1
|
Chang W, Xu SD, Liu T, Wu LL, Liu ST, Liu G, Sun J, Luo YX, Gao L, Li H, Lu Q, Yuan Z, Liu KY, Zhou H, Zhang XD, Huang YC, Xiong YW, Zhu HL, Xu DX, Wang H. Risk prioritization and experimental validation of per- and polyfluoroalkyl substances (PFAS) in Chaohu Lake: Based on nontarget and target analyses. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138179. [PMID: 40209414 DOI: 10.1016/j.jhazmat.2025.138179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Pollution caused by per- and polyfluoroalkyl substances (PFAS) in surface water has become a global health concern. Nevertheless, due to the continuous production of emerging PFAS, the pollution levels and hazards of several precursors and their metabolites have not been evaluated. In this study, Chaohu Lake was selected as a representative freshwater lake to obtain a deeper understanding of the profiles of emerging PFAS in surface water. Nontarget screening tentatively identified 49 PFAS with a confidence level of ≥L3, which included 12 legacy PFAS and 37 emerging PFAS. Based on a target analysis of 57 PFAS, 18 PFAS were detected, with at least 10 PFAS detected in every water sample, indicating the widespread presence of PFAS in Chaohu Lake. Moreover, a risk-based PFAS priority model was used to prioritize the PFAS in Chaohu Lake. Remarkably, perfluoromethanesulfonic acid (PFMeS) exhibited the highest level of risk index among the intersection PFAS identified by the nontarget screening of Chaohu Lake water and human serum. For validation, the cytotoxicity of PFMeS was further evaluated in vitro. This study considerably expands our understanding of the occurrence, environmental risk, and cytotoxicity of PFAS in Chaohu Lake and also provides an experimentally validated basis for future research on novel contaminants in a water environment.
Collapse
Affiliation(s)
- Wei Chang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Shen-Dong Xu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Ting Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lan-Lan Wu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Si-Ting Liu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Gang Liu
- Environmental Protection Monitoring Station, Anhui Provincial Lake Chaohu Administration, Chaohu 238000, China
| | - Jian Sun
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Ye-Xin Luo
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Lei Gao
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Hao Li
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Qi Lu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Zhi Yuan
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Kai-Yong Liu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Huan Zhou
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Xu-Dong Zhang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Yi-Chao Huang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China.
| |
Collapse
|
2
|
Fabregat-Palau J, Zweigle J, Renner D, Zwiener C, Grathwohl P. Assessment of PFAS contamination in agricultural soils: Non-target identification of precursors, fluorine mass balance and microcosm studies. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137798. [PMID: 40043400 DOI: 10.1016/j.jhazmat.2025.137798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/10/2025] [Accepted: 02/27/2025] [Indexed: 04/16/2025]
Abstract
Biodegradation of PFAS is examined in eight PFAS precursor-contaminated topsoil samples in order to determine generation rate constants for perfluorocarboxyl acids (PFCA) and to elucidate soil properties affecting these. PFAS were analyzed via both target (HPLC-MS/MS) and non-target (HPLC-QTOF) (semi)quantification. FTMAPs, diPAPs, and diSAmPAP were identified and accounted for > 80 % of the total PFAS burden, which ranged from ∼ 280-9700 ng g-1. These levels were confirmed by chemical oxidation of precursors (TOP assay) which allowed to close the fluorine mass balance against extractable organic fluorine (EOF). Notably, in some organic carbon rich samples, repeated oxidation was needed to achieve a complete fluorine mass balance. Batch microcosm incubations and total precursor quantification allowed to determine production rate constants of short-chain PFCA, which ranged from 0.02 to 0.50 year-1 depending on PFAS and soil physicochemical properties. Principal component analysis (PCA) indicated that both acid phosphomonoesterase and, to some extent, microbial biomass influences the production rates of short-chain PFAS in soils. This allowed to assess contamination time scales, indicating that production and thus release of PFAS from precursor decay will continue for years to decades. This bears the risk of contamination of adjacent environmental compartments such as groundwater and surface water bodies.
Collapse
Affiliation(s)
- Joel Fabregat-Palau
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany.
| | - Jonathan Zweigle
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany; Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Dominik Renner
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| | - Christian Zwiener
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| | - Peter Grathwohl
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| |
Collapse
|
3
|
Chen Y, Guo R, Ren F, Jin H. Identification and environmental occurrence of novel per- and polyfluoroalkyl substances derived from lithium-ion battery. WATER RESEARCH 2025; 283:123862. [PMID: 40408989 DOI: 10.1016/j.watres.2025.123862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 05/11/2025] [Accepted: 05/18/2025] [Indexed: 05/25/2025]
Abstract
Global rise in electric vehicle adoption has prompted the rapid expansion of the lithium-ion battery (LIB) manufacturing and recycling industry. Many emerging classes of per- and polyfluoroalkyl substances (PFASs) have been incorporated into the LIB. However, the potential for PFAS emissions to the environment during the manufacturing and recycling processes of the LIB remains poorly understood. In this study, characteristic fragment ion-based non-target analysis was conducted to screen and identify unknown PFASs in surface water and sediment samples surrounding several LIB manufacturing and recycling factories. In total, 33 PFASs belonging to eight classes were identified in collected environmental samples with the confidence level of 1 - 3. Among these PFASs, environmental occurrence of N-ethyl perfluoromethanesulfonamide, N-hydroxymethyl trifluoromethanesulfonamide, and a series of bisperfluoroalkane sulfonimides (Bis-FASIs) is first discovered in this study. Furthermore, this study also investigated the sediment-water partitioning behaviors of these identified 33 PFASs. Results showed that the calculated mean log Koc values in all sampling regions ranged from 0.51 ± 0.16 to 3.5 ± 0.34 for C2-C12 perfluoroalkyl carboxylates, 1.0 ± 0.31 to 2.9 ± 0.35 for C1-C8 perfluoroalkyl sulfonates, 1.2 ± 0.20 to 2.1 ± 0.19 for C1-C4 perfluoroalkane sulfonamides, and 1.9 ± 0.35 to 3.3 ± 0.16 for Bis-FASIs. In general, the log Koc values of each class of PFASs linearly (p < 0.05) increased with increasing number of fluorinated carbons. This study discovered seven novel PFASs, which underscores the need to expand regulatory monitoring beyond legacy PFASs. The findings of this study also highlight the urgency of assessing ecological and human health risks posed by LIB-derived PFASs, particularly their potential for long-range transport and persistence in aquatic systems.
Collapse
Affiliation(s)
- Yuanchen Chen
- Institute of Energy and Sustainable Development, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Fangfang Ren
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Hangbiao Jin
- Institute of Energy and Sustainable Development, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
4
|
Qiao B, Chen H, Song D, Fang B, Zhou Y, Yao Y, Sun H. Nontarget Screening and Occurrence of Emerging Per- and Polyfluoroalkyl Substances in Municipal and Semiconductor Industrial Wastewater: A Large-Scale Survey in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40378070 DOI: 10.1021/acs.est.5c02035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Due to the lack of transparency in the production and applications of emerging per- and polyfluoroalkyl substances (PFAS), it is a huge challenge to grasp the real PFAS pollution profile in a specific region or industry by target analysis. This study collected extensive samples across China, including municipal wastewater from 9 major cities and wastewater from various manufacturing stages at 3 large semiconductor factories. Suspect and nontarget screening were conducted along with target analysis, and 82 PFAS in 25 classes were identified. Notably, this is the first study to investigate PFAS contamination in semiconductor wastewater on the Chinese mainland. Moreover, 13 classes of PFAS were reported for the first time worldwide in semiconductor wastewater, including multiple hydrosubstituted perfluoroalkyl carboxylic acid (mH-PFCA), ether-inserted PFCA (OPFCA), and perfluoroalkyl alcohol (PA) derivatives. The highest total concentrations of target, suspect, and nontarget PFAS in semiconductor wastewater (12 μg/L) were substantially higher than those measured in all municipal wastewater (25-950 ng/L). The composition of PFAS varied regionally in semiconductor wastewater. Total oxidizable precursor assay revealed the presence of unknown precursors (0.043-0.83 nmol/L), which cannot be directly monitored but may pose a greater PFAS contamination risk in semiconductor water treatment and discharge processes.
Collapse
Affiliation(s)
- Biting Qiao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300051, China
| | - Dongbao Song
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Bo Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yue Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300051, China
| |
Collapse
|
5
|
Fang B, Chen H, Zhao M, Qiao B, Zhou Y, Wang Y, Zhang Y, Gao M, Wang Y, Yao Y, Sun H. Biotic and abiotic transformations of aqueous film-forming foam (AFFF)-derived emerging polyfluoroalkyl substances in aerobic soil slurry. WATER RESEARCH 2025; 276:123284. [PMID: 39978122 DOI: 10.1016/j.watres.2025.123284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
The severe contamination of per- and polyfluoroalkyl substances (PFAS) in aqueous film-forming foam (AFFF)-affected soil and groundwater has raised global concerns. Although extensive studies on the transformation of electrochemical fluorination (ECF)-based PFAS in soil exist, limited research on AFFF-derived emerging fluorotelomer (FT) compounds has been conducted. Herein, a total of 38 PFAS were identified in a composite AFFF formulation through suspect and nontarget screening using high-resolution mass spectrometry (HRMS), and emerging 6:2 FT compounds were particularly prominent. Subsequently, the composite AFFF formulation was introduced to aerobic soil slurry to investigate the transformation behaviors of nine high-abundance polyfluoroalkyl substances. After a 150-day incubation, polyfluorinated sulfonamide betaine and quaternary ammonium compounds showed significant recalcitrance. The tertiary amine- and thioether-based PFAS underwent biotic and abiotic transformations, with half-lives ranging from 2 to 56 days and from 38 to 248 days, respectively. On the basis of the products identified using HRMS, the transformation pathways of FT- and ECF-based PFAS were proposed. Notably, the hydroxylation of tertiary amines and the oxidation of thioethers were two major abiotic reactions. Toxicity prediction revealed that certain transformation products exhibited higher toxicity toward aquatic organisms compared with the parent compounds. This study provides valuable insights into the stability and transformation of emerging PFAS in aerobic soil.
Collapse
Affiliation(s)
- Bo Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Maosen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Biting Qiao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yue Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yulong Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yaozhi Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Meng Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Yu H, Luo L, Wu B, He J, Wang H, Chen R, Ji M, Yang Q, Zeng G, Wu W, Sun D. Efficient catalytic degradation and detoxification of 6PPD-quinone by the multifunctional enzyme system of phanerochaete chrysosporium. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138634. [PMID: 40393293 DOI: 10.1016/j.jhazmat.2025.138634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/22/2025]
Abstract
The widespread environmental presence and toxicity of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone, 6PPD-q), a rubber-derived pollutant, necessitates effective degradation strategies. This study demonstrates for the first time that Phanerochaete chrysosporium (P. chrysosporium) achieves a 99.06 % removal rate of 6PPD-q within 7 days through adsorption combined with enzyme catalysis. The breakdown of the quinone structure, primarily driven by lignin peroxidase isoenzymes, is accompanied by carbon chain shortening and structural simplification, which enhance the bioavailability of degradation products. These metabolites are assimilated and further mineralized by the P. chrysosporium metabolic system. Comprehensive toxicity assessments using zebrafish and Escherichia coli confirmed the biosafety of all degradation products. This study provides mechanistic insights into the fungal degradation of 6PPD-q and presents a sustainable approach for mitigating the environmental risks posed by other pollutants. Furthermore, a new generation of innovative bioremediation technologies can be developed by engineering fungi to regulate extracellular electric potential and enhance catalytic enzyme activity.
Collapse
Affiliation(s)
- Haiyang Yu
- State & Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Li Luo
- Department of Critical Care Medicine, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| | - Baihui Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jiaxuan He
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, 999077, Hong Kong
| | - Rongbing Chen
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong
| | - Mingxia Ji
- Department of Critical Care Medicine, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Guoming Zeng
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Wei Wu
- Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Da Sun
- State & Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
7
|
Junker AL, Juve JMA, Bai L, Qvist Christensen CS, Ahrens L, Cousins IT, Ateia M, Wei Z. Best Practices for Experimental Design, Testing, and Reporting of Aqueous PFAS-Degrading Technologies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8939-8950. [PMID: 40312980 DOI: 10.1021/acs.est.4c08571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Increased awareness of pervasive per- and polyfluoroalkyl substances (PFAS) contamination and the need for zero-pollution treatment solutions necessitate the scientific and engineering community to respond urgently and systematically. Existing approaches lack reproducible and standardized methods to report the technological treatment capabilities. Consequently, it is difficult to compare innovations and accurately assess their potential. In this Perspective, we shed light on hurdles encountered in the lab-scale research and development of aqueous PFAS destruction technologies with a focus on chemical methods and offer recommendations for overcoming them. Best practices are provided for developing robust PFAS laboratory protocols covering crucial aspects such as experimental planning, sample storage and analysis, and waste management. Further, we present five criteria to standardize reporting on performance and advances in PFAS degrading technologies: 1) scope, 2) defluorination efficiency, 3) relative energy consumption, 4) material stability, and 5) unit process considerations. Through the dissemination of these insights, we aim to foster progress in the development of highly effective treatment solutions.
