1
|
Sugden S, White AB, Lento J, Kurek J, Dimitrovas I, Emry S, Hua X, Ijzerman MM, Kidd KA, Morrow KL, Ollinik JE, Schnell L, Thormeyer M, Edge CB. Legacy effects of four decades of insecticide applications on contemporary riverine benthic macroinvertebrates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126397. [PMID: 40348269 DOI: 10.1016/j.envpol.2025.126397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/05/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Insecticides have known effects on riverine benthic macroinvertebrate (BMI) assemblages. However, there is limited understanding of the legacy effects of insecticides, particularly in watersheds that received decades of historical applications. From 1952 to 1993, over 6.2 million ha in the province of New Brunswick (Canada) was treated with one to twelve different insecticides including dichlorodiphenyltrichloroethane (DDT), aminocarb, fenitrothion, and phosphamidon. Using a contemporary BMI dataset that included 274 sites within watersheds that cover 50 % of New Brunswick, we evaluated the relative importance of historical insecticide applications and contemporary environmental variables in explaining variability in BMI assemblages. We found that historical insecticides explained a significant, but small, amount of variation in contemporary assemblages. The number of insecticide applications showed a stronger association with BMI metrics than the total amount of insecticide(s) applied, though contemporary environmental measures such as urban land use, substrate size, geology, and climate all had more explanatory power than insecticide metrics. Our results suggested that while contemporary environmental variables and historical insecticide applications both affect BMI assemblage composition, the former often had a stronger role in structuring assemblages. Recognizing the influence of legacy stressors provides important context for understanding contemporary bioindicator responses to environmental change.
Collapse
Affiliation(s)
- Scott Sugden
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
| | - Amy B White
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| | - Jennifer Lento
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Fredericton, NB, Canada.
| | - Joshua Kurek
- Department of Geography and Environment, Mount Allison University, Sackville, NB, Canada.
| | - Ilya Dimitrovas
- Department of Geography and Environment, Mount Allison University, Sackville, NB, Canada.
| | - Sandra Emry
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| | - Xiaotian Hua
- Quantitative Life Sciences Program, McGill University, Montreal, QC, Canada.
| | - Moira M Ijzerman
- School of Environmental Studies, University of Guelph, Guelph, ON, Canada.
| | - Karen A Kidd
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| | - Katlyn Lm Morrow
- Department of Geography and Environment, Mount Allison University, Sackville, NB, Canada.
| | - Jessica E Ollinik
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada.
| | - Laura Schnell
- Department of Biology, University of Regina, Regina, SK, Canada.
| | - Markus Thormeyer
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| | - Christopher B Edge
- Canadian Forest Service, Natural Resources Canada, Fredericton, NB, Canada.
| |
Collapse
|
2
|
Kurek J, Fraser MP, Nakamoto BJ, Kidd KA, Edge CB. Legacy DDT and its metabolites in Brook Trout from lakes within forested watersheds treated with aerial applications of insecticides. PLoS One 2025; 20:e0320665. [PMID: 40257977 PMCID: PMC12011242 DOI: 10.1371/journal.pone.0320665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/23/2025] [Indexed: 04/23/2025] Open
Abstract
To manage defoliation from insect outbreaks, about half of the forested land in New Brunswick, Canada, was treated with dichlorodiphenyltrichloroethane (DDT) between 1952 and 1968. Aerial applications of DDT have thus likely increased the risk of chronic effects in aquatic ecosystems from this legacy insecticide given its high persistence in soil and sediments and its bioaccumulation potential within the food web. We investigated DDT and its metabolites (total ΣDDTs = ∑ DDT + ∑ DDD + ∑ DDE) in Brook Trout (Salvelinus fontinalis) associated with geospatial data of historical applications to lake watersheds and sedimentary measures of DDT and its metabolites from five "impact" and two "reference" study lakes. Total ΣDDTs in recent lake sediments were significantly correlated with cumulative DDT applied aerially to the lake's watershed. Brook Trout muscle tissue showed total ΣDDTs that were significantly higher from impact lakes than reference lakes. On average, total ΣDDTs in Brook Trout from impact lakes exceeded ecological guidelines for consumers of aquatic biota by about ten times. Most legacy DDT in Brook Trout and lake sediments were the metabolites ΣDDE and ΣDDD, which suggests the importance of environmental conditions and transport of weathered sources of this organochlorine insecticide to biota. Stable isotopes from fish and common invertebrate prey also suggested that Brook Trout were at a similar trophic position among all study lakes and thus storage pools of legacy DDT likely explain contamination levels within biota. Our findings clearly demonstrate that chronic effects of historical DDT applications likely persist throughout aquatic environments in north-central New Brunswick.
Collapse
Affiliation(s)
- Joshua Kurek
- Department of Geography and Environment, Mount Allison University, Sackville, NB, Canada
- Department of Biology, Mount Allison University, Sackville, NB, Canada
| | - Meghan P. Fraser
- Department of Biology, Mount Allison University, Sackville, NB, Canada
| | - Bobby J. Nakamoto
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | - Karen A. Kidd
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
3
|
Remili A, McKinney MA, Maldonado-Rodriguez A, Ferguson SH, Caputo M, Kiszka JJ. Legacy persistent organic pollutants among multiple cetacean species in the Northwest Atlantic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176746. [PMID: 39378935 DOI: 10.1016/j.scitotenv.2024.176746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
The historical contamination of eastern Canadian shelf waters remains an ongoing concern, predominantly stemming from anthropogenic discharges in the Great Lakes region. Although legacy persistent organic pollutants (POPs) were banned decades ago, it remains unclear whether their concentrations have sufficiently decreased to safer levels in cetaceans that feed in the continental shelf waters of the northwestern Atlantic. This study compares polychlorinated biphenyl (PCB) and organochlorine pesticide (OC) accumulation in six cetacean species sampled in the Northwest Atlantic from 2015 to 2022. We assessed the influence of relative trophic level and foraging habitat preferences on POP accumulations among species using stable isotopes and fatty acids as dietary tracers. We further identified the species most susceptible to the effects of these contaminants. Killer whales (Orcinus orca) exhibited the highest PCB (∼100 mg/kg lw) and OC concentrations, followed by other odontocetes, with lowest concentrations in mysticetes. Stable isotope analysis revealed an unexpected lack of correlation between δ15N values and contaminant levels. However, there was a positive correlation between δ13C values and POP concentrations. Cetaceans foraging on pelagic prey species, as indicated by elevated proportions of the FA markers 22:1n11 and 20:1n9, had lower contaminant loads compared to cetaceans with benthic/coastal FA signatures. PCB and DDT (dichlorodiphenyltrichloroethane) concentrations are lower now in most cetacean species than in the 1980s and 1990s, likely due to regulatory measures restricting their production and use. Although current PCB concentrations for most species are under the thresholds for high risks of immune and reproductive failure, concentrations in killer whales exceed all established toxicity thresholds, underscoring the need for further action to reduce sources of these contaminants to the continental shelf waters of the northwestern Atlantic.
