1
|
Zhang L, Bai R, Zhang J, Chen Z, Guo J. Fe 3+ addition as a promising strategy to enhance the pollutant removal performance and mitigate the membrane fouling of a laboratory-scale membrane bioreactor treating sulfamethoxazole wastewater. ENVIRONMENTAL RESEARCH 2025; 274:121284. [PMID: 40049348 DOI: 10.1016/j.envres.2025.121284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/25/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
Membrane bioreactor (MBR) is a water treatment process combining membrane technologies with activated sludge, which is beneficial to the removal of antibiotics. However, with the extension of the operation cycle, its efficiency in treating antibiotic wastewater decreases and the membrane fouling intensifies. As the presence of Fe3+ could improve pollutants removal, microbial activity and sludge properties, it was anticipated that the addition of Fe3+ in MBR might promote the removal of antibiotics and reduce membrane fouling. The effects of Fe3+ concentration on the removal of sulfamethoxazole (SMX) and membrane fouling were investigated in this work. The results revealed that the removal efficiencies of COD, TN, and SMX was 98%, 86%, and 70%, respectively, when 40 mg/L Fe3+ was introduced into MBR with the influent SMX concentration of 1 mg/L. This performance was superior to that observed in the absence of Fe3+, which was 93%, 74%, and 53% for COD, TN, and SMX removal, respectively. Correspondingly, the membrane fouling rate decreased from 2.52 kPa/d to 1.03 kPa/d, demonstrating that Fe3+ could mitigate membrane fouling. The exploration into membrane fouling mechanism demonstrated that the flocculation of activated sludge was enhanced and the protein (PN) content in the cake layer was significantly reduced. Concurrently, the repulsive energy barrier (XDLVO) between foulants and membrane surface was markedly increased. The study identified four SMX degradation pathways, i.e., N-S bond breaking, C-S bond breaking, N-O bond breaking, and benzene ring deamination. The toxicity levels of the degradation intermediates were determined to span from harmless to toxic as compared with SMX itself. This study offers new insights into the enhanced elimination of SMX through the MBR-Fe process and elucidates the mechanisms involved in mitigating membrane fouling, highlighting the potential of this process in degrading antibiotic wastewater.
Collapse
Affiliation(s)
- Lanhe Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China.
| | - Rumeng Bai
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Jian Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Zicheng Chen
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Jingbo Guo
- School of Civil and Architecture Engineering, Northeast Electric Power University, Jilin, 132012, China.
| |
Collapse
|
2
|
Lu K, Gao X, Liu D, Zhang S, Li Q, Gao H, Yu H. An innovative method for identifying aquatic environmental characteristics: construction of water quality fingerprint spectrum and combination with two-dimensional correlation spectroscopy analysis. ENVIRONMENTAL RESEARCH 2025; 279:121810. [PMID: 40368043 DOI: 10.1016/j.envres.2025.121810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 05/07/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025]
Abstract
With the deterioration of water quality and explosion of data scale, the diversification and complication of water quality analysis tasks are increasing, which require advanced analysis and visualization methods. Current multivariate statistical methods face challenges in processing multi-dimensional data and conducting causal analysis of fluctuations in water quality over temporal or spatial variations. In this study, a water quality fingerprint spectrum was constructed to perform multiscale and large-volume dataset. Based on the water quality fingerprint spectrum, a workflow of water quality was proposed for exploring the priority control regions, periods, and parameters were identified, and the key factors and effect pathways of response mechanisms, which consisted of three modules: data preparation, data interpretation, and causal analysis. In this study, we constructed a water quality fingerprint spectrum based on 792 water quality data from Lake Shahu as an example to present the methodology. The results showed that CODCr, TN, and TP were identified as priority control parameters of Lake Shahu, which were mainly affected by tourism activities and water replenishment. According to the results to conduct causal analysis, we found that the water replenishment could directly improve water quality (total effect: -0.464) by inhibition of algal growth and dilution of CODCr and TP concentrations, while tourism activities do the opposite (total effect: 0.562). The innovative analysis method conducted a thorough examination of fluctuations in water quality over spatio-temporal variations and paved the way between data and practical requirements in future works of water quality analysis and management.
Collapse
Affiliation(s)
- Kuotian Lu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaobo Gao
- Ningxia Environmental Science Research Institute Co., Ltd, Yinchuan, 750002, China; School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Dongping Liu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shixiang Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Qingqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hongjie Gao
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Huibin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
3
|
Li Z, Zhao H, Lv J, Azam S. Mechanistic insight into multiple effects of copper ion on the photoreactivity of dissolved organic matter. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137124. [PMID: 39813924 DOI: 10.1016/j.jhazmat.2025.137124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/22/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025]
Abstract
Sunlight irradiation of dissolved organic matter (DOM) in surface water results in the production of photochemically produced reactive intermediates (PPRIs). This process is inevitably influenced by co-existing metal ions in aquatic environments; However, the underlying mechanism remains unclear. In this study, the effect of co-existing copper ion (Cu2 +) on PPRIs produced by irradiation of DOM was systematically investigated, because Cu2+ is a typical redox transient cation and has strong affinity to DOM. The findings demonstrated that Cu2+, acting as cation bridge, caused DOM to aggregate, and had impacts on the optical properties and conformation of DOM. The electron shuttle and catalyst effect of Cu2+ could accelerate the charge transfer processes for the increasing of quantum yield and steady concentrations of hydroxyl radical (·OH) with the increase of concentrations of e-aq, O2.-, hydrogen peroxide (H2O2) and charge separated states of DOM (DOM·+ or DOM·-); On the other hand, Cu2+, as excited state quencher, decrease of apparent quantum yield of triplet state of DOM (3DOM*) and singlet oxygen (1O2) through static quenching of singlet excited of DOM (1DOM*) and dynamic quenching of 3DOM*, respectively. The results provide a deeper understanding of the effect mechanism of Cu2+ on the DOM photochemistry in real environment and will be useful for assessment the photodegradation of organic contaminants in the presence of both DOM and Cu2+.
Collapse
Affiliation(s)
- Zhansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shafiul Azam
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
4
|
Ding H, Zheng M, Yan L, Zhang X, Liu L, Sun Y, Su J, Xi B, Yu H. Spectral and molecular insights into the variations of dissolved organic matter in shallow groundwater impacted by surface water recharge. WATER RESEARCH 2025; 273:122978. [PMID: 39765096 DOI: 10.1016/j.watres.2024.122978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 02/04/2025]
Abstract
Dissolved organic matter (DOM) represents one of the most active elements in aquatic systems, whose fraction is engaged in chemical and biological reactions. However, fluorescence, molecular diversity and variations of DOM in groundwater systems with the alteration of surface water recharge remain unclear. Herein, Excitation-emission matrix (EEM) fluorescence spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) combined with principal component coefficients, parallel factor analyses (PARAFAC) with two‒dimensional correlation spectroscopy (2D-COS) were applied in this study. EEM data reassembled for principal component analysis (PCA) highlighted differences in tryptophan-like peak between groundwater collected parallel to the river (PR) and those taken vertical to the river (VR). PARAFAC have identified six components, i.e., microbial-related humic substances (C1 and C6), protein-like substances (C2 and C5), and terrestrial humic-like substances (C3 and C4). In the PR direction, variations of fluorescence components were dominated by terrestrial humic-like substances, while microbial humic-like substances predominated in the VR direction, as revealed by 2D-COS analysis. FT-ICR MS data showed a similar DOM molecular evolution trend in groundwater. Specifically, biodegradable molecular formulae decreased with a diminishing contribution of river water to groundwater recharge. This decrease was accompanied by a decrease in O3S and O5S components, which highlight the influence of anthropogenic river water on groundwater DOM characteristics. Groundwater DOM variations were attributed to the influx of bioavailable and low-oxidized components and the release of terrestrial humic-like substances during river water recharge processes. This study contributes valuable insights into the transformations of DOM in groundwater systems influenced by surface water recharge, enhancing our understanding of the interplay between surface water and groundwater quality.
Collapse
Affiliation(s)
- Hongyu Ding
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Mingxia Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Lina Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoyu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Lu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuanyuan Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jing Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Huibin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
5
|
Fang J, Li F, Shi W, Wang Z, Chen S, Zhang G. Spectroscopic and modeling approaches to understanding formation of microalgae-Pb-NOM ternary complex. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124431. [PMID: 39914208 DOI: 10.1016/j.jenvman.2025.124431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/20/2024] [Accepted: 02/01/2025] [Indexed: 02/27/2025]
Abstract
Microalgae exhibit remarkable capacity for heavy metal (HM) accumulation, which can be enhanced by natural organic matter (NOM) in aquatic systems. This synergy often leads to deviations in HM bioaccumulation assessments. This study investigated the effects of NOM on lead (Pb) bioaccumulation by Chlorella sp., focusing on Pb concentration, functional group concentration, and stability constants of polymeric complexes. Results showed a remarkable Pb adsorption capacity of 2.438 mmol g-1 (513 mg g-1) at pH 6.5, primarily attributed to the formation of ternary complexes {alga-Pb-(NOM-Pb)}. A surface multilayer adsorption mechanism was identified, driven by the deprotonation of functional groups, with carboxyl groups preferentially adsorbing over amino groups. Notably, the ratio of algae-Pb to Pb-NOM stability constants is critical in ternary complex formation, surpassing the traditional emphasis on NOM functional groups. Advanced modeling approaches, including response surface methodology and random forest analysis, confirmed the paramount importance of stability constant ratios in predicting complex formation. These findings provide crucial implications for assessing and controlling ecological risks associated with ternary complexes in algal bloom waters, offering new perspectives on the biotransformation process of HMs. This study contributes to a more comprehensive understanding of HM-microalgae interactions and their environmental impacts.
Collapse
Affiliation(s)
- Jingjing Fang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Feili Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| | - Wen Shi
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China; Innovation Research Center for Advanced Environmental Technology, Eco-industrial Innovation Institute ZJUT, Quzhou, 324400, PR China
| | - Zhaowen Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Shiyu Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Gaoxiang Zhang
- College of Ecology, Lishui University, Lishui, 323000, PR China
| |
Collapse
|
6
|
Teng C, Jing X, Xu Z, Chen W. Transformation of dissolved organic matter in membrane-concentrated landfill leachate during Cu-Fenton-biological treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124462. [PMID: 39933373 DOI: 10.1016/j.jenvman.2025.124462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Membrane-concentrated landfill leachate (MCLL) is a highly concentrated and recalcitrant wastewater with remarkably low biodegradability. In this study, a multi-stage Cu-Fenton oxidation coupled with biological process was proposed for MCLL treatment. Importantly, Fourier transform ion cyclotron resonance mass spectrometry was employed to unveil the molecular transformation of dissolved organic matter (DOM) in MCLL during this integrated treatment process. The multi-stage Cu-Fenton process exhibited a high capacity to remove CHON compounds, resulting in a decrease in their relative abundance from 43% to 28%. Conversely, CHOS compounds displayed an increased relative abundance. For compound classes, the relative abundance of aliphatic/protein groups increased from 11% to 20%, whereas lignin/CRAM-like structures decreased from 36% to 12%, resulting significant improvement of the effluent biodegradability. The recalcitrant species during the multi-stage Cu-Fenton process were 300-400 Da lignin/carboxylic rich alicyclic molecules and tannins with high O/C ratios, which were effectively degraded by the subsequent biological treatment, particularly for the higher molecular weight organic fractions. This work provides new insights into the transformation characteristics of DOM in MCLL at a molecular level and offers technical guidance for the treatment of this refractory organic wastewater.
