1
|
Feng L, Zhang M, Zhang S, Xue Y, Li F, Sun-Waterhouse D, Wang Y. Improving the stability of myofibrillar proteins undergoing hemoglobin-mediated oxidation by rosmarinic acid or chlorogenic acid: Insights into the underlying mechanisms. Food Chem 2025; 483:144259. [PMID: 40209361 DOI: 10.1016/j.foodchem.2025.144259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/29/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
In this study, rosmarinic acid (RA) and chlorogenic acid (CGA) were used to improve the stability of myofibrillar protein (MP) undergoing hemoglobin (Hb)-mediated oxidation. Hb-mediated oxidation caused changes in MP's secondary and tertiary structures. RA or CGA suppressed effectively Hb-induced MP oxidation, and maintained MP's spatial conformational stability through interacting with MP's amino acid side chains to form phenolic-protein complexes. Further investigations by multi-spectroscopic techniques, isothermal titration calorimetry, and molecular docking and dynamics simulation revealed the interaction of RA or CGA with Hb through binding to Hb's central hydrophobic cavity via one binding site. The RA/CGA-Hb binding was an enthalpy-driven spontaneous and exothermic process, involving hydrogen bonds and van der Waals forces as the main interactive forces. The Hb-CGA binding might be more stable than Hb-RA binding. This study provides a theoretical basis for the application of RA and CGA in improving meat products quality by regulating Hb-mediated protein oxidation.
Collapse
Affiliation(s)
- Lijun Feng
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Taian 271018, PR China
| | - Min Zhang
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Taian 271018, PR China
| | - Shuxian Zhang
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Taian 271018, PR China
| | - Yunna Xue
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Taian 271018, PR China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Taian 271018, PR China
| | - Dongxiao Sun-Waterhouse
- School of Chemical Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand.
| | - Yongli Wang
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Taian 271018, PR China.
| |
Collapse
|
2
|
Wang ZY, Wang Q, Li DY, Liu YX, Qin L, Jiang PF, Zhou DY. Effect of air frying on in vitro digestion and transport properties of scallop (Patinopecten yessoensis) adductor muscles: Insights from peptidomics analyses. Food Chem 2025; 481:144135. [PMID: 40179498 DOI: 10.1016/j.foodchem.2025.144135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/16/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
The fresh and air-fried scallop adductor muscles (SAM) were subjected to simulate gastrointestinal digestion. Peptidomics technology using LC-MS/MS determined 1920, 2288, 1870 peptides (tripeptides and above) in digestive products from fresh, 160 °C-, and 200 °C-heated groups, with the 160 °C-heated group having more tripeptides. By contrast, the main parent proteins such as myosin heavy chain, actin and paramyosin in 160 °C-heated group released more peptides. Moreover, the oxidative modification such as S-oxidation, carbonylation and deamidation caused by heat treatment was found in digestive peptides, and the oxidative level was positively correlated with air-fried temperature. The everted-rat-gut sacs experiment exhibited that the protein digestive products from 160 °C-heated group exhibited higher transport levels, manifested by higher transport kinetics parameters of peptides and amino acids transport rates. These findings suggested that the primary factor influencing the transport of SAM protein digestive products was their digestion degree rather than their oxidation degree.
Collapse
Affiliation(s)
- Zi-Ye Wang
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Qian Wang
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - De-Yang Li
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yu-Xin Liu
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lei Qin
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Peng-Fei Jiang
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Da-Yong Zhou
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Li H, Chen N, Shao Y, Wang C, Zhou Y, Li S, Zhu S. Effects of dietary protein-oxidized soybean meal and quercetin on gel properties, microstructure, molecular structure and proteomics of egg white in laying hens. Food Chem 2025; 479:143666. [PMID: 40081061 DOI: 10.1016/j.foodchem.2025.143666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/07/2025] [Accepted: 02/27/2025] [Indexed: 03/15/2025]
Abstract
This study investigated the effects of dietary protein-oxidized soybean meal (SBM) and quercetin on gel properties, microstructure, molecular structure and proteomics of egg white in laying hens. A total of 288 Hy-Line Gray laying hens (500 days) were assigned to three groups, basal diets, protein-oxidized SBM diet, and protein-oxidized SBM diet supplemented with 300 mg/kg quercetin. The results showed that dietary protein-oxidized SBM decreased egg albumen height, gel hardness, gumminess and chewiness, and free sulfhydryl levels, although differences were not significant (P > 0.05). Quercetin supplementation reversed above mentioned indicators (P < 0.05). Dietary protein-oxidized SBM significantly increased the protein secondary structure α-helix content, reduced β-turn content, and reduced foam capacity of egg white (P < 0.05), while dietary quercetin alleviated the corresponding index (P < 0.05). Quercetin improved the egg Haugh unit, potentially due to its ability to increase the levels of microfilament proteins.
Collapse
Affiliation(s)
- Hengzhi Li
- School of Biological and Food Engineering, Chuzhou University, Chuzhou, 239001, China; Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province/Engineering Research Center of Bio-process, Ministry of Education/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Na Chen
- School of Biological and Food Engineering, Chuzhou University, Chuzhou, 239001, China
| | - Yun Shao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunxiao Wang
- School of Biological and Food Engineering, Chuzhou University, Chuzhou, 239001, China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shugang Li
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province/Engineering Research Center of Bio-process, Ministry of Education/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Shuangjie Zhu
- School of Biological and Food Engineering, Chuzhou University, Chuzhou, 239001, China.
| |
Collapse
|
4
|
Li X, Li T, Zhang J, Ying X, Deng S, Xiao G, Benjakul S, Brennan C, Ma L. Oxidation of aquatic products from the inside out accelerates their deterioration: A case study of sea bass (Lateolabrax japonicus) during storage. Food Chem 2025; 478:143639. [PMID: 40056626 DOI: 10.1016/j.foodchem.2025.143639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/09/2025] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
Sea bass (Lateolabrax japonicus) is favored by consumers, but the oxidation of visceral lipids during refrigeration has not been studied. This research investigates the effect of visceral lipid oxidation on storage quality. The results show that visceral lipids oxidize first, leading to a 1.72, 2.36, and 2.04-fold increase in malondialdehyde, 4-hydroxy-2-nonenal, and 4-hydroxy-2-hexenal levels, respectively. The total free radicals, alkoxy radicals, and hydrogen radicals increased by 18.13 %, 18.17 %, and 9.87 %, respectively. Visceral lipid oxidation damages myofibrillar proteins, reducing sulfhydryl content by 18.11 %. The viscera also promote protein oxidation, particularly of actin. Volatile component and electronic nose analyses revealed significant odor deterioration due to lipid oxidation and protein degradation. Molecular docking confirms that 4-hydroxy-2-nonenal binds to 15 amino acids in β-actin. Therefore, spoilage occurs from the inside out, and viscera should be removed before freezing.
Collapse
Affiliation(s)
- Xinyang Li
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Taiyu Li
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Jixiang Zhang
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xiaoguo Ying
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China.
| | - Shanggui Deng
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Gengsheng Xiao
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering/Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Guangzhou, China; Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand
| | - Charles Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, Australia
| | - Lukai Ma
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering/Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Guangzhou, China.
| |
Collapse
|
5
|
Liu F, Delchier N, Bao Y, Xie C, Li Y, Liu X, Yu X, Li L, Jin M, Yan JK. Chemical Oxidation of B Vitamins in Food Systems: Mechanisms, Matrix Effects, and Preservation Strategies. Compr Rev Food Sci Food Saf 2025; 24:e70200. [PMID: 40396581 DOI: 10.1111/1541-4337.70200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/22/2025]
Abstract
B vitamins are essential micronutrients that play crucial roles in various biochemical reactions, yet their stability in food systems is significantly affected by oxidation during processing and storage. This comprehensive review examines the complex interactions between B vitamin oxidation and other food components, particularly focusing on the underlying effect of lipid oxidation, protein oxidation, and Maillard reactions on B vitamin stability. The review systematically analyzes the oxidation mechanisms of eight B vitamins and their unique susceptibilities to different oxidative conditions. Special attention is given to the food matrix effects, including how changes in the oxidation status of food systems and alterations in matrix properties affect B vitamins' stability. The interplay between B vitamins and other food components is discussed from both chemical and physical perspectives, providing insights into how these interactions affect vitamin retention and bioavailability. Recent advances in understanding these complex relationships are highlighted, along with emerging strategies for vitamin preservation in food systems. This review synthesizes current knowledge about B vitamin oxidation in foods while identifying critical knowledge gaps and future research directions. The findings presented here have important implications for food processing, fortification, and storage strategies aimed at optimizing B vitamin retention in food products.
Collapse
Affiliation(s)
- Fengyuan Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan, China
| | - Nicolas Delchier
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Chong Xie
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Yuting Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan, China
| | - Xiaozhen Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan, China
| | - Xiangying Yu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan, China
| | - Longqing Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan, China
| | - Mingyu Jin
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan, China
| | - Jing-Kun Yan
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan, China
| |
Collapse
|
6
|
Xu Y, Wang X, Mao Q, Zhang Q, Zhou Y, Huang G, Liu L, Yang Q, Zhang Y, Guo F, Deng C, Yu M, Ouyang M, Peng L, Wang J, Li W. Characterization of prepared soft-shelled turtle dishes of different pretreatment combined with irradiation based on flavor profiles using E-nose, E-tongue and HS-SPME-GC-MS. Food Chem X 2025; 27:102352. [PMID: 40206045 PMCID: PMC11981783 DOI: 10.1016/j.fochx.2025.102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 04/11/2025] Open
Abstract
The effects of different pretreatment combined with irradiation on the flavor profiles of prepared soft-shelled turtle dishes were explored by using electronic nose, electronic tongue and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). The results showed that electronic nose analysis indicated distinct odor profiles before and after irradiation, with PCA effectively differentiating them. The low-temperature pretreatment group had the smallest difference from the control (CK). After 180 days of storage, odor profiles of all samples converged, with low-temperature, 0.1 % rosemary, and 0.1 % TBHQ groups showing minimal differences from CK. Electronic tongue profiles showed no significant differences among treatments, with PCA unable to effectively distinguish most groups, except for the 0.1 % rosemary and 0.1 % sesamol groups. The results of HS-SPME-GC-MS analysis showed that the volatile compounds of the samples of each treatment were significantly different. The 6 kGy (kilogray) irradiation group, the low temperature pretreatment and the control group (CK) clustered into one category. After 180 d of storage at room temperature, only the low temperature pretreatment group and the control group (CK) were clustered into one category. The results of relative odor activity value (ROAV) showed that the key flavor compounds of prepared soft-shelled turtle dishes were heptanal, octanal, (E)-2-octenal, nonanal, (E,E)-2,4-nonadienal, decanal, (E)-2-decenal, (E,E)-2,4-decadienal, 2-undecanal, 1-octen-3-ol, and 2-pentylfuran. Aldehydes contents in the samples increased after irradiation, which was the main components leading to the off-odor of prepared soft-shelled turtle dishes after irradiation, and the key flavor compounds of the samples decreased after 180 d of storage at room temperature. In conclusion, low temperature or pretreatment of three antioxidants could maintain the flavor of prepared soft-shelled turtle dishes after irradiation, and low temperature had the best effect. This study could provide theoretical reference for the application of irradiation technology in the sterilization and preservation processing of prepared soft-shelled turtle dishes and its flavor control.
