1
|
Li B, Yang H, Zhang Y, Li M, Liang C, Sun Q, Kong R, Qian Z, Ma X, Yu L, Chen S, Liu C. Pollution characteristics and health risk assessment of organophosphate esters in agricultural products from different regions of China. ENVIRONMENTAL RESEARCH 2025; 278:121675. [PMID: 40287039 DOI: 10.1016/j.envres.2025.121675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/02/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Organophosphate esters (OPEs) have been extensively utilized as flame retardants and plasticizers, raising significant concerns because of their persistence in the environment, mobility, and potential health risks. This study systematically analyzed the occurrence, spatial distribution, and health risks of 21 target OPEs in 232 agricultural product samples (including vegetables, fruits, grains, and animal products) collected from five regions in China: Shanghai, Liaoning, Qinghai, Sichuan, and Tibet. The results showed that the ∑11 OPEs concentrations ranged from ND (not detected) to 2381.79 μg/kg dw, with an average value of 160.79 μg/kg dw, reflecting the widespread presence of OPEs in these agricultural from the five regions. Significant regional differences were observed: Liaoning and Qinghai had the highest average concentrations, at 257.01 μg/kg dw and 245.85 μg/kg dw, respectively, while Sichuan and Tibet exhibited the lowest values, at 50.94 μg/kg dw and 43.11 μg/kg dw, respectively. Health risk assessments indicated that the HI∑ OPEs values in all regions were below the threshold of 1. Furthermore, the 95th percentile HI∑ OPEs value for grains in Liaoning approached 40 % of the threshold, with TDCIPP contributing 39 %, suggesting that the dietary exposure risks of OPEs remained a significant concern.
Collapse
Affiliation(s)
- Boqun Li
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haoyu Yang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongkang Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Meng Li
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chengqian Liang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qian Sun
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ren Kong
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Zhisong Qian
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xufa Ma
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liqin Yu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheng Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| | - Chunsheng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
2
|
Hou M, Wang Y, Ding H, Zhang B, Wang W, Shi Y, Cai Y. Nationwide investigation on organophosphate esters and di-esters in raw grains from China: Distribution, sources, and implications for risk assessment. ENVIRONMENT INTERNATIONAL 2025; 198:109437. [PMID: 40203503 DOI: 10.1016/j.envint.2025.109437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/07/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Studies on dietary exposure to organophosphate esters (OPEs) and diesters (di-OPEs) are limited, especially regarding di-OPEs and their presence in raw grains, which are fundamental staples of the human diet. In this study, 18 OPEs and 8 di-OPEs were measured in 289 grain samples from 13 major grain-producing regions in China belonging to four grain types: wheat, rice, maize, and soybean. Tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2-ethylhexyl) phosphate (TEHP) were the dominant OPEs, while bis(2-ethylhexyl) phosphate (BEHP) was the main di-OPE. The highest concentrations of both ∑OPEs and ∑di-OPEs were observed in soybean (median: 14.9 and 1.87 ng/g, respectively), followed by wheat (4.79 and 1.69 ng/g), maize (2.63 and 1.10 ng/g), and rice (2.37 and 0.726 ng/g). The regional distribution of OPEs and di-OPEs in maize and soybean was relatively homogeneous. In wheat, both OPEs and di-OPEs were significantly higher in Sichuan and Shandong provinces, whereas the spatial patterns of OPEs and di-OPEs in rice differed, suggesting separate sources for di-OPEs. Soil type, straw turnover, and pesticide use could significantly affect the concentrations of TEHP, tri(2-chloroethyl) phosphate (TCEP), and triethyl phosphate (TEP) in grains, respectively. Except for TEHP and tris(1,3-dichloro-2-propyl) phosphate (TDCPP), whose concentrations were similar in raw and polished rice, the other 8 OPEs in raw rice accounted for only 1.9-36 % of those in polished rice reported previously, indicating industrial processing as the main source of these OPEs in marketed grains. The estimated daily intake of OPEs and di-OPEs through grain consumption were 25.0-40.4 ng/kg bw/d and 7.55-11.7 ng/kg bw/d, respectively, primarily contributed by wheat and rice, which was higher than those through dust ingestion and drinking water, suggesting that grain is the main source of human exposure. Di-OPEs directly ingested from grains are significantly higher than those derived from the metabolism of their parent OPEs, implying that estimating OPE exposure based on internal di-OPE levels is inaccurate and warrants further research.