Collapse
Affiliation(s)
- Anaïs Remili
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Ambar Maldonado-Rodriguez
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Steven H Ferguson
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| | - Michelle Caputo
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Jeremy J Kiszka
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| |
Collapse
|
4
|
Ijzerman MM, Raby M, Letwin NV, Black T, Kudla YM, Osborne RK, Sibley PK, Prosser RS. Pesticide presence in stream water, suspended sediment and biofilm is strongly linked to upstream catchment land use and crop type. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117382. [PMID: 39603219 DOI: 10.1016/j.ecoenv.2024.117382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Pesticide pollution can present high ecological risks to aquatic ecosystems. Small streams are particularly susceptible. There is a need for reproducible and readily available methods to identify aquatic regions at risk of pesticide contamination. There is currently a limited understanding of the relationship between upstream catchment land use and the presence of pesticides in multiple aquatic matrices. The aim of this study was to develop empirical relationships between different land uses and the levels of pesticides detected in multiple aquatic matrices. The inclusion of biofilm and suspended sediment as monitoring matrices has recently been proven effective for the characterization of pesticide exposure in stream ecosystems. Ten streams in Ontario, Canada with a variety of upstream catchment land uses were sampled in 2021 and 2022. Water, suspended sediment and biofilm were collected and analyzed from each site for the presence of approximately 500 different pesticides. Each of the three matrices exhibited distinctive pesticide exposure profiles. We found a significant relationship between the percentage of agriculture and urban land use and the detection of multiple pesticides in water, sediment and biofilm (logistic regressions, P<0.05). Statistically significant probabilistic models capable of predicting pesticide detections based on upstream catchment land use were developed. High-resolution cover crop maps identified soybeans, corn and other agriculture (e.g., vegetables, berries, canola) as the key variables associated with individual pesticide detection frequencies in each of the three matrices (linear regressions, P<0.05). Soybean land use was also the strongest predictor of site-wide pesticide pollution. This modelling approach using upstream catchment land use variables has the potential to be a powerful tool to identify streams at risk of pesticide pollution.
Collapse
Affiliation(s)
- Moira M Ijzerman
- University of Guelph, School of Environmental Sciences, Guelph, ON, Canada
| | - Melanie Raby
- Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON, Canada
| | - Nick V Letwin
- University of Guelph, School of Environmental Sciences, Guelph, ON, Canada
| | - Tyler Black
- University of Guelph, School of Environmental Sciences, Guelph, ON, Canada
| | - Yaryna M Kudla
- University of Guelph, School of Environmental Sciences, Guelph, ON, Canada
| | - Rebecca K Osborne
- University of Guelph, School of Environmental Sciences, Guelph, ON, Canada
| | - Paul K Sibley
- University of Guelph, School of Environmental Sciences, Guelph, ON, Canada
| | - Ryan S Prosser
- University of Guelph, School of Environmental Sciences, Guelph, ON, Canada.
| |
Collapse
|
5
|
Li X, Li T, Wang F, Chen X, Qin Y, Chu Y, Yang M, Zhang ZF, Ma J. Distribution and sources of polycyclic aromatic hydrocarbons in cascade reservoir sediments: influence of anthropogenic activities and reservoir hydrology. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:487. [PMID: 39508905 DOI: 10.1007/s10653-024-02256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/01/2024] [Indexed: 11/15/2024]
Abstract
The construction of dams has caused disruptions to river connectivity, leading to alterations in the deposition of hydrophobic organic contaminants in reservoir sediments. Further investigation is warranted to explore the impact of cascade reservoirs with differing hydrological characteristics on polycyclic aromatic hydrocarbons (PAHs) distribution in sediment. This study examines the presence of 30 PAHs in the sediments collected from six cascade reservoirs situated in the Wujiang River basin during January and July 2017. The results showed that Σ30 PAHs ranged from 455-3000 ng/g dw (mean 1030 ng/g dw). Anthropogenic activities and reservoir hydrology determined the distribution trend of PAHs in sediments, with an overall increase from upstream to midstream and then a decrease downstream. The PAH levels were highly linked to the secondary industry (P < 0.05). This was further supported by the relationship between the PAH emissions from coal combustion and traffic sources analyzed by the positive matrix factorization model and economic parameters in the wet season (P < 0.01). At the same time, reservoir age (RA) showed a positive correlation with PAH concentrations (P < 0.05), while hydraulic retention time (HRT) exhibited a negative correlation with PAH levels (P = 0.03). The relationship between total organic carbon (TOC) and PAHs in stream sediments worldwide was nonlinear (P < 0.01), with PAH concentrations initially rising and then falling as TOC levels increased. Concerns regarding carcinogenic risk were raised due to contributions from coal and vehicular sources, with the risk increasing with RA.