Collapse
Affiliation(s)
- Allyson Leigh Junker
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, DK-8000 Aarhus C, Denmark
| | - Jan-Max Arana Juve
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, DK-8000 Aarhus C, Denmark
| | - Lu Bai
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, DK-8000 Aarhus C, Denmark
| | - Charlotte Skjold Qvist Christensen
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, DK-8000 Aarhus C, Denmark
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007, Uppsala, Sweden
| | - Ian T Cousins
- Department for Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Mohamed Ateia
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1827, United States
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, DK-8000 Aarhus C, Denmark
| |
Collapse
|
8
|
Hu J, Cochran RE, Grim CM, Rumachik NG. Comprehensive Screening of Per- and Polyfluoroalkyl Substances (PFAS) in Food Contact Materials: Utilizing Combustion Ion Chromatography for Total Organic Fluorine (TOF) Analysis. J AOAC Int 2025; 108:367-379. [PMID: 39832269 DOI: 10.1093/jaoacint/qsaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) comprise thousands of fluorinated chemicals. They are of growing concern because many PFAS compounds are persistent and toxic. Food contact materials (FCMs) containing PFAS pose multiple exposure pathways to humans, prompting 12 states to enact laws banning FCMs with PFAS levels exceeding 100 ppm total organic fluorine (TOF). OBJECTIVE While LC-MS is often used to measure targeted PFAS compounds, much of the total PFAS content in the sample may be missed. To understand organic fluorine content in samples more comprehensively, we developed a method using combustion ion chromatography (CIC) to measure TOF and extractable organic fluorine (EOF) in FCMs. METHODS This technology utilizes combustion under an oxygen and argon atmosphere. All gaseous, acidic combustion products are collected in water, with ions separated on an ion-exchange column and detected by conductivity. Total fluorine (TF) was measured by combusting 10-50 mg FCM. Total inorganic fluorine (TIF) was measured by extracting cryo-ground FCM with water followed by direct injection to the ion chromatography (IC) system. TOF was then calculated by subtracting TIF from TF. EOF was determined by CIC after extracting analytes from the ground FCM using methanol-acetonitrile (80 + 20, by volume). RESULTS The method detection limit (MDL) for TOF is 0.51 ppm, exceeding the sensitivity requirements of current state regulations. A comparison of EOF to TOF revealed that EOF constitutes less than 15% of the TOF in the FCM samples. CONCLUSION TOF is a critical metric for assessing PFAS contamination in FCMs, as targeted LC-MS approaches may miss much of the PFAS in the samples. HIGHLIGHTS We developed a sensitive and automated method to determine TOF and EOF in FCMs. The method can be used to screen for PFAS in FCMs, ensuring compliance with current regulations on PFAS contamination.
Collapse
Affiliation(s)
- Jingli Hu
- Thermo Fisher Scientific, 1214 Oakmead Pkwy, Sunnyvale, CA 94085, USA
| | - Richard E Cochran
- Thermo Fisher Scientific, 1214 Oakmead Pkwy, Sunnyvale, CA 94085, USA
| | - Cynthia M Grim
- Thermo Fisher Scientific, 1214 Oakmead Pkwy, Sunnyvale, CA 94085, USA
| | - Neil G Rumachik
- Thermo Fisher Scientific, 1214 Oakmead Pkwy, Sunnyvale, CA 94085, USA
| |
Collapse
|
9
|
Petrick LM, Achaintre D, Maroli A, Landero J, Dessanayake PS, Teitelbaum SL, Wolff MS, Arora M, Wright RO, Andra SS. Categorizing Concentration Confidence: A Framework for Reporting Concentration Measures from Mass Spectrometry-Based Assays. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:55001. [PMID: 40152856 PMCID: PMC12068507 DOI: 10.1289/ehp15465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 01/27/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Innovation in mass spectrometry-based methods to both quantify and perform discovery has blurred the lines between targeted and untargeted assays of biospecimens. Continuous data-concentrations or intensity values generated from both methods-can be used in statistical analysis to determine associations with health outcomes, but concentration values are needed to compare measurements from one study to another to inform policy making decisions and to develop clinically relevant thresholds. As a single solution for discovery and quantitation, new hybrid-type assays derive concentration values for chemicals or metabolites but with varying degrees of uncertainty that may be greater than traditional quantitative assays. There is no current single standard to guide reporting bioassay concentrations or their uncertainty in concentration values from hybrid assays. Even when measures are robust, obtained with high scientific rigor, and provide valuable data toward risk assessment, unknown uncertainty can lead to bias in interpretation of reported data or omission of reported data that does not meet the strict criteria for absolute quantitation. OBJECTIVE The objective of this commentary is to articulate a scheme that enables investigators across bioanalytical fields to easily report analyte measurement assurance on the same scale from quantitative, untargeted, or hybrid assays that include a range of concentration confidences. DISCUSSION We propose a simple scheme to report concentrations for targeted and untargeted analytes. Level 1 is a confirmed concentration following established tolerances in a fully quantitative assay while level 5 is a tentative intensity from a typical untargeted assay. This framework enables easy communication of uncertainty in concentration measurements to aid cross-validation, meta-analysis, and extrapolation across studies. It will facilitate interpretation while supporting analytical advancement and allow clear and concise measurement reporting across a broad range of confidences. https://doi.org/10.1289/EHP15465.
Collapse
Affiliation(s)
- Lauren M. Petrick
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Institute for Exposomics Research, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David Achaintre
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Institute for Exposomics Research, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amith Maroli
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Institute for Exposomics Research, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Julio Landero
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Institute for Exposomics Research, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Priyanthi S. Dessanayake
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Institute for Exposomics Research, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Susan L. Teitelbaum
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Institute for Exposomics Research, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mary S. Wolff
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Institute for Exposomics Research, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Manish Arora
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Institute for Exposomics Research, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert O. Wright
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Institute for Exposomics Research, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Syam S. Andra
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Institute for Exposomics Research, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
10
|
Wang Q, van Hees P, Karlsson P, Jiao E, Filipovic M, Lam PKS, Yeung LWY. Extractable Organofluorine Mass Balance Analysis of Aqueous Film-Forming Foam-Impacted Soils: Sample Pretreatment and a Combination of Target Analysis and Suspect Screening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7624-7633. [PMID: 40193213 PMCID: PMC12020414 DOI: 10.1021/acs.est.4c11909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/23/2025]
Abstract
The application of aqueous film-forming foams (AFFFs) has caused considerable per- and polyfluoroalkyl substances (PFAS) pollution in the environment. Soil serves as a long-term source of PFAS for the adjacent groundwater and surface water, but the lack of extractable organofluorine (EOF) mass balance data in the AFFF-impacted soils may lead to an underestimation of PFAS contamination. This study analyzed ten surface soil samples from three AFFF-impacted sites in Sweden, using alkaline extraction followed by acidic extraction. The alkaline and acidic fractions were subjected to further cleanup and analyzed separately for target, suspect screening, and EOF analysis to evaluate the extraction efficiencies of different PFAS in the soil samples and reveal PFAS remaining unknown in the AFFF-impacted soils. Total target PFAS concentrations ranged from 33.0 to 2.40 × 104 ng/g dry weight. Thirty-six PFAS were identified using suspect screening. Considerable amounts of zwitterionic and cationic PFAS (up to 58%) were identified in the acidic extraction fraction, while >95% of anionic PFAS were found in the alkaline extraction fraction. EOF mass balance analysis was conducted on AFFF-impacted soils for the first time. The high proportion of unexplained organofluorine (up to 65%) indicated the necessity for future investigation of the unknown PFAS in AFFF-impacted soils to comprehensively understand their fate and risk.
Collapse
Affiliation(s)
- Qi Wang
- State
Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Man-Technology-Environment
(MTM) Research Centre, School of Science and Technology, Örebro University, Örebro 701 82, Sweden
| | - Patrick van Hees
- Man-Technology-Environment
(MTM) Research Centre, School of Science and Technology, Örebro University, Örebro 701 82, Sweden
- Eurofins
Food & Feed Testing Sweden AB, Lidköping 531 40, Sweden
| | - Patrik Karlsson
- Eurofins
Food & Feed Testing Sweden AB, Lidköping 531 40, Sweden
| | - Enmiao Jiao
- Man-Technology-Environment
(MTM) Research Centre, School of Science and Technology, Örebro University, Örebro 701 82, Sweden
- Key
Laboratory of Yangtze River Water Environment, College of Environmental
Science and Engineering, Tongji University, Shanghai 200092, China
| | - Marko Filipovic
- Niras
Sweden AB, Hantverkargatan
11B, Stockholm 112 21, Sweden
| | - Paul K. S. Lam
- State
Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Department
of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR 999077, China
| | - Leo W. Y. Yeung
- Man-Technology-Environment
(MTM) Research Centre, School of Science and Technology, Örebro University, Örebro 701 82, Sweden
| |
Collapse
|
11
|
Zhang B, Liu J, Qing S, Herath TM, Zhao H, Klabklaydee S, Fu QL, Kwon E, Takeuchi N, Wang D, Namihira T, Isobe T, Zhang Y, Zhu X, Chen B, Ateia M, Fujii M. Accurate detection and high throughput profiling of unknown PFAS transformation products for elucidating degradation pathways. WATER RESEARCH 2025; 282:123645. [PMID: 40252401 DOI: 10.1016/j.watres.2025.123645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/29/2025] [Accepted: 04/12/2025] [Indexed: 04/21/2025]
Abstract
The accurate detection of unknown per- and polyfluoroalkyl substances (PFAS) transformation products (TPs) is essential for elucidating degradation pathways and advancing remediation strategies. Herein, we developed a workflow that combined Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with a paired mass distance (PMD) network. This study achieved high throughput profiling of PFAS TPs with mDa resolving power and sub-ppm mass error. UV treatment revealed chain-shortening pathways, while plasma treatment uncovered competing mechanisms of chain shortening and lengthening, generating oxygen-rich TPs with increased hydrophilicity. Specifically, UV treatment of a 15-PFAS mixture and contaminated natural water showed disappearance of 7 unknown PFAS homologues and the emergence of 12 unknown PFAS homologues. Despite PFAS persistence under UV exposure, previously undetected low-abundance PFAS species were identified, indicating non-negligible photochemical transformation. Under plasma treatment of isolated PFOS, 39 unknown PFAS homologues including 142 suspect and 34 unknown PFAS TPs were identified, highlighting the extensive transformation of emerging and persistent PFAS. Overall, our approach enabled accurate and high-throughput profiling of unknown PFAS TPs and their degradation pathways, providing new insights into persistent unknown PFAS.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Jibao Liu
- Department of Civil and Environmental Engineering, Institute of Science Tokyo, Meguro-ku, Tokyo 152-8552, Japan.
| | - Shanshan Qing
- Department of Electrical and Electronic Engineering, Institute of Science Tokyo, Meguro-ku, Tokyo 152-8552, Japan
| | - Thilini Maheshika Herath
- Department of Civil and Environmental Engineering, Institute of Science Tokyo, Meguro-ku, Tokyo 152-8552, Japan
| | - Huan Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Supaporn Klabklaydee
- Department of Civil and Environmental Engineering, Institute of Science Tokyo, Meguro-ku, Tokyo 152-8552, Japan
| | - Qing-Long Fu
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Eunsang Kwon
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Nozomi Takeuchi
- Department of Electrical and Electronic Engineering, Institute of Science Tokyo, Meguro-ku, Tokyo 152-8552, Japan
| | - Douyan Wang
- Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan
| | - Takao Namihira
- Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan
| | - Toshihiro Isobe
- Department of Materials Science and Engineering, Institute of Science Tokyo, Meguro-ku, Tokyo 152-8552, Japan
| | - Yanrong Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Mohamed Ateia
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Institute of Science Tokyo, Meguro-ku, Tokyo 152-8552, Japan.
| |
Collapse
|
12
|
Smolinski R, Koelmel JP, Stelben P, Weil D, Godri D, Schiessel D, Kummer M, Stow SM, Mohsin S, Royer L, McKenzie-Coe A, Lubinsky T, DeBord D, Chevallier O, Rennie EE, Godri Pollitt KJ, McDonough C. FluoroMatch IM: An Interactive Software for PFAS Analysis by Ion Mobility Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6636-6648. [PMID: 40133053 PMCID: PMC11984190 DOI: 10.1021/acs.est.4c13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are often present in complex mixtures at trace levels in environmental samples, posing difficulties for analytical chemists. Ion mobility offers highly replicable identifiers, enabling the use of community-based libraries for PFAS annotation in nontargeted analysis. Currently, limited software exists to leverage the capabilities of liquid chromatography ion mobility high-resolution mass spectrometry (LC-IM-HRMS) for nontargeted analysis. FluoroMatch IM is a free vendor-neutral open-source tool for rapid annotation of PFASs in LC-IM-HRMS datasets. Annotation algorithms include collision cross-section (CCS) matching, formula prediction, homologous series detection, mass defect filtering, and accurate mass matching with a database of 194 PFAS ions that can be continuously expanded by the community. Results from FluoroMatch IM were compared to a targeted approach with a laboratory-prepared mixture of 63 PFASs and real wastewater samples. A nontarget workflow incorporating FluoroMatch IM revealed additional likely PFASs (n = 16) while confirming most targeted annotations (11/12) in wastewater samples. Validation of the standard mix showed a low false negative rate of 5% and a 5% false positive rate for features included in the CCS library, with a 0% false positive rate for features assigned confident scores. This study demonstrates the promise of FluoroMatch IM for streamlining PFAS analysis workflows.