Collapse
Affiliation(s)
- Yuanfang Xu
- Hunan Institute of Nuclear Agriculture Sciences and Chinese Herbal Medicines, Changsha, Hunan 410125, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Xiaoyu Wang
- Agricultural Equipment Institute of Hunan/Hunan Intelligent Agriculture Engineering Technology Research Center/Hunan Branch Center of National Energy R&D Center for Non-Food Biomass, Changsha 410125, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Qingxiu Mao
- Hunan Province Grain and Oil Product Quality Monitoring Center, Changsha, Hunan 410008, China
| | - Qiling Zhang
- Hunan Institute of Nuclear Agriculture Sciences and Chinese Herbal Medicines, Changsha, Hunan 410125, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Yiji Zhou
- Hunan Institute of Nuclear Agriculture Sciences and Chinese Herbal Medicines, Changsha, Hunan 410125, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Gaoliu Huang
- Changsha Agricultural Product Quality Monitoring Center, Changsha, Hunan 410006, China
| | - Lu Liu
- Hunan Institute of Nuclear Agriculture Sciences and Chinese Herbal Medicines, Changsha, Hunan 410125, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Qing Yang
- Agricultural Equipment Institute of Hunan/Hunan Intelligent Agriculture Engineering Technology Research Center/Hunan Branch Center of National Energy R&D Center for Non-Food Biomass, Changsha 410125, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Yong Zhang
- Hunan Institute of Nuclear Agriculture Sciences and Chinese Herbal Medicines, Changsha, Hunan 410125, China
| | - Feng Guo
- Hunan Institute of Nuclear Agriculture Sciences and Chinese Herbal Medicines, Changsha, Hunan 410125, China
| | - Chao Deng
- Hunan Institute of Nuclear Agriculture Sciences and Chinese Herbal Medicines, Changsha, Hunan 410125, China
| | - Meijuan Yu
- Hunan Agricultural Products Processing Institute, Changsha, Hunan 410125, China
| | - Mengyun Ouyang
- Hunan Institute of Nuclear Agriculture Sciences and Chinese Herbal Medicines, Changsha, Hunan 410125, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Ling Peng
- Hunan Institute of Nuclear Agriculture Sciences and Chinese Herbal Medicines, Changsha, Hunan 410125, China
| | - Jianhui Wang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Wenge Li
- Hunan Institute of Nuclear Agriculture Sciences and Chinese Herbal Medicines, Changsha, Hunan 410125, China
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
7
|
Wang J, Wu N, Yao Y, Chen S, Xu L, Zhao Y, Tu Y. Protein oxidation and its effect on functional properties of livestock products during the processing and storage: A review. Food Chem X 2025; 27:102454. [PMID: 40290470 PMCID: PMC12022654 DOI: 10.1016/j.fochx.2025.102454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/01/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Protein oxidation is a complex chemical process that pervades the entirety of the food domain. It is governed by two primary mechanisms: the direct oxidation by active entities and the indirect oxidation by secondary oxidation byproducts like lipid oxidation, influenced by many factors. The oxidation of proteins in livestock products readily occurs post-processing and storage through techniques such as freezing, cooking, ultrasonication, among others, leading to protein carbonylation and subsequent alterations in structure. Consequently, the purpose of this manuscript is to scrutinize the impacts of conventional processing and storage methodologies on protein oxidation in livestock products, delineating potential mechanisms, action sites, and influential factors implicated in this progression. Additionally, we delve into the ramifications of protein oxidation on the processing attributes of livestock products, while venturing into forthcoming trends and obstacles to set a groundwork for ensuring and regulating the caliber of these commodities.
Collapse
Affiliation(s)
- Jiamei Wang
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lilan Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
8
|
Hülsebusch L, Heyn TR, Amft J, Schwarz K. Extrusion of plant proteins: A review of lipid and protein oxidation and their impact on functional properties. Food Chem 2025; 470:142607. [PMID: 39740432 DOI: 10.1016/j.foodchem.2024.142607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/26/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
Extrusion processing can improve the functional and nutritional value of plant proteins, making them a sustainable source for various applications. During both low- and high-moisture extrusion, raw materials are subjected to harsh process conditions, leading to lipid and protein oxidation. In general, oxidation products are associated with adverse effects on product properties and human health. The oxidation rates are influenced by a number of factors, including temperature, water, oil content, and protein source, with lipid-protein interactions playing a significant role in oxidation dynamics and measurement accuracy. Higher extrusion temperatures and water content promote oxidation, yet are also necessary for fiber formation. Mild protein oxidation can improve functional properties and digestibility, while extensive oxidation tends to reduce both. Therefore, adjusting extrusion parameters is critical for controlling oxidation. In addition, natural antioxidants may reduce oxidation during extrusion, but their impact on functional properties requires further investigation.
Collapse
Affiliation(s)
- Loana Hülsebusch
- Kiel University, Institute of Human Nutrition and Food Science, Division of Food Technology, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany.
| | - Timon R Heyn
- Kiel University, Institute of Human Nutrition and Food Science, Division of Food Technology, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany.
| | - Jonas Amft
- Kiel University, Institute of Human Nutrition and Food Science, Division of Food Technology, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany.
| | - Karin Schwarz
- Kiel University, Institute of Human Nutrition and Food Science, Division of Food Technology, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany.
| |
Collapse
|
9
|
Zhu L, Fan Z, Li W, Shan Y. Goat Milk Exhibits a Higher Degree of Protein Oxidation and Aggregation than Cow Milk During Cold Storage. Foods 2025; 14:852. [PMID: 40077555 PMCID: PMC11898412 DOI: 10.3390/foods14050852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Due to their markedly distinct protein compositions and structures, goat milk and cow milk display substantially different characteristics. In this study, the quality and composition of goat milk and cow milk were studied after being refrigerated at 4 °C for 7 days, with a particular focus on protein oxidation and aggregation states. The results revealed that alongside increases in acidity, microbial colony count, and hydrolysis, there was a significant change in the protein aggregation state beginning on the second day. This change was characterized by increased turbidity, an elevated centrifugal sedimentation rate, and a right-shifted particle size distribution. After seven days of refrigeration, the centrifugal sedimentation rate of goat milk increased from 0.53% to 0.97%, whereas that of cow milk rose from 0.41% to 0.58%. The degree of aggregation was significantly greater in goat milk compared to cow milk. Additionally, both protein and lipids exhibited substantial oxidation, with the degree of oxidation more pronounced in goat milk than in cow milk. The malondialdehyde (MDA) content increased from 0.047 μg/mL to 0.241 μg/mL in goat milk and from 0.058 μg/mL to 0.178 μg/mL in cow milk. The results suggest that goat milk was more prone to oxidation, which further reduced its stability. Therefore, in the storage and transportation of dairy products before processing, it is essential not only to monitor sanitary conditions but also to effectively control protein oxidation to enhance the quality of milk processing.
Collapse
Affiliation(s)
- Lirong Zhu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Zixuan Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
10
|
Bayati M, Poojary MM. Polyphenol autoxidation and prooxidative activity induce protein oxidation and protein-polyphenol adduct formation in model systems. Food Chem 2025; 466:142208. [PMID: 39615353 DOI: 10.1016/j.foodchem.2024.142208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/09/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024]
Abstract
Polyphenols are well-known for their antioxidant properties, but their prooxidative activity remain less understood. This study quantitatively examined the formation of hydrogen peroxide (H2O2) during the autooxidation of nine different polyphenols in model systems, investigating how it impacts protein oxidation and protein-polyphenol covalent adduct formation. Polyphenols (4 mM) generated H2O2 in the range of 0.2-242 μM, depending on type of polyphenol, incubation time, temperature, and pH, but no clear relationship between polyphenol structure and H2O2 production was observed. The presence of free amino acids and proteins (bovine serum albumin and β-lactoglobulin) inhibited H2O2 formation, with Cys completely scavenging H2O2. Met was highly susceptible to oxidation with a 25-75% loss, forming methionine sulfoxide through a two-electron oxidation pathway. Trp and Tyr were oxidized to produce dioxindolyl-ʟ-alanine, kynurenine, 3,4-dihydroxyphenylalanine, N'-formylkynurenine, and 5-hydroxytryptophan in the nmol/mol-mmol/mol amino acid range. Furthermore, autoxidation of polyphenols resulted in >177 distinct amino acid/protein-polyphenol adducts as identified using LC-Orbitrap-MS/MS analysis.