Collapse
Affiliation(s)
- Minmin Hou
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yichun Wang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Ding
- Environmental Science Research & Design Institute of Zhejiang Province and Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, Hangzhou 310007, China
| | - Bona Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weihua Wang
- National Institute of Metrology, Beijing 100029, China.
| | - Yali Shi
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yaqi Cai
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Du R, Zhou J, Zhang S, Chen Y, Lei B, Zhang X. Detection and screening of organophosphate esters in infant formula from Shanghai, China: distribution characteristics and risk evaluation. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2025; 42:465-478. [PMID: 39913853 DOI: 10.1080/19440049.2025.2459218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 03/26/2025]
Abstract
Organophosphate esters (OPEs) have raised great concerns in recent years. However, information regarding their occurrence in infant formula remains limited. Thus, thirty-two OPEs were measured in infant formula sold in Shanghai, China in 2023. The results showed that OPE occurrence in infant formula was widespread. The median concentrations of organophosphate diesters, organophosphate triesters, and total OPEs were 2.28, 5.20, and 8.63 ng/g, respectively. Tris(2-chloroisopropyl) phosphate (TCPP) showed the highest median concentration (1.95 ng/g), followed by triethyl phosphate, bis(1-chloro-2-propyl) phosphate (BCPP), tri-isobutyl phosphate, and triphenyl phosphate (0.532-0.581 ng/g). The dominant chloro-OPEs (TCPP and BCPP) were regional-specific. Compared to corresponding triesters, the diester concentrations were often lower, except for bis(2-butoxyethyl) phosphate and tributoxyethyl phosphate. Additionally, five novel OPEs with phenyl groups were identified, showing high detection frequencies and comparable concentrations to TCPP. Raw materials and food processing methods might affect individual OPEs. The estimated daily intakes (EDIs) ranged from 62.3 to 355 ng/kg bw/day. The highest EDI occurred in infants of 0-6 months of age but posed no obvious health risk for infants and toddlers. Further studies are still needed to evaluate the possible health implications arising from the novel OPEs and their metabolites, as well as the potentially synergistic effects.
Collapse
Affiliation(s)
- Ruiqi Du
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology, State Administration for Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Jing Zhou
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology, State Administration for Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai, China
| | - Shenping Zhang
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology, State Administration for Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai, China
| | - Yuanyuan Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Bingli Lei
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Xiaolan Zhang
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology, State Administration for Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| |
Collapse
|
4
|
Meng J, Long C, Fang L, Huang S, Liu H, Li G, Yu Y. National urinary metabolites of organophosphate flame retardants in urban Chinese residents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125886. [PMID: 39984015 DOI: 10.1016/j.envpol.2025.125886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Organophosphate flame retardants (OPFRs) are extensively added to household products for fire safety. However, little is understood about the national scale of human exposure levels and the factors influencing OPFRs in developing countries. In this study, five metabolites of OPFRs (mOPFRs) were determined for the first time in the urine of 1184 general population in 26 provincial capitals of mainland China. The detection frequency and median concentration of ∑5mOPFRs were 86.0% and 61 μg/L, respectively, with bis(1-chloro-2-propyl) phosphate, bis(2-chloroethyl) phosphate (BCEP), and diphenyl phosphate predominantly accounting for 75.9% of the total. Human exposure to OPFRs is higher in western China than in other Chinese regions. Gender, age, bottled water, and takeout consumption significantly influenced the urinary mOPFRs. Monte Carlo simulations showed that 3.6% of participants had hazard indices values higher than one, indicating that a small proportion of the Chinese population exposed to OPFRs had potential non-carcinogenic risks. Here, BCEP was the primary contributor, making up 81.5% of the total risk. This study indicated that investigating human exposure to OPFRs is imperative, especially the safety of these substances as a substitute for polybrominated diphenyl ethers.