Collapse
Affiliation(s)
- Rachel Smolinski
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jeremy P. Koelmel
- Department
of Environmental Health Science, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Paul Stelben
- Department
of Environmental Health Science, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - David Weil
- Agilent
Technologies, Inc., Santa
Clara, California 95051, United States
| | - David Godri
- third
Floor Solutions, Toronto, ON 43964, CA
| | - David Schiessel
- Innovative
Omics, Inc., Sarasota, Florida 34235, United
States
| | - Michael Kummer
- Innovative
Omics, Inc., Sarasota, Florida 34235, United
States
| | - Sarah M. Stow
- Agilent
Technologies, Inc., Santa
Clara, California 95051, United States
| | - Sheher Mohsin
- Agilent
Technologies, Inc., Santa
Clara, California 95051, United States
| | - Lauren Royer
- MOBILion
Systems, Inc. Chadds Ford, Chadds
Ford, Pennsylvania 19317, United States
| | - Alan McKenzie-Coe
- MOBILion
Systems, Inc. Chadds Ford, Chadds
Ford, Pennsylvania 19317, United States
| | - Thomas Lubinsky
- MOBILion
Systems, Inc. Chadds Ford, Chadds
Ford, Pennsylvania 19317, United States
| | - Daniel DeBord
- MOBILion
Systems, Inc. Chadds Ford, Chadds
Ford, Pennsylvania 19317, United States
| | - Olivier Chevallier
- Agilent
Technologies, Inc., Santa
Clara, California 95051, United States
| | - Emma E. Rennie
- Agilent
Technologies, Inc., Santa
Clara, California 95051, United States
| | - Krystal J. Godri Pollitt
- Department
of Environmental Health Science, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Carrie McDonough
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
13
|
Gao Y, Feng M, Li X, Zhang Y, Hu J, Li K, Duan J, Zhang Q. Strategy to improve the confidence level of qualitative screening by high resolution mass spectrometry: A case study of mycotoxins in maize. Food Chem X 2025; 27:102467. [PMID: 40386304 PMCID: PMC12084407 DOI: 10.1016/j.fochx.2025.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/05/2025] [Accepted: 04/14/2025] [Indexed: 05/20/2025] Open
Abstract
Targeted, suspect and non-targeted screening by high-resolution mass spectrometry (HRMS) is developing rapidly. In this study, a qualitative screening method was established using HPLC-HRMS on data dependent acquisition for the analysis of mycotoxins in maize. To ensure the sensitivity and applicability of the method, 41 mycotoxin standards were applied for method optimization. A quantitative structure-retention relationships (QSRR) model was developed for retention time prediction and projection using machine learning, providing supplementary evidence for molecule annotation. The predicted errors were all below 0.5 min, contributing to improve the confidence level of suspect and non-targeted screening for mycotoxins. Thresholds affecting the accuracy of screening results were also investigated systematically. Performance metrics including Accuracy, F1 score, Matthew's correlation coefficient (MCC) were introduced to evaluate the qualitative screening method. The developed method was applied in the qualitative screening of collected maize samples, where 11 mycotoxins were screened at high confidence level.
Collapse
Affiliation(s)
- Yan Gao
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
| | - Mengyu Feng
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Xiuqin Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
| | - Yan Zhang
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Jinglei Hu
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Kangcong Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Jianhua Duan
- Key Laboratory of Cattle and Sheep Milk and Meat Products Risk Control and Key Technology, State Administration for Market Regulation, Hohhot 010110, China
| | - Qinghe Zhang
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
| |
Collapse
|
14
|
Liu Y, Guo Y, Lv M, Wang Y, Xiang T, Sun J, Zhang Q, Liu R, Chen L, Shi C, Liang Y, Wang Y, Fu J, Qu G, Jiang G. Unraveling the Exposure Spectrum of PFAS in Fluorochemical Occupational Workers: Structural Diversity, Temporal Trends, and Risk Prioritization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6247-6260. [PMID: 40101141 DOI: 10.1021/acs.est.4c13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Despite extensive poly/perfluoroalkyl substance (PFAS) discovery studies in various samples, the exposure spectrum in fluorochemical occupational workers remains largely unexplored. Here, serum samples from 28 workers at a fluorochemical facility were analyzed using nontarget techniques, identifying 64 PFAS classes, including 15 novel ones such as pentafluorosulfur ether-substituted perfluoroalkyl sulfonic acids, hydrogen-substituted perfluoroalkylamines, and perfluoroalkylsulfonyl protocatechualdehyde esters. Temporal trend analyses (2008-2018) revealed stable levels for most PFAS but an increase in perfluorobutanoic acid (PFBA) and perfluorohexanesulfonic acid (PFHxS), suggesting industrial shifts from long-chain PFAS to short-chain homologues in China since the early 2010s. Commonly reported structurally modified PFAS (e.g., hydrogen/carbonyl/chlorine substitution, ether insertion, and unsaturation) were likely historical byproducts of legacy PFAS production rather than intentionally manufactured alternatives. A Toxicological Priority Index-based risk assessment, integrating mobility, persistence, and bioaccumulation indices, identified perfluoroalkylamines, di(perfluoroakyl sulfonyl)imides, structurally modified perfluoroalkyl sulfonic acids/carboxylic acids, and perfluoroalkylsulfonamidoacetic acids as high-risk PFAS chemicals. Overall, structurally modified PFAS exhibited higher mobility but lower persistence and bioaccumulation than legacy PFAS, except for chlorinated variants, which showed increased bioaccumulation potential. This study highlights critical gaps in the spectrum of historically emitted PFAS and emphasizes the need for large-scale monitoring and extensive risk assessments to manage emerging PFAS.
Collapse
Affiliation(s)
- Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunhe Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meilin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yi Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Tongtong Xiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Jiazheng Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Qing Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Chunzhen Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- College of Sciences, Northeastern University, Shenyang 110004, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Boatman AK, Kudzin GP, Rock KD, Guillette MP, Robb F, Belcher SM, Baker ES. Novel PFAS in Alligator Blood Discovered with Non-Targeted Ion Mobility-Mass Spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644452. [PMID: 40196563 PMCID: PMC11974715 DOI: 10.1101/2025.03.20.644452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large and growing class of chemicals gaining global attention due to their persistence, mobility, and toxicity. Given the diverse chemical properties of PFAS and their varying distributions in water and tissue, monitoring of different matrices is critical to determine their presence and accumulation. Here, we used a platform combining liquid chromatography, ion mobility spectrometry, and high-resolution mass spectrometry (LC-IMS-HRMS) for non-targeted analysis (NTA) to detect and identify PFAS in alligator plasma from North Carolina (5 years, 2018-2022) and Florida (2021 only). Structures for 12 PFAS were elucidated, including 2 novel structures, and an additional 34 known PFAS were detected. Three of these compounds were previously unreported in environmental media. More PFAS were detected in NC alligators than FL and no novel PFAS were detected in FL gators. Quantitative analysis of 21 of the known PFAS revealed that plasma concentrations did not change over the 5 year study, indicating that exposure is ongoing.
Collapse
Affiliation(s)
- Anna K. Boatman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
| | - Gregory P. Kudzin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
| | - Kylie D. Rock
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA
| | - Matthew P. Guillette
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Frank Robb
- Environmental Education, Awareness, Research, Support & Services, Titusville, FL 32780, USA
| | - Scott M. Belcher
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Erin S. Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
| |
Collapse
|
16
|
Boettger JD, DeLuca NM, Zurek-Ost MA, Miller KE, Fuller C, Bradham KD, Ashley P, Friedman W, Pinzer EA, Cox DC, Dewalt G, Isaacs KK, Cohen Hubal EA, McCord JP. Emerging Per- and Polyfluoroalkyl Substances in Tap Water from the American Healthy Homes Survey II. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2686-2698. [PMID: 39878442 PMCID: PMC11823458 DOI: 10.1021/acs.est.4c08037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/31/2025]
Abstract
Humans experience widespread exposure to anthropogenic per- and polyfluoroalkyl substances (PFAS) through various media, which can lead to a wide range of negative health impacts. Tap water is an important source of exposure in communities with any degree of contamination but routine or large-scale PFAS monitoring often depends on targeted analytical methods limited to measuring specific PFAS. We analyzed 680 tap water samples from the American Healthy Homes Survey II for PFAS using non-targeted analysis (NTA) to expand the range of detectable PFAS. Based on detection frequency and relative abundance, about half of the identified PFAS were found only by NTA. We identified (with varying degrees of confidence) 75 distinct PFAS, including 57 exclusively detected by NTA. The identified PFAS are members of seven structural subclasses differentiated by their head groups and degree of fluorination. Clustering analysis categorized the PFAS into four coabundance groups dominated by specific PFAS subclasses. One group uniquely identified by NTA contains zwitterionic PFAS and other PFAS transformation products which are likely associated with aqueous firefighting foam contaminants in a small number of spatially correlated samples. These results help further characterize the scope of exposure to emerging PFAS experienced by the U.S. population via tap water and augment nationwide targeted-PFAS monitoring programs.
Collapse
Affiliation(s)
- Jason D. Boettger
- ORISE Fellow, U.S. Environmental Protection Agency/Office of Research
and Development, Durham, North Carolina 27711, United States
| | - Nicole M. DeLuca
- U.S. Environmental
Protection Agency/Office of Research and Development, Durham, North Carolina 27711, United States
| | - Michael A. Zurek-Ost
- ORISE Fellow, U.S. Environmental Protection Agency/Office of Research
and Development, Durham, North Carolina 27711, United States
| | - Kelsey E. Miller
- U.S. Environmental
Protection Agency/Office of Research and Development, Durham, North Carolina 27711, United States
| | - Christopher Fuller
- U.S. Environmental
Protection Agency/Office of Research and Development, Durham, North Carolina 27711, United States
| | - Karen D. Bradham
- U.S. Environmental
Protection Agency/Office of Research and Development, Durham, North Carolina 27711, United States
| | - Peter Ashley
- U.S.
Department
of Housing and Urban Development/Office of Lead Hazard Control and
Healthy Homes, Washington, District of Columbia 20410, United States
| | - Warren Friedman
- U.S.
Department
of Housing and Urban Development/Office of Lead Hazard Control and
Healthy Homes, Washington, District of Columbia 20410, United States
| | - Eugene A. Pinzer
- U.S.
Department
of Housing and Urban Development/Office of Lead Hazard Control and
Healthy Homes, Washington, District of Columbia 20410, United States
| | - David C. Cox
- QuanTech
Inc., Rockville, Maryland 20852, United States
| | - Gary Dewalt
- QuanTech
Inc., Rockville, Maryland 20852, United States
| | - Kristin K. Isaacs
- U.S. Environmental
Protection Agency/Office of Research and Development, Durham, North Carolina 27711, United States
| | - Elaine A. Cohen Hubal
- U.S. Environmental
Protection Agency/Office of Research and Development, Durham, North Carolina 27711, United States
| | - James P. McCord
- U.S. Environmental
Protection Agency/Office of Research and Development, Durham, North Carolina 27711, United States
| |
Collapse
|
17
|
Sun J, Liu Y, Yao L, Guo Y, Ma C, Xiang T, Cheng Z, Deng Y, Xie X, Qu G, Shi J, Jiang G, Wang Y. Suspect and Nontarget Analysis of Per- and Polyfluoroalkyl Substances in Groundwater Underlying Different Land-Use Areas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2722-2731. [PMID: 39882996 DOI: 10.1021/acs.est.4c09020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Groundwater can be contaminated by PFAS emissions, yet research on the presence and associated risks of PFAS in groundwater underlying different land-use areas remains limited. Herein, high-resolution mass spectrometry-based suspect and nontarget analyses were performed to determine PFAS occurrence in groundwater samples obtained from a rural area, a planting region, and the vicinities of a pharmaceutical park, an airport, and an industrial park in Datong City, China. A total of 31 PFAS (16 emerging and 15 legacy PFAS) were identified, and the ΣPFAS concentrations ranged from 0.775 (rural area) to 80.7 ng/L (pharmaceutical park). In terms of the average concentration of ΣPFAS, legacy PFAS were predominant in rural groundwater, whereas emerging PFAS were predominant in the other four land-use areas. PFOA, PFDA, PFUnDA, and 6:2 FTS were detected in all groundwater samples. To further prioritize the risk of identified PFAS in groundwater, the detection frequency; concentration; and persistence, bioaccumulation, and toxicity attributes were adopted, which showed that high-risk compounds varied across different land-use areas. Our results further reveal the ubiquitous contamination of PFAS in groundwater environments, even in areas with limited human activity, and highlight the necessity of suspect and nontarget analysis for assessing PFAS exposure through groundwater.
Collapse
Affiliation(s)
- Jiazheng Sun
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunhe Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenxi Ma
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Tongtong Xiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zheyu Cheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yamin Deng
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Xianjun Xie
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianbo Shi
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanxin Wang
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
18
|
Nason SL, McCord J, Feng YL, Sobus JR, Fisher CM, Marfil-Vega R, Phillips AL, Johnson G, Sloop J, Bayen S, Mutlu E, Batt AL, Nahan K. Communicating with Stakeholders to Identify High-Impact Research Directions for Non-Targeted Analysis. Anal Chem 2025; 97:2567-2578. [PMID: 39883652 PMCID: PMC11886761 DOI: 10.1021/acs.analchem.4c04801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Non-targeted analysis (NTA) using high-resolution mass spectrometry without defined chemical targets has the potential to expand and improve chemical monitoring in many fields. Despite rapid advancements within the research community, NTA methods and data remain underutilized by many potential beneficiaries. To better understand barriers toward widespread adoption, the Best Practices for Non-Targeted Analysis (BP4NTA) working group conducted focus group meetings and follow-up surveys with scientists (n = 61) from various sectors (e.g., drinking water utilities, epidemiologists, n = 9) where NTA is expected to provide future value. Meeting participants included producers and end-users of NTA data with a wide range of familiarity with NTA methods and outputs. Discussions focused on identifying specific barriers that limit adoption and on setting NTA product development priorities. Stated priorities fell into four major categories: 1) education and training materials; 2) QA/QC frameworks and study design guidance; 3) accessible compound databases and libraries; and 4) NTA data linkages with chemical fate and toxicity information. Based on participant feedback, this manuscript proposes research directions, such as standardization of training materials, that BP4NTA and other institutions can pursue to expand NTA use in various application scenarios and decision contexts.