Collapse
Affiliation(s)
- Chunying Teng
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Xinyu Jing
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Zhi Xu
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China.
| | - Wei Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| |
Collapse
|
7
|
Mu S, Yang Q, Yan C, Xu T, Zhang J, Ma J, Liu C. Characterization of the binding process between gallic acid and trivalent chromium in tannery wastewater: a spectroscopic perspective. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:453-462. [PMID: 39835469 DOI: 10.1039/d4em00621f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Trivalent chromium (Cr3+) is a heavy metal widely present in tannery wastewater, and organic ligands represented by gallic acid (GA) have significant effects on the environmental behavior of Cr3+. This study explored the binding process of Cr3+ with GA through the integration of ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR), and fluorescence spectroscopy coupled with two-dimensional correlation analyses (2DCOS). UV-vis results showed that the average molecular weight of the solutions gradually increased with the addition of Cr3+ ions. The vibration of FTIR characteristic peaks indicated that the hydroxyl and carboxyl functional groups of GA were complexed with Cr3+ ions. On the basis of the fluorescence quenching of GA after the addition of Cr3+ ions, the complexation coefficient was calculated as 4 × 104. 2DCOS and nuclear magnetic resonance (NMR) spectra demonstrated the binding sequence of GA with Cr3+ as meta-hydroxyl groups → carboxyl groups → para-hydroxyl groups, and heterospectral 2DCOS showed that the intensity change in UV-vis absorption bands occurred before that in IR absorption bands. Density functional theory (DFT) was used to quantify the binding energy of GA with Cr3+ at different binding sites, and it was shown that the binding energy of the meta-hydroxyl group was the lowest. Overall, this study provides a new approach to the analysis of the molecular structure of complexes and the binding process between organic ligands and metal ions in wastewater.
Collapse
Affiliation(s)
- Situ Mu
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Qi Yang
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Chenxu Yan
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Tong Xu
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Jing Zhang
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Junjun Ma
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Chun Liu
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
8
|
Liang Y, Dong M, Yang S, Lin L, Huang H, Li D, Ji M, Xu M. Electroactive bacteria-established long-distance electron transfer to oxygen facilitates bio-transformation of dissolved organic matter for sediment remediation. WATER RESEARCH 2025; 270:122829. [PMID: 39616684 DOI: 10.1016/j.watres.2024.122829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/22/2024] [Accepted: 11/19/2024] [Indexed: 01/06/2025]
Abstract
Electroactive bacteria (EAB) in sediment commonly establish long-distance electron transfer (LDET) to access O2, facilitating the degradation of organic contaminants, which we hypothesize is mediated by the bio-transformation of dissolved organic matter (DOM). This study confirmed that EAB-established LDET to O2 via a microbial electrochemical snorkel raised the electric potential of sediment by increasing HCl-extracted Fe(III) and NO3- concentrations while reducing DOM concentrations, which further modified microbial diversity and composition, notably reduced the relative abundance of fermentative bacteria. As a result, DOM showed the highest SUVA254 value (3.88) and SUVA280 value (1.61), preliminarily suggesting their enhanced aromaticity, humification and average molecular weight. Additionally, these DOM exhibited the highest electron transfer capacity (174.14±3.62 μmol e- /g C) and redox current. Based on these findings, we propose four possible avenues through which EAB-established LDET to O2 facilitates sediment remediation, mainly including DOM involved affinity, direct and indirect electron transfer, and induced photochemical reaction in degradation or humification process of organic contaminants. Although these proposed avenues require further verification, this work sheds light on deciphering the mechanisms underlying the augmented degradation of organic contaminants facilitated by EAB-established LDET to O2, offering fresh insights into sediment remediation.
Collapse
Affiliation(s)
- Yinxiu Liang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China; Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Meijun Dong
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China; Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Shan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China; Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Lizhou Lin
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China; Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Haobin Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China; Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Daobo Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China; Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China; Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China.
| |
Collapse
|
9
|
Xiao Z, Zhang J, Qin Y, Xi B, Zhou X, Ren X, Wang Q. Photochemistry of dissolved organic matter derived from compost. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178117. [PMID: 39700994 DOI: 10.1016/j.scitotenv.2024.178117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
The extensive application of compost to enhance soil quality highlights the crucial role of dissolved organic matter (DOM) derived from compost in both terrestrial and aquatic ecosystems, influencing carbon cycling and the fate of contaminants. However, the photochemical behavior of compost-derived DOM (DOMCOM) remains poorly understood. In this study, we investigated the photochemical transformation and photoactivity of DOM derived from typical composts produced from cow manure (CDOM) and pig manure (PDOM). The results indicated that the initial CDOM exhibited higher molecular weight, aromaticity, humification, and photoactivity compared to PDOM. Under UV irradiation, both DOMCOM underwent photobleaching and photo-humification, resulting in a decrease in the average molecular weight by 23.68 % for CDOM and 3.82 % for PDOM, with CDOM being particularly affected. Meanwhile, 2D-COS analysis revealed that the fulvic-like fluorescence fraction was first to respond to photoirradiation in both DOM, followed by the protein-like and microbial humic-like fluorescence fractions, which showed contrasting response trends in CDOM and PDOM. Furthermore, CDOM with a higher concentration of humic-like substances efficiently generated 3DOM*, 1O2 and •OH (4.09 × 10-8, 1.17 × 10-8 and 7.05 × 10-12, respectively) under UV radiation, which were apparently greater than those produced by PDOM (3.30 × 10-8, 8.38 × 10-9 and 4.99 × 10-12, respectively).
Collapse
Affiliation(s)
- Ziling Xiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Jingyan Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Yilang Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Bin Xi
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100000, PR China
| | - Xiangyang Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
10
|
Peng S, Wang F, Wei D, Wang C, Ma H, Du Y. Application of FTIR two-dimensional correlation spectroscopy (2D-COS) analysis in characterizing environmental behaviors of microplastics: A systematic review. J Environ Sci (China) 2025; 147:200-216. [PMID: 39003040 DOI: 10.1016/j.jes.2023.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/17/2023] [Accepted: 10/06/2023] [Indexed: 07/15/2024]
Abstract
Microplastics (MPs) are ubiquitous in the environment, continuously undergo aging processes and release toxic chemical substances. Understanding the environmental behaviors of MPs is critical to accurately evaluate their long-term ecological risk. Generalized two-dimensional correlation spectroscopy (2D-COS) is a powerful tool for MPs studies, which can dig more comprehensive information hiding in the conventional one-dimensional spectra, such as infrared (IR) and Raman spectra. The recent applications of 2D-COS in analyzing the behaviors and fates of MPs in the environment, including their aging processes, and interactions with natural organic matter (NOM) or other chemical substances, were summarized systematically. The main requirements and limitations of current approaches for exploring these processes are discussed, and the corresponding strategies to address these limitations and drawbacks are proposed as well. Finally, new trends of 2D-COS are prospected for analyzing the properties and behaviors of MPs in both natural and artificial environmental processes.
Collapse
Affiliation(s)
- Shuang Peng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feipeng Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongbin Wei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | | | - Haijun Ma
- North Minzu University, Yinchuan 750001, China
| | - Yuguo Du
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Meng W, Zheng L, He C, Cheng S, Li Z. Hydrothermal treatment of septic sludge: Revealing temperature-sensitive dissolved organic matter and potential toxicity relationships in the hydrothermal liquid. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123550. [PMID: 39637507 DOI: 10.1016/j.jenvman.2024.123550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/04/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Hydrothermal treatment of septic sludge can result in the transfer of significant amounts of dissolved organic matter (DOM) into the hydrothermal liquid (HL). However, there is a lack of research exploring the relationship between temperature-sensitive fractions of DOM in HL and ecological risks. In this study, spectroscopic techniques combining two-dimensional correlation spectroscopy (2D-COS), self-organizing maps (SOM) and structural equation modeling (SEM), respectively, were employed to investigate temperature-sensitive DOM and its potential correlation with phytotoxicity at five process temperatures (180-340 °C). The findings revealed that DOM content peaked at 260 °C, measuring 7625 mg·CL-1. At peak levels, the concentrations of chemical oxygen demand, ammonium nitrogen, total nitrogen, and total phosphorus in the HL reached 16900 mg L-1, 34.8 mg L-1, 1920 mg L-1 and 756 mg L-1, respectively. Results from EEM-PARAFAC-SOM indicated that temperature significantly influences the variations in fluorescent components within DOM. Additionally, 2D-COS analysis identified conjugated structures and critical turning points at 220 °C and 300 °C. Notably, the -CO-NH- functional group, which is closely associated with aromatic protein II, exhibited the highest sensitivity to temperature changes. Wheat seed germination experiments revealed that the DOM sample at 180 °C exhibited the most pronounced inhibition of wheat root length, while demonstrating the least effect on germination. In contrast, seed growth was most severely impaired at 340 °C. SEM analysis revealed the influence of temperature-both direct and indirect-on the properties of DOM, identifying aromatic protein I as the primary determinant limiting seed germination. This research provides valuable insights for the management and utilization of HL.
Collapse
Affiliation(s)
- Wei Meng
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Lei Zheng
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Changjun He
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Shikun Cheng
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, PR China.
| |
Collapse
|
12
|
Wang X, Tang S, Ding L, Qiu X, Zhang Z, Xu L, Liang X, Huang X, Guo X. Contribution of plastic solid components to volatile organic compounds formation during plastics combustion. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135977. [PMID: 39342857 DOI: 10.1016/j.jhazmat.2024.135977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/31/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The combustion of plastic waste releases volatile organic compounds (VOCs) that are harmful to human health. However, information on the micro-mechanisms of VOC formation remains lacking. Here, the study hypothesized and verified the relationship between VOC formation and solid component degradation during plastics combustion. The VOCs released during plastics combustion exhibit characteristics such as low carbon content (nc< 10), volatility (9 μg m-3 < log10C0 < 11 μg m-3), and medium oxidation degree (-1.5 < OSC¯ < -0.5). The dominant VOCs ketones/aldehydes/acids (33-43 %) may be attributed to the depolymerization of the polymer structure of plastics, the oxidation of C-O/CO groups, and the secondary cleavage of gaseous oxygen-containing macromolecules. The VOCs released from the combustion of polyethylene terephthalate (PET) and poly(butyleneadipate-co-terephthalate) (PBAT) contained more aromatics than polyethylene (PE) and polypropylene (PP). And the temperature response of aromatics released from PET and PBAT lagged other VOCs compared that of PP and PE. However, compared to biomass thermal conversion, combustion of plastics releases fewer aromatics and nitrogenous compounds. Collectively, this work shows that the formation mechanisms of VOCs contributed by the solid components during plastic combustion are similar for PET and PBAT due to their similar chemical structures. The proposed mechanism in this paper will provide insight into the control of contaminants during plastic combustion.
Collapse
Affiliation(s)
- Xinglei Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Simeng Tang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Xinran Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zhenming Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Xianfei Huang
- Guizhou Provincial Key Laboratory for Environment, Guizhou Normal University, Guiyang, Guizhou 550001, China.
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
13
|
Li W, Xie J, Huang R, Chen W, Du H. Molecular characteristics of dissolved organic matter regulate the binding and migration of tungsten in porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176670. [PMID: 39366568 DOI: 10.1016/j.scitotenv.2024.176670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Tungsten (W) is an emerging contaminant that poses potential risks to both the environment and human health. While dissolved organic matter (DOM) can significantly influence the W's environmental behavior in natural aquifers, the mechanisms by which DOM's molecular structure and functional group diversity impact W binding and migration remain unclear. Using molecular weight-fractionated soil and sediment DOM (<1 kDa, 1-100 kDa, and 100 kDa-0.45 μm), this study systematically investigated the relationship between DOM molecular characteristics and tungstate (WO42-) binding properties using multiple spectroscopic methods, including FTIR, fluorescence spectroscopy and XPS. The migration behavior of WO42- in porous media was also investigated through quartz sand column experiments. Results revealed that approximately 75 % of W was controlled by DOM, with over 50 % binding to low molecular weight DOM (<1 kDa). Tungsten bound to medium-high molecular weight DOM (1-100 kDa, >100 kDa) showed a greater propensity for retention, with the >100 kDa fractions demonstrating stronger selective binding to W, exhibiting distribution coefficients (Kmd) of 6.11 L/g and 10.69 L/g, respectively. Further analysis indicated that W primarily binds with aromatic rings, phenolic hydroxyls, polysaccharides, and carboxyl groups in DOM, potentially affecting DOM structural stability and consequently influencing W migration characteristics. Free W migration in quartz sand was primarily controlled by Langmuir monolayer adsorption, leading to local enrichment (Da = 6.83, Rd = 86.98). When bound to DOM, W's migration ability significantly increased (Rd = 8-10), with adsorption shifting to a Freundlich multilayer model, primarily controlled by convective transport (Npe = 27-62> > 1.96), while adsorption effects weakened (Da ≈ 1). This study, for the first time, systematically reveals the regulatory mechanisms of DOM molecular characteristics on tungsten's environmental behavior. It offers crucial parameter support for constructing tungsten migration models and provides important guidance for tungsten pollution risk assessment and remediation strategies.