Collapse
Affiliation(s)
- Junli Meng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Chaoyang Long
- Center for Disease Prevention and Control of Guangdong Province, Guangzhou, 510430, PR China
| | - Lei Fang
- Center for Disease Prevention and Control of Guangdong Province, Guangzhou, 510430, PR China
| | - Senyuan Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Hongli Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
5
|
Zhang Z, Zheng C, Gu X, Ahmed RZ, Yin H, Zhang J, Lin Y, Luo J, Niu Y, Jin X, Zheng Y. Cardiotoxicity of tris(2-chloroethyl) phosphate exposure: Insights into the role of oxygen sensor mediated energy metabolism remodeling. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137113. [PMID: 39787855 DOI: 10.1016/j.jhazmat.2025.137113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/16/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Tris(2-chloroethyl) phosphate, an extensively used organophosphorus flame retardant in consumer products, has caused pervasive environmental contamination and increased human exposure, raising concerns about its cardiotoxic potential. However, the detailed toxicological profile, particularly concerning the crucial cardiac energy metabolism, and the precise mechanisms remain poorly understood. This study in C57BL/6 J mice exposed to TCEP for 36 days at varying doses revealed cardiac dysfunction, structural abnormalities, and hypoxia. Analysis of energy metabolism indicated a shift from aerobic processes (tricarboxylic acid cycle, β-oxidation, and oxidative phosphorylation) to anaerobic metabolism (glycolysis). Further restoration of energy metabolism remodeling, which was achieved by activating oxidative phosphorylation and inhibiting glycolysis, mitigated TCEP-induced cardiotoxicity, highlighting the critical role of energy metabolism remodeling in TCEP-induced cardiac injury. Mechanistically, this metabolic remodeling was primarily driven by TCEP-enhanced hyperubiquitination and degradation of prolyl hydroxylase domain 2 (PHD2), leading to the accumulation and nuclear translocation of hypoxia-inducible factor-1α (HIF-1α). This study yields key insights into the cardiotoxicity of TCEP-like OPFRs exposure, and emphasizes the role of altered cardiac energy metabolism and the oxygen-sensing pathway, thereby proposing potential intervention strategies for OPFR-induced cardiac toxicity.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Chuer Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Xinya Gu
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | | | - Hao Yin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China; Shandong Institute of Parasitic Disease, Jining, China
| | - Jingxu Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Yongfeng Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Jiao Luo
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoting Jin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China.
| | - Yuxin Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
6
|
Cui Y, Zhou R, Yin Y, Liu Y, Zhao N, Li H, Zhang A, Li X, Fu J. Occurrence of Organophosphate Esters in Food and Food Contact Materials and Related Human Exposure Risks. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4455-4465. [PMID: 39935401 DOI: 10.1021/acs.jafc.4c11439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Organophosphate esters (OPEs) are a class of anthropogenic chemicals that have long been used as plasticizers and flame retardants. Dietary intake is an important OPE exposure pathway for humans. Since OPEs are usually used as industrial additives in food contact materials (FCMs), OPEs can enter foods through contact to FCMs. This paper focused on FCM-related exposure risks in foods, summarizing the presence of OPEs in FCMs and foods, analyzing the migration of the OPEs from FCMs to food, and assessing the dietary exposure risk of the OPEs to humans. Overall, the levels of the OPE in FCMs were at higher levels than those in foods. Processed and packaged foods contained higher levels of OPEs than nonprocessed/fresh foods. The migration investigations revealed that OPEs can be more likely transferred from FCMs to foods under the conditions of higher temperature and longer exposure time. We hope that this work will extend our current knowledge of the apportionment of OPE sources in foods and highlight the existing research gaps.
Collapse
Affiliation(s)
- Yajing Cui
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruoxian Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhan Yin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yuxin Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Nannan Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Hongting Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Park SH, Yun PJ, Hong Y, Kim KT, Choo G. Organophosphate flame retardants and their metabolites in paired dog food and urine: Pet exposure through food consumption. CHEMOSPHERE 2025; 370:143960. [PMID: 39694294 DOI: 10.1016/j.chemosphere.2024.143960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/20/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Companion dogs are exposed to various chemicals. However, our understanding of the sources and pathways of chemical exposure in pets remains limited. In this study, we collected urine samples from 47 dogs and corresponding samples of the food they consumed to analyze the concentrations and dietary exposure to organophosphate flame retardants (OPFRs) and their metabolites (mOPFRs). Triphenyl phosphate (TPHP) and its metabolite, diphenyl phosphate (DHPH), were the predominant compounds detected in dog food and urine samples. The concentration of mOPFRs in urine decreased as body weight increased; however, neither sex nor age significantly influenced mOPFR levels in dog urine. The estimated daily intake of OPFRs (343 ng/kg bw/day) through food consumption (EDIfood) was comparable to the previously reported levels of polycyclic aromatic hydrocarbons (324 ng/kg bw/day) and higher than those of pesticides (214 ng/kg bw/day), parabens (120 ng/kg bw/day), and polychlorinated biphenyls (103 ng/kg bw/day). By calculating the ratio of EDIfood to the cumulative daily intake based on urinary mOPFR concentrations, it was found that dietary sources contributed to 66% of the total TPHP exposure in dogs. This finding was further supported by Spearman's correlation analysis between parent OPFR concentrations in dog food and mOPFR levels in urine (p < 0.01), indicating that dietary intake may be one of the most significant exposure pathways for OPFRs in dogs. To the best of our knowledge, this is the first study to investigate the levels of OPFR exposure in paired dog food and urine samples.