Collapse
Affiliation(s)
- Mohammad Bayati
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Mahesha M Poojary
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.
| |
Collapse
|
11
|
Lee SJ, Im J, Marasinghe SD, Jo E, Bandara MS, Lee Y, Lee J, Park GH, Oh C. Antioxidant and Anti-Inflammatory Activities of Cutlassfish Head Peptone in RAW 264.7 Macrophages. Antioxidants (Basel) 2025; 14:286. [PMID: 40227241 PMCID: PMC11939652 DOI: 10.3390/antiox14030286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
The rapid growth of the fisheries industry has resulted in numerous by-products, usually called waste, causing environmental and economic challenges. Recent advances in valorization techniques have highlighted the potential of these by-products as sources of bioactive compounds. This study aimed to investigate the antioxidant and anti-inflammatory activities of cutlassfish (Trichiurus lepturus) head peptone (CP) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. CP exhibited significant antioxidant activity, reducing ABTS and DPPH radical scavenging activity by up to 79.66% and 64.69%, respectively, with a maximum ferric-reducing antioxidant power (FRAP) value of 224.54 μM. CP enhanced macrophage proliferation (33.3%) and significantly mitigated LPS-induced oxidative and inflammatory responses, reducing nitric oxide (NO) production (60%) and reactive oxygen species levels (49.14%). CP suppressed the expression of inflammatory mediators, including inducible nitric oxide synthase (iNOS) and cyclooxygen-ase-2, and selectively inhibited the pro-inflammatory cytokines interleukin (IL)-1β and IL-6. Western blot analysis revealed that CP inhibited the phosphorylation of mitogen-activated protein kinases, including ERK, JNK, and p38, highlighting its role in modulating upstream inflammatory signaling pathways. CP exhibited significant antioxidant effects, particularly in scavenging ABTS and DPPH radicals, as well as reducing oxidative stress markers and inflammatory responses in LPS-stimulated macrophages. These findings suggest its potential not only as a therapeutic agent for conditions related to chronic inflammation, such as cardiovascular diseases and arthritis, but also as a functional ingredient in foods and nutraceuticals aimed at alleviating inflammation-related disorders.
Collapse
Affiliation(s)
- Su-Jin Lee
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-J.L.); (J.I.); (S.D.M.); (E.J.); (M.S.B.); (Y.L.); (J.L.)
| | - Jeonghyeon Im
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-J.L.); (J.I.); (S.D.M.); (E.J.); (M.S.B.); (Y.L.); (J.L.)
| | - Svini Dileepa Marasinghe
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-J.L.); (J.I.); (S.D.M.); (E.J.); (M.S.B.); (Y.L.); (J.L.)
- University of Science and Technology, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Eunyoung Jo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-J.L.); (J.I.); (S.D.M.); (E.J.); (M.S.B.); (Y.L.); (J.L.)
| | - Minthari Sakethanika Bandara
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-J.L.); (J.I.); (S.D.M.); (E.J.); (M.S.B.); (Y.L.); (J.L.)
- University of Science and Technology, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Youngdeuk Lee
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-J.L.); (J.I.); (S.D.M.); (E.J.); (M.S.B.); (Y.L.); (J.L.)
| | - Jaewon Lee
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-J.L.); (J.I.); (S.D.M.); (E.J.); (M.S.B.); (Y.L.); (J.L.)
- University of Science and Technology, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Gun-Hoo Park
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-J.L.); (J.I.); (S.D.M.); (E.J.); (M.S.B.); (Y.L.); (J.L.)
- University of Science and Technology, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Chulhong Oh
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-J.L.); (J.I.); (S.D.M.); (E.J.); (M.S.B.); (Y.L.); (J.L.)
- University of Science and Technology, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
12
|
León Madrazo A, Segura Campos MR. Antioxidant potential of peptides derived from chia seeds (Salvia hispanica L.) as natural preservatives. Food Chem 2025; 465:141968. [PMID: 39541687 DOI: 10.1016/j.foodchem.2024.141968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The challenge of preserving food quality without relying on harmful antioxidants requires the exploration of natural alternatives, such as chia-derived peptides (YACLKVK, KLKKNL, KLLKKYL, and KKLLKI). The antioxidant properties and stability to processing were evaluated using DPPH and ABTS, iron-reducing, ORAC, and copper chelating assays. The effects of autoclaving, heat treatment with glucose, and ultrasound on the antioxidant activity of the top-performing peptide were examined. YACLKVK displayed the highest antioxidant response with 87.25 ± 2.47 %, 93.65 ± 0.79 %, 0.418 ± 0.018 abs, 44.06 ± 0.78 μM TE/mL, and 86.49 ± 0.12 % in the DPPH, ABTS, iron-reducing capacity, ORAC, and copper chelating assays at 800 μg/mL (DPPH) and 1000 μg/mL, respectively. Autoclaving, heat, and ultrasound treatments reduced YACLKVK's DPPH scavenging to 63.09 ± 0.44 % and 74.15 ± 0.27 % and its Cu chelating capacity to 58.98 ± 1.28 %. YACLKVK retained over 50 % of its antioxidant capacity post-processing. These findings suggest its application as a potent natural antioxidant in food systems, particularly in processed foods where oxidation affects shelf life and quality. Incorporating YACLKVK could enhance food preservation, aligning with consumer preferences for natural-origin ingredients. Studies on commercial scalability, safety, and regulatory compliance will be essential for its widespread adoption in the food industry.
Collapse
Affiliation(s)
- Anaí León Madrazo
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Tablaje Catastral 13615, Col. Chuburná de Hidalgo Inn, 97203 Mérida, Yucatán, Mexico
| | - Maira Rubi Segura Campos
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Tablaje Catastral 13615, Col. Chuburná de Hidalgo Inn, 97203 Mérida, Yucatán, Mexico.
| |
Collapse
|
13
|
Hu X, Wang H, Hu Y, Wen P, Wu X, Tu Z. Modulating allergenicity of prawn tropomyosin (penaeus chinensis) via pulsed electric field-induced conformational changes. Food Chem 2025; 463:141376. [PMID: 39321652 DOI: 10.1016/j.foodchem.2024.141376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The effect of electric field intensities (EFIs, 5-20 kV/cm) and treatment times (0.5-2 h) on allergenicity and spatial conformation of prawn tropomyosin was evaluated. The results demonstrated that the IgG and IgE binding capacity of tropomyosin maximally increased by 24.34 % and 29.16 % respectively, followed by a subsequent decrease after 20 kV/cm treatment for 1 h. Interestingly, 5-10 kV/cm treatments significantly decreased the α-helix content (P < 0.05) and fluorescence intensity, while 20 kV/cm treatment promoted extensive spiralization, resulting in a tightly packed structure. The increased flexibility further exposed the hydrolysis sites and strengthened the gastrointestinal digestibility of tropomyosin. Additionally, molecular dynamic simulation indicated that extended EFIs increased structural flexibility and depolymerized the tropomyosin dimers through destroying intermolecular hydrogen bonds (formed within arginine and glutamate), which allowed tropomyosin to be easily recognized by IgG/IgE. Whereas, decrease of solvent-accessibility surface area (SASA), hydrophobic surface area induced conformation folded and caused epitopes masked.
Collapse
Affiliation(s)
- Xiangfei Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yueming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Chongqing Research Institute of Nanchang University, Chongqing 402660, China
| | - Pingwei Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Chongqing Research Institute of Nanchang University, Chongqing 402660, China
| | - Xiongchen Wu
- Jiangxi Agricultural Development Group Co., Ltd, Nanchang, Jiangxi, 330038, China.
| | - Zongcai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; National Research and Development Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
14
|
Zhang H, Hua S, Liu M, Chuang R, Gao X, Li H, Xia N, Xiao C. Citric Acid Improves Egg White Protein Foaming Characteristics and Meringue 3D Printing Performance. Foods 2025; 14:198. [PMID: 39856865 PMCID: PMC11765449 DOI: 10.3390/foods14020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Meringue has limited the use of meringue for personalization because of its thermally unstable system. Citric acid (CA) enhancement of egg white protein (EWP) foaming properties is proposed for the preparation of 3D-printed meringues. The results showed that CA increased the viscosity, exposure of hydrophobic groups (79.8% increase), and free sulfhydryl content (from 5 µmol/g to 34.8 µmol/g) of the EWP, thereby increasing the foaminess (from 50% to 178.2%). CA treatment increased the rates of adsorption, stretching, and orientation of EWP at the air-water interface to form multiple layers, resulting in a delay in foam thinning. The secondary structure of CA-treated EWP remained intact, and the exposure of amino acid residues in the tertiary structure increased with the expansion of the hydrophobic region. CA-treated EWP-prepared protein creams had a suitable viscosity (from 233.4 Pa·s to 1007 Pa·s at 0.1 s-1), shear thinning, structural restorability, and elasticity, which ensured good fidelity of their printed samples. Experiments involving 3D printing of CA-treated EWP showed that CA could significantly enhance the 3D printing fidelity of EWP. Our study could provide new ideas for the development of customizable 3D-printed foam food products.
Collapse
Affiliation(s)
- Huajiang Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (S.H.); (M.L.); (R.C.); (H.L.); (N.X.)
| | - Shihui Hua
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (S.H.); (M.L.); (R.C.); (H.L.); (N.X.)
| | - Mengzhuo Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (S.H.); (M.L.); (R.C.); (H.L.); (N.X.)
| | - Rui Chuang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (S.H.); (M.L.); (R.C.); (H.L.); (N.X.)
| | - Xin Gao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (S.H.); (M.L.); (R.C.); (H.L.); (N.X.)
| | - Hanyu Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (S.H.); (M.L.); (R.C.); (H.L.); (N.X.)
| | - Ning Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (S.H.); (M.L.); (R.C.); (H.L.); (N.X.)
| | - Chaogeng Xiao
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| |
Collapse
|
15
|
Oliveira TS, Almeida RCDC, Silva VDL, Ribeiro CVDM, Bezerra LR, Ferreira Ribeiro CD. Enhancing Beef Hamburger Quality: A Comprehensive Review of Quality Parameters, Preservatives, and Nanoencapsulation Technologies of Essential and Edible Oils. Foods 2025; 14:147. [PMID: 39856814 PMCID: PMC11764808 DOI: 10.3390/foods14020147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Essential and edible oils have applications in reducing oxidative processes and inhibiting the growth of microorganisms in meats and their derivatives, providing a natural alternative to synthetic preservatives. This preservative action meets the demand for clean labels and safe products, aiming to replace synthetic additives that pose potential health risks. Advances and limitations in applying essential and edible oils in meat preservation, highlighting their preservative properties or ability to improve nutritional profiles, are explored in this study. Despite the benefits, the direct application of oils faces limitations such as low solubility and sensory impact, which can be overcome by nanotechnology, including association with biopolymeric matrices, focusing on the protection of bioactive compounds and enhancing the functionality of natural oils in food systems. This approach is essential for innovation in food preservation, promoting safety and sustainability in the meat sector, and following consumer expectations and food safety guidelines. Studies suggest that by combining the functional benefits of essential and edible oils associated with nanotechnology, there can be significant contributions to innovation and sustainability in the meat sector, promoting natural preservation and meeting market regulations and expectations.