Collapse
Affiliation(s)
- Weijun Li
- College of Environment & Ecology, Hunan Agricultural University, 410127 Changsha, China
| | - Jian Xie
- College of Environment & Ecology, Hunan Agricultural University, 410127 Changsha, China
| | - Rui Huang
- College of Environment & Ecology, Hunan Agricultural University, 410127 Changsha, China
| | - Wei Chen
- School of Metallurgy and Environment, Central South University, 410083 Changsha, China
| | - Huihui Du
- College of Environment & Ecology, Hunan Agricultural University, 410127 Changsha, China.
| |
Collapse
|
14
|
Wang R, Nabi M, Jiang Y, Xiao K. Characterizing properties and environmental behaviors of organic matter in sludge using liquid chromatography organic carbon detection and organic nitrogen detection: A mini-review. ENVIRONMENTAL RESEARCH 2024; 262:119900. [PMID: 39233026 DOI: 10.1016/j.envres.2024.119900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
The presence of organic matter in sludge plays a significant role in sludge dewatering, anaerobic sludge digestion, resource (i.e., protein) recovery and pollutants removal (i.e., heavy metals) from sludge, as well as post-application of sludge liquid and solid digestate. This study summarized the current knowledge on using liquid chromatography organic carbon detection and organic nitrogen detection (LC-OCD-OND) for characterization and quantification of organic matter in sludge samples related with sludge treatment processes by fractionating organic matter into biopolymers, building blocks, humic substances, low molecular weight (LMW) acids, low LMW neutrals, and inorganic colloids. In addition, the fate, interaction, removal, and degradation of these fractions in different sludge treatment processes were summarized. A standardized extraction procedure for organic components in different extracellular polymeric substances (EPS) layers prior to the LC-OCD-OND analysis is highly recommended for future studies. The analysis of humic substances using the LC-OCD-OND analysis in sludge samples should be carefully conducted. In conclusion, this study not only provides a theoretical foundation and technical guidance for future experiments and practices in characterizing sludge organic matter using LC-OCD-OND, but also serves as a valuable resource for consulting engineers and other professionals involved in sludge treatment.
Collapse
Affiliation(s)
- Ruiyao Wang
- Environmental Science and Engineering Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, Guangdong, China; Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel.
| | - Mohammad Nabi
- Environmental Science and Engineering Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, Guangdong, China
| | - Yue Jiang
- Environmental Science and Engineering Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, Guangdong, China; Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Keke Xiao
- Environmental Science and Engineering Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, Guangdong, China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou, 515063, China; Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
15
|
Zhang P, Tang X, Qin N, Shuai Y, Wang J, Wang H, Ouyang Z, Jia H. Advanced understanding of the natural forces accelerating aging and release of black microplastics (tire wear particles) based on mechanism and toxicity analysis. WATER RESEARCH 2024; 266:122409. [PMID: 39270502 DOI: 10.1016/j.watres.2024.122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Currently, tire wear particles (TWPs), a typical type of black microplastics (MPs), are frequently overlooked as the major source of MPs in aquatic environments. TWPs are widely distributed and exhibit complex environmental behaviors. However, how natural forces affect the aging and release behavior of TWPs at the nano(micro)scale remains inadequately explored. This study systematically investigated the aging behavior and mechanism of TWPs under the action of simulated natural light and high-temperature in both dry and wet environments, as well as the effect of aging treatment on the released leachate. The findings demonstrated that aging treatment significantly altered the physicochemical properties of TWPs, including chain scission and surface oxidation, and facilitated the release of heavy metals and organic additives in the meantime. In particular, the leaching concentration of Zn exhibited a positive linear relationship with exposure time. In the thermal-aging process, the oxidation of TWPs was primarily caused by superoxide anion (O2•-). During the photo-aging exposure, TWPs exhibited heightened electron-donating capacity, resulting in the formation of more O2•- and singlet oxygen (1O2) to attack TWPs. Moreover, the analysis of leachate produced under light and high-temperature conditions suggested that heavy metals exerted low ecological risks in water. Nonetheless, the photo-aging process enhanced the toxicity of released leachate to L929 cells, which could be attributed to highly toxic additive transformation products (such as HMMM-411 and 6PPD-Q) and more heavy metals. These findings shed light on the fate of TWPs and the ecological risks posed by aged TWPs in aquatic environments.
Collapse
Affiliation(s)
- Puxing Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiwang Tang
- Hebei Engineering Research Center for Ecological Restoration of Rivers and Coastal Areas, Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| | - Ning Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiping Shuai
- School of General Education, Hunan University of Information Technology, Changsha, 410148, China
| | - Jingzhen Wang
- Guangxi Key Laboratory of Marine Environmental Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Han Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| |
Collapse
|
16
|
Ni M, Liu R, Luo W, Pu J, Wu S, Wang Z, Zhang J, Wang X, Ma Y. A comprehensive conceptual framework for signaling in-lake CO 2 through dissolved organic matter. WATER RESEARCH 2024; 264:122228. [PMID: 39142047 DOI: 10.1016/j.watres.2024.122228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
Organic carbon (C) and CO2 pools are closely interactive in aquatic environments. While there are strong indications linking freshwater CO2 to dissolved organic matter (DOM), the specific mechanisms underlying their common pathways remain unclear. Here, we present an extensive investigation from 20 subtropical lakes in China, establishing a comprehensive conceptual framework for identifying CO2 drivers and retrieving CO2 magnitude through co-trajectories of DOM evolution. Based on this framework, we show that lake CO2 during wet period is constrained by a combination of biogeochemical processes, while photo-mineralization of activated aromatic compounds fuels CO2 during dry period. We clearly determine that biological degradation of DOM governs temporal variations in CO2 rather than terrestrial C inputs within the subtropical lakes. Specifically, our results identify a shared route for the uptake of atmospheric polycyclic aromatic compounds and CO2 by lakes. Using machine learning, in-lake CO2 levels are well modelled through DOM signaling regardless of varying CO2 mechanisms. This study unravels the mechanistic underpinnings of causal links between lake CO2 and DOM, with important implications for understanding obscure aquatic CO2 drivers amidst the ongoing impacts of global climate change.
Collapse
Affiliation(s)
- Maofei Ni
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Rui Liu
- School of Geography and Tourism, Chongqing Normal University, University Town, Shapingba District, Chongqing 401331, China; The Key Laboratory of GIS Application Research, Chongqing Normal University, Chongqing 401331, China
| | - Weijun Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Junbing Pu
- School of Geography and Tourism, Chongqing Normal University, University Town, Shapingba District, Chongqing 401331, China; Karst Research Team, Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, School of Geography and Tourism, Chongqing Normal University, Chongqing 40133, China
| | - Shengjun Wu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266, Fangzheng Avenue, Shuitu High-tech Park, Beibei, Chongqing 400714, China
| | - Zhikang Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Jing Zhang
- School of Geography and Tourism, Chongqing Normal University, University Town, Shapingba District, Chongqing 401331, China.
| | - Xiaodan Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Yongmei Ma
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266, Fangzheng Avenue, Shuitu High-tech Park, Beibei, Chongqing 400714, China.
| |
Collapse
|
17
|
Yang M, Zhang T, Zhou X, Jin C, You X, Zhang L, Yang Y, Kong Z, Chu H, Zhang Y. New insight into the spatio-temporal patterns of functional groups of hotspot inside the composting aggregates by synchrotron-based FTIR in hyperthermophilic composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174139. [PMID: 38901577 DOI: 10.1016/j.scitotenv.2024.174139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Hyperthermophilic composting (HTC) is a recently developed and highly promising organic fraction of municipal solid waste (OFMSW) treatment technology. Investigation of organic matter (OM) dynamics in compost particle is thus crucial for the understanding of humification of HTC process. Herein, this work aimed to study the chemical and structural changes of OM at the molecular level during HTC of OFMSW using EEM and SR-FTIR analyses. Additionally, two-dimensional correlation spectroscopy (2D-COS) was also utilized to probe and identify the changes in chemical constituents and functional groups of organic compounds on the surface of compost particles during different composting periods. Results show that SR-FTIR can detect fine-scale (~μm) changes in functional groups from the edges to the interior of compost particles during different composting periods by mapping the particles in situ. In the hyperthermophilic stage (day 9), the extracted μ-FTIR spectrum reveals a distinct boundary between anaerobic and aerobic regions within the compost particle, with a thickness of anaerobic zone (1460 cm-1) of approximately 30 μm inside the particle's core. This provides direct evidence of anaerobic trends at compost microscales level within compost particles. 2D-COS analysis indicated that organic functional groups gradually agglomerated in the order of 1330 > 2930 > 3320 > 1600 > 1030 > 895 cm-1 to the core skeleton of cellulose degradation residues, forming compost aggregates with well physicochemical properties. Overall, the first combination of SR-FTIR and EEM provides complementary explanations for the humification mechanism of HTC, potentially introducing a novel methodology for investigating the environmental behaviors and fates of various organic contaminants associated with OM during the in-situ composting biochemical process.
Collapse
Affiliation(s)
- Mingchao Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Tao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Chenxi Jin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xiaogang You
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Lei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yinchuan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huaqiang Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Shanghai 200092, China
| |
Collapse
|
18
|
Du C, Sang W, Abbas M, Xu C, Jiang Z, Ma Y, Shi J, Feng M, Ni L, Li S. The interaction mechanisms of algal organic matter (AOM) and various types and aging degrees of microplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135273. [PMID: 39047561 DOI: 10.1016/j.jhazmat.2024.135273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Algal blooms can produce substantial amounts of algal organic matter (AOM). Microplastics (MPs) in aquatic environments inevitably interact with AOM. Meanwhile, the aging and type of MPs may increase the uncertainty surrounding interaction. This study focused on polyethylene (PE) and polylactic acid (PLA) to investigate their interaction with AOM before and after aging. The results shw that PLA has a stronger adsorption capacity for AOM than PE. Meanwhile, aging enhanced and weakened the adsorption of PE and PLA for AOM. Compared to unaged PE (UPE) and aged PLA (APLA), aged PE (APE) and unaged PLA (UPLA) more significantly promote the humification of AOM and alter its functional groups. 2D-IR-COS analysis reveals that the sequence of functional group changes in AOM interacting with MPs is influenced by the type and aging of MPs. After interacting with AOM, surface roughness increased for all MPs. FTIR and XPS analyses show that the addition of AOM accelerated the oxidation of MPs surfaces, especially for UPE and APLA, with oxygen content increasing by 9.32 % and 1 %. Aging enhances the interaction between PE and AOM, while weakening the interaction between PLA and AOM. These findings provide new insights into understanding the interplay between AOM and MPs.
