1
|
Ye X, Wang M, Zhao L, Wang Z, Yu L, Yuan S, Xu X, Xu X, Zuo J, Chen Q, Feng B, Yue X, Wang Q. Synergistic effect of lactopeptide and ectoine on delaying yellowing and maintaining the postharvest quality of pak choi (Brassica rapa subsp. chinensis). Int J Biol Macromol 2025; 311:143384. [PMID: 40294671 DOI: 10.1016/j.ijbiomac.2025.143384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/27/2025] [Accepted: 04/19/2025] [Indexed: 04/30/2025]
Abstract
Lactase peptide maintains food quality and ectoine stabilizes cell structure and function. The present study investigated the synergistic effect of 0.5 % lactopeptide and 0.1 % ectoine on preserving the quality of pak choi stored at 20 °C and 90 % relative humidity (RH) for 6 d. Results indicated that the combined treatment significantly reduced weight loss, electrolyte leakage, respiration rate, and ethylene generation compared to the untreated control or pak choi treated with ectoine. Furthermore, the combined treatment enhanced the level of ascorbic acid and flavonoids, and increased superoxide dismutase (SOD) activity. A combined transcriptomic and metabolomic analysis revealed the upregulation of key genes encoding proteins involved in the chlorophyll biosynthesis pathway, including protochlorophyllide reductase (POR), divinyl chlorophyllide a 8-vinyl-reductase (DVR), and chlorophyll/bacteriochlorophyll a synthase (CHLG), while the expression of the gene encoding a chlorophyll-degrading enzyme, chlorophyll (ide) b reductase (NOL), was suppressed. The combined treatment increased the abundance of metabolites associated with the citrate cycle pathway, including L-glutamate, L-glutamine, and L-asparagine. Additionally, the expression of chalcone isomerase (4CL), naringenin 3-dioxygenase (F3H) and chalcone synthase (CHS) in the phenylalanine, tyrosine, and tryptophan biosynthesis pathways, was elevated compared to the untreated control, resulting in increased levels of luteolin and naringenin chalcone. Collectively, our results indicate that the combined use of ectoine and lactopeptide effectively delayed the yellowing and postharvest senescence of pak choi during storage. The present study provides a foundation for further investigations of the postharvest metabolism of pak choi.
Collapse
Affiliation(s)
- Xiaoyun Ye
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Mina Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; College of Agricultural, Guangxi University, Nanning 530004, China
| | - Liqun Zhao
- Beijing Agricultural Technology Extension Station, Beijing 100029, China
| | - Zhiqiang Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Lingda Yu
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Shuzhi Yuan
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaodi Xu
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiangbin Xu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jinhua Zuo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qing Chen
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Bihong Feng
- College of Agricultural, Guangxi University, Nanning 530004, China.
| | - Xiaozhen Yue
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Qing Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
2
|
Tian Y, Chen Y, Huang R, Wang T, Wang S. Synergistic inhibition of Pseudomonas aeruginosa by EGCG and I3A: preliminary mechanisms and application in fish meat preservation. Int J Food Microbiol 2025; 436:111193. [PMID: 40239291 DOI: 10.1016/j.ijfoodmicro.2025.111193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/25/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
Synergistic bacteriostatic action represents a potent strategy for combating microbial contamination in the food industry. This study investigated the synergistic bacteriostatic effect of epigallocatechin gallate (EGCG) and indole-3-carboxaldehyde (I3A). Results showed a pronounced synergistic action of EGCG and I3A against diverse food spoilage microorganisms, most notably Pseudomonas aeruginosa (P. aeruginosa), with a fractional inhibitory concentration index (FICI) of 0.25. Further research revealed that EGCG disrupted the cell wall and cell membrane of P. aeruginosa, while supplementing I3A significantly boosted the concentration of intracellular reactive oxygen species, thereby inflicting cellular damage. Moreover, the EGCG-I3A treatment inhibited the biofilm formation of P. aeruginosa in a dose-dependent manner, with the effectiveness increasing with the quantity of I3A added. Metabolomic study revealed a perturbation in glutathione and taurine metabolic pathways post synergistic treatment, compromising redox homeostasis. This synergistic treatment also downregulated uracil, proline, and glutamate metabolites, thereby suppressing Quorum Sensing (QS) and biofilm-associated expression within P. aeruginosa. Additionally, the combination significantly inhibited P. aeruginosa growth in fish meat. In essence, this study underscored the synergistic bacteriostatic efficacy of EGCG and I3A, highlighting its potential application in food preservation.
Collapse
Affiliation(s)
- Yongqi Tian
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China.
| | - Yuanyuan Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Ruyang Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Tao Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China.
| |
Collapse
|
3
|
Xu P, Yan H, Cao Q, Wang D, Cong H, Yu B. Chitosan nanocapsules encapsulating antioxidant peptides and clove oil: Characterization, antioxidant and antibacterial activities, and impact on strawberry quality. Int J Biol Macromol 2025; 312:143983. [PMID: 40350123 DOI: 10.1016/j.ijbiomac.2025.143983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/15/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Food preservation, particularly for perishable fruits like strawberries, is crucial for extending shelf life and maintaining quality. Traditional methods often rely on chemical preservatives, which raise concerns regarding health and environmental risks. This study introduces a novel preservation strategy using chitosan nanoparticles (CSNPs) co-encapsulating antioxidant peptides (AOPs) and clove essential oil (CEO). The objective is to develop a natural, safe, and effective preservative system that enhances the antioxidant and antibacterial properties of these bioactive agents, improving food preservation without the harmful effects of chemical additives. The CEO/AOPs-CSNPs demonstrated high physicochemical stability, with encapsulation efficiencies of 56.65 % for AOPs and 51.31 % for CEO. These nanoparticles exhibited enhanced antioxidant activity, maintaining over 70 % activity across various temperatures, pH levels, and UV exposure. They also showed significant antibacterial effects, inhibiting microbial growth and biofilm formation. Applied to strawberries, the nanoparticles extended shelf life by 8 days, reduced decay by over 50 %, and preserved essential nutrients like ascorbic acid, all while minimizing weight loss. This study emphasizes the potential of CEO/AOPs-CSNPs as a natural, effective alternative to chemical preservatives, offering a sustainable solution for food preservation and quality maintenance.