Collapse
Affiliation(s)
- Sara L Nason
- Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06511, United States
| | - James McCord
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, North Carolina 27711, United States
| | - Yong-Lai Feng
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario K1A 0K9, Canada
| | - Jon R Sobus
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, North Carolina 27711, United States
| | - Christine M Fisher
- Human Foods Program, U.S. Food and Drug Administration, 5001 Campus Drive, College Park, Maryland 20740, United States
| | - Ruth Marfil-Vega
- Shimadzu Scientific Instruments, 10330 Old Columbia Road, Columbia, Maryland 21046, United States
| | - Allison L Phillips
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, Oregon 97333, United States
| | - Gregory Johnson
- City of High Point, NC, Water Quality Laboratory, 121 N. Pendleton Street High Point, North Carolina 27260, United States
| | - John Sloop
- Oak Ridge Institute for Science and Education (ORISE) Participant, 109 TW Alexander Drive, Research Triangle Park, North Carolina 27711, United States
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, Canada H9X 3V9
| | - Esra Mutlu
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, North Carolina 27711, United States
| | - Angela L Batt
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, 26 W Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| | - Keaton Nahan
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
| |
Collapse
|
19
|
Sapozhnikova Y, Stroski KM, Haddad SP, Burket SR, Luers M, Brooks BW. Per- and polyfluoroalkyl substances (PFAS) accumulation in fish occupying different trophic positions from East Canyon Creek, a seasonally effluent-dominated river, Utah, USA. ENVIRONMENTAL RESEARCH 2025; 266:120480. [PMID: 39613019 DOI: 10.1016/j.envres.2024.120480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Fish and seafood are considered a major source of human dietary exposure to per- and polyfluoroalkyl substances (PFAS). In this study, we examined levels of 35 PFAS in fish samples of brown trout and mottled sculpin, which occupy different trophic positions, collected in 2014 from East Canyon Creek in Utah, USA. We observed 20 PFAS with ∑20PFAS ranging from 0.46-63.9 ng/g and from
Collapse
Affiliation(s)
- Yelena Sapozhnikova
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA.
| | - Kevin M Stroski
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA; Center for Reservoir and Aquatic Systems Research, Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Samuel P Haddad
- Center for Reservoir and Aquatic Systems Research, Department of Environmental Science, Baylor University, Waco, TX, USA
| | - S Rebekah Burket
- Center for Reservoir and Aquatic Systems Research, Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Michael Luers
- Snyderville Basin Water Reclamation District, Park City, UT, USA
| | - Bryan W Brooks
- Center for Reservoir and Aquatic Systems Research, Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
20
|
Shea SM, Schaefer CE, Illangasekare T, Higgins CP. Release of poly- and perfluoroalkyl substances from AFFF-impacted soils: Effects of water saturation in vadose zone soils. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104506. [PMID: 39854994 DOI: 10.1016/j.jconhyd.2025.104506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/19/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Soil samples collected from an aqueous film-forming foam (AFFF)-impacted sandy soil formation at two depth intervals above the water table were used in bench-scale column experiments to evaluate the release of poly- and perfluoroalkyl substances (PFASs) under different degrees of water saturation. Artificial rainwater was applied to the soils under constant and variably saturated conditions. Results from constant saturation experiments suggest that retention of PFAS mass at air-water interfaces was evident in the deep soil (foc < 0.00068 g/g), particularly for longer chain and zwitterionic compounds, while PFAS mass release from the shallow soil (foc = 0.0034 g/g) was consistent with kinetically controlled desorption from the soil. The release profiles for the perfluoroalkyl sulfonamides (FASAs) differed from other PFASs examined, with more FASAs generally being eluted under fully saturated conditions from both the shallow and deep soils. Importantly, variably saturated conditions resulted in more PFAS eluting from the soils: the average release rate of PFHxS from both soils was 10-fold higher under variably saturated conditions than under constant conditions. Both soils retained significant fractions of the total PFAS mass even after extensive flushing (51-83.8 % for PFOS). These results suggest that PFAS transport in vadose zone soils is influenced by air-water interfaces, but solid-phase desorption also plays a role. Overall, these results are consistent with observations in the field and serve to confirm key mechanisms that control PFAS leaching.
Collapse
Affiliation(s)
- Stefanie M Shea
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, USA
| | | | - Tissa Illangasekare
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, USA
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, USA.
| |
Collapse
|
21
|
Kirkeli C, Valdersnes S, Ali AM. Target and non-target screening of poly- and perfluoroalkyl substances (PFAS) in fish liver samples from the River Nile in Sudan: A baseline assessment. MARINE POLLUTION BULLETIN 2025; 211:117388. [PMID: 39674036 DOI: 10.1016/j.marpolbul.2024.117388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/06/2024] [Accepted: 11/30/2024] [Indexed: 12/16/2024]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are of global concern due to their persistence and harmful effects on human health and ecosystems. However, research on PFAS in the River Nile and across Africa is limited. This study provides the first assessment of PFAS contamination in fish livers from the River Nile in Sudan, using ultra-high-performance liquid chromatography and high-resolution mass spectrometry. Perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA) were measured, with fish downstream of Jebel Aulia Dam showing the highest concentrations: PFOS at 331 ± 36 μg/kg wet weight (ww), PFNA at 143 ± 4 μg/kg ww, PFDA at 137 ± 12 μg/kg ww, and PFUnDA at 4.0 μg/kg ww. In contrast, fish from other locations, including local markets, had undetectable PFAS levels. Three additional PFAS were tentatively identified. These results emphasize the need for further monitoring to address PFAS contamination and related food safety risks in the region.
Collapse
Affiliation(s)
- Camilla Kirkeli
- University of Bergen, Department of Chemistry, P.O. Box 7803, N-5020 Bergen, Norway
| | - Stig Valdersnes
- University of Bergen, Department of Chemistry, P.O. Box 7803, N-5020 Bergen, Norway; Institute of Marine Research (IMR), P.O. 1870 Nordnes, NO-5817 Bergen, Norway
| | - Aasim M Ali
- Institute of Marine Research (IMR), P.O. 1870 Nordnes, NO-5817 Bergen, Norway.
| |
Collapse
|
22
|
Boatman AK, Chappel JR, Kirkwood-Donelson KI, Fleming JF, Reif DM, Schymanski EL, Rager JE, Baker ES. Updated Guidance for Communicating PFAS Identification Confidence with Ion Mobility Spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.634925. [PMID: 39975284 PMCID: PMC11838322 DOI: 10.1101/2025.01.27.634925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Over the last decade, global contamination from per- and polyfluoroalkyl substances (PFAS) has become apparent due to their detection in countless matrices worldwide, from consumer products to human blood to drinking water. As researchers implement non-targeted analyses (NTA) to more fully understand the PFAS present in the environment and human bodies, clear guidance is needed for consistent and objective reporting of the identified molecules. While confidence levels for small molecules analyzed and identified with high-resolution mass spectrometry (HRMS) have existed since 2014, unification and automation of these levels is needed due to inconsistencies in reporting and continuing innovations in analytical methods. Here, we (i) investigate current practices for confidence level reporting of PFAS identified with liquid chromatography (LC), gas chromatography (GC), and/or ion mobility spectrometry (IMS) coupled with high resolution mass spectrometry (HRMS) and (ii) propose a simple, unified confidence level guidance that incorporates both PFAS-specific attributes and IMS collision cross section (CCS) values.
Collapse
Affiliation(s)
- Anna K. Boatman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
| | - Jessie R. Chappel
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| | - Kaylie I. Kirkwood-Donelson
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, USA
| | - Jonathon F. Fleming
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, North Carolina 27713, USA
| | - David M. Reif
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, North Carolina 27713, USA
| | - Emma L. Schymanski
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, North Carolina 27713, USA
| | - Julia E. Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| | - Erin S. Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
| |
Collapse
|
23
|
Megson D, Bruce-Vanderpuije P, Idowu IG, Ekpe OD, Sandau CD. A systematic review for non-targeted analysis of per- and polyfluoroalkyl substances (PFAS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 960:178240. [PMID: 39765171 DOI: 10.1016/j.scitotenv.2024.178240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025]
Abstract
This review follows the PRISMA guidelines to provide a systematic review of 115 peer reviewed articles that used non-targeted analysis (NTA) methods to detect per- and polyfluoroalkylated substances (PFAS). This literature highlights the significant positive impact of NTA in understanding PFAS in the environment. Within the literature a geographical bias exists, with most NTA studies (∼60 %) conducted in the United States and China. Future studies in other regions (such as South America and Africa) are needed to gain a more global understanding. More research is required in marine environments and the atmosphere, as current studies focus mainly on freshwater, groundwater, soil, and sediments. The majority of studies focus on measuring PFAS in the environment, rather than in commercial products (with the exception of AFFF). Non-lethal blood sampling has been successful for NTA in humans and wildlife, but additional biomonitoring studies are required on exposed cohorts to understand health risks and PFAS biotransformation pathways. NTA methods mostly use liquid chromatography and negative ionisation, which biases the literature towards the detection of specific PFAS. Despite improvements in data reporting and quality assurance and control (QA/QC) procedures, factors such as false negative and false positive rates are often overlooked, and many NTA workflows remain highly subjective. Perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) are the most detected PFAS classes, identified in over 80 % of NTA studies, and are common in routine monitoring. However, our review identified >1000 PFAS from a total of 382 different PFAS classes, with over 300 classes found in fewer than 5 % of studies. This highlights the variety of different PFAS present in the environment, and the limitations of relying solely on targeted methods. Future monitoring programs and regulations would benefit from considering NTA methods to provide more comprehensive information on PFAS present in the environment.
Collapse
Affiliation(s)
- David Megson
- Chemistry Matters, Calgary, Canada; Manchester Metropolitan University, Manchester, UK.
| | - Pennante Bruce-Vanderpuije
- Chemistry Matters, Calgary, Canada; Council for Scientific and Industrial Research, Water Research Institute, Accra, Ghana
| | | | - Okon Dominic Ekpe
- Chemistry Matters, Calgary, Canada; Pusan National University, Busan 46241, Republic of Korea
| | - Courtney D Sandau
- Chemistry Matters, Calgary, Canada; Mount Royal University, Calgary, Canada
| |
Collapse
|
24
|
Metz TO, Chang CH, Gautam V, Anjum A, Tian S, Wang F, Colby SM, Nunez JR, Blumer MR, Edison AS, Fiehn O, Jones DP, Li S, Morgan ET, Patti GJ, Ross DH, Shapiro MR, Williams AJ, Wishart DS. Introducing "Identification Probability" for Automated and Transferable Assessment of Metabolite Identification Confidence in Metabolomics and Related Studies. Anal Chem 2025; 97:1-11. [PMID: 39699939 PMCID: PMC11740175 DOI: 10.1021/acs.analchem.4c04060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Methods for assessing compound identification confidence in metabolomics and related studies have been debated and actively researched for the past two decades. The earliest effort in 2007 focused primarily on mass spectrometry and nuclear magnetic resonance spectroscopy and resulted in four recommended levels of metabolite identification confidence─the Metabolite Standards Initiative (MSI) Levels. In 2014, the original MSI Levels were expanded to five levels (including two sublevels) to facilitate communication of compound identification confidence in high resolution mass spectrometry studies. Further refinement in identification levels have occurred, for example to accommodate use of ion mobility spectrometry in metabolomics workflows, and alternate approaches to communicate compound identification confidence also have been developed based on identification points schema. However, neither qualitative levels of identification confidence nor quantitative scoring systems address the degree of ambiguity in compound identifications in the context of the chemical space being considered. Neither are they easily automated nor transferable between analytical platforms. In this perspective, we propose that the metabolomics and related communities consider identification probability as an approach for automated and transferable assessment of compound identification and ambiguity in metabolomics and related studies. Identification probability is defined simply as 1/N, where N is the number of compounds in a database that matches an experimentally measured molecule within user-defined measurement precision(s), for example mass measurement or retention time accuracy, etc. We demonstrate the utility of identification probability in an in silico analysis of multiproperty reference libraries constructed from a subset of the Human Metabolome Database and computational property predictions, provide guidance to the community in transparent implementation of the concept, and invite the community to further evaluate this concept in parallel with their current preferred methods for assessing metabolite identification confidence.