Collapse
Affiliation(s)
- Xiaoying Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Tong Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Fushun Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xueping Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yong Qin
- College of Food Science, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Yongsheng Chu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Harbin Institute of Technology, Polar Academy, Harbin, 150090, China.
| | - Jing Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
6
|
McGill L, Sleugh T, Petrik C, Schiff K, McLaughlin K, Aluwihare L, Semmens B. The persistent DDT footprint of ocean disposal, and ecological controls on bioaccumulation in fishes. Proc Natl Acad Sci U S A 2024; 121:e2401500121. [PMID: 39467121 PMCID: PMC11551384 DOI: 10.1073/pnas.2401500121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/12/2024] [Indexed: 10/30/2024] Open
Abstract
Globally, ocean dumping of chemical waste is a common method of disposal and relies on the assumption that dilution, diffusion, and dispersion at ocean scales will mitigate human exposure and ecosystem impacts. In southern California, extensive dumping of agrochemical waste, particularly chlorinated hydrocarbon contaminants such as DDT, via sewage outfalls and permitted offshore barging occurred for most of the last century. This study compiled a database of existing sediment and fish DDT measurements to examine how this unique legacy of regional ocean disposal translates into the contemporary contamination of the coastal ocean. We used spatiotemporal modeling to derive continuous estimates of sediment DDT contamination and show that the spatial signature of disposal (i.e., high loadings near historic dumping sites) is highly conserved in sediments. Moreover, we demonstrate that the proximity of fish to areas of high sediment loadings explained over half of the variation in fish DDT concentrations. The relationship between sediment and fish contamination was mediated by ecological predictors (e.g., species, trophic ecology, habitat use), and the relative influence of each predictor was context-dependent, with habitat exhibiting greater importance in heavily contaminated areas. Thus, despite more than half a century since the cessation of industrial dumping in the region, local ecosystem contamination continues to mirror the spatial legacy of dumping, suggesting that sediment can serve as a robust predictor of fish contamination, and general ecological characteristics offer a predictive framework for unmeasured species or locations.
Collapse
Affiliation(s)
- Lillian McGill
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92093
| | - Toni Sleugh
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92093
| | - Colleen Petrik
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92093
| | - Kenneth Schiff
- Southern California Coastal Water Research Project, Costa Mesa, CA92626
| | - Karen McLaughlin
- Southern California Coastal Water Research Project, Costa Mesa, CA92626
| | - Lihini Aluwihare
- Geosciences Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92093
| | - Brice Semmens
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
7
|
Gong X, Xiong L, Xing J, Deng Y, Qihui S, Sun J, Qin Y, Zhao Z, Zhang L. Implications on freshwater lake-river ecosystem protection suggested by organic micropollutant (OMP) priority list. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132580. [PMID: 37738851 DOI: 10.1016/j.jhazmat.2023.132580] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Lake-river complex systems represent interconnected ecosystems wherein inflow rivers significantly influence the migration of terrigenous contaminants, particularly organic micropollutants (OMPs), into lakes. Given the extensive array of OMPs, screening for those with the highest potential hazard is crucial for safeguarding freshwater lake-river ecosystems. In this study, an optimized multi-criteria scoring method was applied to prioritize OMPs. Flux estimation was then performed to identify the contamination load contributed by the Le'an River to Poyang Lake. Higher concentrations of phthalate esters (PAEs) were detected in the lake-river system, ranging from 1154.5 to 22,732.8 ng/L, followed by antibiotics and polycyclic aromatic hydrocarbons (PAHs), while historical pollutant residues were comparably lower. Based on the prioritization methodology, 27 compounds, encompassing eight PAEs, six organochlorine pesticides (OCPs), six polychlorinated biphenyls (PCBs), five PAHs and two antibiotics, emerged as priority pollutants. Multiple risk assessments revealed that priority PAEs posed relatively high ecological and human health risks; concurrently, the annual fluxes of individual priority PAEs into the lake all exceeded 1000 kg, with DBP, DEHP and BBP fluxes reaching 18,352, 10,429, and 7825 kg, respectively. This research offers valuable insights stemming from OMP prioritization to aid in the conservation of freshwater lake ecosystems, particularly concerning lake-river system integrity.
Collapse
Affiliation(s)
- Xionghu Gong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Lili Xiong
- Jiangxi Hydrological Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Jiusheng Xing
- Jiangxi Hydrological Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Yanqing Deng
- Jiangxi Hydrological Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Su Qihui
- Xinjiang and Raohe Hydrology and Water Resources Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Jing Sun
- Xinjiang and Raohe Hydrology and Water Resources Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Yu Qin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Zhonghua Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
8
|
Sun L, Ouyang M, Liu M, Liu J, Zhao X, Yu Q, Zhang Y. Enrichment, bioaccumulation and human health assessment of organochlorine pesticides in sediments and edible fish of a plateau lake. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9669-9690. [PMID: 37801211 DOI: 10.1007/s10653-023-01762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
The organochlorine pesticides (OCPs) are with features of persistence, high toxicity, bioaccumulation and adverse impact on ecosystems and human beings. Although OCPs pollutions have been observed in the plateau lakes, comprehensive understandings in the distribution characteristics and human health risks of OCPs in these valuable but fragile ecosystems are limited. We here investigated the distribution, bioaccumulation process and health risks of OCPs in the Jianhu lake, a representative plateau lake in China. The endrin ketone, endrin aldehyde and heptachlor were the most dominant species in surface and columnar sediments. Their total contents ranged between 0 ~ 1.92 × 103 ng·g-1. The distribution of OCPs in sediment cores combined with chronology information indicated that the fast accumulation of OCPs happened during the last decades. Combining the distribution features of OCPs in different sources with mixing model results of carbon isotope (δ13C), farming area was identified as the main source (46%), and the OCPs were transported to lake by inflow-rivers (37%). The enrichment of OCPs in sediments caused considerable bioaccumulation of OCPs in local fish (∑OCPs 0-3199.93 ng·g-1, dw) with the bio-sediment accumulation factor (BSAF) ranging from ND to 9.41. Moreover, growing time was another key factor governing the accumulation in specific species (Carassius auratus and Cyprinus carpio). Eventually, the carcinogenic risk index (CRI) and exposure risk index (ERI) of the endrin category and aldrin exceeded the reference value, indicating relatively high health risks through consumption of fish. Overall, this study systematically illustrated the bioaccumulation process and health risks of OCPs in the typical plateau lake, providing theoretical support for the better protection of this kind of lakes.