Collapse
Affiliation(s)
- Pengchao Xu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Han Yan
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Qinghua Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Dayang Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China; College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Stine Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
4
|
Moita T, Pedroso L, Santos I, Lima A. Casein and Casein-Derived Peptides: Antibacterial Activities and Applications in Health and Food Systems. Nutrients 2025; 17:1615. [PMID: 40431356 PMCID: PMC12114164 DOI: 10.3390/nu17101615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/29/2025] Open
Abstract
The growing threat of antimicrobial resistance has intensified the search for alternative strategies to conventional antibiotics and preservatives. Casein-derived antimicrobial peptides (CDAMPs), generated through proteolysis, exhibit potent activity against a broad spectrum of pathogens, including antibiotic-resistant strains, revealing strong potential as natural preservatives and therapeutic agents in food and medical applications. Furthermore, casein can be an ideal source for peptide production in these sectors due to its abundance, disordered structure, which enhances enzymatic cleavage, and its amino acid profile, which favors bioactivity. Nonetheless, there is limited literature addressing real-life applications in veterinary medicine, food safety, and public health. This review provides a structured synthesis of current knowledge on the antibacterial properties of CDPs. We classify the main types of these peptides, describe their production methods, and summarize their mechanisms of action against Gram-positive and Gram-negative bacteria. Furthermore, we examine their potential applications in clinical, veterinary, and food-related contexts, and discuss key aspects related to delivery systems, safety, and regulatory considerations. Overall, our findings highlight the potential of CDPs in addressing antimicrobial resistance, reducing antibiotic use in livestock and humans, and contributing to sustainable food safety and functional food production.
Collapse
Affiliation(s)
- Tomás Moita
- Research in Veterinary Medicine (I-MVET), Faculty of Veterinary Medicine, Lusófona University, Lisbon University Centre, Campo Grande, 376, 1749-024 Lisbon, Portugal; (T.M.); (L.P.); (I.S.)
| | - Laurentina Pedroso
- Research in Veterinary Medicine (I-MVET), Faculty of Veterinary Medicine, Lusófona University, Lisbon University Centre, Campo Grande, 376, 1749-024 Lisbon, Portugal; (T.M.); (L.P.); (I.S.)
- Veterinary and Animal Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University, Lisbon University Centre, 1749-024 Lisbon, Portugal
- IPLUSO—Polytechnic Institute of Lusofonia, School of Health, Protection and Animal Welfare, Campo Grande 400, 1700-098 Lisbon, Portugal
| | - Isabel Santos
- Research in Veterinary Medicine (I-MVET), Faculty of Veterinary Medicine, Lusófona University, Lisbon University Centre, Campo Grande, 376, 1749-024 Lisbon, Portugal; (T.M.); (L.P.); (I.S.)
- Veterinary and Animal Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University, Lisbon University Centre, 1749-024 Lisbon, Portugal
| | - Ana Lima
- Research in Veterinary Medicine (I-MVET), Faculty of Veterinary Medicine, Lusófona University, Lisbon University Centre, Campo Grande, 376, 1749-024 Lisbon, Portugal; (T.M.); (L.P.); (I.S.)
- Veterinary and Animal Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University, Lisbon University Centre, 1749-024 Lisbon, Portugal
- IPLUSO—Polytechnic Institute of Lusofonia, School of Health, Protection and Animal Welfare, Campo Grande 400, 1700-098 Lisbon, Portugal
| |
Collapse
|
5
|
Xue J, Xiao W, Xu Y, Wang L, Zhang J, Zhang H, Chen X. Enhancement of natamycin production by combining ARTP mutagenesis with temperature control strategy development in Streptomyces gilvosporeus. Bioprocess Biosyst Eng 2025; 48:817-827. [PMID: 40100347 DOI: 10.1007/s00449-025-03145-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
Natamycin, a natural antifungal compound produced by Streptomyces, possesses antibacterial activity against yeast and mold. However, its low yield hinders widespread application in the food and pharmaceutical industries. This study aims to enhance natamycin production of Streptomyces gilvosporeus through engineering strain and optimization bioprocess. A high-yield strain exhibiting robust genetic stability was bred, yielding a 19.8% increase in shake flask fermentation and a 26.3% increase in fed-batch fermentation compared to the starting strain. The influence of temperature on high-yield strains was examined separately through batch fermentation and fed-batch fermentation. Subsequently, based on comprehensive analysis of fermentation kinetic parameters, a two-stage temperature control strategy was proposed. Specifically, the temperature was maintained at 30 ℃ for the first 18 h to shorten the lag phase, followed by a reduction to 26 ℃ and maintaining this temperature until the end of fermentation. Under this strategy, the natamycin production reached 14.4 g·L-1, representing a 25.2% increase compared to constant temperature fermentation at 28 ℃. This study provided an efficient production strategy for natamycin.
Collapse
Affiliation(s)
- Jian Xue
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Wen Xiao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yuxiu Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Liang Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jianhua Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Hongjian Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xusheng Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
6
|
Nie X, Zuo Z, Zhang R, Luo S, Chi Y, Yuan X, Song C, Wu Y. New advances in biological preservation technology for aquatic products. NPJ Sci Food 2025; 9:15. [PMID: 39900935 PMCID: PMC11790869 DOI: 10.1038/s41538-025-00372-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
Aquatic products, characterized by their high moisture content, abundant nutrients, and neutral pH, create an optimal environment for the rapid proliferation of spoilage organisms, lipid oxidation, and autolytic degradation. These factors collectively expedite the spoilage and deterioration of aquatic products during storage and transportation within the supply chain. To maintain the quality and extend the shelf-life of aquatic products, appropriate preservation methods must be implemented. The growing consumer preference for bio-preservatives, is primarily driven by consumer demands for naturalness and concerns about environmental sustainability. The present review discusses commonly employed bio-preservatives derived from plants, animals, and microorganisms and their utilization in the preservation of aquatic products. Moreover, the preservation mechanisms of bio-preservatives, including antioxidant activity, inhibition of spoilage bacteria and enzyme activity, and the formation of protective films are reviewed. Integration of bio-preservation techniques with other methods, such as nanotechnology, ozone technology, and coating technology that enhance the fresh-keeping effect are discussed. Importantly, the principal issues in the application of bio-preservation technology for aquatic products and their countermeasures are presented. Further studies and the identification of new bio-preservatives that preserve the safety and quality of aquatic products should continue.