Collapse
Affiliation(s)
- Cunhao Du
- College of Environment, Hohai University, 210098 Nanjing, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Hohai University, 210098 Nanjing, China
| | - Wenlu Sang
- College of Environment, Hohai University, 210098 Nanjing, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Hohai University, 210098 Nanjing, China
| | - Mohamed Abbas
- College of Environment, Hohai University, 210098 Nanjing, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Hohai University, 210098 Nanjing, China
| | - Chu Xu
- College of Environment, Hohai University, 210098 Nanjing, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Hohai University, 210098 Nanjing, China
| | - Zhiyun Jiang
- College of Environment, Hohai University, 210098 Nanjing, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Hohai University, 210098 Nanjing, China
| | - Yushen Ma
- College of Environment, Hohai University, 210098 Nanjing, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Hohai University, 210098 Nanjing, China
| | - Jiahui Shi
- College of Environment, Hohai University, 210098 Nanjing, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Hohai University, 210098 Nanjing, China
| | - Muyu Feng
- College of Environment, Hohai University, 210098 Nanjing, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Hohai University, 210098 Nanjing, China
| | - Lixiao Ni
- College of Environment, Hohai University, 210098 Nanjing, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Hohai University, 210098 Nanjing, China.
| | - Shiyin Li
- School of Environment, Nanjing Normal University, 210097 Nanjing, China.
| |
Collapse
|
19
|
Niu Z, Chen C, Ruan Q, Duan Y, Liu S, Chen D. Plant Root Secretion Alleviates Carbamate-Induced Molecular Alterations of Dissolved Organic Matter. TOXICS 2024; 12:654. [PMID: 39330581 PMCID: PMC11435816 DOI: 10.3390/toxics12090654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/28/2024]
Abstract
Studying the interaction between pesticide contamination in the plant system and the dissolved organic matter (DOM) composition is important to understand the impact of pesticides and plants on the ecological function of DOM. The present study investigated the effects of DOM on the bioaccumulation and biotransformation of carbamates in plants, carbamate exposure on DOM composition, and plant root secretion on the interaction between DOM and carbamates. The concentrations of carbamates and their metabolites in living cabbage plants were continuously tracked through an in vivo analytical method. The presence of DOM was found to reduce the highest bioconcentrations and shorten the time it took to reach the highest bioaccumulated amounts of isoprocarb and carbofuran in plants, while it showed no significant effect on the uptake behavior of carbaryl. DOM profiling results indicated that carbamate exposure substantially decreased the number and molecular diversity of DOM. Notably, plant root secretion alleviated carbamate-induced DOM molecular alterations by inducing a higher turnover rate of DOM compared to that in the uncontaminated group, highlighting the role of plants in mitigating the effects of exogenous pesticide exposure on DOM composition and maintaining DOM molecular homeostasis.
Collapse
Affiliation(s)
- Zihan Niu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 511443, China
| | - Chao Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China
| | - Qijun Ruan
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China
| | - Yingming Duan
- China College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Shuqin Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 511443, China
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China
| | - Da Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 511443, China
| |
Collapse
|
20
|
Zhang J, Zhou Z, Zeng L, Wang C, Han R, Ren X, Wang W, Xiang M, Chen S, Li H. The molecular binding sequence transformation of soil organic matter and biochar dissolved black carbon antagonizes the transport of 2,4,6-trichlorophenol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174657. [PMID: 38986700 DOI: 10.1016/j.scitotenv.2024.174657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/29/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Dissolved organic matter (DOM) and dissolved black carbon (DBC) are significant environmental factors that influence the transport of organic pollutants. However, the mechanisms by which their molecular diversity affects pollutant transport remain unclear. This study elucidates the molecular binding sequence and adsorption sites through which DOM/DBC compounds antagonize the transport of 2,4,6-trichlorophenol (TCP) using column experiments and modelling. DBC exhibits a high TCP adsorption rate (kn = 5.32 × 10-22 mol1-n∙Ln-1∙min-1) and conditional stability constant (logK = 5.19-5.74), indicating a strong binding affinity and antagonistic effect on TCP. This is attributed to the high relative content of lipid/protein compounds in DBC (25.65 % and 30.28 %, respectively). Moreover, the small molecule lipid compounds showed stronger TCP adsorption energy (Ead = -0.0071 eV/-0.0093 eV) in DOM/DBC, combined with two-dimensional correlation spectroscopy model found that DOM/DBC antagonized TCP transport in the environment through binding sequences that transformed from lipid/protein small molecule compounds to lignin/tannin compounds. This study used a multifaceted approach to comprehensively assess the impact of DOM/DBC on TCP transport. It reveals that the molecular diversity of DOM/DBC is a critical factor affecting pollutant transport, providing important insights into the environmental trend and ecological effects of pollutants.
Collapse
Affiliation(s)
- Jin Zhang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Zhikang Zhou
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Lingjun Zeng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Ruixia Han
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Xinlei Ren
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Wenbing Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Minghui Xiang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Shuai Chen
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, PR China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
21
|
Tong Y, Xiang H, Jiang J, Chen W. Interfacial interactions between minerals and organic matter: Mechanisms and characterizations. CHEMOSPHERE 2024; 359:142383. [PMID: 38768785 DOI: 10.1016/j.chemosphere.2024.142383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Minerals and organic matter are essential components of soil, with minerals acting as the "bone" and organic matter as the "skin". The interfacial interactions between minerals and organic matter result in changes in their chemical composition, structure, functional groups, and physical properties, possessing a significant impact on soil properties, functions, and biogeochemical cycles. Understanding the interfacial interactions of minerals and organic matter is imperative to advance soil remediation technologies and carbon targets. Consequently, there is a growing interest in the physicochemical identification of the interfacial interactions between minerals and organic matter in the academic community. This review provides an overview of the mechanisms underlying these interactions, including adsorption, co-precipitation, occlusion, redox, catalysis and dissolution. Moreover, it surveys various methods and techniques employed to characterize the mineral-organic matter interactions. Specifically, the up-to-date spectroscopic techniques for chemical information and advanced microscopy techniques for physical information are highlighted. The advantages and limitations of each method are also discussed. Finally, we outline future research directions for interfacial interactions and suggests areas for improvement and development of characterization techniques to better understand the mechanisms of mineral-organic matter interactions.
Collapse
Affiliation(s)
- Yang Tong
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Huiqin Xiang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Jun Jiang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Wei Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
22
|
Wang L, Lei Z, Zhang Z, Yang X, Chen R. Deciphering the role of extracellular polymeric substances in the adsorption and biotransformation of organic micropollutants during anaerobic wastewater treatment. WATER RESEARCH 2024; 257:121718. [PMID: 38723358 DOI: 10.1016/j.watres.2024.121718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024]
Abstract
Extracellular polymeric substances (EPS) participate in the removal of organic micropollutants (OMPs), but the primary pathways of removal and detailed mechanisms remain elusive. We evaluated the effect of EPS on removal for 16 distinct chemical classes of OMPs during anaerobic digestion (AD). The results showed that hydrophobic OMPs (HBOMPs) could not be removed by EPS, while hydrophilic OMPs (HLOMPs) were amenable to removal via adsorption and biotransformation of EPS. The adsorption and biotransformation of HLOMPs by EPS accounted up to 19.4 ± 0.9 % and 6.0 ± 0.8 % of total removal, respectively. Further investigations into the adsorption and biotransformation mechanisms of HLOMPs by EPS were conducted utilizing spectral, molecular dynamics simulation, and electrochemical analysis. The results suggested that EPS provided abundant binding sites for the adsorption of HLOMPs. The binding of HLOMPs to tryptophan-like proteins in EPS formed nonfluorescent complexes. Hydrogen bonds, hydrophobic interactions and water bridges were key to the binding processes and helped stabilize the complexes. The biotransformation of HLOMPs by EPS may be attributed to the presence of extracellular redox active components (c-type cytochromes (c-Cyts), c-Cyts-bound flavins). This study enhanced the comprehension for the role of EPS on the OMPs removal in anaerobic wastewater treatment.
Collapse
Affiliation(s)
- Lianxu Wang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Zhen Lei
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Zixin Zhang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Xiaohuan Yang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
23
|
Mi WJ, Bi WC, Meng MZ, Chen YP, Sun YQ. A Spectroscopic Method for Distinguishing Two Novel Sandwich-Type Tungsten Oxide Cluster Compounds. APPLIED SPECTROSCOPY 2024:37028241254093. [PMID: 38772560 DOI: 10.1177/00037028241254093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
This study introduces two novel sandwich-type tungsten-oxygen cluster compounds synthesized by hydrothermal methods, H4(C6H12N2H2)3{Na(H2O)2[Mn2(H2O)(GeW9O34)]}2 (Compound 1) and H2(C6H12N2H2)3.5{Na3(H2O)4[Co2(H2O)(GeW9O34)]2}·17H2O (Compound 2). The two compounds comprise cluster anions [GeW9O34]10- coordinated with transition metal atoms, either Mn or Co, and are stabilized by organic ligands. These compounds are crystallized in the hexagonal crystal system and P63/m space group. The two compounds were characterized through various techniques. Fourier transform infrared (IR) spectroscopy showed absorption peaks of anionic backbone vibrations of the Keggin cluster at 500-1000 cm-1, IR spectral peaks of δ(N-H) and νas(C-N) of the ligand triethylenediamine at 1000-2000 cm-1, and IR spectral peaks of the ligand νas(N-H) and νas(O-H) of water at 3000-3500 cm-1. Despite similar one-dimensional (1D) IR spectra due to the same cluster anions and similar molecular structures, the two compounds exhibited distinct responses in two-dimensional correlation spectroscopy with IR under magnetic and thermal perturbations. Under magnetic perturbation, Compound 1 showed a strong response peak for νas(W-Ob-W), while Compound 2 exhibited a strong response peak for νas(W=Od), possibly linked to differing magnetic particles. Similarly, Compound 1 displayed a strong response peak under thermal perturbation for νas(W-Oc-W). In contrast, Compound 2 showed a strong response peak for νas(W=Od); these results may be attributed to the different hydrogen bonding connections between the two compounds, which affect the groups in distinct ways through vibration and transmit these vibrations to the W-O bonds. The research presented in this paper expands the theoretical and experimental data of 2D correlation IR spectroscopy.
Collapse
Affiliation(s)
- Wen-Jun Mi
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Wen-Chao Bi
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Ming-Ze Meng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Yi-Ping Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Yan-Qiong Sun
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
24
|
Luo H, Tu C, Liu C, Zeng Y, He D, Zhang A, Xu J, Pan X. Probing the molecular interaction between photoaged polystyrene microplastics and fulvic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170933. [PMID: 38360324 DOI: 10.1016/j.scitotenv.2024.170933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
As emerging contaminants, microplastics (MPs) are becoming a matter of global concern, and they have complex interactions with dissolved organic matter (DOM) widely present in aqueous environments. Here, we investigate the molecular interactions between aged polystyrene microplastics (PS-MPs) and fulvic acid (FA) under neutral conditions using a series of analytical techniques. The structural changes of FA and the binding interactions of PS-MPs with FA at a molecular level were explored by fluorescence and FT-IR combined with two-dimensional correlation spectroscopy (2D-COS). Results showed that photoaging of PS-MPs changed the sequence of structural variations with FA. Atomic force microscopy-infrared spectroscopy (AFM-IR) strongly demonstrated that the surface roughness of both pristine and aged PS-MPs greatly increased after FA addition. Meanwhile, AFM-IR and Raman spectroscopy revealed a stronger interaction between aged PS-MPs and FA. The content of oxygen-containing functional groups in PS-MPs increased after aging and after binding with FA, and surface distribution of these functional groups also changed. XPS analyses indicated that the oxygen content in PS-MPs increased after the interaction with FA and the increase in oxygen content was even greater in aged PS-MPs. Overall, these research findings are useful to understand the environmental impacts of DOM-MPs interactions and to address the uncertainty of MPs aging effect on their environmental behavior in aquatic ecosystems.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing 312085, China.
| | - Chaolin Tu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenyang Liu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yifeng Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Anping Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Juan Xu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
25
|
Mu D, Wang C, Geng X, Zhao Y, Mohamed TA, Wu D, Wei Z. Effect of Maillard reaction based on catechol polymerization on the conversion of food waste to humus. CHEMOSPHERE 2024; 353:141560. [PMID: 38417496 DOI: 10.1016/j.chemosphere.2024.141560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/06/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
The pollution and harm of food waste (FW) are increasingly concerned, which has the dual attributes of pollutants and resources. This study aimed to improve the synthesis efficiency of FW humic substances (HS), and investigating the effect of catechol on the formation mechanism and structure of humic acid (HA) and fulvic acid (FA). Results indicated that catechol incorporation could enable to exhibit higher HS yield and more complex structure, especially the maximum particle size of FA reached 4800 nm. This was due to the combination of catechol with multiple nitrogenous compounds, which accelerated molecular condensation. Spectroscopic scans analysis revealed that Maillard reaction occurs first. Subsequently, Maillard reaction products and amino acids were combined with different sites of catechol, which leads to the difference of molecular structure of HS. The structure of FA is characterized by an abundance of carboxyl and hydroxyl groups, whereas HA is rich in benzene and heterocyclic structures. The structural difference was responsible for the disparity in the functional properties of FA and HA. Specifically, the presence of amino, hydroxyl, pyridine, and carboxyl groups in FA contributes significantly to its chelating activity. This research provides an efficient and sustainable unique solution for the high-value of FW conversion, and provides evidence for understanding the structural evolution of HA and FA.