Collapse
Affiliation(s)
- Tainara Santos Oliveira
- Nutrition School, Federal University of Bahia, Rua Basilio da Gama s/n, Canela, Salvador 40110-907, BA, Brazil; (T.S.O.); (R.C.d.C.A.)
- Graduate Program in Food Science, College of Pharmacy, Federal University of Bahia, Rua Barão de Jeremoabo, 147, Ondina, Salvador 40170-115, BA, Brazil; (V.d.L.S.); (C.V.D.M.R.)
| | | | - Vanessa de Lima Silva
- Graduate Program in Food Science, College of Pharmacy, Federal University of Bahia, Rua Barão de Jeremoabo, 147, Ondina, Salvador 40170-115, BA, Brazil; (V.d.L.S.); (C.V.D.M.R.)
| | - Cláudio Vaz Di Mambro Ribeiro
- Graduate Program in Food Science, College of Pharmacy, Federal University of Bahia, Rua Barão de Jeremoabo, 147, Ondina, Salvador 40170-115, BA, Brazil; (V.d.L.S.); (C.V.D.M.R.)
| | - Leilson Rocha Bezerra
- Department of Animal Science, Federal University of Campina Grande, Patos 58708-110, PB, Brazil;
| | - Camila Duarte Ferreira Ribeiro
- Nutrition School, Federal University of Bahia, Rua Basilio da Gama s/n, Canela, Salvador 40110-907, BA, Brazil; (T.S.O.); (R.C.d.C.A.)
- Graduate Program in Food Science, College of Pharmacy, Federal University of Bahia, Rua Barão de Jeremoabo, 147, Ondina, Salvador 40170-115, BA, Brazil; (V.d.L.S.); (C.V.D.M.R.)
| |
Collapse
|
16
|
Günal-Köroğlu D, Yılmaz H, Gultekin Subasi B, Capanoglu E. Protein oxidation: The effect of different preservation methods or phenolic additives during chilled and frozen storage of meat/meat products. Food Res Int 2025; 200:115378. [PMID: 39779159 DOI: 10.1016/j.foodres.2024.115378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/04/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
Lipid and protein oxidation have significant effects on the shelf-life and nutritional value of meat and meat products. While lipid oxidation has been extensively studied, it has been recognized that proteins are also susceptible to oxidation. However, the precise mechanisms of oxygen-induced amino acid and protein modifications in the food matrix remain unclear. This review comprehensively explores the impact of various preservation techniques, including high hydrostatic pressure (HHP), irradiation (IR), and modified atmosphere packaging (MAP), on protein oxidation during chilled or frozen storage of meat products. While these techniques have shown promising results in extending shelf-life, their effects on protein oxidation are dose-dependent and must be carefully controlled to maintain product quality. Preservation techniques involving the use of phenolic additives have demonstrated synergistic effects in mitigating protein oxidation during storage. Notably, natural phenolic additives have shown comparable efficacy compared to artificial antioxidants. Additionally, incorporating phenolic additives into bio-edible films has shown promise in combating protein oxidation.
Collapse
Affiliation(s)
- Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Türkiye.
| | - Hilal Yılmaz
- Department of Biotechnology, Faculty of Science, Bartın University, Bartın, Türkiye.
| | - Busra Gultekin Subasi
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Türkiye.
| |
Collapse
|
17
|
Ying X, Li X, Deng S, Zhang B, Xiao G, Xu Y, Brennan C, Benjakul S, Ma L. How lipids, as important endogenous nutrient components, affect the quality of aquatic products: An overview of lipid peroxidation and the interaction with proteins. Compr Rev Food Sci Food Saf 2025; 24:e70096. [PMID: 39812142 DOI: 10.1111/1541-4337.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
As the global population continues to grow and the pressure on livestock and poultry supply increases, the oceans have become an increasingly important source of quality food for future generations. However, nutrient-rich aquatic product is susceptible to lipid oxidation during storage and transport, reducing its nutritional value and increasing safety risks. Therefore, identifying the specific effects of lipid oxidation on aquatic products has become particularly critical. At the same time, some lipid oxidation products have been found to interact with aquatic product proteins in various ways, posing a safety risk. This paper provides an in-depth exploration of the pathways, specific effects, and hazards of lipid oxidation in aquatic products, with a particular focus on the interaction of lipid oxidation products with proteins. Additionally, it discusses the impact of non-thermal treatment techniques on lipids in aquatic products and examines the application of natural antioxidants in aquatic products. Future research endeavors should delve into the interactions between lipids and proteins in these products and their specific effects to mitigate the impact of non-thermal treatment techniques on lipids, thereby enhancing the safety of aquatic products and ensuring food safety for future generations.
Collapse
Affiliation(s)
- Xiaoguo Ying
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xinyang Li
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Shanggui Deng
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Bin Zhang
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Gengsheng Xiao
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering/Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Yujuan Xu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Charles Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, Australia
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand
| | - Lukai Ma
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering/Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
18
|
Bailey AO, Durbin KR, Robey MT, Palmer LK, Russell WK. Filling the gaps in peptide maps with a platform assay for top-down characterization of purified protein samples. Proteomics 2024; 24:e2400036. [PMID: 39004851 DOI: 10.1002/pmic.202400036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Liquid chromatography-mass spectrometry (LC-MS) intact mass analysis and LC-MS/MS peptide mapping are decisional assays for developing biological drugs and other commercial protein products. Certain PTM types, such as truncation and oxidation, increase the difficulty of precise proteoform characterization owing to inherent limitations in peptide and intact protein analyses. Top-down MS (TDMS) can resolve this ambiguity via fragmentation of specific proteoforms. We leveraged the strengths of flow-programmed (fp) denaturing online buffer exchange (dOBE) chromatography, including robust automation, relatively high ESI sensitivity, and long MS/MS window time, to support a TDMS platform for industrial protein characterization. We tested data-dependent (DDA) and targeted strategies using 14 different MS/MS scan types featuring combinations of collisional- and electron-based fragmentation as well as proton transfer charge reduction. This large, focused dataset was processed using a new software platform, named TDAcquireX, that improves proteoform characterization through TDMS data aggregation. A DDA-based workflow provided objective identification of αLac truncation proteoforms with a two-termini clipping search. A targeted TDMS workflow facilitated the characterization of αLac oxidation positional isomers. This strategy relied on using sliding window-based fragment ion deconvolution to generate composite proteoform spectral match (cPrSM) results amenable to fragment noise filtering, which is a fundamental enhancement relevant to TDMS applications generally.
Collapse
Affiliation(s)
- Aaron O Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | - Lee K Palmer
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
19
|
Guo D, Chen C, Pan Q, Sun M, Wang H, Yi Y, Xu W. Exploration of binding mechanism of whey protein isolate and proanthocyanidin: Spectroscopic analysis and molecular dynamics simulation. Food Res Int 2024; 196:115054. [PMID: 39614490 DOI: 10.1016/j.foodres.2024.115054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 12/01/2024]
Abstract
The non-covalent whey protein isolate-proanthocyanidin (WPI-PC) complex was constructed and possessed superior anti-muscle attenuation activity in our previous study. While the non-covalent binding mechanism of WPI and PC remains unclear. The interaction mechanism of whey protein isolate (WPI) and proanthocyanidin (PC) was explored using multispectral analysis and molecular dynamics (MD) simulation. The results indicated that the non-covalent binding of PC and WPI led to fluorescence quenching, causing the conformational changes and microenvironment changes of WPI. The surface hydrophobicity of WPI-PC complex was reduced by 42.36 % compared with WPI (P < 0.05). The hydrogen bond and hydrophobic interaction were involved in the interaction between WPI and PC, and hydrogen bond played a dominant role. The WPI-PC complex was irregular and showed a smaller sheet structure. The PC and WPI remained a stable binding mainly through 15 key residues, especially the energy contribution of LEU 39. Additionally, the flexibility and fluctuation of individual amino acid residues in WPI were altered after binding to PC. It is hoped that this study could provide theoretical basis for the application of WPI and PC in functional foods.
Collapse
Affiliation(s)
- Danjun Guo
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China
| | - Cheng Chen
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China
| | - Qingmei Pan
- Hongan County Public Inspection and Testing Center, Hongan 438400, China
| | - Meng Sun
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China
| | - Hongxun Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Yi
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China
| | - Wei Xu
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China.
| |
Collapse
|
20
|
Mattioli S, Angelucci E, Castellini C, Cartoni Mancinelli A, Chenggang W, Di Federico F, Chiattelli D, Dal Bosco A. Effect of genotype and outdoor enrichment on productive performance and meat quality of slow growing chickens. Poult Sci 2024; 103:104131. [PMID: 39111239 PMCID: PMC11350495 DOI: 10.1016/j.psj.2024.104131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 09/22/2024] Open
Abstract
The optimization of animal welfare, meat quality, environmental impact, and economic sustainability in alternative poultry farming can be achieved by modulating several productive factors and improving the synergy between the chicken genotype and the outdoor environment. The objective of the study was to characterize 4 slow-growing chicken genotypes reared in free range conditions. Eight hundred chickens (SGs; 25 chickens/replicates/genotype/enrichment) belonging to the following genotypes, Red JA57 (RJ), Naked Neck (NN), Lohmann Dual meat-type (LD), and an Italian crossbreed (Robusta Maculata x Sasso, CB). were utilised and slaughtered at 81 d: The grazing areas were alternatively provided with enrichment constituted by strips of sorghum plants (ENR) or only grass (NO ENR). Productive performance (daily weight gain, daily feed intake, feed conversion ratio, live weight) were recorded weekly. Behaviour observations (walking and grass pecking), carcass and meat quality of breast and drumstick were also assessed in 15 chickens/replicate/genotypes/enrichment. Results demonstrated that both LD and CB showed the highest walking activity, but the different strains were differently capable of using the foraging resources (eating grass). The better productive performance was recorded in RJ followed by NN, CB and LD. In LD and CB, the different walking activities also affected the physico-chemical profiles (lower pHu, WHC, and lipids) of the breast and drumstick. The oxidative status was worse in CB than in the other groups (lower tocols, higher carbonyls), in both meat cuts. Fatty acid profile was also related to the genetic strain: a higher amount of n-3 polyunsaturated fatty acids was recorded both in the breast and drumstick of RJ and NN. The Healthy Fatty Index resulted excellent in all the chicken genotypes. In conclusion, the environment/animal interaction resulted as an important factor affecting the adaptability of genotypes to an extensive rearing system. All four genotypes, to different extents, showed good adaptability and production performance, with the exception of LD and CB, which were too light for the commercial supply chain requirements.