Collapse
Affiliation(s)
- Xiaobao Nie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China.
| | - Zhijie Zuo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Ruichang Zhang
- Department of Food and Drugs, Shandong Institute of Commerce and Technology, Jinan, Shandong, China
| | - Si Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Yongzhou Chi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Xiangyang Yuan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Chengwen Song
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Yongjiang Wu
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China.
| |
Collapse
|
7
|
Yang M, Zhu Y, Xu J, Zhao Z, Wang L, Yang J, Zhang M. Modification approaches of walnut proteins to improve their structural and functional properties: A review. Food Chem X 2024; 24:101873. [PMID: 39974719 PMCID: PMC11838099 DOI: 10.1016/j.fochx.2024.101873] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 10/02/2024] [Indexed: 02/21/2025] Open
Abstract
Walnut protein has a high gluten content and compact structure, which limits its water solubility and affects its applications. Therefore, improving the sustainability of walnut proteins is an urgent issue that must be addressed. Physical modification can directly alter the structure of walnut proteins, leading to enhanced functional properties. Chemical modifications typically involve the introduction of exogenous substances that react with walnut proteins to obtain novel products with improved processing attributes. As a highly specific modification technique, biomodification uses enzymes or microorganisms to break down walnut proteins into small peptide molecules or cross-link them to form soluble polymers, thereby enhancing their functional properties and bioactivity. This review presents various methods for modifying walnut proteins and their effects on the structure and functional properties of walnut proteins. The challenges associated with the application and development of these unique technologies are also discussed.
Collapse
Affiliation(s)
- Min Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Yunkun Zhu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Jiangxia Xu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Zhongkai Zhao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Liang Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Jie Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
8
|
Yarmolinsky L, Nakonechny F, Haddis T, Khalfin B, Dahan A, Ben-Shabat S. Natural Antimicrobial Compounds as Promising Preservatives: A Look at an Old Problem from New Perspectives. Molecules 2024; 29:5830. [PMID: 39769919 PMCID: PMC11728848 DOI: 10.3390/molecules29245830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/14/2025] Open
Abstract
Antimicrobial compounds of natural origin are of interest because of the large number of reports regarding the harmfulness of food preservatives. These natural products can be derived from plants, animal sources, microorganisms, algae, or mushrooms. The aim of this review is to consider known antimicrobials of natural origin and the mechanisms of their action, antimicrobial photodynamic technology, and ultrasound for disinfection. Plant extracts and their active compounds, chitosan and chitosan oligosaccharide, bioactive peptides, and essential oils are highly potent preservatives. It has been experimentally proven that they possess strong antibacterial capabilities against bacteria, yeast, and fungi, indicating the possibility of their use in the future to create preservatives for the pharmaceutical, agricultural, and food industries.
Collapse
Affiliation(s)
- Ludmila Yarmolinsky
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (L.Y.); (B.K.)
| | - Faina Nakonechny
- Department of Chemical Engineering, Ariel University, Ariel 4070000, Israel; (F.N.); (T.H.)
| | - Tigabu Haddis
- Department of Chemical Engineering, Ariel University, Ariel 4070000, Israel; (F.N.); (T.H.)
| | - Boris Khalfin
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (L.Y.); (B.K.)
| | - Arik Dahan
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (L.Y.); (B.K.)
| | - Shimon Ben-Shabat
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (L.Y.); (B.K.)
| |
Collapse
|
9
|
Liang R, Song F, Liang Y, Fang Y, Wang J, Chen Y, Chen Z, Tan X, Dong J. A novel method for exploration and prediction of the bioactive target of rice bran-derived peptide (KF-8) by integrating computational methods and experiments. Food Funct 2024; 15:11875-11887. [PMID: 39529597 DOI: 10.1039/d4fo02493a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The investigation into the bioactive peptide's activity and target action poses a significant challenge in the field of food. An active peptide prepared from rice bran, KF-8, was confirmed to possess antioxidant activity in our previous study, but the specific target was unclear. This study used eight target prediction tools based on artificial intelligence and chemoinformatics to preliminarily screen potential antioxidant targets by integrating different computational methods. Then five different types of docking software were comparatively analyzed to further clarify their interaction sites and possible modes of action. The results showed that SIRT1 and CXCR4 are potential antioxidant targets of KF-8. Different docking software suggested that KF-8 interacts with SIRT1 and CXCR4 as major residues. Meanwhile, the results of Immunofluorescence co-localization experiments showed that the co-localization coefficients of KF-8 with SIRT1 and CXCR4 reached 0.5879 and 0.5684. This study provides new alternative means for the discovery of active peptide targets.
Collapse
Affiliation(s)
- Rui Liang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Fangliang Song
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Yanpeng Fang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| | - Jianqiang Wang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Yajuan Chen
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Zhongxu Chen
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Xiaorong Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| |
Collapse
|
10
|
Xu R, Zhao H, Wang L, Gao D, Zhao X. Preparation, characterisation and evaluation of kaempferol phospholipid complex and its application in preventing the deterioration of soybean oil. Nat Prod Res 2024:1-5. [PMID: 39560618 DOI: 10.1080/14786419.2024.2431125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/23/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
This study aims to improve the solubility of kaempferol (KA) by preparing a kaempferol phospholipid complex (KA-PC), which can be applied to prevent soybean oil from spoilage. KA-PC was prepared by solvent evaporation and characterised by FTIR, DSC, and XRD. Furthermore, KA-PC was added to soybean oil and the peroxide value and acid value were determined. The results showed that KA-PC improved the solubility of KA in both water and n-octanol. Several characterisation methods identified KA-PC as an amorphous structure. The rate of scavenging DPPH free radical and ABTS free radical of KA-PC was higher than that of KA. After 15 days of storage, the peroxidation value of the soybean oil of KA-PC was about 17.35 mmol/kg, which was significantly lower than that of the KA group (about 29.70 mmol/kg) The results help to prepare insoluble compounds into phospholipid complex (PC) and expand their application in food preservation.
Collapse
Affiliation(s)
- Ruiyang Xu
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Honghui Zhao
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Lingling Wang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Dezhi Gao
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Xu Zhao
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
11
|
Siddiqui I, Owais M, Husain Q. Antimicrobial effects of peptides from fenugreek and ginger proteins using Fe 3O 4@PDA-MWCNT conjugated trypsin by improving enzyme stability & applications. Int J Biol Macromol 2024; 282:137197. [PMID: 39489254 DOI: 10.1016/j.ijbiomac.2024.137197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Trypsin was immobilized onto a newly formulated nanocomposite (NC) comprising magnetic (Fe3O4) multiwalled carbon nanotubes (MWCNTs) anchored with polydopamine (PDA). The fabricated NC and the NC-bound trypsin were subjected to comprehensive characterization using various biophysical techniques including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and fluorescence spectroscopy. The NC-bound trypsin exhibited significantly enhanced thermostability and increased tolerance to various organic solvents and denaturants. The enzymatic activity of trypsin was notably augmented through its coupling with the nano support, yielding an effectiveness factor (η) of 2.65. Fenugreek and ginger protein hydrolysates, prepared using both native and NC-bound enzyme, were evaluated for their antimicrobial activities. The analysis revealed that peptides generated by NC-bound trypsin showed higher antimicrobial activity (~ 10) in most cases compared to peptides obtained by using native trypsin. This strategy presents an innovative methodology for the production of potential biopeptides, with the prospect of their incorporation into pharmaceutical and therapeutic sectors through the utilization of NC-bound trypsin in protein hydrolysis.