Collapse
Affiliation(s)
- Daichen Mu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chao Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Geng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Taha Ahmed Mohamed
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Di Wu
- College of Life Science, Northeast Forestry University, Harbin 150030, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| |
Collapse
|
26
|
Li X, Chen X, Chen B, Zhang W, Zhu Z, Zhang B. Tire additives: Evaluation of joint toxicity, design of new derivatives and mechanism analysis of free radical oxidation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133220. [PMID: 38101020 DOI: 10.1016/j.jhazmat.2023.133220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is one of the most widely used antioxidant agents in tire additives. Its ozonation by-product 6PPD-quinone has recently been recognized as inducing acute mortality in aquatic organisms such as coho salmon. In this study, we aimed to develop an in-silico method to design environmentally friendly 6PPD derivatives and evaluate the joint toxicity of 6PPD with other commonly used tire additives on coho salmon through full factorial design-molecular docking and molecular dynamic simulation. The toxicity mentioned in this study is represented by the binding energy of chemical(s) binding to the coho salmon growth hormone. The recommended formula for tire additives with relatively low toxicity was then proposed. To further reduce the toxicity of 6PPD, 129 6PPD derivatives were designed based on the N-H bond dissociation reaction, and three of these derivatives showed improved antioxidant activity and 6PPD-106 was finally screened as the optimum alternative with lower toxicity to coho salmon. Besides, the mechanism of free radical oxidation (i.e., antioxidation and ozonation metabolic pathway) for 6PPD-106 was also analyzed and found that after ozonation, the toxicity of 6PPD-106's by-products is much lower than that of 6PPD's by-products. This study provided a molecular modelling-based examination of 6PPD, which comprehensively advanced the understanding of 6PPD's environmental behaviors and provided more environmentally friendly 6PPD alternatives with desired functional property and lower ecological risks.
Collapse
Affiliation(s)
- Xixi Li
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xinyi Chen
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | - Wenhui Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Zhiwen Zhu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada.
| |
Collapse
|
27
|
Chang B, Huang Z, Yang X, Yang T, Fang X, Zhong X, Ding W, Cao G, Yang Y, Hu F, Xu C, Qiu L, Lv J, Du W. Adsorption of Pb(II) by UV-aged microplastics and cotransport in homogeneous and heterogeneous porous media. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133413. [PMID: 38228006 DOI: 10.1016/j.jhazmat.2023.133413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024]
Abstract
To investigate the adsorption effects of aged microplastics (MPs) on Pb(II) and their co-transport properties in homogeneous (quartz sand) and heterogeneous (quartz sand with apple branches biochar) porous media, we explored the co-transport of UV-irradiated aged MPs and coexisting Pb(II) along with their interaction mechanisms. The UV aging process increased the binding sites and electronegativity of the aged MPs' surface, enhancing its adsorption capacity for Pb(II). Aged MPs significantly improved Pb(II) transport through homogeneous media, while Pb(II) hindered the transport of aged MPs by reducing electrostatic repulsion between these particles and the quartz sand. When biochar, with its loose and porous structure, was used as a porous medium, it effectively inhibited the transport capacity of both contaminants. In addition, since the aged MPs cannot penetrate the column, a portion of Pb(II) adsorbed by the aged MPs will be co-deposited with the aged MPs, hindering Pb(II) transport to a greater extent. The transport experiments were simulated and interpreted using two-point kinetic modeling and the DLVO theory. The study results elucidate disparities in the capacity of MPs and aged MPs to transport Pb(II), underscoring the potential of biochar application as an effective strategy to impede the dispersion of composite environmental pollutants.
Collapse
Affiliation(s)
- Bokun Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zixuan Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xiaodong Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Tianhuan Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xianhui Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xianbao Zhong
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wei Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Gang Cao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Soil Physics and Land Management Group, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Yajun Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Feinan Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
| | - Chenyang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ling Qiu
- College of Mechanical and Electronic Engineering & Northwest Research Center of Rural Renewable Energy, Exploitation and Utilization of Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| | - Wei Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
28
|
Wang X, Wang X, Zhu W, Ding L, Liang X, Wu R, Jia H, Huang X, Guo X. Insight into interactions between microplastics and fulvic acid: Mechanisms affected by microplastics type. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169427. [PMID: 38135066 DOI: 10.1016/j.scitotenv.2023.169427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Microplastics (MPs) can interact with dissolved organic matter (DOM), a common component found in the environment. However, the effect of MPs type on its interaction with DOM has not been systematically studied. Therefore, the binding properties of different MPs with fulvic acid (FA) were explored in this study. The results showed that polypropylene (PP) and polyethylene (PE) had higher adsorption affinity for FA than polystyrene (PS) and polyvinyl chloride (PVC). The interaction between MPs and FA conformed to the pseudo-first-order model and Freundlich model (except PS). The interaction mechanisms between various MPs tested in this paper and FA are considered to be different. PP, PE and PS interacted with the aromatic structure of FA and were entrapped in the FA polymers by the carboxyl groups and CO bonds, resulting in a highly conjugated co-polymer, suggesting that oxygen-containing functional groups played a key role. However, it was assumed that the interaction between PVC and FA was more likely to be caused by hydrophobic interaction. This research will help to enhance our comprehension of the environmental behavior of MPs and their interaction with the DOM specifically.
Collapse
Affiliation(s)
- Xinglei Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoxiao Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weimin Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Renren Wu
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China.
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xianfei Huang
- Guizhou Provincial Key Laboratory for Environment, Guizhou Normal University, Guiyang, Guizhou 550001, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
29
|
Cheng H, Zhou Y, Beiyuan J, Li X, Min J, Su L, Zhang L, Ji R, Xue J. Insights into the effect of hydrochar-derived dissolved organic matter on the sorption of diethyl phthalate onto soil: A pilot mechanism study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169101. [PMID: 38072267 DOI: 10.1016/j.scitotenv.2023.169101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/26/2023] [Accepted: 12/02/2023] [Indexed: 01/18/2024]
Abstract
Biowaste-derived hydrochar is an emerging close-to-natural product and has shown promise for soil improvement and remediation, but the environmental behavior of the dissolved organic matter released from hydrochar (HDOM) is poorly understood. Focusing on the typical mulch film plasticizer diethyl phthalate (DEP), we investigated the effect of HDOM on the sorption behavior of DEP on soil. The relatively low concentration of HDOM (10 mg L-1, 25 mg L-1) decreases the sorption quantity of DEP on soil, while it increases by a relatively high concentration, 50 mg L-1. The transformation from multilayer to monolayer sorption of DEP on soil occurs as the concentration of HDOM increases. The tryptophan-like substance is the main component of HDOM sorbed to soil, reaching 49.82 %, and results in competition sorption with DEP. The soil pores are blocked by HDOM, which limits the pore filling and mass transfer of DEP, but partitioning is significantly enhanced. The surface functional groups in HDOM are similar to those in soil, and chemical sorption, mainly composed of hydrogen bonding, exists but is not significantly strengthened. We identified the specific impact of HDOM on the sorption of organic pollutants on soil and provide new insights into the understanding of the environmental behavior of hydrochar.
Collapse
Affiliation(s)
- Hu Cheng
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yue Zhou
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Jingzi Beiyuan
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Xiaona Li
- Research Center of Low-carbon Technology and Sustainable Development, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Ju Min
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Lianghu Su
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Longjiang Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Rongting Ji
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China.
| | - Jianming Xue
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China; New Zealand Forest Research Institute (Scion), Christchurch 8440, New Zealand
| |
Collapse
|
30
|
Li L, Cao X, Bu C, Wu P, Tian B, Dai Y, Ren Y. Effects of acid mine drainage on photochemical and biological degradation of dissolved organic matter in karst river water. J Environ Sci (China) 2024; 135:26-38. [PMID: 37778801 DOI: 10.1016/j.jes.2022.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 10/03/2023]
Abstract
Dissolved organic matter (DOM) can be removed or transformed by photochemical and biological processes, producing the negative effect of transforming organic carbon into inorganic carbon, which plays a vital role in the karst carbon cycle. However, acid mine drainage (AMD) will affect this process, so the degradation of DOM in karst river water (KRW) needs to be studied in this context. In this study, to reveal the evolution processes of DOM under photochemical and biological conditions in AMD-impacted KRW, AMD and KRW were mixed in different ratios under conditions of visible light irradiation (VL), biodegradation (BD), ultraviolet irradiation (UV) and ultraviolet irradiation + biodegradation (UV+BD). The average DOC concentrations in samples after mixing AMD and KRW in different proportions decreased significantly (by 23%) in UV+BD, which was 1.2-1.4 times higher than under the other conditions and would lead to a significant release of inorganic carbon. Further analysis of the fluorescence parameters via parallel factor analysis (PARAFAC) revealed that the DOM fluorescence components in AMD comprised mainly protein-like substances derived from autochthonous components, while the DOM fluorescence components in KRW were mainly humic-like substances with both autochthonous and allochthonous sources. Therefore, AMD could promote both the photochemical and biological degradation of DOM in karst receiving streams, resulting in the conversion of DOC to inorganic carbon. The results showed that the synergistic effects of UV+BD and AMD accelerated the degradation of DOM and the release of inorganic carbon in KRW, thus affecting the stability of the karst carbon cycle.
Collapse
Affiliation(s)
- Linwei Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xingxing Cao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Chujie Bu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Biao Tian
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yongheng Dai
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yeye Ren
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
31
|
Jia L, Yang Q, Cui H. Insight into the dynamics of dissolved organic matter components under latitude change perturbation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115734. [PMID: 38016192 DOI: 10.1016/j.ecoenv.2023.115734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Dissolved organic matter (DOM) which can help the transportation of nutrients and pollutants plays essential role in the aquatic ecosystems. However, the dynamics of individual DOM component under the change of latitude have not been elucidated to date. The composition and dynamics of DOM were assessed in this study. Two individual parallel factor analysis (PARAFAC) components were found in each sampling site in Heilongjiang. To further characterize the inner change of the identified PARAFAC components, two-latitude correlation spectroscopy (2DCOS) technique was applied to the excitation loadings data. Interestingly, not all the fluorophore in a PARAFAC component change in the same direction as the overall change of a component. From upstream to downstream, the peak A1 in PARAFAC component C1 showed a downward trend, but peak A2 presented an upward trend. In PARAFAC component C2, the peak T2 and peak T3 showed an inverse changing trend under latitude perturbation. Furthermore, basic nutrients parameters in Heilongjiang were also characterized in each sampling sites. The relationships between DOM and nutrients showed that component C1 made a significant contribution to chemical oxygen demand (COD) and biochemical oxygen demand (BOD5). The evolutions of DOM peak A1 and peak A2 were accompanied by the changing of Total phosphorus (TP). The findings in this study could make a contribution to explore the fate of DOM in high humic-like substance containing river.