Collapse
Affiliation(s)
- Simona Mattioli
- Department of Agricultural, Environmental and Food Science, University of Perugia, Perugia 06124, Italy.
| | - Elisa Angelucci
- Department of Agricultural, Environmental and Food Science, University of Perugia, Perugia 06124, Italy
| | - Cesare Castellini
- Department of Agricultural, Environmental and Food Science, University of Perugia, Perugia 06124, Italy
| | - Alice Cartoni Mancinelli
- Department of Agricultural, Environmental and Food Science, University of Perugia, Perugia 06124, Italy
| | - Wei Chenggang
- Department of Agricultural, Environmental and Food Science, University of Perugia, Perugia 06124, Italy
| | - Francesca Di Federico
- Department of Agricultural, Environmental and Food Science, University of Perugia, Perugia 06124, Italy
| | - Diletta Chiattelli
- Department of Agricultural, Environmental and Food Science, University of Perugia, Perugia 06124, Italy
| | - Alessandro Dal Bosco
- Department of Agricultural, Environmental and Food Science, University of Perugia, Perugia 06124, Italy
| |
Collapse
|
21
|
Wang Z, Wang P, Zhou Y, Zhuang S. Quercetin Supplementation Improves Intestinal Digestive and Absorptive Functions and Microbiota in Rats Fed Protein-Oxidized Soybean Meal: Transcriptomics and Microbiomics Insights. Animals (Basel) 2024; 14:2326. [PMID: 39199859 PMCID: PMC11350852 DOI: 10.3390/ani14162326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/01/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
To clarify the nutritional mechanisms of quercetin mitigation in the digestive and absorptive functions in rats fed protein-oxidized soybean meal, 48 three-week-old male SD rats were randomly allocated into a 2 × 2 factorial design with two soybean meal types (fresh soybean meal or protein-oxidized soybean meal) and two quercetin levels (0 or 400 mg/kg) for a 28-day feeding trial. The protein-oxidized soybean meal treatment decreased (p < 0.05) the relative weights of the pancreas, stomach, and cecum, duodenal villus height, pancreatic and jejunal lipase activities, apparent ileal digestibility of amino acids, and apparent total tract digestibility of dry matter, crude protein, and ether extract. The supplementation of quercetin in the protein-oxidized soybean meal diet reversed (p < 0.05) the decreases in the duodenal length, ileal villus height, lipase activity, apparent ileal digestibility of amino acids, and apparent total tract digestibility of dry matter, crude protein, and ether extract. Transcriptomics revealed that the "alanine transport" and "lipid digestion and absorption" pathways were downregulated by the protein-oxidized soybean meal compared with fresh soybean meal, while the "basic amino acid transmembrane transporter activity" and "lipid digestion and absorption" pathways were upregulated by the quercetin supplementation. Microbiomics revealed that the protein-oxidized soybean meal increased the protein-degrading and inflammation-triggering bacteria in the cecum, while the relative abundances of beneficial bacteria were elevated by the quercetin supplementation.
Collapse
Affiliation(s)
| | | | | | - Su Zhuang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China; (Z.W.); (P.W.); (Y.Z.)
| |
Collapse
|
22
|
Behringer KI, Kapeluch J, Fischer A, Hellwig M. Metabolization of Free Oxidized Aromatic Amino Acids by Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5766-5776. [PMID: 38447044 DOI: 10.1021/acs.jafc.3c09007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The aromatic amino acids tryptophan, phenylalanine, and tyrosine are targets for oxidation during food processing. We investigated whether S. cerevisiae can use nonproteinogenic aromatic amino acids as substrates for degradation via the Ehrlich pathway. The metabolic fate of seven amino acids (p-, o-, m-tyrosine, 3,4-dihydroxyphenylalanine (DOPA), 3-nitrotyrosine, 3-chlorotyrosine, and dityrosine) in the presence of S. cerevisiae was assessed. All investigated amino acids except dityrosine were metabolized by yeast. The amino acids 3-nitrotyrosine and o-tyrosine were removed from the medium as fast as p-tyrosine, and m-tyrosine, 3-chlorotyrosine, and DOPA more slowly. In summary, 11 metabolites were identified by high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS). DOPA, 3-nitrotyrosine, and p-tyrosine were metabolized predominantly to the Ehrlich alcohols, whereas o-tyrosine and m-tyrosine were metabolized predominantly to α-hydroxy acids. Our results indicate that nonproteinogenic aromatic amino acids can be taken up and transaminated by S. cerevisiae quite effectively but that decarboxylation and reduction to Ehrlich alcohols as the final metabolites is hampered by hydroxyl groups in the o- or m-positions of the phenyl ring. The data on amino acid metabolism were substantiated by the analysis of five commercial beer samples, which revealed the presence of hydroxytyrosol (ca. 0.01-0.1 mg/L) in beer for the first time.
Collapse
Affiliation(s)
- Kim Ina Behringer
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany
| | - Julia Kapeluch
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany
| | - Annik Fischer
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany
| | - Michael Hellwig
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany
- Chair of Special Food Chemistry, Technische Universität Dresden, Bergstraße 66, 01062 Dresden, Germany
| |
Collapse
|
23
|
Gao S, Zhuang S, Zhang L, Lametsch R, Tan Y, Li B, Hong H, Luo Y. Proteomic evidence of protein degradation and oxidation in brined bighead carp fillets during long-term frozen storage. Food Chem 2024; 433:137312. [PMID: 37672946 DOI: 10.1016/j.foodchem.2023.137312] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/16/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
Protein degradation and oxidation are two major alterations during the storage of processed bighead carp fillets. This study conducted a comparative analysis of degraded and oxidized products as well as oxidation sites in fresh, frozen and brined frozen bighead carp fillets. Frozen storage played a dominant role in protein degradation and oxidation, and brining promoted these changes. In brined frozen samples, the decreased SDS-PAGE band intensities for tropomyosin, troponin, and myosin light chain were mainly due to their degradation. Myosin heavy chain fast skeletal muscle was the most oxidized and degraded protein during storage, with modifications such as monooxidation, protein-lipid peroxidation adducts, and α-aminoadipic semialdehydes formation. Amino acids in the tail portion of myosin were prone to oxidation than the head portions. Our results provided comprehensive insights into protein degradation and oxidation in bighead carp during storage, helping to assess the specific fate of oxidative products in future dietary investigations.
Collapse
Affiliation(s)
- Song Gao
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shuai Zhuang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Longteng Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - René Lametsch
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bo Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
24
|
Masamran S, Supawong S. Gamma radiation vs high pressure pretreatment on physicochemical characteristics of rice bran hydrolysate. Heliyon 2024; 10:e24117. [PMID: 38293412 PMCID: PMC10825425 DOI: 10.1016/j.heliyon.2024.e24117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
This study investigated the effect of using gamma radiation and high-pressure processing as pretreatment, to consider the structural and amino acid composition changes in rice bran hydrolysate (RBH). The extraction yield and degree of hydrolysis of the irradiated sample were greater than those of the pressurized and control samples, which radiation at 10 kGy gave 31 % yield. Protein content of the control was the highest at 36.1 %, with 32.4 % in pressurized sample at 500 MPa. Control had the highest concentration of total and branched-chain amino acids, with a value of 25,834 mg/100g. Before and after extraction, the microstructure changed visibly and protein agglomeration can be significantly induced by applying a high-pressure. Therefore, this study showed the potential of using both pretreatment methods prior to enzymolysis extraction, with radiation producing more extract. High-pressure produced more protein content, but neither method produced any difference in amino acid content.
Collapse
Affiliation(s)
- Sikarin Masamran
- Department of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Klong Nueng, Klong Luang, Pathumthani 12121, Thailand
| | - Supattra Supawong
- Department of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Klong Nueng, Klong Luang, Pathumthani 12121, Thailand
| |
Collapse
|
25
|
Wang W, Jia X, Guo C, Pan J, Dong X, Li S. Protein carbonylation and structural changes in porcine myofibrillar protein exposed to metal ion-H 2O 2-ascorbate and linoleic acid-lipoxidase oxidizing systems. Food Res Int 2023; 173:113420. [PMID: 37803758 DOI: 10.1016/j.foodres.2023.113420] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 10/08/2023]
Abstract
The present study aimed to compare two oxidizing systems commonly present in meat for their influence on protein oxidation patterns, with emphasis on the specific lysine-derived markers for protein carbonylation (α-aminoadipic semialdehyde, AAS; lysinonorlucine, LNL) and their relationships with the common markers for protein oxidation. For this purpose, pork myofibrillar proteins (MFP, 5 mg/mL) were suspended in 0.6 M NaCl (pH 7.5) and incubated at 4 ℃ for 24 h with two oxidizing systems: (1) a metal-catalyzed oxidizing system (MOS: 10 µM FeCl3, 100 µM ascorbic acid, and 0-10 mmol/L H2O2), (2) a linoleic acid - lipoxidase oxidizing system (LOS: 7500 units of lipoxidase/mL, and 0-10 mM linoleic acid). Results showed that the amounts of AAS and LNL in both MOS- and LOS-oxidized MFP was proportional to the oxidant concentrations (H2O2 or linoleic acid), while the formation of total carbonyl and total thiol also exhibited similar oxidant-dose-dependent patterns. Meanwhile, the α-helix contents of MFP declined with oxidant concentrations irrespective of the oxidizing systems. The reducing SDS-PAGE revealed that the myosin heavy chain band started to diminish at high H2O2 concentration (5 and 10 mM) in MOS whereas at low level of linoleic acid (0.5 mM) in LOS. Overall, these results demonstrated both oxidizing systems could be involved in the formation of AAS and LNL, and that the generation of AAS and LNL can be used as reliable markers for protein oxidation, but also might be directly involved in protein structural changes and then contribute to the alternations of protein functionality.