Collapse
Affiliation(s)
- Lei Sun
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, No.300 of Bailong Road, Panlong District, Kunming, 650224, China
- National Plateau Wetlands Research Center/College of Wetlands, Southwest Forestry University, Kunming, 650224, China
| | - Min Ouyang
- Kunming Institute of Physics, Kunming, 650223, China
| | - Min Liu
- Yunnan Center for Disease Control and Prevention, Kunming, 650022, China
| | - Jianhui Liu
- Yunnan Center for Disease Control and Prevention, Kunming, 650022, China
| | - Xiaohui Zhao
- Yunnan Center for Disease Control and Prevention, Kunming, 650022, China
| | - Qingguo Yu
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, No.300 of Bailong Road, Panlong District, Kunming, 650224, China
- National Plateau Wetlands Research Center/College of Wetlands, Southwest Forestry University, Kunming, 650224, China
| | - Yinfeng Zhang
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, No.300 of Bailong Road, Panlong District, Kunming, 650224, China.
- National Plateau Wetlands Research Center/College of Wetlands, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
9
|
Li J, Chang R, Ban X, Yuan GL, Wang J. Primary emissions or environmental persistence contribute to the present DDTs: Evidence from sediment records in Tibetan lakes. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132342. [PMID: 37598514 DOI: 10.1016/j.jhazmat.2023.132342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Dichlorodiphenyltrichloroethane (DDT) compounds are still circulating the global environment even though the technical DDT has been restricted in agriculture since the last century. The persistent presence of DDTs worldwide remains uncertain, as it is unclear whether their existence is primarily due to ongoing use or the prolonged persistence in soils and sediments that result in continuous reemission into the atmosphere. The present study applied a sequential extraction procedure to determine the DDT concentrations in rapid desorption, slow desorption, and bound residue fractions in the dated sediment cores from distinct regions of Tibet. The temporal variation of total DDTs (sum of three fractions) in sediments from southern and eastern Tibet respectively revealed the different DDT usage histories in India and China mainland. Nevertheless, the current application volumes of DDT-containing products in these regions were found to decrease significantly. The reversible transformations among three fractions of DDTs with aging time was observed along sediment profile, including the back conversion from bound residue. This process may be the key driver to prolong the half-life of sediment p,p'-DDT, resulting in the persistence of secondary sources of this persistent organic pollutant in the global environment for a longer duration than previously expected.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.
| | - Ruwen Chang
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Xiyu Ban
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Guo-Li Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Jie Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Zhou S, Su Q, Zhong D, Guo J, Liu J, Li A. Mutual interference between 3,6-dichlorinated carbazole and p,p'-dichlorodiphenyltrichloroethane in gas chromatography mass spectrometry analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1195. [PMID: 37698675 DOI: 10.1007/s10661-023-11813-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
The widespread contamination of the environment by polyhalogenated carbazoles (PHCZs) has been increasingly observed during the past decade. Among numerous PHCZ congeners, 3,6-dichlorocarbazole (36-CCZ) is often among the most frequently detected at higher concentrations. Although the environmental level of the legacy pesticide p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT) has been declining, it continues to be ubiquitously detected. These two compounds were found to interfere with each other during analyses using gas chromatography (GC) coupled with single- or triple-quadrupole low-resolution mass spectrometry (MS or MS/MS). The base peak in the mass spectra was that of m/z 235 for both compounds. In MS/MS with multiple reaction monitoring (MRM), the same transitions (235 → 200 and 235 → 165) were often used. Under the same GC operating conditions, the SH-I-5MS capillary column used in this work did not resolve the two compounds at baseline. Pre-treatment using cleanup column chromatography can fractionate the sample extract, with the two compounds separated in different fractions before instrumental analyses. Reversed-phase HPLC columns also work for resolving 36-CCZ and p,p'-DDT. Possible overlaps in GC retention and similarity in MS spectra might have caused data inaccuracy for 36-CCZ as well as p,p'-DDT in some studies published to date, and steps to avoid the interference should be taken into quality control protocols in future research and environmental monitoring.
Collapse
Affiliation(s)
- Shanshan Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Qi Su
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dan Zhong
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiehong Guo
- School of Public Health, University of Illinois Chicago, Chicago, IL, 60612, USA
- Department of Civil, Environmental, and Geospatial Engineering, Houghton, MI, 49931, USA
| | - Jinsong Liu
- Zhejiang Province of Environmental Monitoring Center, Hangzhou, 310012, China
| | - An Li
- School of Public Health, University of Illinois Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
11
|
Simon MP, Schatz M, Böhm L, Papp I, Grossart HP, Andersen TJ, Bálint M, Düring RA. Dissent in the sediment? Lake sediments as archives of short- and long-range impact of anthropogenic activities in northeastern Germany. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85867-85888. [PMID: 37395875 PMCID: PMC10404210 DOI: 10.1007/s11356-023-28210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023]
Abstract
The suitability of lake sediment cores to reconstruct past inputs, regional pollution, and usage patterns of pesticides has been shown previously. Until now, no such data exist for lakes in eastern Germany. Therefore, 10 sediment cores (length 1 m) of 10 lakes in eastern Germany, the territory of the former German Democratic Republic (GDR), were collected and cut into 5-10-mm layers. In each layer, concentrations of trace elements (TEs) As, Cd, Cr, Cu, Ni, Pb, S, and Zn, as well as of organochlorine pesticides (OCPs), i.e., dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH), were analyzed. A miniaturized solid-liquid extraction technique in conjunction with headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) was used for the latter. The progression of TE concentrations over time is uniform. It follows a trans-regional pattern and is indicative of activity and policy making in West Germany before 1990 instead of those in the GDR. Of OCPs, only transformation products of DDT were found. Congener ratios indicate a mainly aerial input. In the lakes' profiles, several regional features and responses to national policies and measures are visible. Dichlorodiphenyldichloroethane (DDD) concentrations reflect the history of DDT use in the GDR. Lake sediments proved to be suitable to archive short- and long-range impacts of anthropogenic activity. Our data can be used to complement and validate other forms of environmental pollution long-term monitoring and to check for the efficiency of pollution countermeasures in the past.