Collapse
Affiliation(s)
- Irfanah Siddiqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India.
| | - Mohammad Owais
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Qayyum Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
12
|
Hazam PK, Selvaraj SP, Negi A, Lin WC, Chen JY. Use of natural peptide TP4 as a food preservative prevents contamination by fungal pathogens. Food Chem 2024; 455:139874. [PMID: 38838624 DOI: 10.1016/j.foodchem.2024.139874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/10/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024]
Abstract
Molecules of natural origin often possess useful biological activities. For instance, the natural peptide Tilapia Piscidin 4 (TP4) exhibits potent antimicrobial activity against a broad spectrum of pathogens. In this study, we explored the potential application of TP4 as a food preservative, asking whether it can prevent spoilage due to microbial contamination. A preliminary in silico analysis indicated that TP4 should interact strongly with fungal cell membrane components. Hence, we tested the activity of TP4 toward Candida albicans within fruit juice and found that the addition of TP4 could abolish fungal growth. We further determined that the peptide acts via a membranolytic mechanism and displays concentration-dependent killing efficiency. In addition, we showed that TP4 inhibited growth of Rhizopus oryzae in whole fruit (tomato) samples. Based on these findings, we conclude that TP4 should be further evaluated as a potentially safe and green solution to prevent food spoilage.
Collapse
Affiliation(s)
- Prakash Kishore Hazam
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd., Jiaushi, Ilan 262, Taiwan
| | - Sanjay Prasad Selvaraj
- Molecular and Biological Agricultural Science Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Abhishek Negi
- Molecular and Biological Agricultural Science Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Wen-Chun Lin
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd., Jiaushi, Ilan 262, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd., Jiaushi, Ilan 262, Taiwan; The iEGG and Animal Biotechnology Center and the Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
13
|
Singh S, Jha B, Tiwari P, Joshi VG, Mishra A, Malik YS. Recent approaches in the application of antimicrobial peptides in food preservation. World J Microbiol Biotechnol 2024; 40:315. [PMID: 39249587 DOI: 10.1007/s11274-024-04126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024]
Abstract
Antimicrobial peptides (AMPs) are small peptides existing in nature as an important part of the innate immune system in various organisms. Notably, the AMPs exhibit inhibitory effects against a wide spectrum of pathogens, showcasing potential applications in different fields such as food, agriculture, medicine. This review explores the application of AMPs in the food industry, emphasizing their crucial role in enhancing the safety and shelf life of food and how they offer a viable substitute for chemical preservatives with their biocompatible and natural attributes. It provides an overview of the recent advancements, ranging from conventional approaches of using natural AMPs derived from bacteria or other sources to the biocomputational design and usage of synthetic AMPs for food preservation. Recent innovations such as structural modifications of AMPs to improve safety and suitability as food preservatives have been discussed. Furthermore, the active packaging and creative fabrication strategies such as nano-formulation, biopolymeric peptides and casting films, for optimizing the efficacy and stability of these peptides in food systems are summarized. The overall focus is on the spectrum of applications, with special attention to potential challenges in the usage of AMPs in the food industry and strategies for their mitigation.
Collapse
Affiliation(s)
- Satparkash Singh
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India.
| | - Bhavna Jha
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Pratiksha Tiwari
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Vinay G Joshi
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Adarsh Mishra
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Yashpal Singh Malik
- ICAR-IVRI (Mukteswar Campus), Mukteswar, Nainital, Uttarakhand, 263138, India
| |
Collapse
|
14
|
Shao C, Wang Y, Li G, Guan H, Zhu Y, Zhang L, Dong N, Shan A. Novel design of simplified β-hairpin antimicrobial peptide as a potential food preservative based on Trp-pocket backbone. Food Chem 2024; 448:139128. [PMID: 38574714 DOI: 10.1016/j.foodchem.2024.139128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/09/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Food contamination from microbial deterioration requires the development of potent antimicrobial peptides (AMPs). The deployment of approved AMPs as dietary preservatives is limited due to barriers such as instability, toxicity, and high synthetic costs. This exploration utilizes the primary structural elements of the Trp-pocket backbone to engineer a series of β-hairpin AMPs (XWRWRPGXKXXR-NH2, X representing I, V, F, and/or L). Peptides WpLF, with Phe as X and Leu arranged at the 11th position, demonstrated exceptional selectivity index (SI = 123.08) and sterilization effects both in vitro and in vivo. WpLF consistently exhibited stable bacteriostasis, regardless of physiological salts, serum, and extreme pH. Mechanistic analysis indicated that the peptide penetrates microbial cell membranes, inducing membrane disruption, thereby impeding drug resistance evolution. Conclusively, AMPs engineered by the Trp-pocket skeleton hold substantial potential as innovative biological preservatives in food preservation, providing valuable insights for sustainable and safe peptide-based food preservatives.
Collapse
Affiliation(s)
- Changxuan Shao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuanmengxue Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Guoyu Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongrui Guan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Yongjie Zhu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Licong Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Na Dong
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
15
|
Chu Z, Wang H, Dong B. Research on Food Preservation Based on Antibacterial Technology: Progress and Future Prospects. Molecules 2024; 29:3318. [PMID: 39064897 PMCID: PMC11279653 DOI: 10.3390/molecules29143318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The nutrients present in food are not only prone to a series of physicochemical reactions but also provide conditions for the growth and reproduction of foodborne microorganisms. In recent years, many innovative methods from different fields have been introduced into food preservation, which extends the shelf life while maximizing the preservation of the original ingredients and properties of food. In this field, there is a lack of a systematic summary of new technologies emerging. In view of this, we overview the innovative methods applied to the field of food preservation in recent 3 years, focusing on a variety of technological approaches such as antimicrobial photodynamic therapy based on nanotechnology, electromagnetic radiation sterilization based on radiation technology, and antimicrobial peptides based on biomolecules. We also discuss the preservation mechanism and the application of the different methods to specific categories of products. We evaluated their advantages and limitations in the food industry, describing their development prospects. In addition, as microorganisms are the main causes of food spoilage, our review also has reference significance for clinical antibacterial treatment.