Collapse
Affiliation(s)
- Wenhui Wang
- School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi #1, 116304 Dalian, Liaoning, China
| | - Xiaolei Jia
- School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi #1, 116304 Dalian, Liaoning, China
| | - Chuanyu Guo
- School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi #1, 116304 Dalian, Liaoning, China
| | - Jinfeng Pan
- School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi #1, 116304 Dalian, Liaoning, China; National Engineering Research Center of Seafood, Ganjingzi #1, 116304 Dalian, Liaoning, China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi #1, 116304 Dalian, Liaoning, China; National Engineering Research Center of Seafood, Ganjingzi #1, 116304 Dalian, Liaoning, China
| | - Shengjie Li
- School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi #1, 116304 Dalian, Liaoning, China; National Engineering Research Center of Seafood, Ganjingzi #1, 116304 Dalian, Liaoning, China.
| |
Collapse
|
26
|
Vallejo-Torres C, Estévez M, Ventanas S, Martínez SL, Morcuende D. The pro-oxidant action of high-oxygen MAP on beef patties can be counterbalanced by antioxidant compounds from common hawthorn and rose hips. Meat Sci 2023; 204:109282. [PMID: 37473715 DOI: 10.1016/j.meatsci.2023.109282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
The objective of this research was to evaluate the effectiveness of antioxidant-rich extracts from rose hip (Rosa canina L.; RC) and hawthorn (Crataegus monogyna Jacq.; CM) at minimizing the oxidative damage to proteins and lipids in beef patties subjected to a high‑oxygen (HiOx-MAP) and vacuum (Vacuum) packaging atmosphere. The extracts of RC and CM were characterized by quantifying bioactive compounds, namely, phenolic compounds, tocopherols and vitamin C. Both fruits had high concentrations of bioactive compounds, with RC having the highest total phenolic and vitamin C content. Yet, CM was the most efficient in protecting beef patties against protein carbonylation, reducing, as a result, the instrumental toughness in cooked beef patties. The use of CM and RC extracts in beef patties significantly improved consumer purchase intention in HiOx-MAP packaging systems. The use of CM and RC extracts or their combination in future research would be an effective antioxidant means to decrease the pro-oxidative effects caused by HiOx-MAP in red meat.
Collapse
Affiliation(s)
| | - Mario Estévez
- IPROCAR Research Institute, TECAL Research Group, Universidad de Extremadura, 10003 Cáceres, Spain.
| | - Sonia Ventanas
- IPROCAR Research Institute, TECAL Research Group, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Sandra L Martínez
- Meat Quality Laboratory, Santiago del Estero National University, Santiago del Estero G4200, Argentina
| | - David Morcuende
- IPROCAR Research Institute, TECAL Research Group, Universidad de Extremadura, 10003 Cáceres, Spain
| |
Collapse
|
27
|
Duque-Estrada P, Petersen IL. The sustainability paradox of processing plant proteins. NPJ Sci Food 2023; 7:38. [PMID: 37491430 PMCID: PMC10368665 DOI: 10.1038/s41538-023-00214-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 07/17/2023] [Indexed: 07/27/2023] Open
Affiliation(s)
- Patrícia Duque-Estrada
- Department of Food Science, Food Analytics and Biotechnology Section, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark.
| | - Iben Lykke Petersen
- Department of Food Science, Food Analytics and Biotechnology Section, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| |
Collapse
|
28
|
Bordignon JCS, Badaró AT, Barbin DF, Mariutti LRB, Netto FM. Oxidation of whey protein isolate after thermal convection and microwave heating and freeze-drying: Correlation among physicochemical and NIR spectroscopy analyses. Heliyon 2023; 9:e17981. [PMID: 37519701 PMCID: PMC10373659 DOI: 10.1016/j.heliyon.2023.e17981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
This study investigated the oxidative susceptibility of whey protein isolate (WPI) dispersions treated by microwave or thermal convection before freeze-drying. WPI (20 mg protein/mL) in distilled water (DW) was heated at 63 ± 2 °C for 30 min by microwave (WPI-MW) or convection heating (WPI-CH) and freeze-dried. Untreated WPI (WPI-C), WPI solubilized in DW and freeze-dried (WPI-FD), and WPI solubilized in DW, heated at 98 ± 2 °C for 2 min and freeze-dried (WPI-B) were also evaluated. Structural changes (turbidity, ζ potential, SDS-PAGE, and near-infrared spectroscopy (NIR)) and protein oxidation (dityrosine, protein carbonylation, and SH groups) were investigated. WPI-FD showed alterations compared to WPI-C, mainly concerning carbonyl groups. Microwave heating increased carbonyl groups and dityrosine formation compared to conventional heating. NIR spectrum indicated changes related to the formation of carbonyl groups and PCA analysis allowed us to distinguish the samples according to carbonyl group content. The results suggest that NIR may contribute to monitoring oxidative changes in proteins resulting from processing.
Collapse
|
29
|
Geng L, Liu K, Zhang H. Lipid oxidation in foods and its implications on proteins. Front Nutr 2023; 10:1192199. [PMID: 37396138 PMCID: PMC10307983 DOI: 10.3389/fnut.2023.1192199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Lipids in foods are sensitive to various environmental conditions. Under light or high temperatures, free radicals could be formed due to lipid oxidation, leading to the formation of unstable food system. Proteins are sensitive to free radicals, which could cause protein oxidation and aggregation. Protein aggregation significantly affects protein physicochemical characteristics and biological functions, such as digestibility, foaming characteristics, and bioavailability, further reducing the edible and storage quality of food. This review provided an overview of lipid oxidation in foods; its implications on protein oxidation; and the assessment methods of lipid oxidation, protein oxidation, and protein aggregation. Protein functions before and after aggregation in foods were compared, and a discussion for future research on lipid or protein oxidation in foods was presented.
Collapse
Affiliation(s)
- Lianxin Geng
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou, China
| | - Huiyan Zhang
- Zhengzhou Ruipu Biological Engineering Co., Ltd, Zhengzhou, China
| |
Collapse
|
30
|
Pu X, Ruan J, Wu Z, Tang Y, Liu P, Zhang D, Li H. Changes in Texture Characteristics and Special Requirements of Sichuan-Style Braised Beef for Industrial Production: Based on the Changes in Protein and Lipid of Beef. Foods 2023; 12:foods12071386. [PMID: 37048204 PMCID: PMC10093410 DOI: 10.3390/foods12071386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
This study aimed to investigate the optimal stewing time (0, 30, 60, 90, 120, and 150 min) for industrialized preparation of Sichuan-style braised beef with different demands. With prolonged stewing time, the hardness and chewiness of the braised beef initially increased and then decreased (p < 0.05), whereas springiness and cohesiveness gradually decreased. The moisture content of braised beef and the endogenous fluorescence intensity of braised beef protein significantly decreased (p < 0.05). However, the thiobarbituric acid reaction substances (TBARS) value and protein carbonyl content of braised beef greatly increased (p < 0.05). During the stewing process, the texture properties of Sichuan-style braised beef were affected by the moisture content, oxidation of proteins and lipids, and integrity of the muscle fibers. Considering texture traits, when Sichuan-style pre-braised beef bought by consumers is stewed with other ingredients for about 30 min, its corresponding stewing time is 60 min in industrialized production processes. This process parameter can not only save energy consumption for practical production, but also improve the hardness value of the as-obtained Sichuan-style pre-braised beef, which is conducive to transportation through refraining from cracking of pre-braised beef pieces. When consumers only use simple heating to eat the Sichuan-style pre-braised beef product, stewing times of 120 or 150 min can be considered in industrialized production processes. This work provided a theoretical reference for the industrialized and standardized production of different types of prepared Sichuan-style braised beef.
Collapse
Affiliation(s)
- Xiaoli Pu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jinggang Ruan
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zhicheng Wu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yong Tang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
- Food Industry Collaborative Innovation Center, Xihua University, Chengdu 610039, China
| | - Ping Liu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Dong Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
- Food Industry Collaborative Innovation Center, Xihua University, Chengdu 610039, China
| | - Hongjun Li
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
31
|
Flammulina velutipes polysaccharide improves the water-holding capacity in the dorsal muscle of freeze-thawed cultured large yellow croaker (Larimichthys crocea). Food Chem 2023; 403:134401. [DOI: 10.1016/j.foodchem.2022.134401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022]
|
32
|
Han M, Zhao J, Wu Q, Mao X, Zhang J. Effects of Packaging Materials on Structural and Simulated Digestive Characteristics of Walnut Protein during Accelerated Storage. Foods 2023; 12:foods12030620. [PMID: 36766154 PMCID: PMC9913943 DOI: 10.3390/foods12030620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Walnuts are rich in fat and proteins that become oxidized during the processing and storage conditions of their kernels. In this study, the effect of three packaging materials (e.g., polyethylene sealed packaging, polyamide/polyethylene vacuum packaging, and polyethylene terephthalate/aluminum foil/polyethylene vacuum packaging) were investigated on the oxidation, structural and digestive properties of walnut kernel proteins. Results showed that the amino acid content gradually decreased and carbonyl derivatives and dityrosine were formed during storage. The protein molecule structure became disordered as the α-helix decreased and the random coil increased. The endogenous fluorescence intensity decreased and the maximum fluorescence value was blue-shifted. After 15 days of storage, surface hydrophobicity decreased, while SDS-PAGE and HPLC indicated the formation of large protein aggregates, leading to a reduction in solubility. By simulating gastrointestinal digestion, we found that oxidation adversely affected the digestive properties of walnut protein isolate and protein digestibility was best for polyethylene terephthalate/aluminum foil/polyethylene vacuum packaging. The degree of protein oxidation in walnuts increased during storage, which showed that except for fat oxidation, the effect of protein oxidation on quality should be considered. The results of the study provided new ideas and methods for walnut quality control.