Collapse
Affiliation(s)
- Thomas O. Metz
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Christine H. Chang
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Vasuk Gautam
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Afia Anjum
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Siyang Tian
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Fei Wang
- Department
of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
- Alberta
Machine Intelligence Institute, Edmonton, Alberta T5J
1S5, Canada
| | - Sean M. Colby
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Jamie R. Nunez
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Madison R. Blumer
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Arthur S. Edison
- Department
of Biochemistry & Molecular Biology, Complex Carbohydrate Research
Center and Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, United States
| | - Oliver Fiehn
- West Coast
Metabolomics Center, University of California
Davis, Davis, California 95616, United States
| | - Dean P. Jones
- Clinical
Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Shuzhao Li
- The Jackson
Laboratory for Genomic Medicine, Farmington, Connecticut 06032, United States
| | - Edward T. Morgan
- Department
of Pharmacology and Chemical Biology, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| | - Gary J. Patti
- Center
for Mass Spectrometry and Metabolic Tracing, Department of Chemistry,
Department of Medicine, Washington University, Saint Louis, Missouri 63105, United States
| | - Dylan H. Ross
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Madelyn R. Shapiro
- Artificial
Intelligence & Data Analytics Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Antony J. Williams
- U.S. Environmental
Protection Agency, Office of Research & Development, Center for Computational Toxicology & Exposure
(CCTE), Research Triangle Park, North Carolina 27711, United States
| | - David S. Wishart
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
25
|
Liu S, Dukes DA, Koelmel JP, Stelben P, Finch J, Okeme J, Lowe C, Williams A, Godri D, Rennie EE, Parry E, McDonough CA, Pollitt KJG. Expanding PFAS Identification with Transformation Product Libraries: Nontargeted Analysis Reveals Biotransformation Products in Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:119-131. [PMID: 39704186 PMCID: PMC12097807 DOI: 10.1021/acs.est.4c07750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used persistent synthetic chemicals that have been linked to adverse health effects. While the behavior of PFAS has been evaluated in the environment, our understanding of reaction products in mammalian systems is limited. This study identified biological PFAS transformation products and generated mass spectral libraries to facilitate an automated search and identification. The biological transformation products of 27 PFAS, spanning 5 chemical subclasses (alcohols, sulfonamides, carboxylic acids, ethers, and esters), were evaluated following enzymatic reaction with mouse liver S9 fractions. Four major pathways were identified by liquid chromatography-high-resolution mass spectrometry: glucuronidation, sulfation, dealkylation, and oxidation. Class-based fragmentation rules and associated PFAS transformation product libraries were generated and integrated into an automated nontargeted PFAS data analysis software (FluoroMatch). Fragmentation was additionally predicted for the potential transformation products of more than 2,500 PFAS in the EPA CompTox Chemicals Dashboard PFASSTRUCTv4. Generated mass spectral libraries were validated by applying FluoroMatch to a data set of urine from aqueous film-forming foam (AFFF)-dosed mice. Toxicity predictions showed identified PFAS transformation products to be potential developmental and mutagenic toxicants. This research enables more comprehensive PFAS characterization in biological systems, which will improve the assessment of exposures and evaluation of the associated health impacts.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Environmental Health Science, Yale School of Public Health, New Haven, Connecticut 06511, United States
| | - David A. Dukes
- Department of Civil Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jeremy P. Koelmel
- Department of Environmental Health Science, Yale School of Public Health, New Haven, Connecticut 06511, United States
| | - Paul Stelben
- Department of Environmental Health Science, Yale School of Public Health, New Haven, Connecticut 06511, United States
| | - Jasen Finch
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion SY23 3EB, U.K
| | - Joseph Okeme
- Department of Environmental Health Science, Yale School of Public Health, New Haven, Connecticut 06511, United States
| | - Charles Lowe
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Antony Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - David Godri
- Third Floor Solutions, Toronto, ON M5V 3L9, Canada
| | - Emma E. Rennie
- Agilent Technologies, Santa Clara, California 95051, United States
| | - Emily Parry
- Agilent Technologies, Santa Clara, California 95051, United States
| | - Carrie A. McDonough
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krystal J Godri Pollitt
- Department of Environmental Health Science, Yale School of Public Health, New Haven, Connecticut 06511, United States
| |
Collapse
|
26
|
Wijayahena MK, Moreira IS, Castro PML, Dowd S, Marciesky MI, Ng C, Aga DS. PFAS biodegradation by Labrys portucalensis F11: Evidence of chain shortening and identification of metabolites of PFOS, 6:2 FTS, and 5:3 FTCA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178348. [PMID: 39756302 DOI: 10.1016/j.scitotenv.2024.178348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
The biodegradation of three per- and polyfluoroalkyl substances (PFAS), namely perfluorooctane sulfonic acid (PFOS), 6:2-fluorotelomer sulfonic acid (6:2 FTS), and 5:3-fluorotelomer carboxylic acid (5:3 FTCA), were evaluated using Labrys portucalensis F11, an aerobic bacteria known to defluorinate fluorine-containing compounds. Cultures of L. portucalensis F11 were grown in minimal salts media and treated with 10,000 μg/L of individual PFAS as the sole carbon source in separate flasks. In PFOS-spiked media, several metabolites were detected, including perfluoroheptane sulfonic acid (PFHpS), perfluorohexane sulfonic acid (PFHxS), perfluorohexanoic acid (PFHxA), perfluoropentanoic acid (PFPeA), perfluorobutanoic acid (PFBA), and perfluoropropanoic acid (PFPrA). After 194-day incubation three de-fluorinated metabolites were identified: PFOS-F (m/z = 480.940, PFOS-2F (m/z = 462.980), and unsaturated PFOS-3F (m/z = 442.943). During the biodegradation of 5:3 FTCA, the following metabolites were observed: PFHxA, PFPeA, PFBA, PFPrA, and two fluorotelomer unsaturated carboxylic acids (5:3 FTUCA and 7:2 FTUCA). The biodegradation of 6:2 FTS was slower, with only 21 % decrease in concentration observed after 100 days, and subsequent formation of 4:2 FTS. On the contrary, 90 % of PFOS and 58 % of 5:3 FTCA were degraded after 100 days. These results indicate that L. portucalensis F11 can be potentially used for PFAS biodegradation in contaminated environments.
Collapse
Affiliation(s)
- Mindula K Wijayahena
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States
| | - Irina S Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Paula M L Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Sarah Dowd
- Waters Corporation, 34 Maple St, Milford, MA 01757, United States
| | - Melissa I Marciesky
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Carla Ng
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States; Research and Education in Energy, Environment and Water (RENEW), University at Buffalo, The State University of New York, Buffalo, NY 14260, United States.
| |
Collapse
|
27
|
Sabba F, Kassar C, Zeng T, Mallick SP, Downing L, McNamara P. PFAS in landfill leachate: Practical considerations for treatment and characterization. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136685. [PMID: 39674787 DOI: 10.1016/j.jhazmat.2024.136685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used in consumer products and are particularly high in landfill leachate. The practice of sending leachate to wastewater treatment plants (WWTPs) is an issue for utilities that have biosolids land application limits based on PFAS concentrations. Moreover, landfills may face their own effluent limit guidelines for PFAS. The purpose of this review is to understand the most appropriate treatment technology combinations for mitigating PFAS in landfill leachate. The first objective is to understand the unique chemical characteristics of landfill leachate. The second objective is to establish the role and importance of known and emerging analytical techniques for PFAS characterization in leachate, including quantification of precursor compounds. Next, an overview of technologies that concentrate PFAS and technologies that destroy PFAS is provided, including fundamental background content and key operating parameters. Finally, practical considerations for PFAS treatment technologies are reviewed, and recommendations for PFAS treatment trains are described. Both pros and cons of treatment trains are noted. In summary, the complex matrix of leachate requires a separation treatment step first, such as foam fractionation, for example, to concentrate the PFAS into a lower-volume stream. Then, a degradation treatment step can be applied to the concentrated PFAS stream.
Collapse
Affiliation(s)
- Fabrizio Sabba
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, United States; Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, United States.
| | - Christian Kassar
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, United States
| | - Teng Zeng
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, United States
| | - Synthia P Mallick
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, United States
| | - Leon Downing
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, United States
| | - Patrick McNamara
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, United States; Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI 53233, United States
| |
Collapse
|
28
|
Trier X, van-Leeuwen SP, Brambilla G, Weber R, Webster TF. The Critical Role of Commercial Analytical Reference Standards in the Control of Chemical Risks: The Case of PFAS and Ways Forward. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:15001. [PMID: 39878487 PMCID: PMC11776498 DOI: 10.1289/ehp12331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 10/03/2024] [Accepted: 11/26/2024] [Indexed: 01/31/2025]
Abstract
BACKGROUND Various countries have instituted risk governance measures to control and minimize the risks of chemicals at the national and international levels. Activities typically include risk assessment based on a) hazard and exposure assessments; b) setting limits on the production, use, and emissions of chemicals; c) enforcement of regulations; and d) monitoring the effectiveness of the measures taken. These steps largely depend on chemical analysis and access to pure chemical reference standards. However, except for specific highly regulated categories of chemicals, such reference standards often are not commercially available. This raises a critical question: Given the widespread lack of reference standards, is the current approach to governing chemicals adequate to protect humans and the environment from harm? If not, what measures could be taken to improve the situation? OBJECTIVE We outline how current chemical risk governance is hampered by the widespread lack of reference standards to produce the required scientific evidence. We also provide a list of recommendations for controlling chemical risks in the absence of reference standards. DISCUSSION We use per- and polyfluoroalkyl substances (PFASs), specifically the chemical C6O4 [perfluoro ([5-methoxy-1,3-dioxolan-4-yl]oxy) acetic acid], to illustrate how companies that produce chemicals can prevent access to reference standards. We argue that the very limited availability of reference standards undermines the ability of scientists to produce independent scientific evidence needed for chemical risk governance and, thereby, prevents society from protecting people and the environment against chemical pollution and its harms. Possible ways to improve the situation include a) guaranteeing access to chemical reference standards by creating a reference standards repository, b) redefining the level of confidence sufficient for regulatory action, c) providing alternative options for chemical identification and quantification when reference standards are not available, and d) considering, when no reference standards are available, regulation of chemicals by class rather than individually. https://doi.org/10.1289/EHP12331.
Collapse
Affiliation(s)
- Xenia Trier
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefan P.J. van-Leeuwen
- Wageningen Food Safety Research, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Roland Weber
- POPs Environmental Consulting, Schwäbisch Gmünd, Germany
| | - Thomas F. Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Engelhardt JA, Plassmann MM, Weiss JM. An extended PFAS profiling of a Swedish subpopulation and mixture risk assessments using multiple approaches. ENVIRONMENT INTERNATIONAL 2025; 195:109214. [PMID: 39705977 DOI: 10.1016/j.envint.2024.109214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 12/14/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been detected worldwide, from the deep seas to polar regions. A previous review showed that PFAS are risk drivers of the chemical mixture present in human blood. This study focused on establishing the PFAS exposure of a Swedish subpopulation and investigated whether the exposure poses a risk of adverse health effects. Human serum from 60 blood donors in Stockholm, Sweden, was analyzed. A target method including 32 PFAS analytes and over 270 suspect features was used to detect and quantify PFAS. Twenty-six PFAS were quantified, and 7 suspect PFAS features (6 H-PFCAs and PFECHS) were semi-quantified. Nine mixture risk assessment (MRA) strategies were used to assess the risk of health outcomes. Fifteen effect levels were derived and used, along with 15 already established values. The certainty of various derivation techniques was discussed. The MRAs showed that the entire studied population exceeded some of the risk thresholds, with effects including high cholesterol and immune suppression. However, the certainty was lower when deriving these two effect levels. The MRA, using human biomonitoring guidance values (high certainty), concluded that for 63 % of the individuals, a risk for adverse health effects cannot be excluded. This study has demonstrated that there is a reason for concern regarding PFAS exposure in the general population of Sweden. To our knowledge, this is the first time the H-PFCAs have been semi-quantified in human blood using a reference standard.
Collapse
Affiliation(s)
| | - Merle M Plassmann
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Jana M Weiss
- Department of Environmental Science, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
30
|
Geng F, Helbling DE. Cascading Pathways Regulate the Biotransformations of Eight Fluorotelomer Acids Performed by Wastewater Microbial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:23201-23211. [PMID: 39694873 DOI: 10.1021/acs.est.4c09534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Polyfluoroalkyl substances can be biotransformed in natural or engineered environmental systems to generate perfluoroalkyl acids (PFAAs). Data are needed to support the development of biotransformation pathway prediction tools that simulate biotransformation pathways of polyfluoroalkyl substances in specific environmental systems. The goal of this study was to experimentally evaluate the biotransformation of eight structurally similar fluorotelomer acids to identify biotransformation products and propose biotransformation pathways. We selected six fluorotelomer carboxylic acids and two fluorotelomer sulfonic acids and employed a biotransformation test system in which batch reactors are seeded with aerobic wastewater microbial communities. We identified 111 biotransformation products among the eight parent compounds, 58 of which represent unique chemical structures. Many of the biotransformation products are the result of apparent dehydrogenation, monohydroxylation, alcohol oxidation, decarboxylation, HF-elimination, and reductive defluorination biotransformations. We use these data to propose cascading biotransformation pathways that are regulated by integrated and synergistic α-oxidation-like, β-oxidation-like, and defluorination biotransformations that result in the formation of terminal PFAAs of varying chain length. Our data provide a comprehensive view on the aerobic biotransformation of fluorotelomer acids and our results can be used to support the ongoing development of biotransformation pathway prediction tools.
Collapse
Affiliation(s)
- Fanshu Geng
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
31
|
Wang K, Wang R, Shan W, Yang Z, Chen Y, Wang L, Zhang Y. Unravel the in-Source Fragmentation Patterns of Per- and Polyfluoroalkyl Substances during Analysis by LC-ESI-HRMS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22766-22776. [PMID: 39668558 DOI: 10.1021/acs.est.4c08442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
In-source fragmentation (ISF) was inevitable during electrospray ionization (ESI) of per- and polyfluoroalkyl substances (PFAS) when analyzed by liquid chromatography coupled with mass spectrometry (LC-MS), resulting in reduced response of molecular ions and misannotation of MS features. Herein, we analyzed 82 PFAS across 12 classes to systematically identify the structures with ISF potentials and reveal the fragmentation pathways. We found up to 100% ISF for 38 PFAS in six classes, which all contain the carboxylate (CO2-) headgroup, including perfluoro(di)carboxylates (PF(di)CA), omega H/Cl substituted PFCA (ωH/Cl-PFCA), fluorotelomer carboxylates, and perfluoroalkyl ether carboxylates (PFECA). Seven ISF pathways were identified, including direct cleavage of C-CO2-, C-O, and C-C bonds and eliminations of HF/CO2HF through cyclic transition states by the mechanisms of β-elimination, McLafferty rearrangement, or H···F bridging. We found that the loss of CO2 is a prerequisite for most other pathways, explaining the absence of ISF for PFAS without a CO2- headgroup. The elevated bond dissociation energy of C-CO2- explained the reduced ISF for long-chain PFCA and ωH-PFCA. Raising the MS vaporizer and ion transfer tube temperatures significantly aggravated the ISF of most PFAS. These findings provide valuable references to inform the structural identification of PFAS and their degradation products.