Collapse
Affiliation(s)
- Liming Jia
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, People's Republic of China; Jixi Ecological Environment Monitoring Center, Heilongjiang Province 158305, People's Republic of China
| | - Qi Yang
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, People's Republic of China.
| | - Hongyang Cui
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, People's Republic of China; Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China.
| |
Collapse
|
32
|
Wang Q, Liu W, Meng L, Zeb A, Mo F, Wang J, Shi R. The interfacial interaction between Dechlorane Plus (DP) and polystyrene nanoplastics (PSNPs): An overlooked influence factor for the algal toxicity of PSNPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167129. [PMID: 37730039 DOI: 10.1016/j.scitotenv.2023.167129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
As pollution has attracted attention due to its wide distribution. An environmental concern that may be overlooked is that NPs additives are easily released into the environment due to their physical combination with NPs. However, the knowledge gaps still exist about the interfacial reactions of NPs and the additives (e.g. flame retardants) and the joint ecological effect. In the present study, fourier transform infrared (FTIR) spectrometer coupled with 2D correlation spectroscopy (2D-COS) analysis revealed the interfacial reactions between polystyrene nanoplastics (PSNPs) and Dechlorane Plus (DP). Results showed that carbon‑oxygen bonds and carbon‑chlorine bonds were the important binding sites during adhesion and DP could reduce the colloidal stability. Single and joint ecological effects of PSNPs and DP on the microalgae Chlorella vulgaris were further deliberated. Reduced photosynthetic efficiency (reduced Fv/Fm by 0.03 %), higher growth inhibition (16.15 %) and oxidative damage (increased ROS by 152 %) were observed in algae under co-exposure. Notably, DP could significantly increase the attachment of PSNPs to the surface of the algae. Metabolomics further revealed that co-exposure significantly down-regulated amino acid metabolism and tricarboxylic acid cycle (TCA) cycle, and up-regulated fatty acid metabolism. The present study provides new insights into the risk assessment of NPs in aquatic environment by investigating the interfacial reaction mechanism and combined ecotoxicity of NPs and additives.
Collapse
Affiliation(s)
- Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Lingzuo Meng
- College of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fan Mo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
33
|
Tu S, Li Q, Jing Z, Gao H, Liu D, Shao M, Yu H. Characterizing dissolved organic matter and bacterial community interactions in a river network under anthropogenic landcover. ENVIRONMENTAL RESEARCH 2023; 238:117129. [PMID: 37709243 DOI: 10.1016/j.envres.2023.117129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Anthropogenic landcover could rise nutrient concentrations and impact the characteristics and bioavailability of dissolved organic matter (DOM) in a river network. Exploring the interactions between DOM and microbials might be conducive to revealing biogeochemistry behaviors of organic matter. In this study, synchronous fluorescence spectra (SFS) with Gaussian band fitting and two-dimensional correlation spectroscopy (2D-COS) were employed to identify DOM fractions and reveal their interactions with bacterial communities. DOM was extracted from a river network under eco-agricultural rural (RUR), eco-residential urban (URB), eco-economical town (TOW), and eco-industrial park (IND) regions in Jiashan Plain of eastern China. The overlapping peaks observed in the SFS were successfully separated into four fractions using Gaussian band fitting, i.e., tyrosine-like fluorescence (TYLF), tryptophan-like fluorescence (TRLF), microbial humic-like fluorescence (MHLF), and fulvic-like fluorescence (FLF) materials. Across all four regions, TRLF (44.79% ± 7.74%) and TYLF (48.09% ± 8.85%) were the dominant components. Based on 2D-COS, variations of TYLF and TRLF were extremely larger than those of FLF in RUR-TOW. However, in URB-IND, the former exhibited lower variations compared to the latter. These suggested that FLF be likely derived continuously from lignin and other residue of terrestrial plant origin along the river network, and TYLF and TRLF be originated discontinuously from domestic wastewater in RUR-TOW. By high-throughput sequenced OTUs, the number of organisms in RUR-TOW could be higher than those in URB-IND, while genes associated with carbohydrate metabolism were lower in former than those in the latter. According to co-occurrence networks, microbes could promote the production of TYLF and TRLF in RUR-TOW. In contrast, microbial communities in URB-IND might contribute to decompose FLF. The obtained results could not only reveal interactions between DOM fractions and bacterial communities in the river network, but this methodology may be applied to other water bodies from different landscapes.
Collapse
Affiliation(s)
- Shengqiang Tu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Qingqian Li
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhangmu Jing
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Hongjie Gao
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China.
| | - Dongping Liu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Meiqi Shao
- Xiamen Lawlink Development Co., Ltd, Xiamen, 361008, PR China
| | - Huibin Yu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
34
|
Jiang T, Hu XF, Guan YF, Chen JJ, Yu HQ. Molecular insights into complexation between protein and silica: Spectroscopic and simulation investigations. WATER RESEARCH 2023; 246:120681. [PMID: 37801982 DOI: 10.1016/j.watres.2023.120681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
The synergistic effect of protein-silica complexation leads to exacerbated membrane fouling in the membrane desalination process, exceeding the individual impacts of silica scaling or protein fouling. However, the molecular-level dynamics of silica binding to proteins and the resulting structural changes in both proteins and silica remain poorly understood. This study investigates the complexation process between silica and proteins-negatively charged bovine serum albumin (BSA) and positively charged lysozyme (LYZ) at neutral pH-using infrared spectroscopy (IR), in situ attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and multiple computational simulations. The findings reveal that both protein and silica structures undergo changes during the complexation process, with calcium ions in the solution significantly exacerbating these alterations. In particular, in situ ATR-FTIR combined with two-dimensional correlation spectroscopy analysis shows that BSA experiences more pronounced unfolding, providing additional binding sites for silica adsorption compared to LYZ. The adsorbed proteins promote silica polymerization from lower-polymerized to higher-polymerized species. Furthermore, molecular dynamics simulations demonstrate greater conformational variation in BSA through root-mean-square-deviation analysis and the bridging role of calcium ions via mean square displacement analysis. Molecular docking and density functional theory calculations identify the binding sites and energy of silica on proteins. In summary, this research offers a comprehensive understanding of the protein-silica complexation process, contributing to the knowledge of synergistic behaviors of inorganic scaling and organic fouling on membrane surfaces. The integrated approach used here may also be applicable for exploring other complex complexation processes in various environments.
Collapse
Affiliation(s)
- Ting Jiang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Fan Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Yan-Fang Guan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| | - Jie-Jie Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
35
|
Feng X, Sun D. Degradation characteristics of refractory organic matter in naproxen pharmaceutical secondary effluent using vacuum ultraviolet-ozone treatment. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132056. [PMID: 37467614 DOI: 10.1016/j.jhazmat.2023.132056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/09/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Vacuum ultraviolet-ozone (VUV-O3) treatment was found to be superior to ultraviolet-ozone (UV-O3) treatment in terms of ozone utilization and hydroxyl radicals (·OH) generation when used to treat the secondary effluent (SE) from a naproxen pharmaceutical plant. VUV-O3 treatment was beneficial in terms of decolorization (100%), chemical oxygen demand removal (43.29%), and total organic carbon removal (54.81%). The VUV-O3 process was applicable over a wide pH range, and the presence of various anions had no significant influence on the oxidation efficiency. After treatment, the genotoxicity, unsaturation degree, and polarity of the SE decreased. In addition, the oxidation sensitivities of the fluorescent organic compounds were ranked as follows: humic acid-like > tyrosine-like > fulvic acid-like > tryptophan-like Moreover, the VUV-O3 process effectively converted refractory organic matter (molecular weights, MW > 2000 Da) into short-chain molecules with low MWs. The removal efficiency of dissolved organic matter (DOM) was 63.27%, and 77.27% of the DOM was found to be reactive to VUV-O3 oxidation. The unsaturation, polarity, and compositional complexity of the DOM decreased after VUV-O3 treatment. Finally, it was deduced that the direct O3 oxidation,·OH, O2·- and 1O2 played a role in the VUV-O3 oxidation process.
Collapse
Affiliation(s)
- Xianlu Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
36
|
Zhu X, Luo Z, Zhang Q, He M, Tsang DCW. Valorization of slow pyrolysis vapor from biomass waste: Comparative study on pyrolysis characteristics, evolved gas evaluation, and adsorption effects. BIORESOURCE TECHNOLOGY 2023; 386:129543. [PMID: 37482202 DOI: 10.1016/j.biortech.2023.129543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Pyrolysis vapor is an important byproduct in the production of biochar from biomass waste, and its emission may pose potential environmental risks. To achieve green production of biochar and efficient utilization of pyrolysis vapors, a novel strategy is proposed in this study to use pristine biochar as an adsorbent to adsorb the pyrolysis vapors. According to thermogravimetry-Fourier infrared spectroscopy-mass spectrometry evaluation, the evolved vapors mainly consisted of oxygenated compounds, hydrocarbons, CO2, CO, and H2O. With pyrolysis temperature increasing, ethers, phenols, hydrocarbons, acids/ketones, and CO2 were changed in the same direction based on two-dimensional correlation spectroscopy analysis. Moreover, butene, propargyl alcohol, and butane were the most abundant ionic fragments. After adsorbing pyrolysis vapors, the heating value of the biochar increased by a maximum of 3.2 MJ kg-1 with changes of physicochemical properties. This strategy provides a theoretical basis for green preparation of biochar while recovering energy from pyrolysis vapors.
Collapse
Affiliation(s)
- Xiefei Zhu
- School of Advanced Energy, Sun Yat-sen University, 66 Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Zejun Luo
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Qiaozhi Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Mingjing He
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
37
|
Yang F, Hu Y, Qiu G, Li Q, Wang G. Complexation of copper algaecide and algal organic matter in algae-laden water: Insights into complex metal-organic interactions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122032. [PMID: 37321314 DOI: 10.1016/j.envpol.2023.122032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Copper-based algicides have been widely used to suppress algae blooms; however, the release of algal organic matter (AOM) on account of cell lysis may cause significant changes in the mitigation, transformation, and bioavailability of Cu(II). In the present work, the binding characteristics of Cu(II) with AOM were explored via combinative characterization methods, such as high-performance size exclusion chromatography, differential absorption spectra analysis, and joint applications of two-dimensional correlation spectroscopy (2D-COS), as well as heterospectral 2D-COS and moving window 2D-COS analyses of UV, synchronous fluorescence, and FTIR spectra. Carboxyl groups displayed a preferential interaction to Cu(II) binding, followed by polysaccharides. The spectral changes of C]O stretching occur after the change of chromophores in complexation with Cu(II). The AOM chromophores exhibit obvious conformations at Cu(II) concentrations higher than 120 μM, while AOM fluorophores and functional groups exhibit the greatest changes at Cu(II) concentrations lower than 20 μM. All these observations have verified the presence of binding heterogeneity and indicate that AOM could interact with Cu(II) through diverse functional moieties. Therefore, our study contributes to the better understanding of the fate of Cu(II)-AOM complexes in aquatic systems.
Collapse
Affiliation(s)
- Fei Yang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China; School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Yun Hu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Guoyu Qiu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Qimeng Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China.
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| |
Collapse
|
38
|
Gong B, Chen W, Sit PHL, Liu XW, Qian C, Yu HQ. Multiple spectroscopic insights into the interaction mechanisms between proteins and humic acid. WATER RESEARCH 2023; 243:120424. [PMID: 37523922 DOI: 10.1016/j.watres.2023.120424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/01/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
Proteins are important constituents of dissolved organic matter (DOM) in aqueous environments, and their interaction with humic acid (HA), another key component of DOM, substantially affects the environmental behaviors of DOM. In this work, the interaction mechanisms between tryptophan-containing proteins and HA were systematically investigated using multiple molecular spectroscopic approaches. The fluorescence quenching tests indicate that bovine serum albumin (BSA) was more readily quenched by HA and the coexisting phenolic, carboxyl, and quinone groups in HA contributed to this process significantly. By comparison, the fluorescence of L-tryptophan (L-Trp) was more stable under the same conditions. Furthermore, with multiple groups in HA, static quenching with the binding constants and the number of sites were calculated in the protein-HA and L-Trp-HA mixtures. In addition, the differential fluorescence spectra, UV‒Vis spectra, and two-dimensional correlation spectroscopy results confirmed that L-tryptophan amino acid could indeed form a complex with HA, while did not lead to fluorescence quenching. Finally, the molecular docking and density functional theory (DFT) simulations highlighted the contribution of multiple residues surrounding the HA groups to their interactions. The direct interaction between the tryptophan residue and HA might not be the prerequisite for the fluorescence response. Therefore, our work provides further insights into protein-HA interactions and implies other reasonable elucidations for further explanation.