Collapse
|
33
|
Markers and Mechanisms of Deterioration Reactions in Dairy Products. FOOD ENGINEERING REVIEWS 2023. [DOI: 10.1007/s12393-023-09331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
Development of fibrous casings based on sugarcane bagasse with natural antioxidant using rosemary and thyme extract in dried sausages. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-022-01782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
35
|
Li B, Yang Y, Ding Y, Ge Y, Xu Y, Xie Y, Shi Y, Le G. Dityrosine in food: A review of its occurrence, health effects, detection methods, and mitigation strategies. Compr Rev Food Sci Food Saf 2023; 22:355-379. [PMID: 36382862 DOI: 10.1111/1541-4337.13071] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022]
Abstract
Protein and amino acid oxidation in food products produce many new compounds, of which the reactive and toxic compound dityrosine, derived from oxidized tyrosine, is the most widely studied. The high reactivity of dityrosine enables this compound to induce oxidative stress and disrupt thyroid hormone function, contributing to the pathological processes of several diseases, such as obesity, diabetes, cognitive dysfunction, aging, and age-related diseases. From the perspective of food safety and human health, protein-oxidation products in food are the main concern of consumers, health management departments, and the food industry. This review highlights the latest research on the formation pathways, toxicity, detection methods, occurrence in food, and mitigation strategies for dityrosine. Furthermore, the control of dityrosine in family cooking and food-processing industry has been discussed. Food-derived dityrosine primarily originates from high-protein foods, such as meat and dairy products. Considering its toxicity, combining rapid high sensitivity dityrosine detection techniques with feasible control methods could be an effective strategy to ensure food safety and maintain human health. However, the current dityrosine detection and mitigation strategies exhibit some inherent characteristics and limitations. Therefore, developing technologies for rapid and effective dityrosine detection and control at the industrial level is necessary.
Collapse
Affiliation(s)
- Bowen Li
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, 450001, China.,State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| | - Yuhui Yang
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, 450001, China
| | - Yinyi Ding
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, 310018, China
| | - Yueting Ge
- College of Life Science, Xinyang Normal University, Xinyang, Henan Province, 464000, China
| | - Yuncong Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yanli Xie
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, 450001, China
| | - Yonghui Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| | - Guowei Le
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| |
Collapse
|
36
|
Derbew Gedif H, Tkaczewska J, Jamróz E, Zając M, Kasprzak M, Pająk P, Grzebieniarz W, Nowak N. Developing Technology for the Production of Innovative Coatings with Antioxidant Properties for Packaging Fish Products. Foods 2022; 12:foods12010026. [PMID: 36613241 PMCID: PMC9818252 DOI: 10.3390/foods12010026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, we investigated the effects of furcellaran−gelatine (FUR/GEL) coatings incorporated with herb extracts on the quality retention of carp fish during refrigeration. Nutmeg, rosemary, thyme, milfoil, marjoram, parsley, turmeric, basil and ginger were subjected to water and ethanol extraction methods (10% concentration of herbs). The water extractions of the rosemary and thyme (5%) were used for the further development of coatings due to their high 2,2-Diphenyl-1-picrylhydrazyl (DPPH: 85.49 and 83.28%) and Ferric Reducing Antioxidant Power Assay values (FRAP: 0.46 and 0.56 mM/L) (p < 0.05), respectively. A new, ready-to-cook product with the coatings (carp fillets) was evaluated regarding quality in terms of colour parameters, texture profile, water activity, Thiobarbituric Acid Reactive Substances (TBARSs) and sensory analyses during 12 days of storage at 4 °C. The results show that the colour of the carp fillets treated with the rosemary and thyme extracts became slightly darker and had a propensity towards redness and yellowness. In contrast to the control group, the carp fillets stored in the coatings with the rosemary extract effectively slowed the lipid oxidation processes. Therefore, the innovative coatings produced from carp processing waste may have high potential as components in convenience food products and could extend the shelf-life of carp fillets during refrigerated storage. However, further research is needed to assess the microbiological stability of the obtained food products.
Collapse
Affiliation(s)
- Hana Derbew Gedif
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
- Department of Food Engineering, Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar 26, Ethiopia
| | - Joanna Tkaczewska
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
- Correspondence:
| | - Ewelina Jamróz
- Department of Chemistry, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
| | - Marzena Zając
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
| | - Mirosław Kasprzak
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
| | - Paulina Pająk
- Department of Food Analysis and Quality Assessment, Faculty of Food Technology, University of Agriculture in Kraków, ul. Balicka 122, 30-149 Kraków, Poland
| | - Wiktoria Grzebieniarz
- Department of Chemistry, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
| | - Nikola Nowak
- Department of Chemistry, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
| |
Collapse
|
37
|
Effect of Oxidative Modification by Peroxyl Radical on the Characterization and Identification of Oxidative Aggregates and In Vitro Digestion Products of Walnut ( Juglans regia L.) Protein Isolates. Foods 2022; 11:foods11244104. [PMID: 36553844 PMCID: PMC9777859 DOI: 10.3390/foods11244104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Walnut protein is a key plant protein resource due to its high nutritional value, but walnuts are prone to oxidation during storage and processing. This article explored the oxidative modification and digestion mechanism of walnut protein isolates by peroxyl radical and obtained new findings. SDS-PAGE and spectral analysis were used to identify structural changes in the protein after oxidative modification, and LC-MS/MS was used to identify the digestion products. The findings demonstrated that as the AAPH concentration increased, protein carbonyl content increased from 2.36 to 5.12 nmol/mg, while free sulfhydryl content, free amino content, and surface hydrophobicity decreased from 4.30 nmol/mg, 1.47 μmol/mg, and 167.92 to 1.72 nmol/mg, 1.13 μmol/mg, and 40.93 nmol/mg, respectively. Furthermore, the result of Tricine-SDS-PAGE in vitro digestion revealed that protein oxidation could cause gastric digestion resistance and a tendency for intestinal digestion promotion. Carbonyl content increased dramatically during the early stages of gastric digestion and again after 90 min of intestine digestion, and LC-MS/MS identified the last digestive products of the stomach and intestine as essential seed storage proteins. Oxidation causes walnut proteins to form aggregates, which are then re-oxidized during digestion, and proper oxidative modification may benefit intestinal digestion.
Collapse
|
38
|
Characteristics of cold plasma treatment and enzymatic hydrolysis on IgG/IgE-binding ability of β-lactoglobulin. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Injection of l-arginine or l-lysine alleviates freezing-induced deterioration of porcine Longissimus lumborum muscle. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Fallah AA, Sarmast E, Ghasemi M, Jafari T, Mousavi Khaneghah A, Lacroix M. Combination of ionizing radiation and bio-based active packaging for muscle foods: A global systematic review and meta-analysis. Food Chem 2022; 405:134960. [DOI: 10.1016/j.foodchem.2022.134960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/29/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
|
41
|
Abstract
AbstractBeneath glycation, oxidation reactions may take place at cereal proteins during production of malt. The extent of oxidative chemical changes at malt proteins has not yet been studied. In the present short communication, malt protein was characterized by the determination of free thiol groups and degree of methionine oxidation as well as the sites that are reactive to covalent modification by 2,4-dinitrophenylhydrazine (DNPH, “protein carbonylation”). Protein carbonylation in pale malts was around 1.5 nmol/mg protein and increased with increasing malt colour. Investigations on the protein pellet isolated for determination of carbonylation revealed that solubility and colour may disturb the quantification of carbonyl sites in roasted malts. Free thiols decreased with increasing malt colour already in pale malts (EBC < 10). The formation of methionine sulfoxide (MetSO) was intensified with increasing malt colour. An amount of 7–20% of methionine was converted to MetSO in pale and dark malt, whereas nearly 60% of methionine was oxidized to MetSO in roasted malts. The formation of methionine sulfone was negligible. This study shows that malt proteins suffer from oxidation during kilning, and future studies will have to show whether this supports the pro- or antioxidant activity of malt.
Collapse
|
42
|
Liu ZW, Zhou YX, Tan YC, Cheng JH, Bekhit AED, Mousavi Khaneghah A, Aadil RM. Influence of mild oxidation induced through DBD-plasma treatment on the structure and gelling properties of glycinin. Int J Biol Macromol 2022; 220:1454-1463. [PMID: 36122773 DOI: 10.1016/j.ijbiomac.2022.09.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
The effects of dielectric-barrier discharge (DBD) plasma treatment (20 s to 120 s treatment time with 40 kV, 12 kHz) induced mild oxidation on the gelling properties, and related structural changes of glycinin were investigated. The gelling ability of glycinin was improved by the mild oxidation induced by the plasma treatment. Treated glycinin gels exhibited a continuous and uniform network microstructure. Samples treated for 120 s had a 2.07-, 3.99- and 2.03-fold increase in hardness, chewiness, and resilience compared to the 20 s treated samples. Structural analyses showed that primary and secondary structures of glycinin were unaffected. The tertiary structure was shifted, accompanied by a decrease in free sulfhydryl (-SH) content. At the same time, carbonyl content and average particle diameter were increased by DBD treatment. The DBD treatment facilitated the generation/exchange of intermolecular disulfide bonds and enhanced gelling properties of glycinin. It is concluded that controlled plasma-induced protein oxidation can improve protein functionality.
Collapse
Affiliation(s)
- Zhi-Wei Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Ying-Xue Zhou
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yi-Cheng Tan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Alaa El-Din Bekhit
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand.
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology-State Research Institute, 36 Rakowiecka St., 02-532 Warsaw, Poland.