Collapse
Affiliation(s)
- Zejing Chu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China;
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China;
| | - Biao Dong
- College of Electronic Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
16
|
Kang Y, Zhang H, Wang X, Yang Y, Jia Q. MMDB: Multimodal dual-branch model for multi-functional bioactive peptide prediction. Anal Biochem 2024; 690:115491. [PMID: 38460901 DOI: 10.1016/j.ab.2024.115491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/21/2024] [Accepted: 02/19/2024] [Indexed: 03/11/2024]
Abstract
Bioactive peptides can hinder oxidative processes and microbial spoilage in foodstuffs and play important roles in treating diverse diseases and disorders. While most of the methods focus on single-functional bioactive peptides and have obtained promising prediction performance, it is still a significant challenge to accurately detect complex and diverse functions simultaneously with the quick increase of multi-functional bioactive peptides. In contrast to previous research on multi-functional bioactive peptide prediction based solely on sequence, we propose a novel multimodal dual-branch (MMDB) lightweight deep learning model that designs two different branches to effectively capture the complementary information of peptide sequence and structural properties. Specifically, a multi-scale dilated convolution with Bi-LSTM branch is presented to effectively model the different scales sequence properties of peptides while a multi-layer convolution branch is proposed to capture structural information. To the best of our knowledge, this is the first effective extraction of peptide sequence features using multi-scale dilated convolution without parameter increase. Multimodal features from both branches are integrated via a fully connected layer for multi-label classification. Compared to state-of-the-art methods, our MMDB model exhibits competitive results across metrics, with a 9.1% Coverage increase and 5.3% and 3.5% improvements in Precision and Accuracy, respectively.
Collapse
Affiliation(s)
- Yan Kang
- National Pilot School of Software, Yunnan University, Kunming, 650091, Yunnan, China; Yunnan Key Laboratory of Software Engineering, China
| | - Huadong Zhang
- National Pilot School of Software, Yunnan University, Kunming, 650091, Yunnan, China
| | - Xinchao Wang
- National Pilot School of Software, Yunnan University, Kunming, 650091, Yunnan, China
| | - Yun Yang
- National Pilot School of Software, Yunnan University, Kunming, 650091, Yunnan, China; Yunnan Key Laboratory of Software Engineering, China.
| | - Qi Jia
- School of Information Science, Yunnan University, Kunming, 650091, Yunnan, China
| |
Collapse
|
17
|
Yang Y, Huang L, Huang Z, Ren Y, Xiong Y, Xu Z, Chi Y. Food-derived peptides unleashed: emerging roles as food additives beyond bioactivities. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38889067 DOI: 10.1080/10408398.2024.2360074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Innovating food additives stands as a cornerstone for the sustainable evolution of future food systems. Peptides derived from food proteins exhibit a rich array of physicochemical and biological attributes crucial for preserving the appearance, flavor, texture, and nutritional integrity of foods. Leveraging these peptides as raw materials holds great promise for the development of novel food additives. While numerous studies underscore the potential of peptides as food additives, existing reviews predominantly focus on their biotic applications, leaving a notable gap in the discourse around their abiotic functionalities, such as their physicochemical properties. Addressing this gap, this review offers a comprehensive survey of peptide-derived food additives in food systems, accentuating the application of peptides' abiotic properties. It furnishes a thorough exploration of the underlying mechanisms and diverse applications of peptide-derived food additives, while also delineating the challenges encountered and prospects for future applications. This well-time review will set the stage for a deeper understanding of peptide-derived food additives.
Collapse
Affiliation(s)
- Yanli Yang
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Lunjie Huang
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Zhangjun Huang
- National Engineering Research Center, Luzhou Laojiao Co. Ltd, Luzhou, China
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Yao Ren
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yanfei Xiong
- National Engineering Research Center, Luzhou Laojiao Co. Ltd, Luzhou, China
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Zhenghong Xu
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yuanlong Chi
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Elnar AG, Kim GB. In Vitro and In Silico Characterization of N-Formylated Two-Peptide Bacteriocin from Enterococcus faecalis CAUM157 with Anti-Listeria Activity. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10265-9. [PMID: 38743207 DOI: 10.1007/s12602-024-10265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Enterococcus faecalis CAUM157 (KACC 81148BP), a Gram-positive bacteria isolated from raw cow's milk, was studied for its bacteriocin production. The antimicrobial activity of CAUM157 was attributed to a two-peptide class IIb bacteriocin with potent activity against food-borne pathogen Listeria monocytogenes and periodontal disease-causing pathogens (Prevotella intermedia KCTC 15693 T and Fusobacterium nucleatum KCTC 2488 T). M157 bacteriocins exhibit high temperature and pH stability and resist hydrolytic enzyme degradation and detergent denaturation, potentially due to their structural conformation. Based on amino acid sequence, M157A and M157B were predicted to be 5.176 kDa and 5.182 kDa in size, respectively. However, purified bacteriocins and chemically synthesized N-formylated M157 peptides both showed 5.204 kDa (M157A) and 5.209 kDa (M157B) molecular mass, confirming the formylation of the N-terminal methionine of both peptides produced by strain CAUM157. Furthermore, the strain demonstrated favorable growth and fermentation with minimal bacteriocin production when cultured in whey-based media, whereas a 1.0% tryptone or soytone supplementation resulted in higher bacteriocin production. Although Ent. faecalis CAUM157 innately harbors genes for virulence factors and antimicrobial resistance (e.g., tetracycline and erythromycin), its bacteriocin production is valuable in circumventing the need for live microorganisms, particularly in food applications for pathogen control.
Collapse
Affiliation(s)
- Arxel G Elnar
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Geun-Bae Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
19
|
Yuan L, Wang K, Fang Y, Xu X, Chen Y, Zhao D, Lu K. Interaction of Cecropin A (1-7) Analogs with DNA Analyzed by Multi-spectroscopic Methods. Protein J 2024; 43:274-282. [PMID: 38265732 DOI: 10.1007/s10930-023-10177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/25/2024]
Abstract
Cecropin A (1-7) is a cationic antimicrobial peptide which contain lots of basic amino acids. To understand the effect of basic amino acids on cecropin A (1-7), analogues CA2, CA3 and CA4 which have more arginine or lysine at the N-terminal or C-terminal were designed and synthesized. The interaction of cecropin A (1-7) and its analogs with DNA was studied using ultraviolet-visible spectroscopy, fluorescence spectroscopy and circular dichroism spectroscopy. Multispectral analysis showed that basic amino acids improved the interaction between the analogues and DNA. The interaction between CA4 and DNA is most pronounced. Fluorescence spectrum indicated that Ksv value of CA4 is 1.19 × 105 L mol-1 compared to original peptide cecropin A (1-7) of 3.73 × 104 L mol-1. The results of antimicrobial experiments with cecropin A (1-7) and its analogues showed that basic amino acids enhanced the antimicrobial effect of the analogues. The antimicrobial activity of CA4 against E. coli was eightfold higher than that of cecropin A (1-7). The importance of basic amino acid in peptides is revealed and provides useful information for subsequent studies of antimicrobial peptides.