Collapse
Affiliation(s)
- So-Hwi Park
- Department of Environmental Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Pil Jun Yun
- Department of Environmental Emgineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea; Risk Assessment Team, Korean Institute of Product Safety, Seoul, 06771, Republic of Korea
| | - Youngmin Hong
- Technical Research Center, Shimadzu Scientific Korea, Seoul, 08506, Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Emgineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Gyojin Choo
- Department of Environmental Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
8
|
Zhou R, Geng J, Jiang J, Shao B, Lin L, Wang B, Wu Y, Li W. An assessment of the levels of emerging and traditional organophosphate ester flame retardants in dairy products in China and their combined dietary risks. Food Chem Toxicol 2025; 195:115121. [PMID: 39571717 DOI: 10.1016/j.fct.2024.115121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/09/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
A comprehensive survey was conducted by investigating 25 emerging and traditional organophosphate esters (OPEs) in 182 dairy products collected in China. The concentrations of total OPEs (ΣOPEs) ranged from 0.0261 to 1178 ng/g wet weight (ww) in all the dairy samples. The major contaminants were triethyl phosphate (proportion: 94 %) and tris(1-chloro-2-isopropyl) phosphate (proportion: 2 %). Among types of dairy products, the concentrations of ΣOPEs decreased in the following order: milk powder (mean: 80.8 ng/g ww, proportion: 86 %) > cheese (9.43 ng/g ww, 10 %) > milk tablets (2.72 ng/g ww, 3 %) > liquid dairy (1.05 ng/g ww, 1 %). The significant correlation between emerging and traditional OPEs suggests that they likely share similar sources or are used together in commercial applications. OPEs contamination was related to the OPEs properties, local OPEs production and application, and dairy types. For the general Chinese population, the average and high estimated daily intakes of ΣOPEs via dairy products were 31.5 and 83.6 ng/kg bw/day, respectively. Dairy exposure in toddlers and children were higher than other age groups. Although the high-exposure risk of ΣOPEs was 3.50 × 10-3, potentially toxic tris(1-chloro-2-isopropyl) phosphate accounted for 38 % of the total hazard quotients.
Collapse
Affiliation(s)
- Ruize Zhou
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China; Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Jianqiang Geng
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Jie Jiang
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Bing Shao
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China.
| | - Li Lin
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Baolong Wang
- College of Science, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yantao Wu
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Wei Li
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| |
Collapse
|
9
|
Miao S, Wang X, Zhu Q, Liao C, Jiang G. Migration patterns of organophosphate esters from plastic food packaging simulants to foods: Donors, behaviours, and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176272. [PMID: 39278500 DOI: 10.1016/j.scitotenv.2024.176272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
In recent years, organophosphate esters (OPEs) have been widely produced and used as flame retardants and plasticizer additives, posing significant ecological and health risks. Dietary intake is considered to be the primary route of human exposure to OPEs. Plastic food packaging materials are considered a crucial source for contamination of OPEs in food. However, the migration behaviour of OPEs from plastic food packaging materials into foods has received limited attention. In this study, we employed a novel method to prepare migration donors containing 13 kinds of OPEs. The migration behaviours of OPEs from food packaging simulants (polypropylene) to foods (full-fat milk powder) were simulated, and factors influencing the migration of OPEs were examined, including the properties of the target compounds, migration temperature, fat content of the migration receptors, and mass transfer mode. The results indicated that OPEs exhibited a significant migration tendency. Low molecular weight OPEs (< 300 Da) had faster migration efficiency compared to high molecular weight OPEs. The mean migration efficiencies of various OPEs showed a significant negative correlation with their molecular weights (p < 0.01) and a significant positive correlation with temperature (p < 0.01). Except for resorcinol bis(diphenyl phosphate) (RDP), which showed almost no migration, the mean migration efficiencies of other OPEs at 25 °C, 40 °C, and 60 °C were 3.1-37.5 %, 9.0-60.0 %, and 23.9-80.4 %, respectively. Most of the OPEs demonstrated higher migration efficiency in high-fat content food than low-fat content food. The migration of OPEs from food packaging simulants to foods primarily occurred through contact rather than gas-phase mass transfer. Overall, this study uncovers the migration behaviours of OPEs from food packaging simulants to foods and scrutinized the relevant factors influencing the migration. It is expected that the research in terms of the contamination control of OPEs in food will benefit from this work.