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan.
| |
Collapse
|
43
|
Zheng Y, Zhang L, Qiu Z, Yu Z, Shi W, Wang X. Comparison of oxidation extent, structural characteristics, and oxidation sites of myofibrillar protein affected by hydroxyl radicals and lipid-oxidizing system. Food Chem 2022; 396:133710. [PMID: 35872498 DOI: 10.1016/j.foodchem.2022.133710] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 05/10/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
Abstract
To compare the differences between direct protein oxidation (PO) and lipid-derived PO, the myofibrillar protein (MP) of obscure pufferfish was oxidatively modified by the hydroxyl radical oxidizing system (HOS) and the lipid-oxidizing system (LOS). The degree of oxidation, structural characteristics, and oxidation sites in MP were assessed. The results showed there was no significant thiol loss in LOS, compared with a 77.64% loss observed in case of the HOS. The secondary structure of MP was more vulnerable to HOS, but the tertiary structure was more susceptible to LOS. The cross-linking was largely attributed to the reversible disulfide links in HOS and the irreversible covalent linkages in LOS. Six amino acids and 10 specific oxidant products were identified in HOS. Only three amino acids and three specific oxidant products were identified in LOS. These findings may help deepen the understanding regarding the mechanism underlying PO in protein- and lipid-rich food materials.
Collapse
Affiliation(s)
- Yao Zheng
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, P.R.China; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Long Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zehui Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zheng Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
44
|
Pang S, Wang Y, Hao R, Mráz J, Li S, Zheng Q, Pan J. UV
irradiation improved gel properties and chill‐stored stability of surimi gel. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Shiwen Pang
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co‐construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Yong Wang
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co‐construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Ruoyi Hao
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses Institute of Aquaculture and Protection of Waters České Budějovice 370 05 Czech Republic
| | - Jan Mráz
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses Institute of Aquaculture and Protection of Waters České Budějovice 370 05 Czech Republic
| | - Shengjie Li
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co‐construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Qilin Zheng
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co‐construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Jinfeng Pan
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co‐construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| |
Collapse
|
45
|
Zhang J, Wang J, Li M, Guo S, Lv Y. Effects of heat treatment on protein molecular structure and in vitro digestion in whole soybeans with different moisture content. Food Res Int 2022; 155:111115. [PMID: 35400406 DOI: 10.1016/j.foodres.2022.111115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022]
Abstract
The effects of heat treatment on protein structure and in vitro digestibility in whole soybeans with different moisture content (10.68%, 29.70%, 46.29%, and 62.05% wet basis) were investigated. Scanning electronic microscopy presented that thermal treatment destroyed the subcellular structure of soybean seeds and resulted in formation of protein aggregates. When β-conglycinin (7S) was heat-denatured, the protein aggregates were maintained mainly by hydrogen bonds and hydrophobic interactions (non-covalent) for each moisture content. Also, the decrease of the protein solubility and increase of in vitro digestibility were observed. However, when glycinin (11S) was denatured in soybeans with 10.68% and 29.70% moisture content, the insoluble and indigestible protein aggregates with protein oxidation-induced crosslinking and high content of β-sheet were presented; in contrast, for 46.29% and 62.05% moisture content, mild protein oxidation, low content of β-sheet, non-covalent interactions and increased protein digestibility were shown. Non-covalent interactions were shown a positive correlation with gastrointestinal digestibility (r = 0.59, p < 0.05). Meanwhile, protein oxidation or β-sheet content was significantly negatively correlated with in vitro protein digestibility (r = -0.69 and -0.61, respectively, p < 0.05). Protein structure rather than solubility contributed to difference of in vitro digestibility. The optimum thermal conditions to obtain high-quality digestible protein in whole soybeans are 160 °C for 10.68%, 145 °C for 29.70%, 160 °C for 46.29% and 115 °C/140 °C for 62.05% moisture content.
Collapse
Affiliation(s)
- Jiayu Zhang
- Beijing Laboratory for Food Quality and Safety Key Laboratory of Agricultural Product Detection and Control for Spoilage Organisms and Pesticides Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China
| | - Jing Wang
- Beijing Laboratory for Food Quality and Safety Key Laboratory of Agricultural Product Detection and Control for Spoilage Organisms and Pesticides Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China
| | - Mengdi Li
- Beijing Laboratory for Food Quality and Safety Key Laboratory of Agricultural Product Detection and Control for Spoilage Organisms and Pesticides Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China
| | - Shuntang Guo
- Beijing Key Laboratory of Plant Protein and Cereal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ying Lv
- Beijing Laboratory for Food Quality and Safety Key Laboratory of Agricultural Product Detection and Control for Spoilage Organisms and Pesticides Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
46
|
Chen Y, Xi J. Effects of the non-covalent interactions between polyphenols and proteins on the formations of the heterocyclic amines in dry heated soybean protein isolate. Food Chem 2022; 373:131557. [PMID: 34799131 DOI: 10.1016/j.foodchem.2021.131557] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/01/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023]
Abstract
Soybean proteins are the main component of plant-based meat alternatives in the Chinese market. The effects of non-covalent interactions between polyphenols and proteins on the protein structures, the rest physicochemical properties, and formations of heterocyclic amines (HAs) were examined using a polyphenols-containing soybean protein isolate (SPI) complex as a model to dry heating at 170℃ for 10 min. The results showed that tetrahydro-curcumin had extensive inhibitory effects on the HA formation. In addition, tea polyphenols, grapeseed procyanidins, and dihydromyricetin were also found to have inhibitory effects only on some HAs. Correlation analysis showed that polyphenols altered the secondary structure and steric structure of the protein by interacting with the protein, which affects the HA formation. The results provided theoretical references and a basis for the formation mechanisms of HAs in polyphenol-inhibiting protein foods.
Collapse
Affiliation(s)
- Yang Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Jun Xi
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
| |
Collapse
|
47
|
Resveratrol Stabilization and Loss by Sodium Caseinate, Whey and Soy Protein Isolates: Loading, Antioxidant Activity, Oxidability. Antioxidants (Basel) 2022; 11:antiox11040647. [PMID: 35453332 PMCID: PMC9030250 DOI: 10.3390/antiox11040647] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/25/2022] Open
Abstract
The interaction of protein carrier and polyphenol is variable due to their environmental sensitivity. In this study, the interaction between resveratrol and whey protein isolate (WPI), sodium caseinate (SC) and soy protein isolate (SPI) during storage were systematically investigated from the aspects of polyphenol loading, antioxidant activity and oxidability. It was revealed that resveratrol loaded more in the SPI core and existed both in the core of SC micelles and on the particle surface, while WPI and resveratrol mainly formed in complexes. The loading capacity of the three proteins ranked in order SC > SPI > WPI. ABTS assay showed that the antioxidant activity of the protein carriers in the initial state was SC > SPI > WPI. The results of sulfhydryl, carbonyl and amino acid analysis showed that protein oxidability was SPI > SC > WPI. WPI, with the least oxidation, improved the storage stability of resveratrol, and the impact of SC on resveratrol stability changed from a protective to a pro-degradation effect. Co-oxidation occurred between SPI and resveratrol during storage, which refers to covalent interactions. The data gathered here suggested that the transition between the antioxidant and pro-oxidative properties of the carrier is the primary factor to investigate its protective effect on the delivered polyphenol.
Collapse
|
48
|
Pian MH, Dong L, Yu ZT, Wei F, Li CY, Fan DC, Li SJ, Zhang Y, Wang S. Ozone-Microbubble-Washing with Domestic Equipment: Effects on the Microstructure, and Lipid and Protein Oxidation of Muscle Foods. Foods 2022; 11:903. [PMID: 35406990 PMCID: PMC8997542 DOI: 10.3390/foods11070903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
This study aimed to compare ozone-microbubble-washing (OM) performed by domestic equipment with conventional water-washing (CW) regarding resultant quality attributes of muscle foods. For this purpose, muscle microstructure and lipid and protein oxidation were evaluated in pork and fish samples after OM and CW treatments. The assessment of muscle microstructure showed that OM treatment did not damage the microstructure of muscle fibers in both pork and fish samples. Thiobarbituric acid reactive substances (TBARS) values were not detected in both treatment groups, and they were substantially below the generally acceptable threshold (1 mg MDA/kg). The methylglyoxal (MGO) level of OM-treated fish samples was significantly higher than that of CW-treated fish samples. However, glyoxal (GO) and MGO levels of OM-treated pork samples were significantly lower than that of CW-treated pork samples. Similar types and sites of oxidative modification and similar numbers of modified peptides, as well as no significant difference in the concentration of total and most of the free amino acids (FAA) between treatment groups, indicated that OM treatment did not accelerate protein oxidation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China; (M.-H.P.); (L.D.); (Z.-T.Y.); (F.W.); (C.-Y.L.); (D.-C.F.); (S.-J.L.); (Y.Z.)
| |
Collapse
|
49
|
Tetracycline residues induce carbonylation of milk proteins and alter their solubility and digestibility. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Jiang Y, Du S, Xu M, Yu T, Zhou B, Yu F, Jiang H, Yang L, Su M, Liu H. Tracking structural changes of protein residues by two-dimensional correlation surface-enhanced Raman spectroscopy. Food Chem 2022; 382:132237. [PMID: 35144188 DOI: 10.1016/j.foodchem.2022.132237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/17/2021] [Accepted: 01/21/2022] [Indexed: 12/13/2022]
Abstract
In-situ tracking structural changes of protein residues was developed by two-dimensional correlation surface-enhanced Raman spectroscopy (2DC-SERS). The change order of SERS fingerprints during artificial nitrification of edible bird's nest (EBN) was interpreted as the structural changes of amino acid residues. It inherently realizes reliable recognition of natural EBN and artificially dyed fakes. Both this direct structural tracking of protein residues and the indirect azo dye testing of nitrites/nitrosamines could be used as indicators for discriminating different EBN before and after the artificial dyeing. Limit of detection (LOD) for nitrite and NDMA is about 40.6 ppb and 88.1 ppb, respectively. A conceptual logical circuit of the OR gate was constructed by considering the protein structural indicator (INPUT1) and the nitrite indicator (INPUT2) as two independent inputs for automatic recognition of different EBN samples. A data-driven analog soft independent modeling (DD-SIMCA) model could quickly distinguish normal EBN from A-EBN with 98% specificity.
Collapse
Affiliation(s)
- Yifan Jiang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shanshan Du
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Min Xu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ting Yu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Baomei Zhou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fanfan Yu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao Jiang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lina Yang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Mengke Su
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China.
| | - Honglin Liu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|