Collapse
Affiliation(s)
- Bo Gong
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China; School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, 999077, China
| | - Wei Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Patrick H-L Sit
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, 999077, China
| | - Xian-Wei Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Qian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
39
|
Ren H, Wang G, Ding W, Li H, Shen X, Shen D, Jiang X, Qadeer A. Response of dissolved organic matter (DOM) and microbial community to submerged macrophytes restoration in lakes: A review. ENVIRONMENTAL RESEARCH 2023; 231:116185. [PMID: 37207736 DOI: 10.1016/j.envres.2023.116185] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Microorganisms play a crucial role in the biogeochemical processes of Dissolved Organic Matter (DOM), and the properties of DOM also significantly influence changes in microbial community characteristics. This interdependent relationship is vital for the flow of matter and energy within aquatic ecosystems. The presence, growth state, and community characteristics of submerged macrophytes determine the susceptibility of lakes to eutrophication, and restoring a healthy submerged macrophyte community is an effective way to address this issue. However, the transition from eutrophic lakes dominated by planktic algae to medium or low trophic lakes dominated by submerged macrophytes involves significant changes. Changes in aquatic vegetation have greatly affected the source, composition, and bioavailability of DOM. The adsorption and fixation functions of submerged macrophytes determine the migration and storage of DOM and other substances from water to sediment. Submerged macrophytes regulate the characteristics and distribution of microbial communities by controlling the distribution of carbon sources and nutrients in the lake. They further affect the characteristics of the microbial community in the lake environment through their unique epiphytic microorganisms. The unique process of submerged macrophyte recession or restoration can alter the DOM-microbial interaction pattern in lakes through its dual effects on DOM and microbial commu-----nities, ultimately changing the stability of carbon and mineralization pathways in lakes, such as the release of methane and other greenhouse gases. This review provides a fresh perspective on the dynamic changes of DOM and the role of the microbiome in the future of lake ecosystems.
Collapse
Affiliation(s)
- Haoyu Ren
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Guoxi Wang
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wanchang Ding
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - He Li
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xian Shen
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Dongbo Shen
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xia Jiang
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Abdul Qadeer
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
40
|
Sun F, Yu G, Han X, Chi Z, Lang Y, Liu C. Risk assessment and binding mechanisms of potentially toxic metals in sediments from different water levels in a coastal wetland. J Environ Sci (China) 2023; 129:202-212. [PMID: 36804236 DOI: 10.1016/j.jes.2022.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 06/18/2023]
Abstract
The excessive accumulation of potentially toxic metals (Pb and Cd) in coastal wetlands is among the main factors threatening wetland ecosystems. However, the effects of water table depth (WTD) on the risk and binding mechanisms of potentially toxic metals in sediments remain unclear. Here, sediments from different WTD obtained from a typical coastal wetland were evaluated using a newly developed strategy based on chemical extraction methods coupled with high-resolution spectroscopy. Our findings indicated that the WTD of the coastal wetland fluctuates frequently and the average enrichment factor for Pb was categorized as minor, whereas Cd enrichment was categorized as moderate. High-resolution spectroscopy techniques also demonstrated that organic functional groups and partly inorganic compounds (e.g., Fe-O/Si-O) played a vital role in the binding of Pb and Cd to surface sediments. Additionally, mineral components rather than organic groups were mainly bound to these metals in the bottom sediments. Collectively, our findings provide key insights into the potential health effects and binding characteristics of potentially toxic metals in sediments, as well as their dynamic behavior under varying sediment depths at a microscale.
Collapse
Affiliation(s)
- Fusheng Sun
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China.
| | - Guanghui Yu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Xingxing Han
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Zhilai Chi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Yunchao Lang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Congqiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| |
Collapse
|
41
|
Ouyang S, Zhou Q, Bi Z, Sun J, Hu X. Effect of natural soil nanocolloids on the fate and toxicity of cadmium to rice (Oryza sativa L.) roots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162887. [PMID: 36934947 DOI: 10.1016/j.scitotenv.2023.162887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/11/2023] [Accepted: 03/11/2023] [Indexed: 05/17/2023]
Abstract
Toxic heavy metals are common contaminants and will most likely interact with ubiquitous natural nanocolloids (Ncs) in the soil environment. However, the effect of soil Ncs on the fate and health risk of cadmium (Cd) have not been well addressed. Here, the interaction between Ncs and Cd is investigated using two-dimensional correlation spectroscopy (2DCOS) combined with synchronous fluorescence and Fourier transform infrared spectroscopy. Our results reveal that Cd binding to the soil Ncs surface is mainly driven through strong hydrophilic effects and π - π interactions, which contribute to a high adsorption capacity (366-612 mg/g) and strong affinity (KL = 4.3-9.7 L/mg) of Cd to soil Ncs. Interestingly, soil Ncs and Cd coexposure can significantly mediate the phytotoxicity (e.g., uptake, root growth, and oxidative stress) of Cd to rice (Oryza sativa L.) roots after 7 days of exposure. At the molecular level, metabolomic analysis reveals that the downregulated metabolic pathways (e.g., isoquinoline alkaloid and aminoacyl-tRNA biosynthesis, glycine, serine and threonine metabolism) may contribute to the above adverse phytotoxicity. This study provides new insight into the effect of natural Ncs on the fate and health risks of toxic heavy metals in soil environments.
Collapse
Affiliation(s)
- Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Zhicheng Bi
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jing Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
42
|
Wang J, Liu D, Yu H, Song Y. Insight into suppression of dibutyl phthalate on DOM removal during municipal sewage treatment using fluorescence spectroscopy with PARAFAC and moving-window 2D-COS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163210. [PMID: 37003316 DOI: 10.1016/j.scitotenv.2023.163210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/03/2023] [Accepted: 03/28/2023] [Indexed: 05/13/2023]
Abstract
Dibutyl phthalate (DBP) has been widely detected in municipal and industrial wastewater, which could indirectly inhibit pollutant removals, especially degradation of dissolved organic matter (DOM). Here, the inhibition of DBP on DOM removal from wastewater in pilot-scale A2O-MBR system was investigated by fluorescence spectroscopy with two-dimensional correlation (2D-COS) and structural equation modeling (SEM). Seven components were extracted from DOM using parallel factor analysis, i.e., tryptophan-like (C1 and C2), fulvic-like (C4), tyrosine-like (C5), microbial humic-like (C6) and heme-like (C7). The tryptophan-like had a blue-shift at DBP occurrence, defined as blue-shift tryptophan-like (C3). DBP with 8 mg L-1 exhibited a stronger inhibition on removals of DOM fractions, extraordinarily tyrosine-like and tryptophan-like in anoxic unit than DBP of 6 mg L-1 by moving-window 2D-COS. The indirect removals of C1 and C2 through the C3 removal were more strongly inhibited by 8 mg L-1 DBP than those by 6 mg L-1 DBP, while the former exhibited a weaker inhibition on the direct degradation of C1 and C2 than the latter via SEM. Based on metabolic pathways, abundances of key enzymes secreted by microorganism in anoxic unit, degrading tyrosine-like and tryptophan-like, were higher in wastewater with 6 mg L-1 DBP than those with 8 mg L-1 DBP. These could provide a potential approach for online monitoring of DBP concentrations in wastewater treatment plants, which could rectify operating parameters, and then enhance the treatment efficiencies.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dongping Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Huibin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
43
|
Hou X, Li Y, Zhang X, Ge S, Mu Y, Shen J. Unraveling the intracellular and extracellular self-defense of Chlorella sorokiniana toward highly toxic pyridine stress. BIORESOURCE TECHNOLOGY 2023:129366. [PMID: 37343803 DOI: 10.1016/j.biortech.2023.129366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/17/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
A bottleneck of microalgae-based techniques for wastewater bioremediation is activity inhibition of microalgae by toxic pollutants. The defense strategies of Chlorella sorokinana against toxic pyridine were studied. Results indicated that pyridine caused photoinhibition and reactive oxygen species overproduction in a concentration-dependent manner. The 50% inhibitory concentration of pyridine (147 mg L-1) destroyed C/N balance, disrupted multiple metabolic pathways of C. sorokinana. In response to pyridine stress, ascorbate peroxidase and catalase activities increased to scavenge reactive oxygen species under pyridine concentrations lower than 23 mg L-1. At higher pyridine concentrations, the activation of calcium signaling pathways and phytohormones represented the predominant defense response. Extracellular polymeric substances increased 3.6-fold in 147 mg L-1 group than control, which interacted with pyridine through hydrophobic and aromatic stacking to resist pyridine entering algal cells. Unraveling the intracellular and extracellular self-defense mechanisms of microalgae against pyridine stress facilitates the development of microalgal-based technology in wastewater bioremediation.
Collapse
Affiliation(s)
- Xinying Hou
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yan Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaoyu Zhang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shijian Ge
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jinyou Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
44
|
Yue Y, Xu L, Li G, Gao X, Ma H. Characterization of Dissolved Organic Matter Released from Aged Biochar: A Comparative Study of Two Feedstocks and Multiple Aging Approaches. Molecules 2023; 28:molecules28114558. [PMID: 37299032 DOI: 10.3390/molecules28114558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Dissolved organic matter (DOM) plays important roles in environmental ecosystems. While many studies have explored the characteristics of aged biochar, limited information is available about the properties of DOM derived from aged biochar. In this study, biochar obtained from maize stalk and soybean straw were aged using farmland or vegetable-soil solution, as well as soil solution containing hydrogen peroxide (H2O2). Chemical composition of the extracted DOM from the aged biochar was analyzed via excitation-emission matrix coupled with fluorescence regional integration (FRI) and parallel factor analysis (PARAFAC). Obtained results showed that biochar aged with H2O2-enriched soil solution had higher water-soluble organic carbon, ranging from 147.26-734.13% higher than the controls. FRI analysis revealed fulvic and humic-like organics as the key components, with a considerable increase of 57.48-235.96% in the humic-like component, especially in soybean-straw-aged biochar. PARAFAC identified four humic-like substance components. Concurrently, the aromaticity and humification of the aged-biochar-derived DOM increased, while the molecular weight decreased. These findings suggest that DOM derived from aged biochar, with a high content of humic-like organics, might impact the mobility and toxicity of pollutants in soil.
Collapse
Affiliation(s)
- Yan Yue
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Leqi Xu
- Yantai Research Institute, China Agricultural University, Yantai 264670, China
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guitong Li
- Yantai Research Institute, China Agricultural University, Yantai 264670, China
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiang Gao
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hongfang Ma
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
45
|
Sun FS, Ma C, Yu GH, Kuzyakov Y, Lang YC, Fu PQ, Guo LJ, Teng HH, Liu CQ. Organic carbon preservation in wetlands: Iron oxide protection vs. thermodynamic limitation. WATER RESEARCH 2023; 241:120133. [PMID: 37262945 DOI: 10.1016/j.watres.2023.120133] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
The sequestration of organic carbon (OC) in wetland sediments is influenced by the presence of oxygen or lack thereof. The mechanisms of OC sequestration under redox fluctuations, particularly by the co-mediation of reactive iron (Fe) protection and thermodynamic limitation by the energetics of the OC itself, remain unclear. Over the past 26 years, a combination of field surveys and remote sensing images had revealed a strong decline in both natural and constructed wetland areas in Tianjin. This decline could be attributed to anthropogenic landfill practices and agricultural reclamation efforts, which may have significant impacts on the oxidation-reduction conditions for sedimentary OC. The Fe-bound OC (CBD extraction) decreased by 2 to 10-fold (from 8.3 to 10% to 0.7-4.5%) with increasing sediment depth at three sites with varying water depths (WD). The high-resolution spectro-microscopy analysis demonstrated that Fe (oxyhydr)oxides were colocalized with sedimentary OC. Corresponding to lower redox potential, the nominal oxidation state of C (NOSC), which corresponds to the energy content in OC, became more negative (energy content increased) with increasing sediment depth. Taken together, the preservation of sedimentary OC is contingent on the prevailing redox conditions: In environments where oxygen availability is high, reactive Fe provides protection for OC, while in anoxic environments, thermodynamic constraints (i.e., energetic constraints) limit the oxidation of OC.