Collapse
Affiliation(s)
- Marcel Pierre Simon
- Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Marlene Schatz
- Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Leonard Böhm
- Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - István Papp
- Doctoral School of Chemistry, University of Debrecen, Egyetem Tér 1, Debrecen, 4032, Hungary
| | - Hans-Peter Grossart
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Dept. Plankton and Microbial Ecology, Zur alten Fischerhütte 2, OT Neuglobsow, 16775, Stechlin, Germany
- Institute for Biochemistry and Biology, Potsdam University, Maulbeerallee 2, 14469, Potsdam, Germany
| | - Thorbjørn Joest Andersen
- Section for Geography, Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350, Copenhagen K, Denmark
| | - Miklós Bálint
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Institute of Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Rolf-Alexander Düring
- Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
12
|
Rodríguez-Bolaña C, Pérez-Parada A, Tesitore G, Goyenola G, Kröger A, Pacheco M, Gérez N, Berton A, Zinola G, Gil G, Mangarelli A, Pequeño F, Besil N, Niell S, Heinzen H, Teixeira de Mello F. Multicompartmental monitoring of legacy and currently used pesticides in a subtropical lake used as a drinking water source (Laguna del Cisne, Uruguay). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162310. [PMID: 36828068 DOI: 10.1016/j.scitotenv.2023.162310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/13/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
A pilot annual monitoring survey (April 2018-March 2019) was conducted to investigate the presence of pesticides in superficial water and fish in Laguna del Cisne, one of the most critical drinking water sources in Uruguay. A total of 25 pesticide residues were detected in superficial water (89.3 % of the samples). Pesticide's temporal distribution was associated with crops and livestock practices, with higher occurrences in spring and summer than in autumn and winter. The most frequent compounds in superficial water were the insecticide chlorantraniliprole, and the herbicides glyphosate (including its metabolite AMPA) and metolachlor. The levels of Organochlorine pesticide, p,p'-DDT, was in some cases two order of magnitude above the international water quality guidelines for Ambient Water Criteria. In fishes, eight different pesticides were detected, at concentrations from 1000 to 453,000 ng·kg-1. The most frequent pesticides found were propiconazole, chlorpyrifos, and p,p'-DDE. The widespread occurrence of pesticides in fish suggests potential exposure effects on fish populations and the aquatic ecosystem. The sampling approach of this work allowed monitoring the continuous concentrations of several pesticides in surface waters and fishes to establish the influence from past and current agriculture practices in Laguna del Cisne basin. For safety measures, continuous monitoring programs must be performed in this system to prevent toxicity impacts on aquatic organisms and human health.
Collapse
Affiliation(s)
- César Rodríguez-Bolaña
- Departamento de Ecologia y Gestion Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Tacuarembó entre Saravia y Bvar. Artigas, Maldonado CP 20000, Uruguay.
| | - Andrés Pérez-Parada
- Departamento de Desarrollo Tecnológico, Centro Universitario Regional del Este (CURE), Universidad de la República, Ruta 9 y Ruta 15, CP 27000 Rocha, Uruguay; Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Giancarlo Tesitore
- Departamento de Ecologia y Gestion Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Tacuarembó entre Saravia y Bvar. Artigas, Maldonado CP 20000, Uruguay
| | - Guillermo Goyenola
- Departamento de Ecologia y Gestion Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Tacuarembó entre Saravia y Bvar. Artigas, Maldonado CP 20000, Uruguay
| | - Alejandra Kröger
- Departamento de Ecologia y Gestion Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Tacuarembó entre Saravia y Bvar. Artigas, Maldonado CP 20000, Uruguay
| | - Martín Pacheco
- Departamento de Ecologia y Gestion Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Tacuarembó entre Saravia y Bvar. Artigas, Maldonado CP 20000, Uruguay
| | - Natalia Gérez
- Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Analia Berton
- Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Gianna Zinola
- Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Guillermo Gil
- Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Alejandro Mangarelli
- Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Fiamma Pequeño
- Grupo de Análisis de Compuestos Traza, Departamento de Química del Litoral, Facultad de Química, CENUR Litoral Norte, Universidad de la República, Ruta 3, Km 363, 60000 Paysandú, Uruguay
| | - Natalia Besil
- Grupo de Análisis de Compuestos Traza, Departamento de Química del Litoral, Facultad de Química, CENUR Litoral Norte, Universidad de la República, Ruta 3, Km 363, 60000 Paysandú, Uruguay
| | - Silvina Niell
- Grupo de Análisis de Compuestos Traza, Departamento de Química del Litoral, Facultad de Química, CENUR Litoral Norte, Universidad de la República, Ruta 3, Km 363, 60000 Paysandú, Uruguay
| | - Horacio Heinzen
- Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Franco Teixeira de Mello
- Departamento de Ecologia y Gestion Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Tacuarembó entre Saravia y Bvar. Artigas, Maldonado CP 20000, Uruguay.
| |
Collapse
|
13
|
Viganò L, Guzzella L, Marziali L, Mascolo G, Bagnuolo G, Ciannarella R, Roscioli C. The last 50 years of organic contamination of a highly anthropized tributary of the Po River (Italy). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116665. [PMID: 36423407 DOI: 10.1016/j.jenvman.2022.116665] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/11/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
We examined the temporal profiles of many organic micropollutants analysed in a sediment core sampled from a highly anthropized tributary of the Po River, the Lambro River. Analysed for extractable organic halogens (EOX), total petroleum hydrocarbons (C10-C40TPH), polycyclic aromatic hydrocarbons (PAHs), common legacy pollutants (DDTs, PCBs), halogenated flame retardants (PBDEs, DBDPE, TBBPA-bis, TCBPA, TBBPA, HBCDs), organotins (TBT, TPhT), antimicrobials (TCS, TCC), fragrances (AHTN, HHCB) and phthalates (DMP, DEP, DnBP, BBP, DEHP, DnOP), the dated sediment core revealed the historical record of 50 years of chemical contamination discharged into the Lambro and thereby the Po River. In this regard, the peak levels of PCBs and DDTs found in Lambro sediments were also identified in other sediment cores collected from the Po River prodelta in the Adriatic Sea, thus hundreds of kilometres downstream (Combi et al., 2020). The highest risk to aquatic organisms was associated with decades of high levels of C10-C40 TPH, PBDEs, PCBs, PAHs, DDTs, EOX, TCC, AHTN and DEHP, which in different periods of the contamination history, showed exceedances of guideline/threshold values. C10-C40 TPH and TCC, for example, were very high in the 1960s, whereas PCBs, DDTs, and PBDEs, peaked from the 1980s onward. The corresponding sums of PEC quotients ranged between 0.48 and 28.63, with a mean value (±SD) for the entire recording period of 10.62 ± 9.83. Environmental legislations and improved wastewater treatments were the main drivers of the recent downward trends observed for most of the chemicals investigated. Floods in turn resulted in macroscopic yet temporary improvements in the chemical quality of the tributary, conveying contaminated sediments into the Po River.