Collapse
Affiliation(s)
- Shiyu Miao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Wang C, Jiang Y, Shao Y, Chen Z, Liang J, Gao J, Fang F, Guo J. The disparities in health risks of multiple pollutants through soil and dietary exposure in a rural-urban area based on accessibility method. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123194. [PMID: 39492138 DOI: 10.1016/j.jenvman.2024.123194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/10/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Rapid urbanization has resulted in disparities in environmental conditions for different communities in suburban area. This study presents a comprehensive investigation into the occurrence of pollutants in the soil and dietary food, and associated health risks in an urban-rural transitional area. The levels of potential toxic pollutants, notably metals, organophosphate esters (OPEs), and agrochemicals in surface soil and dietary food were evaluated. Higher levels of metals and OPEs were found in soils of industrial area, and agricultural soils had an elevated level of agrochemicals. The highest health risk was found for Chromium (Cr) which exceeded 1, indicating a high probability of adverse non-cancer effect to local residents. The levels of contaminants in food showed higher variability in community market and farmers' market than in supermarket, while higher levels of OPEs were found in food from supermarkets. The accessibility to fresh food mainly determined the differences in health risks of different communities. For dietary exposure, residents of industrial areas have higher levels of risk than other neighborhoods, mainly due to the possibility of exposure of foodstuffs with higher metal contents. In terms of market type, community markets mainly contributed to the comprehensive health risk through dietary exposure, especially for industrial and agricultural communities. The findings of this study provided further understanding of the spatial distribution of various contaminants as well as their health risks for different communities, which could guide the monitoring and management of potential toxic pollutants to safeguard public health in rural-urban transitional regions.
Collapse
Affiliation(s)
- Chenchen Wang
- Chongqing Key Laboratory of Agricultural Waste Resource Utilization, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China; College of Environment and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Yanxue Jiang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Ying Shao
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Zhongli Chen
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Jialiang Liang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Junmin Gao
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Fang Fang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Jinsong Guo
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
11
|
Cui X, Yao S, Jia H, Ma X, Fan S, Shi Z. Organophosphate esters and their metabolites in Beijing total diets: Occurrence, time trend, and dietary exposure assessment. Food Chem Toxicol 2024; 194:115103. [PMID: 39522794 DOI: 10.1016/j.fct.2024.115103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Organophosphate esters (OPEs) and their metabolites (mOPEs) are emerging pollutants. In this study, 18 OPEs and 10 mOPEs were measured in the 6th and 7th Beijing total diet studies (TDSs), and the dietary intakes of these pollutants by Beijing adults were estimated to assess related health concerns. Most OPEs and mOPEs had high detecting frequencies in both TDSs, which indicated that various foods in Beijing have been universally contaminated with OPEs and mOPEs. Statistical analysis further confirmed that the levels of both ∑OPEs and ∑mOPEs in the 7th Beijing TDS were significantly higher than those in the 6th study, indicating heavier contamination of both OPEs and their metabolites with time. Along with increasing OPE/mOPE contamination level and food consumption values, significant increases of EDIs were observed during the two studies, with the average EDIs of ∑OPEs increasing from 5.07 to 24.1 ng/kg bw/day, and that of ∑mOPEs increasing from 2.07 to 7.23 ng/kg bw/day. Although a comparison between EDIs and reference of doses (RfDs) indicated that current intakes of OPEs could still not cause significant health risks, the sharply increasing contamination levels and EDIs suggested the necessity to continuously monitor these emerging food contaminants.
Collapse
Affiliation(s)
- Xia Cui
- Institute for Nutrition and Food Hygiene, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Shunying Yao
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Haixian Jia
- Institute for Nutrition and Food Hygiene, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Xiaochen Ma
- Institute for Nutrition and Food Hygiene, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Sai Fan
- Institute for Nutrition and Food Hygiene, Beijing Center for Disease Prevention and Control, Beijing, 100013, China.
| | - Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
12
|
Li X, Zhang L, Zhang X, Liu J, Shao B. Organophosphorus flame retardants in infant's diets from Beijing, China: Detection and risk assessment. CHEMOSPHERE 2024; 368:143784. [PMID: 39571944 DOI: 10.1016/j.chemosphere.2024.143784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/23/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
As a group of widely used flame retardants, organophosphate esters (OPEs) and their metabolites, organophosphate diesters (di-OPEs), have been widely detected in various environmental media and human samples. However, the information on dietary exposure to OPEs for lactating infants is still limited. Here, 38 OPEs and 10 di-OPEs were monitored in 110 infant formula samples and 122 breast milk samples collected in Beijing, China. 20 OPEs (median: 49.9 ng/g, 16.5-160 ng/g) and 6 di-OPEs (median: 20.6 ng/g, 12.4-30.5 ng/g) were detected with frequency above 50% in infant formula, while 5 OPEs (median: 6.66 ng/g, 0.0566-221 ng/g) and 3 di-OPEs (median: 18.8 ng/g, 1.39-591 ng/g) had detection frequency above 50% in breast milk samples. For lactating infants, the total estimated daily intake (EDI) of ∑20OPEs (850 ng/kg bw/day) from infant formula was comparable with that of ∑5OPEs (836 ng/kg bw/day) from breast feeding, while the EDI of ∑6di-OPEs (333 ng/kg bw/day) from infant formula was significantly lower than that of ∑3di-OPEs (2456 ng/kg bw/day) from breast feeding. In summary, the results highlighted the risks of OPEs exposure from breast feeding. Further studies are warranted to evaluate the developmental toxicity of direct exposure to di-OPEs.