Collapse
Affiliation(s)
- Fu-Sheng Sun
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin 300072, China
| | - Chao Ma
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin 300072, China
| | - Guang-Hui Yu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin 300072, China.
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Gottingen, 37077 Gottingen, Germany; Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Yun-Chao Lang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin 300072, China
| | - Ping-Qing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin 300072, China
| | - Li-Jun Guo
- Tianjin Institute of Geological Survey, Tianjin 300191, China
| | - Hui Henry Teng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin 300072, China; Department of Chemistry, George Washington University, Washington, DC 20006, United States
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin 300072, China
| |
Collapse
|
46
|
Hua H, Liu M, Liu CQ, Lang Y, Xue H, Li S, La W, Han X, Ding H. Differences in the spectral characteristics of dissolved organic matter binding to Cu(II) in wetland soils with moisture gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162509. [PMID: 36870263 DOI: 10.1016/j.scitotenv.2023.162509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The environmental behavior of heavy metals in soil is significantly regulated by their binding with dissolved organic matter (DOM), which is affected by soil moisture contents. However, the mechanism of this interaction in soils with varying moisture is still not well understood. Using a combination of ultrafiltration, Cu(II) titration, and multispectral (ultraviolet-visible absorption, 3D fluorescence, Fourier transform infrared) analysis techniques, we studied the differences in the spectral characteristics and Cu(II) binding properties of soil dissolved organic matter (DOM) and its different molecular weight (MW) fractions with moisture gradients. We found that the abundance and spectral characters of soil DOM changed with increasing soil moisture, i.e., the increase in abundance while the decrease in aromaticity and humification index. The components of DOM, shown by Fluorescence region-integration (FRI) analysis, also changed, with an increase in the proportion of protein-like substances and a decrease of humic-like and fulvic-like substances. The overall Cu(II) binding potential of soil DOM diminished with increasing soil moisture, as indicated by the fluorescence parallel factor (PARAFAC) analysis. This is aligns with the changes in DOM composition, as the humic-like and fulvic-like fractions exhibited higher Cu(II) binding potential compared to the protein-like fractions. The low MW fraction of the MW-fractionated samples showed a stronger binding potential for Cu(II) compared to the high MW fraction. Finally, the active binding site of Cu(II) in DOM, as revealed by UV-difference spectroscopy and 2D-FTIR-COS analysis, decreased with increasing soil moisture, with the order of preferentially functional groups shifting from OH, NH, and CO to CN and CO. This study emphasizes the impact of moisture variations on the characteristics of DOM and its interaction with Cu(II), providing insight into the environmental fate of heavy metal contaminants in soil in areas with alternating land and water conditions.
Collapse
Affiliation(s)
- Haifeng Hua
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Mingxuan Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China; Critical Zone Observatory of Bohai Coastal Region, Tianjin University, Tianjin 300072, China
| | - Yunchao Lang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China; Critical Zone Observatory of Bohai Coastal Region, Tianjin University, Tianjin 300072, China
| | - Hao Xue
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Shiyong Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Wei La
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xiaokun Han
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China; Critical Zone Observatory of Bohai Coastal Region, Tianjin University, Tianjin 300072, China
| | - Hu Ding
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China; Critical Zone Observatory of Bohai Coastal Region, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
47
|
Song F, Li T, Wu F, Leung KMY, Hur J, Zhou L, Bai Y, Zhao X, He W, Ruan M. Temperature-Dependent Molecular Evolution of Biochar-Derived Dissolved Black Carbon and Its Interaction Mechanism with Polyvinyl Chloride Microplastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7285-7297. [PMID: 37098046 DOI: 10.1021/acs.est.3c01463] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Biochar-derived dissolved black carbon (DBC) molecules are dependent on the BC formation temperature and affect the fate of emerging contaminants in waters, such as polyvinyl chloride microplastic (MPPVC). However, the temperature-dependent evolution and MPPVC-interaction of DBC molecules remain unclear. Herein, we propose a novel DBC-MPPVC interaction mechanism by systematically interpreting heterogeneous correlations, sequential responses, and synergistic relationships of thousands of molecules and their linking functional groups. Two-dimensional correlation spectroscopy was proposed to combine Fourier transform-ion cyclotron resonance mass spectrometry and spectroscopic datasets. Increased temperature caused diverse DBC molecules and fluorophores, accompanied by molecular transformation from saturation/reduction to unsaturation/oxidation with high carbon oxidation states, especially for molecules with acidic functional groups. The temperature response of DBC molecules detected via negative-/positive-ion electrospray ionization sequentially occurred in unsaturated hydrocarbons → lignin-like → condensed aromatic → lipid-/aliphatic-/peptide-like → tannin-like → carbohydrate-like molecules. DBC molecular changes induced by temperature and MPPVC interaction were closely coordinated, with lignin-like molecules contributing the most to the interaction. Functional groups in DBC molecules with m/z < 500 showed a sequential MPPVC-interaction response of phenol/aromatic ether C-O, alkene C═C/amide C═O → polysaccharides C-O → alcohol/ether/carbohydrate C-O groups. These findings help to elucidate the critical role of DBCs in MP environmental behaviors.
Collapse
Affiliation(s)
- Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tingting Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Lingfeng Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei He
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Mingqi Ruan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
48
|
Zeng D, Li P, Hu J, Ye Q, Lv P, Liu W, He D. Fulvic acid enhanced peroxymonosulfate activation over Co-Fe binary metals for efficient degradation of emerging bisphenols. ENVIRONMENTAL RESEARCH 2023; 231:116041. [PMID: 37150385 DOI: 10.1016/j.envres.2023.116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Bisphenol F (BPF) and bisphenol S (BPS) are emerging bisphenols, which have become the main substitutes for bisphenol A (BPA) in industrial production and are also considered as new environmental pollution challenges. Thus, the necessity for an effective approach to remove BPF and BPS is essential. In this study, fulvic acid (FA) was used to modify Co-Fe binary metals (CFO) for peroxymonosulfate (PMS) activation. The characterization results demonstrated that CFO changed significantly in morphology after compounding with FA, with smaller particle size and 5.6 times larger specific surface area, greatly increasing the active sites of catalyst; Moreover, humic acid-like compounds increased the surface functional groups of CFO, especially phenolic hydroxyl, which could effectively prolong the PMS activation. The concentration of all reactive species, such as SO4•-, •OH, O2•-, and 1O2 increased in FA@CFO/PMS system. As a result, the degradation efficiency of CFO for both BPF and BPS was significantly improved after compounding FA, which also had a wide range of pH applications. The degradation pathways of both BPF and BPS were proposed based on liquid chromatography-mass spectrometry (LC-MS) analysis and the density functional theory (DFT) calculations. Our findings are expected to provide new strategies and methods for remediation of environmental pollution caused by emerging bisphenols.
Collapse
Affiliation(s)
- Dong Zeng
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Peiran Li
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Jiawu Hu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Quanyun Ye
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China.
| | - Pengfei Lv
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Wangrong Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Dechun He
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China.
| |
Collapse
|
49
|
Li Z, Qu B, Jiang J, Bekele TG, Zhao H. The photoactivity of complexation of DOM and copper in aquatic system: Implication on the photodegradation of TBBPA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163620. [PMID: 37100127 DOI: 10.1016/j.scitotenv.2023.163620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/08/2023]
Abstract
The photoactivity of dissolved organic matter (DOM) has a great impact on the photodegradation of organic pollutants in natural waters. In this study, the photodegradation of TBBPA was investigated under simulated sunlight irradiation in the presence of copper ion (Cu2+), dissolved organic matter (DOM) and Cu-DOM complexation (Cu-DOM) to illustrate the effect of Cu2+ on photoactivity of DOM. The rate of photodegradation of TBBPA in the presence of Cu-DOM complex was 3.2 times higher than that in pure water. The effects of Cu2+, DOM and Cu-DOM on the photodegradation of TBBPA were highly pH dependent and hydroxyl radical(·OH) responded for the acceleration effect. Spectral and radical experiments indicated that Cu2+ had high affinity to fluorescence components of DOM, and acted as both the cation bridge and electron shuttle, resulting the aggregation of DOM and increasing of steady-state concentration of ·OH (·OHss). Simultaneously, Cu2+ also inhibited intramolecular energy transfer leading to the decrease of steady-state concentration singlet oxygen (1O2ss) and triplet of DOM (3DOM⁎ss). The interaction between Cu2+ and DOM followed the order of conjugated carbonyl CO, COO- or CO stretching in phenolic groups and carbohydrate or alcoholic CO groups. With these results, a comprehensive investigation on the photodegradation of TBBPA in the presence of Cu-DOM was conducted, and the effect of Cu2+ on the photoactivity of DOM was illustrated. These findings helped to understanding the potential mechanism of interaction among metal cation, DOM and organic pollutants in sunlit surface water, especially for the DOM-induced photodegradation of organic pollutants.
Collapse
Affiliation(s)
- Zhansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116023, China
| | - Baocheng Qu
- College of Marine Technology and Environment, Dalian Ocean University, Heishijiao Street 52, Dalian 116024, China
| | - Jingqiu Jiang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No.12 South Zhongguancun Ave., Haidian District, Beijing 100081, China
| | - Tadiyose Girma Bekele
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116023, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116023, China.
| |
Collapse
|
50
|
Ding R, Ouyang Z, Zhang X, Dong Y, Guo X, Zhu L. Biofilm-Colonized versus Virgin Black Microplastics to Accelerate the Photodegradation of Tetracycline in Aquatic Environments: Analysis of Underneath Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5714-5725. [PMID: 36995247 DOI: 10.1021/acs.est.3c00019] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Tire wear particles (TWPs) exposed to the aquatic environment are rapidly colonized by microorganisms and provide unique substrates for biofilm formation, which potentially serve as vectors for tetracycline (TC) to influence their behaviors and potential risks. To date, the photodegradation capacity of TWPs on contaminants due to biofilm formation has not been quantified. To accomplish this, we examined the ability of virgin TWPs (V-TWPs) and biofilm-developed TWPs (Bio-TWPs) to photodegrade TC when exposed to simulated sunlight irradiation. V-TWPs and Bio-TWPs accelerated the photodegradation of TC, with rates (kobs) of 0.0232 ± 0.0014 and 0.0152 ± 0.0010 h-1, respectively (kobs increased by 2.5-3.7 times compared to that for only TC solution). An important factor of increased TC photodegradation behavior was identified and linked to the changed reactive oxygen species (ROS) of different TWPs. The V-TWPs were exposed to light for 48 h, resulting in more ROS for attacking TC, with hydroxyl radicals (•OH) and superoxide anions (O2•-) playing a dominant role in TC photodegradation measured using scavenger/probe chemicals. This was primarily due to the greater photosensitization effects and higher electron-transfer capacity of V-TWPs in comparison to Bio-TWPs. In addition, this study first sheds light on the unique effect and intrinsic mechanism of the crucial role of Bio-TWPs in TC photodegradation, enhancing our holistic understanding of the environmental behavior of TWPs and the associated contaminants.
Collapse
Affiliation(s)
- Rui Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xue Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yankai Dong
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|