Collapse
Affiliation(s)
- Luigi Viganò
- Water Research Institute, National Research Council, (IRSA - CNR), Via del Mulino 19, 20861, Brugherio, MB, Italy.
| | - Licia Guzzella
- Water Research Institute, National Research Council, (IRSA - CNR), Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Laura Marziali
- Water Research Institute, National Research Council, (IRSA - CNR), Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Giuseppe Mascolo
- Water Research Institute, National Research Council, (IRSA - CNR), Via De Blasio 5, 70132, Bari, Italy
| | - Giuseppe Bagnuolo
- Water Research Institute, National Research Council, (IRSA - CNR), Via De Blasio 5, 70132, Bari, Italy
| | - Ruggero Ciannarella
- Water Research Institute, National Research Council, (IRSA - CNR), Via De Blasio 5, 70132, Bari, Italy
| | - Claudio Roscioli
- Water Research Institute, National Research Council, (IRSA - CNR), Via del Mulino 19, 20861, Brugherio, MB, Italy
| |
Collapse
|
14
|
Gregory BRB, Kissinger JA, Clarkson C, Kimpe LE, Eickmeyer DC, Kurek J, Smol JP, Blais JM. Are fur farms a potential source of persistent organic pollutants or mercury to nearby freshwater ecosystems? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155100. [PMID: 35398138 DOI: 10.1016/j.scitotenv.2022.155100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Farming of carnivorous animals for pelts potentially contaminates nearby ecosystems because animal feed and waste may contain persistent organic pollutants (POPs) and metals. Mink farms in Nova Scotia (NS), Canada, provide mink with feed partially composed of marine fish meal. To test whether mink farms potentially contribute contaminants to nearby lakes, we quantified organochlorine pesticides (OCP), polychlorinated biphenyls (PCB), and total mercury (THg) in mink/aquaculture feed, waste, and sediment collected from 14 lakes within rural southwest NS where mink farms are abundant and have operated for decades. Mercury, PCBs, dichlorodiphenyltrichloroethane (DDT), hexachlorocyclohexane (HCH), and dieldrin were present in mink/aquaculture feed and mink waste, indicating they are potential contaminant sources. Lakes with mink farms in their catchment exhibited significantly higher THgflux than lakes downstream of mink farming activity and reference lakes (p < 0.0001) after the intensification of mink farming in 1980, indicating mink farming activity is likely associated with increased lacustrine THgflux. Sedimentary ƩPCBflux was elevated in lakes with mink farms in their catchments, suggesting possible PCB contributions from mink farming, local agriculture, and atmospheric deposition. Elevated ƩDDT in lakes near mink farms relative to reference lakes suggests a possible enrichment related to mink farming, although mixed land use and historical DDT usage related to forestry in the region complicates DDT source attribution. Maximum dieldrinflux and HCHflux in lake sediment occurred coeval with peak worldwide usage in the 1970s and are unlikely to be associated with local mink farming. Lakes with mink farming activities in their catchments were associated with increased THgflux, ƩPCBflux, and possibly ƩDDTflux, suggesting a possible connection between marine fish meal, fur farms, and aquatic ecosystems in NS.
Collapse
Affiliation(s)
- B R B Gregory
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - J A Kissinger
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - C Clarkson
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - L E Kimpe
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - D C Eickmeyer
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - J Kurek
- Department of Geography and Environment, Mount Allison University, Sackville, NB E4L 1E2, Canada
| | - J P Smol
- Paleoecolgical Environmental Assessment and Research Lab (PEARL), Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - J M Blais
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
15
|
Gong X, Zhao Z, Zhang L, Yao S, Xue B. North-south geographic heterogeneity and control strategies for polycyclic aromatic hydrocarbons (PAHs) in Chinese lake sediments illustrated by forward and backward source apportionments. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128545. [PMID: 35220116 DOI: 10.1016/j.jhazmat.2022.128545] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/06/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
As universal and supervirulent pollutants, understanding the potential sources of polycyclic aromatic hydrocarbons (PAHs) in lakes is critical for formulating pollutant control policies that will ensure the ecological safety of aquatic environments. Geographic heterogeneity of PAHs in lake sediments from China nationwide was investigated to indicate north-south dissimilarities in PAH levels and sources and propose specific PAH control strategies. Geographic PAH patterns showed that higher concentrations were found in the south compared to the north due to higher energy consumption and more intense industrial activities. Furthermore, the primary contributors in the south were high molecular weight (HMW) PAHs, whereas low molecular weight (LMW) PAHs were dominant in the north. The results of forward source apportionment based on the PAH emission method (EM) were consistent with the backward method using the positive matrix factorization (PMF) model, which verified the feasibility of the combined methods. Petroleum from transport was the dominant PAH source in the south, and purifying gasoline and diesel, promoting new energy vehicles and direct injection engines might effectively reduce PAH emission. Domestic coal was the main PAH source in the north, thereby adding active substance in coal and using cleaner energy could reduce PAH release.