Collapse
Affiliation(s)
- Libo Yuan
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
| | - Ke Wang
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Yuan Fang
- Pharmacy Department, Zhengzhou People's Hospital, Zhengzhou, 450003, People's Republic of China.
| | - Xiujuan Xu
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Yingcun Chen
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Dongxin Zhao
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Kui Lu
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
20
|
Yao FH, Liang X, Qi SH. Two new linear peptides from the marine-derived fungus Penicillium sp. SCSIO 41512. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:941-948. [PMID: 36916424 DOI: 10.1080/10286020.2023.2189107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Two new linear peptides, penicamides A and B (1 and 2), together with four known analogous were isolated from the extracts of the marine-derived fungus Penicillium sp. SCSIO 41512. Their structures were elucidated by analysis of 1D/2D NMR data and HRESI-MS. Their absolute configurations were established by Marfey's methods and quantum chemical calculations.
Collapse
Affiliation(s)
- Fei-Hua Yao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Liang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shu-Hua Qi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
21
|
Maky MA, Zendo T. Identification of a Novel Bioactive Peptide Derived from Frozen Chicken Breast Hydrolysate and the Utilization of Hydrolysates as Biopreservatives. BIOLOGY 2023; 12:1218. [PMID: 37759617 PMCID: PMC10525312 DOI: 10.3390/biology12091218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Frozen chicken breast was hydrolyzed by treatment with thermolysin enzyme to obtain a chicken hydrolysate containing bioactive peptides. After that, a peptide was purified from the chicken hydrolysate utilizing a Sep-Pak C18 cartridge and reversed-phase high-performance liquid chromatography (RP-HPLC). The molecular weight of the chicken peptide was 2766.8. Protein sequence analysis showed that the peptide was composed of 25 amino acid residues. The peptide, designated as C25, demonstrated an inhibitory action on the angiotensin-converting enzyme (ACE) with a half maximal inhibitory concentration (IC50) value of 1.11 µg/mL. Interestingly, C25 showed antimicrobial activity against multi-drug resistant bacteria Proteus vulgaris F24B and Escherichia coli JM109, both with MIC values of 24 µg/mL. The chicken hydrolysate showed antioxidant activity with an IC50 value of 348.67 µg/mL. Furthermore, the proliferation of aerobic bacteria and Enterobacteriaceae as well as lipid oxidation were significantly reduced when the chicken hydrolysate was used as a natural preservative during cold storage of chicken breasts. Hydrolysates derived from muscle sources have the potential to be used in formulated food products and to contribute positively to human health.
Collapse
Affiliation(s)
- Mohamed Abdelfattah Maky
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Takeshi Zendo
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| |
Collapse
|
22
|
Wang X, Li Y, Liu S, Wang H, Chang X, Zhang J. Chestnut Shell Polyphenols Inhibit the Growth of Three Food-Spoilage Bacteria by Regulating Key Enzymes of Metabolism. Foods 2023; 12:3312. [PMID: 37685244 PMCID: PMC10486611 DOI: 10.3390/foods12173312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The microbial contamination of food poses a threat to human health. Chestnut shells, which are byproducts of chestnut processing, contain polyphenols that exert various physiological effects, and thus have the potential to be used in food preservation. This study investigates the bacteriostatic effect and mechanism(s) of the action of chestnut shell polyphenols (CSPs) on three food-spoilage bacteria, namely Bacillus subtilis, Pseudomonas fragi, and Escherichia coli. To this end, the effect of CSPs on the ultrastructure of each bacterium was determined using scanning electron microscopy and transmission electron microscopy. Moreover, gene expression was analyzed using RT-qPCR. Subsequent molecular docking analysis was employed to elucidate the mechanism of action employed by CSPs via the inhibition of key enzymes. Ultrastructure analysis showed that CSPs damaged the bacterial cell wall and increased permeability. At 0.313 mg/mL, CSPs significantly increased the activity of alkaline phosphatase and lactate dehydrogenase, as well as protein leakage (p < 0.05), whereas the activity of the tricarboxylic acid (TCA) cycle enzymes, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase, were inhibited (p < 0.05). The expression levels of the TCA-related genes gltA, icd, sucA, atpA, citA, odhA, IS178_RS16090, and IS178_RS16290 are also significantly downregulated by CSP treatment (p < 0.05). Moreover, CSPs inhibit respiration and energy metabolism, including ATPase activity and adenosine triphosphate (ATP) synthesis (p < 0.05). Molecular docking determined that proanthocyanidins B1 and C1, the main components of CSPs, are responsible for the antibacterial activity. Therefore, as natural antibacterial substances, CSPs have considerable potential for development and application as natural food preservatives.
Collapse
Affiliation(s)
- Xinfang Wang
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Yue Li
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Suwen Liu
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Xuedong Chang
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Jingzheng Zhang
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| |
Collapse
|
23
|
Qin CC, Abdalkarim SYH, Yang MC, Dong YJ, Yu HY, Ge D. All-naturally structured tough, ultrathin, and washable dual-use composite for fruits preservation with high biosafety evaluation. Int J Biol Macromol 2023; 247:125828. [PMID: 37453633 DOI: 10.1016/j.ijbiomac.2023.125828] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
This work develops a sustainable and global strategy to enhance fruit preservation efficacy. The dual-use composite coating or film comprises silk fibroin/cellulose nanocrystals (SF/CNC) with superior ductility through a synergistic plasticizing effect of glycerol and natural aloe-emodin powder (AE) as antimicrobial agents. To confirm our strategy, two common fruit preservation materials (edible surface coating-SCA-CS; packaging film-SCA-PF) and five different fruits (strawberries, bananas, apples, blueberries, and guavas) have been used. Moreover, SCA-CS coating with antibacterial and antioxidant activities formed an ultrathin layer on the fruit's surfaces with a thickness of 7.7 μm and could be easily washable. Therefore, bananas and strawberries' shelf-life with SCA-CS coating can be extended for 9 days and 6 days, respectively. The discharge water of SCA-CS has excellent biosafety in an indoor environment with no threat to plant health (microgreens bean sprouts germination as a case study). The plant exhibited positive results within 15 days, and leaves maintained their green color with a germination rate of 97.6 %. The toughness of SCA-PF film increased by 14,685.7 % with a water vapor transmission rate (WPTR) of 17 g mm m-2 day-1, which confirms that the concept of SCA-PF film and SCA-CS coating are feasible to be used for fruit preservation/packaging.