Collapse
Affiliation(s)
- Ke Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Runyun Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Wenyu Shan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Zilin Yang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Yinjuan Chen
- Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Lei Wang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yanyan Zhang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
32
|
Dong S, Yan PF, Manz KE, Abriola LM, Pennell KD, Cápiro NL. Fate and Transformation of 15 Classes of Per- and Polyfluoroalkyl Substances in Aqueous Film-Forming Foam (AFFF)-Amended Soil Microcosms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22777-22789. [PMID: 39654523 DOI: 10.1021/acs.est.4c08665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The environmental fate of per- and polyfluoroalkyl substances (PFAS) in aqueous film-forming foams (AFFFs), especially those synthesized by electrochemical fluorination (ECF) processes, remains largely unknown. This study evaluated the transformation of AFFF-derived ECF-based precursors in aerobic soil microcosms amended with a historically used AFFF formulation (3M Light WaterTM). Fifteen classes of PFAS, including AFFF components and transformation products, were identified or tentatively identified by suspect screening/nontargeted analysis (SSA/NTA) throughout a 308-day incubation. This study demonstrates that AFFF-derived ECF-based precursors serve as sources of perfluoroalkane sulfonamides (FASAs) and perfluoroalkyl acids (PFAAs), which are commonly detected at AFFF-impacted sites. Temporal sampling provided evidence for biotransformation of multiple precursors including tri- or dimethyl ammonio propyl perfluoroalkane sulfonamides. Additionally, the environmental stability (i.e., resistance to transformation) of ECF-based precursors was found to depend upon structural characteristics, including perfluoroalkyl chain length, presence of sulfonamide or carboxamide groups, and functional groups (e.g., a branch of carboxyalkyl group) attached to the nitrogen atoms. These findings provide insights into the transformation pathways of AFFF-derived PFAS and other structurally similar ECF-based PFAS, which will support the management and remediation of PFAS contamination at legacy AFFF-impacted sites.
Collapse
Affiliation(s)
- Sheng Dong
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Peng-Fei Yan
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Katherine E Manz
- School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Linda M Abriola
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Natalie L Cápiro
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
33
|
Manz KE. Considerations for Measurements of Aggregate PFAS Exposure in Precision Environmental Health. ACS MEASUREMENT SCIENCE AU 2024; 4:620-628. [PMID: 39713038 PMCID: PMC11659993 DOI: 10.1021/acsmeasuresciau.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/24/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have become a major focus of research due to their widespread environmental presence and adverse health effects associated with human exposure. PFAS include legacy and emerging structures and are characterized by a range of functional groups and carbon-fluorine chains that vary in length (from fewer than 3 carbons to more than 7 carbons). Research has linked PFAS exposure to an array of health concerns, ranging from developmental and reproductive disorders to immune system impairments and an increased risk of certain cancers. In this new era of personalized health, measuring markers of PFAS exposure in human biospecimens is an important part of environmental public health surveillance. PFAS are typically measured in human blood and tissues using targeted approaches, which quantify individual PFAS structures using specific instrumentation. The diversity and complexity of PFAS, the limitations of the targeted approaches due to the sheer number of structures, and the absence of publicly available analytical standards pose significant challenges for measurement methodologies. This perspective aims to describe aggregate PFAS exposure measurements and their potential for use in precision medicine applications including a discussion of the limitations and potential benefits of these aggregate measurements. As public health organizations, healthcare professionals, and the public look for guidance regarding the safe use of and exposure to PFAS, in a pragmatic cost-effective manner, the dynamic field of measurement science is poised to respond with innovative technological solutions to an important public health need.
Collapse
Affiliation(s)
- Katherine E. Manz
- Department
of Environmental Health Sciences, University
of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
34
|
Kim-Fu ML, Moll AR, Hernandez EE, Droz B, Fouquet TNJ, Field J. Fluorinated aromatic PBCTF and 6:2 diPAP in bridge and traffic paints. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:2158-2165. [PMID: 39555575 PMCID: PMC11634627 DOI: 10.1039/d4em00546e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are reported in residential and commercial paints, but there are no data for paints used in the transportation sector. From 2023 to 2024, 16 traffic paints and 10 bridge paints were collected from Pacific Northwest regional transportation facilities or purchased and analyzed for total fluorine by 19F-nuclear magnetic resonance (NMR) spectroscopy, volatile PFAS by gas chromatography-mass spectrometry (GC-MS), and ionic target and suspect PFAS by liquid chromatography-quadrupole time-of-flight mass spectrometry. The only target PFAS identified was 6:2 fluorotelomer phosphate diester (diPAP) which ranged in concentrations from 0.065 to 13 μg g-1. While 6:2 diPAP is not regulated in paints, it can undergo environmental transformation to act as a source of perfluoroalkyl carboxylic acids. A combination of 19F-NMR and GC-MS was used to quantify and identify the fluorinated aromatic PFAS, parachlorobenzotrifluoride (PCBTF), at concentrations from 440 to 16 000 μg g-1 in bridge paints, thus PCBTF may contribute to work exposure and levels in urban air. Additionally, evolved gas analysis with mass spectrometry and pyrolysis-GC-MS established that the insoluble fraction of paints is not comprised of fluoropolymers. Based on the amount of paint required per kilometer, we estimate up to 0.20-2.30 g 6:2 diPAP per kilometer depending on marking type. Therefore, traffic paint may be a potential source of the PFAS detected in urban runoff.
Collapse
Affiliation(s)
- Mitchell L Kim-Fu
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Ansel R Moll
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | | | - Boris Droz
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, USA
| | | | - Jennifer Field
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
35
|
Rehnstam S, Smith SJ, Ahrens L. Suspect and non-target screening of per- and polyfluoroalkyl substances (PFAS) and other halogenated substances in electrochemically oxidized landfill leachate and groundwater. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136316. [PMID: 39488114 DOI: 10.1016/j.jhazmat.2024.136316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Release of persistent and potentially toxic per- and polyfluoroalkyl substances (PFAS) and other halogenated compounds into the aqueous environment is an emerging issue and advanced treatment methods are needed for their removal from contaminated water. Destructive treatment methods for PFAS exist, but there is a risk of incomplete degradation, resulting in creation of transformation products during treatment. This study assessed the potential of electrochemical oxidation (EO) for destruction of PFAS and other halogenated compounds, and their transformation products. Suspect and non-target screening were used to explore the chemical space of these samples and identify compounds present before and after the treatment, including transformation products. In total, 21 PFAS classes and 53 individual PFAS were identified using suspect and non-target screening, with confidence level (CL) 3d or higher. Two new classes of PFAS (FASHN and MeOH-FASA) were discovered for the first time. Suspect screening of PFAS revealed that hydro-substituted and ether PFAS could be formed during EO. A total of 12 chlorinated and two brominated compounds were also detected and confirmed with CL 1-3, with six compounds determined to be transformation products. Formation of ammonium oxidation byproducts was hypothesized as being responsible for most identified transformation products formed during EO.
Collapse
Affiliation(s)
- Svante Rehnstam
- Swedish University of Agricultural Sciences (SLU), Department of Aquatic Sciences and Assessment, Lennart Hjelms vag 9, 756 51 Uppsala, Sweden.
| | - Sanne J Smith
- Swedish University of Agricultural Sciences (SLU), Department of Aquatic Sciences and Assessment, Lennart Hjelms vag 9, 756 51 Uppsala, Sweden; Delft University of Technology, Department of Water Management, Stevinweg 1, 2628 CN Delft, the Netherlands
| | - Lutz Ahrens
- Swedish University of Agricultural Sciences (SLU), Department of Aquatic Sciences and Assessment, Lennart Hjelms vag 9, 756 51 Uppsala, Sweden
| |
Collapse
|
36
|
Gonda N, Zhang C, Tepedelen D, Smith A, Schaefer C, Higgins CP. Quantitative assessment of poly- and perfluoroalkyl substances (PFASs) in aqueous film forming foam (AFFF)-impacted soils: a comparison of analytical protocols. Anal Bioanal Chem 2024; 416:6879-6892. [PMID: 39414643 DOI: 10.1007/s00216-024-05585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Quantitatively assessing all per- and poly fluoroalkyl substances (PFASs) in an environmental sample, particularly soils impacted by aqueous film forming foams (AFFFs), has proven to be a challenge. To make such an assessment, a comprehensive sample processing procedure and analytical tool must be used. However, doubts remain whether current analytical tools such as high-resolution mass spectrometry (HRMS) with targeted quantitation and semi-quantitative analysis of suspects (Semi-Q HRMS) or total organic fluorine (TOF) are capable of accurately quantifying all non-polymeric PFASs in a sample. Further, current comprehensive soil PFAS HRMS methods are incompatible with TOF, preventing direct comparisons of the approaches. To enable direct comparisons, a soil sample processing procedure that is comprehensive as well as compatible with multiple analytical tools is needed. In this study, we assessed the performance of a previously developed soil PFAS method, EPA Method 1633, and a hybrid solid phase extraction (SPE)-based method for characterizing AFFF-impacted soil composites while maintaining compatibility with multiple analytical tools (i.e., Semi-Q HRMS and TOF). Comparative results for AFFF-impacted soil composites indicate analysis via EPA Method 1633 (as compared to the novel hybrid method) results in maybe up to 75% of the PFAS mass being missed by only analyzing for compounds listed in EPA Method 1633. Simply expanding the EPA Method 1633 analyte list was insufficient to account for the missing mass: up to 69% of the PFAS mass was still missed because of EPA Method 1633's extraction and cleanup bias. Additionally, the novel method developed offers a more comprehensive analysis with minimal reductions to sensitivity when compared to those reported in EPA Method 1633, with limits of quantification ranging from 0.12 to 2.4 ng/g as compared to 0.16-4.0 ng/g, respectively. For these reasons, an alternative hybrid SPE-based method is proposed for comprehensive evaluation of PFASs in AFFF-impacted soils.
Collapse
Affiliation(s)
- Nicholas Gonda
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA
- Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA
- CDM Smith, Denver, CO, 80202, USA
| | - Chuhui Zhang
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - Dylan Tepedelen
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - Adam Smith
- Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA
| | | | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA.
| |
Collapse
|
37
|
Tajdini B, Vatankhah H, Pezoulas ER, Zhang C, Higgins CP, Bellona C. Adsorbability of a wide range of per- and polyfluoroalkyl substances on granular activated carbon, ion exchange resin, and surface modified clay. WATER RESEARCH 2024; 268:122774. [PMID: 39556982 DOI: 10.1016/j.watres.2024.122774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/15/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024]
Abstract
The increased detection of understudied per- and polyfluoroalkyl substances (PFAS) in environmental matrices has highlighted the need to evaluate the treatability of a wide-range of PFAS by sorption-based processes. This study investigated the efficacy of three commercial adsorbents (i.e., granular activated carbon (GAC), surface modified clay (SMC), and anionic exchange resin (AER)) for the removal of a wide range of cationic, zwitterionic, and anionic PFAS from an aqueous film forming foam (AFFF)-impacted groundwater employing rapid small-scale column tests (RSSCTs) coupled with high resolution mass spectrometry (HRMS) and suspect screening analysis (SQ). AER exhibited later breakthrough times for the majority of anionic and zwitterionic PFAS compared to SMC and GAC. However, both AER and SMC exhibited negligible removal of cationic PFAS presumably due to the reliance of these adsorbents on electrostatic interactions and the counteraction of hydrophobic forces caused by the repulsion between cationic PFAS and positively charged surfaces of AER and SMC. GAC, being a non-selective adsorbent, was largely unaffected by the ionic charge of the evaluated PFAS with molecular structure having a bigger impact on adsorbability. The detection of a variety of PFAS classes in the investigated AFFF-impacted groundwater enabled assessment of the relative impact of chemical structure on adsorptive removal of PFAS. Chain-length dependent adsorption was observed across all investigated anionic and zwitterionic PFAS classes. The PFAS structures possessing hydroxyl and/or methyl functional groups exhibited later breakthrough times compared to their homologues lacking these functional groups and cyclic/unsaturated structures were removed less efficiently compared to their linear/saturated homologues. In the case of perfluoroalkyl acid (PFAA)-derivative structures, hydrogen-substituted classes (i.e., H-PFAAs) were removed more efficiency than PFAAs while keto-substituted structures (i.e., K-PFSA) and pentahydrido-fluoroalkane sulfates (PeH-FAOS) exhibited lower adsorbability compared to PFAAs for all adsorbents. Oxa-PFAAs (O-PFSA; isomer class of PFA-OS) on the other hand demonstrated higher adsorbability compared to PFAAs in the case of AER-like adsorbents, while this trend was reversed for GAC.
