang T, Li Z, Cai R, Chen Z, Wang Y, Sun W. Ultraviolet-Light-emitting-diode activated monochloramine for the degradation of carbamazepine: Kinetics, mechanisms, by-product formation, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151372. [PMID: 34728210 DOI: 10.1016/j.scitotenv.2021.151372] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/30/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Monochloramine (NH2Cl) oxidant combined with a Ultraviolet (UV)-Light-emitting-diode (LED) light source forms a new advanced oxidation process (AOP), which can achieve high-efficiency degradation of carbamazepine (CBZ). The degradation of CBZ displayed pseudo-first-order reaction kinetics (R2 > 0.98, kCBZ = 0.0043 cm2 mJ-1 at pH 7). The degradation of CBZ was dependent on UV-LED wavelength, with maximum degradation efficiency observed at 265 nm since it was the lowest wavelength studied among UV-LEDs. Variation in pH across the range, which might be expected under normal environmental conditions (pH 6-8), and the presence of Cl- had no significant effect on the degradation efficiency of CBZ, while the presence of HCO3- and natural organic matter (NOM) inhibited degradation. Electron paramagnetic resonance (EPR) experiments detected OH in the system. Probe compounds were used to distinguish the contribution of reactive chlorine species (RCS). It was proved that OH and Cl played major roles and OH was responsible for around 50% of the observed degradation of CBZ. Eight transformative products (TPs) in the degradation process of CBZ were identified, with a generally decreasing toxicity. The concentration of disinfection by-products (DBPs) formed during CBZ degradation was all within limits of WHO and China standard for drinking water. Although the concentration of nitrogen-containing DBPs (N-DBPs) was the lowest, N-DBPs were the main contributors to toxicity, and these would require more attention in practical applications. UV-LED/NH2Cl AOP was identified as an effective way to degrade pharmaceutically active compounds.
Collapse
Affiliation(s)
- Xuelin Wang
- School of Environment, Tsinghua University, Beijing 100084, China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Xiuwei Ao
- School of Environment, Tsinghua University, Beijing 100084, China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100084, China
| | - Tianyang Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zifu Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100084, China
| | - Ran Cai
- Beijing Capital Co., Ltd., Beijing 100032, China
| | - Zhongyun Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yonglei Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China.
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| |
Collapse
|
50
|
Min F, Wei Z, Yu Z, Xiao Y, Guo S, Song R, Li J. Construction of a hierarchical ZnIn 2S 4/C 3N 4 heterojunction for the enhanced photocatalytic degradation of tetracycline. Dalton Trans 2022; 51:2323-2330. [PMID: 35043131 DOI: 10.1039/d1dt03716a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Efficient charge separation and sufficiently exposed active sites are both critical limiting factors for solar-driven organic contaminant degradation. Herein, we describe a hierarchical heterojunction photocatalyst fabricated by the in situ growth of ZnIn2S4 nanosheets on micro-tubular C3N4 (denoted as ZIS/TCN). This ZIS/TCN heterojunction photocatalyst can take advantage of the hollow structure with stronger light absorption capacity and more active sites, and its heterostructure can accelerate the separation and transfer of photogenerated charge carriers. The optimized ZIS/TCN-3 exhibits superb photocatalytic efficiency for the degradation of tetracycline (86.1%, 60 min), maintains excellent stability and recyclability, and provides a facile strategy for the synthesis of efficient heterojuction photocatalysts towards wastewater treatment. In addition, the plausible photocatalytic degradation pathway of tetracycline is proposed according to the intermediates identified by LC-mass analysis.
Collapse
Affiliation(s)
- Feng Min
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Zhengqing Wei
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Zhen Yu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Yuting Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Shien Guo
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Renjie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Jinheng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China.
| |
Collapse
|