Collapse
Affiliation(s)
- Cong Cong Qin
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Xia sha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Somia Yassin Hussain Abdalkarim
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Xia sha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China.
| | - Ming Chen Yang
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Xia sha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Yan Juan Dong
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Xia sha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Hou-Yong Yu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Xia sha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China; Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada.
| | - Dan Ge
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Xia sha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| |
Collapse
|
24
|
Barman P, Joshi S, Sharma S, Preet S, Sharma S, Saini A. Strategic Approaches to Improvise Peptide Drugs as Next Generation Therapeutics. Int J Pept Res Ther 2023; 29:61. [PMID: 37251528 PMCID: PMC10206374 DOI: 10.1007/s10989-023-10524-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/31/2023]
Abstract
In recent years, the occurrence of a wide variety of drug-resistant diseases has led to an increase in interest in alternate therapies. Peptide-based drugs as an alternate therapy hold researchers' attention in various therapeutic fields such as neurology, dermatology, oncology, metabolic diseases, etc. Previously, they had been overlooked by pharmaceutical companies due to certain limitations such as proteolytic degradation, poor membrane permeability, low oral bioavailability, shorter half-life, and poor target specificity. Over the last two decades, these limitations have been countered by introducing various modification strategies such as backbone and side-chain modifications, amino acid substitution, etc. which improve their functionality. This has led to a substantial interest of researchers and pharmaceutical companies, moving the next generation of these therapeutics from fundamental research to the market. Various chemical and computational approaches are aiding the production of more stable and long-lasting peptides guiding the formulation of novel and advanced therapeutic agents. However, there is not a single article that talks about various peptide design approaches i.e., in-silico and in-vitro along with their applications and strategies to improve their efficacy. In this review, we try to bring different aspects of peptide-based therapeutics under one article with a clear focus to cover the missing links in the literature. This review draws emphasis on various in-silico approaches and modification-based peptide design strategies. It also highlights the recent progress made in peptide delivery methods important for their enhanced clinical efficacy. The article would provide a bird's-eye view to researchers aiming to develop peptides with therapeutic applications. Graphical Abstract
Collapse
Affiliation(s)
- Panchali Barman
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014 India
| | - Shubhi Joshi
- Energy Research Centre, Panjab University, Sector 14, Chandigarh, 160014 India
| | - Sheetal Sharma
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| | - Simran Preet
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| | - Shweta Sharma
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014 India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| |
Collapse
|
25
|
Eghbal N, Viton C, Gharsallaoui A. Nano and microencapsulation of bacteriocins for food applications: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Baindara P, Mandal SM. Plant-Derived Antimicrobial Peptides: Novel Preservatives for the Food Industry. Foods 2022; 11:foods11162415. [PMID: 36010415 PMCID: PMC9407122 DOI: 10.3390/foods11162415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Food spoilage is a widespread issue brought on by the undesired growth of microbes in food products. Thousands of tons of usable food or food products are wasted every day due to rotting in different parts of the world. Several food preservation techniques are employed to prevent food from rotting, including the use of natural or manufactured chemicals or substances; however, the issue persists. One strategy for halting food deterioration is the use of plant-derived antimicrobial peptides (AMPs), which have been investigated for possible bioactivities against a range of human, plant, and food pathogens. The food industry may be able to benefit from the development of synthetic AMPs, produced from plants that have higher bioactivity, better stability, and decreased cytotoxicity as a means of food preservation. In order to exploit plant-derived AMPs in various food preservation techniques, in this review, we also outline the difficulties in developing AMPs for use as commercial food preservatives. Nevertheless, as technology advances, it will soon be possible to fully explore the promise of plant-derived AMPs as food preservatives.
Collapse
Affiliation(s)
- Piyush Baindara
- Departments of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| | - Santi M. Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
27
|
Li M, Fan W, Xu Y. Comprehensive Identification of Short and Medium-Sized Peptides from Pixian Broad Bean Paste Protein Hydrolysates Using UPLC-Q-TOF-MS and UHPLC-Q Exactive HF-X. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8288-8299. [PMID: 35785966 DOI: 10.1021/acs.jafc.2c02487] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pixian broad bean paste (PBBP) is an indispensable food widely used in many East Asian countries, yet the knowledge about bioactive peptides released from parent proteins by enzymatic hydrolysis is limited. A total of 5867 low-molecular weight peptides were identified in the highly bioactive subfractions of the PBBP alcalase hydrolysates using traditional and peptidomics approaches. 19 short peptides (3-5 amino acids) were identified by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry, including 5 tripeptides, 8 tetrapeptides, and 6 pentapeptides. 5848 medium-sized peptides (6-10 amino acids) were characterized using the peptidomics approach, including 1484 hexapeptides, 1217 heptapeptides, 1634 octapeptides, 927 nonapeptides, and 586 decapeptides. The comprehensive method can be used for the investigation of bioactive peptides in complex food matrices.
Collapse
Affiliation(s)
- Mingyang Li
- Lab of Brewing Microbiology and Applied Enzymology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Wenlai Fan
- Lab of Brewing Microbiology and Applied Enzymology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
28
|
Production and fermentation characteristics of antifungal peptides by synergistic interactions with Lactobacillus paracasei and Propionibacterium freudenii in supplemented whey protein formulations. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Li Y, Li X, Liu Y, Yao Y, Huang G. MPMABP: A CNN and Bi-LSTM-Based Method for Predicting Multi-Activities of Bioactive Peptides. Pharmaceuticals (Basel) 2022; 15:707. [PMID: 35745625 PMCID: PMC9231127 DOI: 10.3390/ph15060707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/30/2022] Open
Abstract
Bioactive peptides are typically small functional peptides with 2-20 amino acid residues and play versatile roles in metabolic and biological processes. Bioactive peptides are multi-functional, so it is vastly challenging to accurately detect all their functions simultaneously. We proposed a convolution neural network (CNN) and bi-directional long short-term memory (Bi-LSTM)-based deep learning method (called MPMABP) for recognizing multi-activities of bioactive peptides. The MPMABP stacked five CNNs at different scales, and used the residual network to preserve the information from loss. The empirical results showed that the MPMABP is superior to the state-of-the-art methods. Analysis on the distribution of amino acids indicated that the lysine preferred to appear in the anti-cancer peptide, the leucine in the anti-diabetic peptide, and the proline in the anti-hypertensive peptide. The method and analysis are beneficial to recognize multi-activities of bioactive peptides.