Collapse
Affiliation(s)
- Bahareh Tajdini
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | - Hooman Vatankhah
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA; Department of Civil and Environmental Engineering, Florida International University, Miami, FL, USA
| | - Ethan R Pezoulas
- Department of Chemistry, University of California, Berkeley, CA , USA
| | - Chuhui Zhang
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | - Christopher Bellona
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA.
| |
Collapse
|
38
|
Megson D, Niepsch D, Spencer J, Santos CD, Florance H, MacLeod CL, Ross I. Non-targeted analysis reveals hundreds of per- and polyfluoroalkyl substances (PFAS) in UK freshwater in the vicinity of a fluorochemical plant. CHEMOSPHERE 2024; 367:143645. [PMID: 39476983 DOI: 10.1016/j.chemosphere.2024.143645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
There are now over 7 million recognised per- and polyfluoroalkyl substances (PFAS), however the majority of routine monitoring programmes and policy decisions are based on just a handful of these. There is need for a shift towards gaining a better understanding of the total PFAS present in a sample rather than relying on targeted analysis alone. Total PFAS methods help us to understand if targeted methods are missing a mass of PFAS, but they do not identify which PFAS are missing. Non-targeted methods fill this knowledge gap by using high resolution mass spectrometry to identify the PFAS present in a sample. In this manuscript we use complimentary targeted and non-targeted analysis (NTA) to detect hundreds of PFAS in five freshwater samples obtained from the Northwest of the UK. Targeted analysis revealed PFOA at a maximum concentration of 12,100 ng L-1, over three orders of magnitude greater than the proposed environmental quality standard (EQS) of 100 ng L-1. A conservative assessment calculated an average total PFAS concentration of approximately 40 μg L-1 across all samples. A suspect screening approach identified between 1175 (least conservative) to 89 (most conservative) PFAS at confidence level 4. Exploratory data analysis was used to identify 33 PFAS at confidence level 3 and 10 PFAS at a confidence level of 2. Only 8 of these 43 PFAS (representing 17% of the total PFAS peak area) are regularly monitored in the UK as part of the UK DWI 47 PFAS. Our results suggested the presence of a novel group of unsaturated perfluoroalkyl ether carboxylic acids (U-PFECAs) related to EEA-NH4, a perfluoroalkyl ether carboxylic acid (PFECA), providing an example of the benefits of non-targeted screening. This study highlights the merits of non-targeted methods and demonstrates that future monitoring programmes and regulations would benefit from incorporating a non-targeted element.
Collapse
Affiliation(s)
- David Megson
- Ecology and Environment Research Centre, Department of Natural Science, Manchester Metropolitan University, Manchester, UK; Chemistry Matters, Alberta, Canada.
| | - Daniel Niepsch
- Ecology and Environment Research Centre, Department of Natural Science, Manchester Metropolitan University, Manchester, UK
| | - Jonathan Spencer
- Agilent Technologies UK Ltd, 5500 Lakeside, Cheadle, Cheshire, UK
| | - Claudio Dos Santos
- Ecology and Environment Research Centre, Department of Natural Science, Manchester Metropolitan University, Manchester, UK
| | - Hannah Florance
- Agilent Technologies UK Ltd, 5500 Lakeside, Cheadle, Cheshire, UK
| | - Cecilia L MacLeod
- School of Engineering, University of Greenwich, Chatham, Maritime, Kent, UK; Microbio Ltd, Morecambe, Lancashire, UK
| | - Ian Ross
- Ecology and Environment Research Centre, Department of Natural Science, Manchester Metropolitan University, Manchester, UK; CDM Smith Monterey, CA, USA
| |
Collapse
|
39
|
Dukes DA, McDonough CA. N-glucuronidation and Excretion of Perfluoroalkyl Sulfonamides in Mice Following Ingestion of Aqueous Film-Forming Foam. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2274-2284. [PMID: 38923620 DOI: 10.1002/etc.5939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/21/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Perfluoroalkyl sulfonamides (FASAs) and other FASA-based per- and polyfluoroalkyl substances (PFASs) can transform into recalcitrant perfluoroalkyl sulfonates in vivo. We conducted high-resolution mass spectrometry suspect screening of urine and tissues (kidney and liver) from mice dosed with an electrochemically fluorinated aqueous film-forming foam (AFFF) to better understand the biological fate of AFFF-associated precursors. The B6C3F1 mice were dosed at five levels (0, 0.05, 0.5, 1, and 5 mg kg-1 day-1) based on perfluorooctane sulfonate and perfluorooctanoate content of the AFFF mixture. Dosing continued for 10 days followed by a 6-day depuration. Total oxidizable precursor assay of the AFFF suggested significant contributions from precursors with three to six perfluorinated carbons. We identified C4 to C6 FASAs and N-glucuronidated FASAs (FASA-N-glus) excreted in urine collected throughout dosing and depuration. Based on normalized relative abundance, FASA-N-glus accounted for up to 33% of the total excreted FASAs in mouse urine, highlighting the importance of phase II metabolic conjugation as a route of excretion. High-resolution mass spectrometry screening of liver and kidney tissue revealed accumulation of longer-chain (C7 and C8) FASAs not detected in urine. Chain-length-dependent conjugation of FASAs was also observed by incubating FASAs with mouse liver S9 fractions. Shorter-chain (C4) FASAs conjugated to a much greater extent over a 120-min incubation than longer-chain (C8) FASAs. Overall, this study highlights the significance of N-glucuronidation as an excretion mechanism for short-chain FASAs and suggests that monitoring urine for FASA-N-glus could contribute to a better understanding of PFAS exposure, as FASAs and their conjugates are often overlooked by traditional biomonitoring studies. Environ Toxicol Chem 2024;43:2274-2284. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- David A Dukes
- Department of Civil Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Carrie A McDonough
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
40
|
Pickard HM, Ruyle BJ, Haque F, Logan JM, LeBlanc DR, Vojta S, Sunderland EM. Characterizing the Areal Extent of PFAS Contamination in Fish Species Downgradient of AFFF Source Zones. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19440-19453. [PMID: 39412174 PMCID: PMC11526379 DOI: 10.1021/acs.est.4c07016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024]
Abstract
Most monitoring programs next to large per- and polyfluoroalkyl substances (PFAS) sources focus on drinking water contamination near source zones. However, less is understood about how these sources affect downgradient hydrological systems and food webs. Here, we report paired PFAS measurements in water, sediment, and aquatic biota along a hydrological gradient away from source zones contaminated by the use of legacy aqueous film-forming foam (AFFF) manufactured using electrochemical fluorination. Clustering analysis indicates that the PFAS composition characteristic of AFFF is detectable in water and fishes >8 km from the source. Concentrations of 38 targeted PFAS and extractable organofluorine (EOF) decreased in fishes downgradient of the AFFF-contaminated source zones. However, PFAS concentrations remained above consumption limits at all locations within the affected watershed. Perfluoroalkyl sulfonamide precursors accounted for approximately half of targeted PFAS in fish tissues, which explain >90% of EOF across all sampling locations. Suspect screening analyses revealed the presence of a polyfluoroketone pharmaceutical in fish species, and a fluorinated agrochemical in water that likely does not accumulate in biological tissues, suggesting the presence of diffuse sources such as septic system and agrochemical inputs throughout the watershed in addition to AFFF contamination. Based on these results, monitoring programs that consider all hydrologically connected regions within watersheds affected by large PFAS sources would help ensure public health protection.
Collapse
Affiliation(s)
- Heidi M. Pickard
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Bridger J. Ruyle
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department
of Global Ecology, Carnegie Institution
for Science, Stanford, California 94305, United States
| | - Faiz Haque
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - John M. Logan
- Massachusetts
Division of Marine Fisheries, New
Bedford, Massachusetts 02744, United States
| | - Denis R. LeBlanc
- U.S.
Geological Survey, Emeritus Scientist, New
England Water Science Center, Northborough, Massachusetts 01532, United States
| | - Simon Vojta
- Graduate
School of Oceanography, University of Rhode
Island, Narragansett, Rhode Island 02882, United States
| | - Elsie M. Sunderland
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department
of Earth and Planetary Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
41
|
Schüßler M, Capitain C, Bugsel B, Zweigle J, Zwiener C. Non-target screening reveals 124 PFAS at an AFFF-impacted field site in Germany specified by novel systematic terminology. Anal Bioanal Chem 2024:10.1007/s00216-024-05611-3. [PMID: 39465411 DOI: 10.1007/s00216-024-05611-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
The uncontrolled release of aqueous film-forming foam (AFFF) ingredients during a major fire incident in Reilingen, Germany, in 2008 led to significant soil and groundwater contamination. As the identity of fluorochemical surfactants in AFFF are often veiled due to company secrets, it is important to characterize AFFF contaminations and their impact on the environment comprehensively. In this study, we adapted a systematic approach combining a suitable extraction method with liquid chromatography high-resolution quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) for an extensive non-targeted analysis. Our analysis identified 124 per- and polyfluoroalkyl substances (PFAS) from 42 subclasses in the contaminated soil (confidence levels of identification between 1 and 3). Typical for AFFF-impacted field sites, these included anionic, cationic, and zwitterionic substances with perfluoroalkyl chains spanning from 3 to 14 carbon atoms. Furthermore, we identified 1 previously unreported substance, and detected 9 PFAS subclasses for the first time in soil. AFFFs have long been employed to extinguish large hydrocarbon fires, yet their environmental consequences remain a concern. This study sheds light on the complex composition of AFFFs at this particularly contaminated area, emphasizing the necessity for extensive contaminant characterization as sound basis for informed management strategies to mitigate their adverse effects. AFFF PFAS are often named differently in the literature, leading to inconsistency in terminology. To address this issue, we introduced partially new terminology for AFFF-related PFAS to establish consistent terminology, to facilitate communication of identified compounds, and to ensure that the chemical structure can be directly derived from acronyms.
Collapse
Affiliation(s)
- Melanie Schüßler
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076, Tübingen, Germany
| | - Catharina Capitain
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076, Tübingen, Germany
| | - Boris Bugsel
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076, Tübingen, Germany
| | - Jonathan Zweigle
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076, Tübingen, Germany
| | - Christian Zwiener
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076, Tübingen, Germany.
| |
Collapse
|
42
|
Zhao M, Yao Y, Dong X, Fang B, Wang Z, Chen H, Sun H. Identification of emerging PFAS in industrial sludge from North China: Release risk assessment by the TOP assay. WATER RESEARCH 2024; 268:122667. [PMID: 39509771 DOI: 10.1016/j.watres.2024.122667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/02/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been widely used across various industries, leading to their prevalent occurrence in sludges generated by wastewater treatment plants (WWTPs). Consequently, industrial sludges serve as typical reservoirs for PFAS. This study examined 46 target PFAS in sludge samples intended for brick production from nine WWTPs in North China, identifying emerging PFAS and categorizing their behaviors through high-resolution mass spectrometry (HRMS) screening and total oxidizable precursor (TOP) assay. Forty-one PFAS were detected, with trifluoroacetic acid (TFA), perfluorooctane sulfonic acid, and hexafluoropropylene oxide dimer acid being the most prevalent. Twenty-nine emerging PFAS were identified, and their behaviors were categorized using TOP assay. Notably, four CF3-containing PFAS were identified, all confirmed as precursors of TFA, with a molar yield of 16.4 %-25.6 % in Milli-Q water during TOP assay validation. These findings indicate that the transformation of these precursors during sludge recycling may substantially contribute to TFA release, underscoring potential risks associated with secondary PFAS release during sludge resource utilization.
Collapse
Affiliation(s)
- Maosen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Xiaoyu Dong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Bo Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ziyuan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
43
|
Fu Y, Ji Y, Tian Y, Zhang F, Sheng N, Dai J, Pan Y. Unveiling Priority Emerging PFAS in Taihu Lake Using Integrated Nontarget Screening, Target Analysis, and Risk Characterization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18980-18991. [PMID: 39391926 DOI: 10.1021/acs.est.4c06731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Amidst tightening regulations, the proliferation of next-generation per- and polyfluoroalkyl substances (PFAS) necessitates a deeper understanding of their environmental fate and potential risks. Here, we conducted a comprehensive assessment of PFAS in the water and sediment of Taihu Lake, incorporating both nontarget and target screening, seasonal and geographical variation analysis, and risk prioritization. A total of 58 PFAS from 13 classes were identified, revealing complex PFAS contamination. In addition to short-chain perfluoroalkyl carboxylates (PFCAs) and sulfonates (PFSAs), bis(trifluoromethanesulfonyl)imide (Ntf2) and perfluoro-2,5-dimethyl-3,6-dioxo-heptanoic acid (C7 HFPO-TA) exhibited relatively high concentrations in water, with median values of 21.7 and 5.72 ng/L, respectively. Seasonal and geographical variation analysis revealed elevated levels of C7 HFPO-TA, Ntf2, and perfluorohexanoic acid (PFHxA) in the northeastern areas, suggesting transport via water diversion project. Multicriteria risk prioritization identified four high priority PFAS (Ntf2, C7 HFPO-TA, PFHxA, and perfluorooctanoic acid (PFOA)) in water and two high priority PFAS (hexafluoropropylene oxide dimer acid (HFPO-DA) and PFHxA) in sediment. Overall, this study revealed Ntf2 and C7 HFPO-TA as priority PFAS in Taihu Lake, underscoring the urgent necessity of evaluating risks associated with these emerging PFAS.
Collapse
Affiliation(s)
- Yao Fu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuyan Ji
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yawen Tian
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
44
|
Alam R, Naznin M, Ardiati FC, Solihat NN, Anita SH, Purnomo D, Yanto DHY, Kim S. Targeted and non-targeted identification of dye and chemical contaminants in Loji River, Indonesia using FT-ICR-MS. CHEMOSPHERE 2024; 365:143324. [PMID: 39278327 DOI: 10.1016/j.chemosphere.2024.143324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/08/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
This study utilized liquid chromatography (LC) alongside Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to explore the dyes and chemical contaminants in Loji River, Indonesia. We tentatively identified a total of 655 contaminants at various confidence level, subsequently classifying them into 22 distinct categories. Of the 54 dyes we detected, 12 corresponded with entries in our specialized in-house database. These 12 dyes were further confirmed by reference standards, matching both retention time (RT) and MS/MS spectra. LC-FT-ICR MS data showed that dyes from printing batik and textile industries are key contributors to river pollution. Particularly noteworthy were two sample locations that displayed substantial contamination, predominantly from azoic and reactive dyes. Additionally, pharmaceuticals were identified as one of the most frequently occurring contaminants, underscoring the inadequacies in the area's sewage management. To corroborate these findings, we conducted physicochemical, phytotoxicity, and acute toxicity tests, all of which verified the harmful effects of the Loji River's water on both the local flora and human populations. Notably, water samples that tested positive for dye contamination exhibited elevated toxicity levels. To the best of our knowledge, this study is pioneering in its molecular-level investigation of dye contamination in Southeast Asian rivers. Our results accentuate the pressing need for both targeted and non-targeted screening methods to identify contaminants in the surface waters of developing nations.