Collapse
Affiliation(s)
- Xiaohui Li
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100091, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, 100013, China
| | - Lei Zhang
- NHG Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Xin Zhang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
| | - Jiaying Liu
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100091, China.
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, 100013, China.
| |
Collapse
|
13
|
Yao S, Chen X, Lyu B, Zhang L, Wu Y, Liu J, Shi Z. Comprehensive dietary exposure assessment of the Chinese population to organophosphate esters (OPEs): Results of the sixth China total diet study. CHEMOSPHERE 2024; 364:143281. [PMID: 39243898 DOI: 10.1016/j.chemosphere.2024.143281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Organophosphate esters (OPEs) are emerging pollutants, while data on their occurrence in foods and human dietary intake are limited. Based on the 6th China total diet study conducted in 2016-2019, this study implemented a comprehensive survey of OPEs in plant-derived foods of cereals, potatoes, legumes, fruits, vegetables, and further assessed dietary exposure from both plant- and animal-derived food. The sum concentrations of 15 OPEs in the plant-derived samples ranged from 0.567 to 106 ng/g ww. 2-Ethylhexyl diphenyl phosphate (EHDPP) (median: 1.14 ng/g ww) had the highest level in plant-derived foods, with a proportion of 35.6% in the total median OPEs. Regional distribution analysis showed a higher contamination of OPEs in plant-derived food from northern area of China. Estimated dietary intakes (EDIs) of ∑OPEs for Chinese population were from 109 ng/kg bw/day in Beijing to 1164 ng/kg bw/day in Gansu province, with mean and median of 296 and 222 ng/kg bw/day, respectively. Although animal-derived foods had higher levels of OPEs, plant-derived foods, specifically cereals, was the major source of dietary OPE intake. The EDIs were much lower than reference doses, which suggested the intakes of OPEs via food consumption could not cause significant health risks to the Chinese population at present.
Collapse
Affiliation(s)
- Shunying Yao
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xuelei Chen
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Bing Lyu
- Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing, 100022, China; NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Lei Zhang
- Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing, 100022, China; NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Yongning Wu
- Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing, 100022, China; NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Jiaying Liu
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100091, China.
| | - Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
14
|
Wang X, Dong S, Zhu Q, Wu X, Zhou W, Liao C, Jiang G. Nationwide Investigation on Organophosphate Flame Retardants in Tea from China: Migration from Packaging Materials and Implications for Global Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14786-14796. [PMID: 39106076 DOI: 10.1021/acs.est.4c02424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
In this study, we measured 15 common organophosphate flame retardants (OPFRs) in six categories of tea samples across China. OPFRs were found in all the tea samples, with the total concentrations of OPFRs (∑OPFRs) at 3.44-432 ng/g [geometric mean (GM): 17.6 ng/g]. Triphenyl phosphate (TPhP) was the dominant OPFR, accounting for 39.0-76.2% of ∑OPFRs across all tea categories. The potential factors influencing the residual OPFRs in tea were thoroughly examined, including the agricultural environment, fermentation, and packaging of teas. Tea packaging materials (TPMs) were then identified as the primary sources of OPFRs in teas. The migration test revealed that OPFRs with lower molecular weights and log Kow values exhibited a higher propensity for facilitating the migration of OPFRs from TPMs to teas. The estimated daily intakes of OPFRs from teas were relatively higher for the general populations in Mauritania, Gambia, Togo, Morocco, and Senegal (3.18-9.79 ng/kg bw/day) than China (3.12 ng/kg bw/day). The health risks arising from OPFRs in Chinese teas were minor. This study established a baseline concentration and demonstrated the contamination sources of OPFRs in Chinese tea for the first time, with an emphasis on enhancing the hygiene standards for TPMs.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, and Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujun Dong
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xingyi Wu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Wenfeng Zhou