Collapse
Affiliation(s)
- You Li
- School of Electrical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.L.); (X.L.)
| | - Xueyong Li
- School of Electrical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.L.); (X.L.)
| | - Yuewu Liu
- College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China;
| | - Yuhua Yao
- School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China;
| | - Guohua Huang
- School of Electrical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.L.); (X.L.)
| |
Collapse
|
30
|
Kim MJ, Chilakala R, Jo HG, Lee SJ, Lee DS, Cheong SH. Anti-Obesity and Anti-Hyperglycemic Effects of Meretrix lusoria Protamex Hydrolysate in ob/ob Mice. Int J Mol Sci 2022; 23:ijms23074015. [PMID: 35409375 PMCID: PMC8999646 DOI: 10.3390/ijms23074015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 12/27/2022] Open
Abstract
Meretrix lusoria (M. lusoria) is an economically important shellfish which is widely distributed in South Eastern Asia that contains bioactive peptides, proteins, and enzymes. In the present study, the extracted meat content of M. lusoria was enzymatic hydrolyzed using four different commercial proteases (neutrase, protamex, alcalase, and flavourzyme). Among the enzymatic hydrolysates, M. lusoria protamex hydrolysate (MLPH) fraction with MW ≤ 1 kDa exhibited the highest free radical scavenging ability. The MLPH fraction was further purified and an amino acid sequence (KDLEL, 617.35 Da) was identified by LC-MS/MS analysis. The purpose of this study was to investigate the anti-obesity and anti-hyperglycemic effects of MLPH containing antioxidant peptides using ob/ob mice. Treatment with MLPH for 6 weeks reduced body and organ weight and ameliorated the effects of hepatic steatosis and epididymal fat, including a constructive effect on hepatic and serum marker parameters. Moreover, hepatic antioxidant enzyme activities were upregulated and impaired glucose tolerance was improved in obese control mice. In addition, MLPH treatment markedly suppressed mRNA expression related to lipogenesis and hyperglycemia through activation of AMPK phosphorylation. These findings suggest that MLPH has anti-obesity and anti-hyperglycemic potential and could be effectively applied as a functional food ingredient or pharmaceutical.
Collapse
Affiliation(s)
- Min Ju Kim
- Department of Marine Bio-Food Sciences, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Korea; (M.J.K.); (R.C.); (H.G.J.)
| | - Ramakrishna Chilakala
- Department of Marine Bio-Food Sciences, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Korea; (M.J.K.); (R.C.); (H.G.J.)
| | - Hee Geun Jo
- Department of Marine Bio-Food Sciences, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Korea; (M.J.K.); (R.C.); (H.G.J.)
| | - Seung-Jae Lee
- Immunoregulatory Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Korea;
| | - Dong-Sung Lee
- Department of Pharmacy, College of Pharmacy, Chosun University, Dong-gu, Gwangju 61452, Korea;
| | - Sun Hee Cheong
- Department of Marine Bio-Food Sciences, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Korea; (M.J.K.); (R.C.); (H.G.J.)
- Correspondence: ; Tel.: +82-61-659-7215; Fax: +82-61-659-7219
| |
Collapse
|
31
|
Zhang Y, Spitzer L, Rui X, Fernandes SCM, Vaugeois R, Simpson BK. Evaluation of the Preservation and Digestion of Seal Meat Processed with Heating and Antioxidant Seal Meat Hydrolysates. Mar Drugs 2022; 20:md20030204. [PMID: 35323504 PMCID: PMC8953424 DOI: 10.3390/md20030204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022] Open
Abstract
Seal meat is of high nutritive value but is not highly exploited for human food due to ethical issues, undesirable flavors, and loss of nutrients during the processing/cooking step. In this work, commercially available processed seal meat was treated with its hydrolysates as preservatives with the aim of improving nutrient bioavailability. The contents of the nutrients were analyzed after digestion using a simulated dynamic digestion model, and the effects of different processing conditions, i.e., low-temperature processing and storage (25 °C) and high-temperature cooking (100 °C), of seal meat were investigated. Hydrolysates with antioxidant activity decreased the amounts of the less desirable Fe3+ ions in the seal meat digests. After treatment with hydrolysates at room temperature, a much higher total Fe content of 781.99 mg/kg was observed compared to other treatment conditions. The release of amino acids increased with temperature and was 520.54 mg/g for the hydrolysate-treated sample versus 413.12 mg/g for the control seal meat sample treated in buffer. Overall, this study provides useful data on the potential use of seal meat as a food product with high nutritive value and seal meat hydrolysates with antioxidant activity as preservatives to control oxidation in food.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Food and Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l’Adour, 64000 Pau, France; (L.S.); (S.C.M.F.)
- Correspondence: (Y.Z.); (B.K.S.); Tel.: +1-514-398-7737 (B.K.S.)
| | - Lea Spitzer
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l’Adour, 64000 Pau, France; (L.S.); (S.C.M.F.)
| | - Xin Rui
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Susana C. M. Fernandes
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l’Adour, 64000 Pau, France; (L.S.); (S.C.M.F.)
| | - Romy Vaugeois
- Les Entreprises SeaDNA Canada Inc., Sainte-Brigitte-de-Laval, QC G0A 3K0, Canada;
| | - Benjamin K. Simpson
- Department of Food and Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
- Correspondence: (Y.Z.); (B.K.S.); Tel.: +1-514-398-7737 (B.K.S.)
| |
Collapse
|
32
|
Muñoz‐González R, Pino C, Henríquez H, Villanueva F, Riquelme A, Montealegre R, Agostini D, Batista‐González A, Leiva G, Contreras RA. Elucidation of antimicrobial and antioxidant activities of selected plant‐based mayonnaise‐derived essential oils against lactic acid bacteria. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Rodrigo Muñoz‐González
- Research Unit, Department of Research and Development (R&D) The Not Company SpA Santiago of Chile Chile
| | - Carla Pino
- Research Unit, Department of Research and Development (R&D) The Not Company SpA Santiago of Chile Chile
| | - Héctor Henríquez
- Research Unit, Department of Research and Development (R&D) The Not Company SpA Santiago of Chile Chile
| | - Francisca Villanueva
- Research Unit, Department of Research and Development (R&D) The Not Company SpA Santiago of Chile Chile
| | - Angeline Riquelme
- Research Unit, Department of Research and Development (R&D) The Not Company SpA Santiago of Chile Chile
| | - Romina Montealegre
- Research Unit, Department of Research and Development (R&D) The Not Company SpA Santiago of Chile Chile
| | - Davide Agostini
- Research Unit, Department of Research and Development (R&D) The Not Company SpA Santiago of Chile Chile
- Wageningen University and Research Wageningen The Netherlands
| | - Ana Batista‐González
- Research Unit, Department of Research and Development (R&D) The Not Company SpA Santiago of Chile Chile
| | - Gabriela Leiva
- Research Unit, Department of Research and Development (R&D) The Not Company SpA Santiago of Chile Chile
| | - Rodrigo A. Contreras
- Research Unit, Department of Research and Development (R&D) The Not Company SpA Santiago of Chile Chile
| |
Collapse
|