Collapse
Affiliation(s)
- Rafiqul Alam
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Marufa Naznin
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Fenny Clara Ardiati
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Nissa Nurfajrin Solihat
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Sita Heris Anita
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Deni Purnomo
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Dede Heri Yuli Yanto
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia; Research Collaboration Center for Marine Biomaterials, Jatinangor, 45360, Indonesia.
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea; Mass Spectrometry Converging Research Center and Green-Nano Materials Research Center, Daegu, 41566, Republic of Korea.
| |
Collapse
|
45
|
Miao Z, Li S, Song X, Ren F, Jin H. Discovery of perfluoroalkyl sulfonyl quaternary ammonium substances in the environment and their environmental behaviors. WATER RESEARCH 2024; 263:122189. [PMID: 39096813 DOI: 10.1016/j.watres.2024.122189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
A variety of per- and polyfluoroalkyl substances (PFASs) have been released into the environment via wastewater treatment plant (WWTP) effluent, with current target and nontarget analytical methods typically focusing on negatively ionized PFASs while largely overlooking positively ionized ones. In this study, five cationic PFASs, perfluoroalkyl sulfonyl quaternary ammonium substances (PFAQASs), were first identified in surface water impacted by the WWTP effluent, applying a metabolomics-based nontarget analysis method. Environmental behaviors of identified novel PFAQASs were further investigated. In surface water, sediment, and fish (Coilia mystus) samples collected from the Yangtze River, 8:3 PFAQA was consistently the predominant PFAQASs, with the mean concentrations of 90 ng/L (< LOD-558 ng/L), 92 ng/g dw (< LOD-421 ng/g dw), and 2.3 ng/g ww (< LOD-4.6 ng/g ww), respectively. This study highlights the necessity to discover other cationic PFASs in the environment. Among PFAQASs, 8:4 PFAQA (4.2, range 3.4 - 4.6) had the highest mean sediment-water partitioning coefficient (log Koc), followed by 8:3 PFAQA (3.9, 2.8 - 4.5) and 6:3 PFAQA (3.7, 3.3 - 4.1). The log Koc of PFAQASs showed a general increase trend with the increasing carbon chain length. Mean bioaccumulation factor (BAF) values of PFAQASs calculated in the collected fish from the Yangtze River ranged from 1.9 ± 0.32 (4:3 PFAQA) to 2.9 ± 0.34 (8:4 PFAQA). The mean BAF values of PFAQASs generally increased with the carbon chain length. Further studies are warranted to elucidate the environmental fate, potential toxicity, and human exposure implications for these identified novel PFASs.
Collapse
Affiliation(s)
- Zhijia Miao
- Hebei Center for Ecological and Environmental Geology Research, Hebei GEO University, Shijiazhuang, 050031, PR China; School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050031, PR China
| | - Shuoyang Li
- Hebei Center for Ecological and Environmental Geology Research, Hebei GEO University, Shijiazhuang, 050031, PR China; School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050031, PR China
| | - Xueqiang Song
- Hebei Center for Ecological and Environmental Geology Research, Hebei GEO University, Shijiazhuang, 050031, PR China; School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050031, PR China
| | - Fangfang Ren
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China.
| |
Collapse
|
46
|
Li S, Zhao Z, Liu J, Zhang B, Han B, Ma Y, Jin L, Zhu N, Gao G, Lin T. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and nutrients from two constructed wetlands in a city of southeastern China. Heliyon 2024; 10:e37551. [PMID: 39309800 PMCID: PMC11415654 DOI: 10.1016/j.heliyon.2024.e37551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/02/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a large class of toxic contaminants. Nutrients are closely related to the ecological health of aquatic systems. Both have received widespread global attention. This study investigated the concentrations, compositions, and spatial distributions of PFAS and nutrients in surface water from two constructed wetlands and the nearby drinking water treatment plants (DWTPs). We explored the natural environmental factors and human activities that affect the composition and distribution of pollutants in wetlands and assessed the ability of the DWTPs to remove contaminants. Concentrations of ∑32PFAS varied from 153 to 405 ng/L. Hexafluoropropylene oxide trimer acid (HFPO-TA) was the predominant substance accounting for 45 % of ∑32PFAS concentrations. It might originate from the emissions of indirect sources of PFAS related manufacturers. The detection rate of 6:2 fluorotelomer carboxylic acid (6:2 FTCA) was 100 % with concentrations ranging from 0.915 to 19.7 ng/L 6:2 FTCA might come from the biotransformation of indirect sources in the air. Concentrations of total nitrogen (TN) and total phosphorus (TP) were from 1.47 to 3.54 mg/L, and non-detect (ND) to 0.323 mg/L, respectively. Constructed wetlands could effectively remove PFAS under nutrient stress, however, the removal of PFAS depends on the characteristics of specific compounds and their sources. The removal rates for PFAS and nutrients could be promoted through artificial dredging. But wetland bioremediation could have two opposing effects. On the one hand, plants can take up pollutants from water via roots, leading to pollutant removal and purification. On the other hand, plants may also absorb precursor intermediates from the air through leaves and release them into the water, leading to increased pollutant concentrations. Thirty-two emerging PFAS were identified by high resolution mass spectrum. The drinking water treatment process removed PFAS and nutrients below the drinking water quality standards of China, however, 9 non-target PFAS compounds were still found in tap water. These results provide case support and a theoretical basis for the pollution control and sustainable development of typical ecological wetlands used as drinking water sources.
Collapse
Affiliation(s)
- Shiyue Li
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhen Zhao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Boxuan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Baocang Han
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yuntao Ma
- Jiaxing Jiayuan Testing Technology Service Co., Ltd, Jiaxing, 314000, China
| | - Limin Jin
- Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Environmental Research Institute, Jiaxing, 314051, China
| | - Ningzheng Zhu
- Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Environmental Research Institute, Jiaxing, 314051, China
| | - Guoping Gao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Tian Lin
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
47
|
Baqar M, Zhao M, Saleem R, Cheng Z, Fang B, Dong X, Chen H, Yao Y, Sun H. Identification of Emerging Per- and Polyfluoroalkyl Substances (PFAS) in E-waste Recycling Practices and New Precursors for Trifluoroacetic Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16153-16163. [PMID: 39178241 DOI: 10.1021/acs.est.4c05646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Electronic waste is an emerging source of per- and polyfluoroalkyl substance (PFAS) emissions to the environment, yet the contribution from hazardous recycling practices in the South Asian region remains unclear. This study detected 41 PFAS in soil samples from e-waste recycling sites in Pakistan and the total concentrations were 7.43-367 ng/g dry weight (dw) (median: 37.7 ng/g dw). Trifluoroacetic acid (TFA) and 6:2 fluorotelomer sulfonic acid emerged as the dominant PFAS, constituting 49% and 13% of the total PFAS concentrations, respectively. Notably, nine CF3-containing emerging PFAS were identified by the high-resolution mass spectrometry (HRMS)-based screening. Specifically, hexafluoroisopropanol and bistriflimide (NTf2) were consistently identified across all the samples, with quantified concentrations reaching up to 854 and 90 ng/g dw, respectively. This suggests their potential association with electronic manufacturing and recycling processes. Furthermore, except for NTf2, all the identified emerging PFAS were confirmed as precursors of TFA with molar yields of 8.87-40.0% by the TOP assay validation in Milli-Q water. Overall, this study reveals significant emission of PFAS from hazardous e-waste recycling practices and emphasizes the identification of emerging sources of TFA from precursor transformation, which are essential for PFAS risk assessment.
Collapse
Affiliation(s)
- Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Maosen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Rimsha Saleem
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Bo Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoyu Dong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
48
|
Li M, Hu J, Cao X, Chen H, Lyu Y, Sun W. Nontarget Analysis Combined with TOP Assay Reveals a Significant Portion of Unknown PFAS Precursors in Firefighting Foams Currently Used in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39250774 DOI: 10.1021/acs.est.4c07879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Firefighting foam is a significant source of per- and polyfluoroalkyl substances (PFAS) pollution, yet the PFAS profiles in foam formulations, particularly in China, remain unclear. Here, using target and nontarget analyses, we investigated 50 target PFAS in firefighting foams currently utilized in China, identified novel PFAS, and discovered new end products through a total oxidizable precursor (TOP) assay. We identified a total of 54 PFAS compounds (spanning 34 classes and containing seven novel PFAS) with total PFAS concentrations of 0.03-21.21 mM. Among seven novel PFAS, four PFAS met persistence, bioaccumulation, and toxicity criteria, and another PFAS had the highest ToxPi score among the identified 54 PFAS. Moreover, the predominant PFAS varied significantly in the studied foams and differed markedly from those used in other countries. After the TOP assay, nontarget analysis uncovered 1.1-55.5% more PFAS precursors and 8.25-55.5% more fluorine equivalents compared to traditional target analysis combined with TOP assay. Specifically, three double-bond perfluorinated alcohols were identified for the first time as end products of the TOP assay. This study provides crucial information for pollution control and risk assessment associated with PFAS in firefighting foam applications and emphasizes the importance of combining nontarget analysis with TOP assay in uncovering unknown PFAS precursors.
Collapse
Affiliation(s)
- Mingzhen Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Jingrun Hu
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Xiaoqiang Cao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Huan Chen
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina 29634, United States
| | - Yitao Lyu
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| |
Collapse
|
49
|
Clarke BO. The Role of Mass Spectrometry in Protecting Public Health and the Environment from Synthetic Chemicals. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2248-2255. [PMID: 39165229 DOI: 10.1021/jasms.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Mass spectrometry (MS) has dramatically transformed environmental protection by facilitating the precise quantification and identification of pollutants. This review charts the evolution of environmental chemistry, intertwining it with advancements in analytical chemistry and MS technologies. It specifically focuses on the role of MS in studying persistent organic pollutants like organochlorine pesticides, polychlorinated biphenyls (PCBs), brominated fire retardants (BFRs), and perfluoroalkyl and polyfluoroalkyl substances (PFAS), marking significant milestones and their implications. Notably, the adoption of gas chromatography with MS in the 1970s and liquid chromatography with MS in the late 1990s profoundly expanded scientists' ability to detect complex pollutant mixtures. Over the past 50 years, the proliferation of potential pollutants has surged, necessitating more sophisticated analysis techniques, such as high-resolution mass spectrometry-nontargeted analysis (HRMS-NTA) and suspect screening. While HRMS promises to enhance the characterization of new environmental pollutants, a significant shift in chemical management strategies remains imperative. Despite technological advances, MS alone is insufficient to mitigate the risks from the continuous emergence of novel chemicals, with many potentially already present in the environment and bioaccumulating in humans.
Collapse
Affiliation(s)
- Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
50
|
Mofokeng NN, Madikizela LM, Tiggelman I, Sanganyado E, Chimuka L. Suspect screening of per-and polyfluoroalkyl substances in paper by selective and non-selective extraction with UHPLC-Q orbitrap MS. CHEMOSPHERE 2024; 363:142904. [PMID: 39033859 DOI: 10.1016/j.chemosphere.2024.142904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Non-targeted analysis and suspect screening of per- and polyfluoroalkyl substances (PFAS) in various matrices have gained traction with advancements in accurate mass analytical instruments. This study employed ultra-high performance liquid chromatography coupled to quadrupole orbitrap high-resolution mass spectrometry for PFAS suspect screening of paper grades used in the paper recycling chain. The samples were prepared using two extraction techniques; selective accelerated solvent extraction with weak anionic exchange solid-phase extraction and non-selective ultrasonic-assisted extraction. A suspect screening protocol was established to tentatively identify suspected PFAS against spectral databases using a systematic approach of peak filtering and study-specific thresholds for reporting, linked to a confidence level. The possible prevalence of previously unreported PFAS in several paper materials across the various collection sites in the paper recycling chain was inferred by the common detection of short-chain polyfluoroalkyl ketones and diketones in the paper recycling chain. The suspect screening tentatively identified 41 unique PFAS, with 3 common to both pre-treatment techniques. The detection of unique PFAS by the two sample pre-treatment techniques highlighted the significance of both selective and non-selective extraction in PFAS screening endeavours. Further, it showed the importance of understanding the acquisition mechanisms employed in mass spectrometry where data-dependent acquisition triggered fragmentation in certain identified compounds, and not in others. The tentatively identified PFAS indicated that there were several previously unreported PFAS in the paper recycling chain and that additional studies were required to investigate their abundance, possible persistence, bioaccumulation and toxicity, in relation to their functional groups and carbon chains.
Collapse
Affiliation(s)
- Nondumiso N Mofokeng
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein, Johannesburg, 2000, South Africa; Mpact Innovation, Research & Development, Devon Valley Road, Stellenbosch, 7600, South Africa.
| | - Lawrence M Madikizela
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 28 Pioneer Ave, Roodepoort, Johannesburg, 1709, South Africa
| | - Ineke Tiggelman
- Mpact Innovation, Research & Development, Devon Valley Road, Stellenbosch, 7600, South Africa
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom
| | - Luke Chimuka
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein, Johannesburg, 2000, South Africa
| |
Collapse
|