- College of Science, China Agricultural University, Beijing 100193, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Yang S, Li Y, Zhang M, Xu Q, Xie C, Wan Z, Song L, Lv Y, Wang Y, Chen H, Mei S. Individual and joint effects of organophosphate esters and hypertension or diabetes on renal injury among Chinese adults. Int J Hyg Environ Health 2024; 261:114424. [PMID: 39019002 DOI: 10.1016/j.ijheh.2024.114424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Exposure to environmental contaminants and the development of hypertension and diabetes represent crucial risk factors for chronic kidney disease (CKD). Toxicological studies have revealed that organophosphate esters (OPEs) impair kidney function. However, the joint effects of OPE exposure on kidney injury and the interactions of OPE exposure with hypertension or diabetes on kidney injury remain unclear. Our study aimed to investigate the individual and joint effects of OPE exposure on renal injury, as well as the potential interaction between OPE exposure and hypertension or diabetes on kidney injury. The study enrolled 1938 participants from Wuhan, China. To explore the relationship between OPE exposure and renal injury, we conducted multivariate linear and logistic regression analysis. The results indicated that each unit increase in 4-hydroxyphenyl diphenyl phosphate (4-HO-DPHP), bis(2-butoxyethyl) phosphate (BBOEP), and tris(2-chloroethyl) phosphate (TCEP) (1 μg/L-ln transformed) was associated with a decreased 0.57 mL/min/1.73 m2 (95%CI: -1.05, -0.09), 0.85 mL/min/1.73 m2 (95%CI: -1.52, -0.19) and 1.24 mL/min/1.73 m2 (95%CI: -2.26, -0.23) of estimated glomerular filtration rate (eGFR), while each unit increase in 4-HO-DPHP and BBOEP (1 μg/L-ln transformed) was associated with 14% and 20% elevation of incident impaired renal function (IRF) risk. Notably the highest tertile of BCIPHIPP was positively associated with eGFR, although the p for trend > 0.05. We employed Bayesian kernel machine regression (BKMR) and quartile-based g-computation (qgcomp) models to explore the joint effects of OPE mixtures on eGFR and IRF. Both the results of BKMR and qgcomp model consistently demonstrated negative associations between OPE mixtures and eGFR, and TCEP and 4-HO-DPHP were major contributors. Furthermore, we observed multiplicative interactions of diphenyl phosphate (DPHP), BBOEP, di-ocresyl phosphate (DoCP) & di-p-cresyl phosphate (DpCP), 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP) and hypertension or diabetes on kidney injury (all P<0.05). Those with diabetes or hypertension and higher OPE metabolite concentrations had increased risk of kidney function impairment compared to those who did not have diabetes or hypertension. These findings suggest that specific OPE exposure may elevate the risk of renal injury, particularly among hypertensive and diabetic populations.
Collapse
Affiliation(s)
- Sijie Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Mingye Zhang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Qitong Xu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Chang Xie
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Zhengce Wan
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongman Lv
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Chen
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
16
|
Naseem S, Tabinda AB, Baqar M, Khan MA, Zia-Ur-Rehman M. Occurrence, spatial distribution and ecological risk assessment of Organophosphate Esters in surface water and sediments from the Ravi River and its tributaries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174828. [PMID: 39025139 DOI: 10.1016/j.scitotenv.2024.174828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/22/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Organophosphate esters (OPEs) are widely used as substitutes for brominated flame retardants and characterized as emerging contaminants. Due to their toxicity and persistent nature, OPEs are becoming a matter of greater concern worldwide. However, information about the pollution profile of OPEs and associated ecological risks is still scarce in environmental matrices of the South Asian region, particularly Pakistan. Hence, the current study was conducted to investigate the occurrence, spatial distribution patterns, ecological risks and riverine flux of 10 organophosphate esters in surface water and sediments of Ravi River and its four tributaries. The concentrations of ∑10OPEs were in the range of 19.2 - 105 ng/L, with the dominance of chlorinated-OPEs (51 %) in surface water, whereas in case of sediments, the ∑10OPEs concentrations ranged from 20.7 to 149 ng/g dw, with high abundance of non - chlorinated alkyl-OPEs, which contributed about 56 % to total OPE concentration. The correlation analysis signified a strong positive relation of OPEs with TOC (p < 0.05, R = 0.76) in sediments; and in addition to this, field-based LogKoc values were estimated to be higher than predicted LogKoc. Moreover, a significantly positive correlation (p < 0.05, R = 0.88) was observed between LogKoc and LogKow, implying that hydrophobicity plays a significant role in OPE distribution in different environmental matrices. The global comparison revealed that contamination status of OPEs in the present study was comparatively lower than other regional findings, furthermore, principal component analysis suggested vehicular emissions, industrial discharges, household supplies and atmospheric deposition as main sources of OPEs occurrence in current study region. Furthermore, the riverine flux of ∑10OPEs was estimated to be 0.68 tons/yr and the ecological risk assessment indicated that all OPEs, except EHDPP and TCrP, showed negligible or insignificant ecological risks for aquatic organisms.