Collapse
Affiliation(s)
- Xionghu Gong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhonghua Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Shuchun Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Bin Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
16
|
Clark AJ, Labaj AL, Smol JP, Campbell LM, Kurek J. Arsenic and mercury contamination and complex aquatic bioindicator responses to historical gold mining and modern watershed stressors in urban Nova Scotia, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147374. [PMID: 34045077 DOI: 10.1016/j.scitotenv.2021.147374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 05/27/2023]
Abstract
Beginning in the late-1800s, gold mining activities throughout Nova Scotia, eastern Canada, released contaminants, notably geogenic arsenic from milled ore and anthropogenic mercury from amalgamation, to local environments via surface water flows through tailings fields. We investigated recovery from and legacy effects of the tailings field at the Montague Gold District (~1863-1940) on nearby urban lake ecosystems using geochemical measures and zooplankton remains archived in dated sediment cores from an impact (Lake Charles) and a reference (Loon Lake) lake. Sedimentary levels of total arsenic and total mercury were used to assess mining-related inputs. Arsenic concentrations remain elevated at nearly 300 times above sediment guidelines in Lake Charles surface sediments, due to its upward mobilization from enriched sediment intervals and sequestration by iron oxyhydroxides in surficial sediments. Peak mercury concentrations at Lake Charles were eight times above sediment guidelines during the mining period, and since ~1990 have recovered to levels observed before mining began. Legacy mining impacts at Lake Charles and non-mining related environmental changes in the post-1950 sediments at both lakes have thus combined to structure assemblage compositions of primary consumers. At both lakes, assemblages of pelagic-dominated Cladocera differed (p ≤ 0.05) during the mining period compared to periods before and after mining. Taxon richness differed (p ≤ 0.01) only between the pre- and post-mining periods at mining-impacted Lake Charles and reflects long-term declines of substrate-dwelling littoral taxa. Geochemical and biological recovery have not completely occurred at Lake Charles despite the mine district's closure ~80 years ago. Our findings demonstrate that impacts of ore processing and amalgamation from historical gold mining, combined with recent watershed stressors, continue to affect sedimentary arsenic geochemistry and intermediate trophic levels of nearby, downstream aquatic habitats.
Collapse
Affiliation(s)
- Allison J Clark
- Department of Geography and Environment, Mount Allison University, Sackville, New Brunswick, Canada
| | - Andrew L Labaj
- Department of Geography and Environment, Mount Allison University, Sackville, New Brunswick, Canada
| | - John P Smol
- Paleoecological Environmental Assessment and Research Laboratory, Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Linda M Campbell
- Environmental Sciences Department, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Joshua Kurek
- Department of Geography and Environment, Mount Allison University, Sackville, New Brunswick, Canada.
| |
Collapse
|
17
|
Grinham A, Deering N, Beecroft R, Rudd J, Heatherington C, Cossu R, Linde M, Richardson D, Wilson C, Hutley N, Albert S. Event loading drives distribution of the organochlorine pesticide metabolite DDE in a sub-tropical river system, Brisbane River, Australia. MARINE POLLUTION BULLETIN 2021; 170:112671. [PMID: 34217054 DOI: 10.1016/j.marpolbul.2021.112671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Past catchment practices can contribute to environmental impacts for decades following their cessation. We examine the distribution of the prevalent organochlorine pesticide, dichlorodiphenyltrichloroethane (DDT) and its metabolites (DDE, DDD) in the sediments of a sub-tropical river system (Brisbane River, Australia). This study aimed to identify sources of DDT, DDE, DDD into the lower reaches of the Brisbane River. Annual sediment sampling of the lower Brisbane River over a period of 15 years (2001-2015) revealed a significant increase in sediment DDT, DDE and DDD content following major floods. A regional survey detected elevated sediment DDT, DDE and DDD content at 32 of 79 sites sampled; however, these were generally below guideline trigger values. DDE was the sole fraction at all but one site with creek systems dominated by intensive cropping practices identified as legacy sources and major flood events as a driver of elevated sediment DDE content in the lower reaches.
Collapse
Affiliation(s)
- Alistair Grinham
- School of Civil Engineering, The University of Queensland, St. Lucia, QLD, Australia.
| | - Nathaniel Deering
- School of Civil Engineering, The University of Queensland, St. Lucia, QLD, Australia
| | - Ryan Beecroft
- School of Civil Engineering, The University of Queensland, St. Lucia, QLD, Australia
| | - Jessica Rudd
- Port of Brisbane Pty Ltd., Port of Brisbane, QLD, Australia
| | - Craig Heatherington
- School of Civil Engineering, The University of Queensland, St. Lucia, QLD, Australia
| | - Remo Cossu
- School of Civil Engineering, The University of Queensland, St. Lucia, QLD, Australia
| | - Michael Linde
- Port of Brisbane Pty Ltd., Port of Brisbane, QLD, Australia
| | | | - Craig Wilson
- Port of Brisbane Pty Ltd., Port of Brisbane, QLD, Australia
| | - Nicholas Hutley
- School of Civil Engineering, The University of Queensland, St. Lucia, QLD, Australia
| | - Simon Albert
- School of Civil Engineering, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
18
|
Gong X, Ding Q, Jin M, Zhao Z, Zhang L, Yao S, Xue B. Recording and response of persistent toxic substances (PTSs) in urban lake sediments to anthropogenic activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145977. [PMID: 33676204 DOI: 10.1016/j.scitotenv.2021.145977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Owing to the intensification of human activities, urban lakes serving as important freshwater resources are becoming seriously deteriorated, especially due to persistent toxic substance (PTS) pollution. Therefore, the spatial distribution and sediment record of PTS in urban lake sediments in the middle Yangtze River Basin were investigated to indicate its response to anthropogenic emission and pollution reduction actions. Spatial distribution of typical PTSs (polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) included) showed that pollutants were concentrated in the southeast and center of the urban lake due to riverine inputs suffering from both petrochemical and municipal wastewaters. The sedimentary record of PAH concentrations indicated an increase from the 1960s to a peak level in the 2000s, which was induced mainly by increased PAH emissions, with PAH levels decreasing subsequently due to craft improvement of wastewater treatment plants (WWTPs). Source apportionment results revealed that historical PAH emissions transferred from petrogenic sources to a mixture of energy combustion and petrochemical industry. Furthermore, OCP and PCB pollutions reached peak levels in 1980s, which is consistent with their historical usage for agricultural and industrial production. From the synthetic sediment quality index (SeQI) analysis, sediment quality in nearly half of sites was poor, while the sediment record suggested that sediment quality had turned better since 2000s maybe due to the WWTP improvement. Furthermore, significant correlations (p < 0.05) between PTS levels and the ratio of PAH emissions to the number of WWTPs documented the PTS levels in response to the surrounding anthropogenic pollution and WWTPs in urban lakes.
Collapse
Affiliation(s)
- Xionghu Gong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qiqi Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Miao Jin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Zhonghua Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Shuchun Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Bin Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| |
Collapse
|
19
|
Li L, Zhang Y, Wang J, Lu S, Cao Y, Tang C, Yan Z, Zheng L. History traces of HCHs and DDTs by groundwater dating and their behaviours and ecological risk in northeast China. CHEMOSPHERE 2020; 257:127212. [PMID: 32534294 DOI: 10.1016/j.chemosphere.2020.127212] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/08/2020] [Accepted: 05/23/2020] [Indexed: 05/13/2023]
Abstract
Organochlorine pesticides legacies, such as hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT), remained in sediments or soils due to their difficulty in decomposition, especially in the agricultural areas where pesticides were widely used historically. Different from the little disturbed depositional environment of lake, it was difficult for rivers to explore the timing of DDT and HCH inputs through dating sediment cores as records. Based on groundwater dating, this study ascertained the historic pollution of DDT and HCH in Taizi River basin. HCH and DDT residues in groundwater were consistent with the historical production and usage, which increased from the 1950s to the 1980s and declined from the 1980s to the 1990s. Moreover, the partitioning behaviours of HCHs and DDTs in surface water and suspended particulate matter were discussed. It was revealed that β-HCH and o,p'-DDT were more likely to attach to suspended particulate matter than other isomers. Furthermore, species sensitivity distribution curves were generated using 54 toxicity data records to assess the risk of HCHs and DDTs in water and suspended particulate matter. These results indicated that p,p'-DDT in surface water posed a high risk to 95% of the aquatic life in the long run.
Collapse
Affiliation(s)
- Linlin Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Science, Beijing Normal University, Beijing, 100875, PR China
| | - Yizhang Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Taian, 250000, PR China
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yingjie Cao
- School of Environmental Science and Engineering, Sun Yat Sen University, Guangzhou, 510006, PR China
| | - Changyuan Tang
- School of Environmental Science and Engineering, Sun Yat Sen University, Guangzhou, 510006, PR China
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lei Zheng
- National Research Center for Environmental Analysis and Measurement, Beijing, 100029, PR China
| |
Collapse
|
20
|
Lichtenberg SS, Laisney J, Elhaj Baddar Z, Tsyusko OV, Palli SR, Levard C, Masion A, Unrine JM. Comparison of Nanomaterials for Delivery of Double-Stranded RNA in Caenorhabditis elegans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7926-7934. [PMID: 32610013 DOI: 10.1021/acs.jafc.0c02840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
RNA interference is a promising crop protection technology that has seen rapid development in the past several years. Here, we investigated polyamino acid biopolymers, inorganic nanomaterials, and hybrid organic-inorganic nanomaterials for delivery of dsRNA and efficacy of gene knockdown using the model nematode Caenorhabditis elegans. Using an oral route of delivery, we are able to approximate how nanomaterials will be delivered in the environment. Of the materials investigated, only Mg-Al layered double-hydroxide nanoparticles were effective at gene knockdown in C. elegans, reducing marker gene expression to 66.8% of that of the control at the lowest tested concentration. In addition, we identified previously unreported injuries to the mouthparts of C. elegans associated with the use of a common cell-penetrating peptide, poly-l-arginine. Our results will allow the pursuit of further research into promising materials for dsRNA delivery and also allow for the exclusion of those with little efficacy or deleterious effects.
Collapse
Affiliation(s)
- Stuart S Lichtenberg
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Jerome Laisney
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Zeinah Elhaj Baddar
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Subba R Palli
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Clement Levard
- CNRS, Aix-Marseille Univ., IRD, INRAE, Coll France, CEREGE, Europole Arbois,check BP 80, Aix en Provence 13545, France
| | - Armand Masion
- CNRS, Aix-Marseille Univ., IRD, INRAE, Coll France, CEREGE, Europole Arbois,check BP 80, Aix en Provence 13545, France
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| |
Collapse
|
21
|
Dong M, Luo Z, Jiang Q, Xing X, Zhang Q, Sun Y. The rapid increases in microplastics in urban lake sediments. Sci Rep 2020; 10:848. [PMID: 31964973 PMCID: PMC6972887 DOI: 10.1038/s41598-020-57933-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/08/2020] [Indexed: 11/10/2022] Open
Abstract
Microplastics have received widespread attention as an emerging global pollutant. However, the research on the abundance and characteristics of microplastics entering the environment throughout history has been limited. Meanwhile, the determination of the start of the Anthropocene is important because humans have become a vital force affecting the environment and Earth surface processes. It is unclear whether the plastic can be used as an artefact to indicate the start of the Anthropocene. In this study, combined with 137Cs, 210Pb, and spherical carbonaceous particles (SCP) high-resolution chronology, a microplastics-time curve was established by using the sedimentary record from an urban lake in Wuhan city. The microplastic abundance increased from 741 items·kg-1 to 7707 items·kg-1 over the past 60 years. The microplastics were mainly fibres and composed of polyester and rayon polymers, which indicated that the microplastics most likely originated from textiles. The surfaces of the older microplastics were rough and weathered with many absorbed elements. Microplastics are similar to fossils belonging to the Anthropocene, and may be used as an indicator. The comparison of microplastic-time curves in different records on a global scale will be necessary in the future.
Collapse
Affiliation(s)
- Mingtan Dong
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- School of LiSiguang, China University of Geosciences, Wuhan, China
| | - Zejiao Luo
- School of Environmental Studies, China University of Geosciences, Wuhan, China.
| | - Qingfeng Jiang
- School of Geographic Science, Nantong University, Nantong, China
| | - Xinli Xing
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Qiaoqiao Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- School of LiSiguang, China University of Geosciences, Wuhan, China
| | - Yue Sun
- School of LiSiguang, China University of Geosciences, Wuhan, China
| |
Collapse
|