Collapse
Affiliation(s)
- Samra Naseem
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan.
| | - Amtul Bari Tabinda
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Mujtaba Baqar
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mehroze Ahmad Khan
- Applied Chemistry Research Centre, Pakistan Council of Scientific & Industrial Research Laboratories, Lahore 54600, Pakistan
| | - Muhammad Zia-Ur-Rehman
- Applied Chemistry Research Centre, Pakistan Council of Scientific & Industrial Research Laboratories, Lahore 54600, Pakistan
| |
Collapse
|
17
|
Liu Y, Li H, Yin Y, Zhao L, Zhou R, Cui Y, Wang Y, Wang P, Li X. Organophosphate esters in milk across thirteen countries from 2020 to 2023: Concentrations, sources, temporal trends and ToxPi priority to humans. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134632. [PMID: 38781852 DOI: 10.1016/j.jhazmat.2024.134632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Recent increases in organophosphate ester (OPE) application have led to their widespread presence, yet little is known about their temporal trends in food. This study collected milk samples from 13 countries across three continents during 2020-2023, finding detectable OPEs in all samples (range: 2.25-19.7; median: 7.06 ng/g ww). Although no statistical temporal differences were found for the total OPEs during the 4-year sampling campaign, it was interesting to observe significant variations in the decreasing trend for Cl-OPEs and concentration variations for aryl-OPEs and alkyl-OPEs (p < 0.05), indicating changing OPE use patterns. Packaged milk exhibited significant higher OPE levels than those found in directly collected raw unpackaged milk, and milk with longer shelf-life showed higher OPE levels, revealing packaging material as a contamination source. No significant geographical differences were observed in milk across countries (p > 0.05), but Shandong Province, a major OPE production site in China, showed relatively higher OPE concentrations. The Monte Carlo simulation of estimated daily intakes indicated no exposure risk from OPEs through milk consumption. The molecular docking method was used to assess human hormone binding affinity with OPEs, amongst which aryl-OPEs had the highest binding energies. The Toxicological-Priority-Index method which integrated chemical property, detection frequency, risk quotients, hazardous quotients and endocrine-disrupting effects was employed to prioritize OPEs. Aryl-OPEs showed the highest scores, deserving attention in the future.
Collapse
Affiliation(s)
- Yuxin Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Hongting Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yuhan Yin
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Liang Zhao
- Department of Gynecology and Obstetrics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Ruoxian Zhou
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yajing Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yongjun Wang
- Department of Gynecology and Obstetrics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
| | - Peilong Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
| |
Collapse
|
18
|
Lao ZL, Wu D, Li HR, Feng YF, Zhang LW, Jiang XY, Liu YS, Wu DW, Hu JJ. Uptake, translocation, and metabolism of organophosphate esters (OPEs) in plants and health perspective for human: A review. ENVIRONMENTAL RESEARCH 2024; 249:118431. [PMID: 38346481 DOI: 10.1016/j.envres.2024.118431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
Plant uptake, accumulation, and transformation of organophosphate esters (OPEs) play vital roles in their geochemical cycles and exposure risks. Here we reviewed the recent research advances in OPEs in plants. The mean OPE concentrations based on dry/wet/lipid weight varied in 4.80-3,620/0.287-26.8/12,000-315,000 ng g-1 in field plants, and generally showed positive correlations with those in plant habitats. OPEs with short-chain substituents and high hydrophilicity, particularly the commonly used chlorinated OPEs, showed dominance in most plant samples, whereas some tree barks, fruits, seeds, and roots demonstrated dominance of hydrophobic OPEs. Both hydrophilic and hydrophobic OPEs can enter plants via root and foliar uptake, and the former pathway is mainly passively mediated by various membrane proteins. After entry, different OPEs undergo diverse subcellular distributions and acropetal/basipetal/intergenerational translocations, depending on their physicochemical properties. Hydrophilic OPEs mainly exist in cell sap and show strong transferability, hydrophobic OPEs demonstrate dominant distributions in cell wall and limited migrations owing to the interception of Casparian strips and cell wall. Additionally, plant species, transpiration capacity, growth stages, commensal microorganisms, and habitats also affect OPE uptake and transfer in plants. OPE metabolites derived from various Phase I transformations and Phase II conjugations are increasingly identified in plants, and hydrolysis and hydroxylation are the most common metabolic processes. The metabolisms and products of OPEs are closely associated with their structures and degradation resistance and plant species. In contrast, plant-derived food consumption contributes considerably to the total dietary intakes of OPEs by human, particularly the cereals, and merits specifical attention. Based on the current research limitations, we proposed the research perspectives regarding OPEs in plants, with the emphases on their behavior and fate in field plants, interactions with plant-related microorganisms, multiple uptake pathways and mechanisms, and comprehensive screening analysis and risk evaluation.
Collapse
Affiliation(s)
- Zhi-Lang Lao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Dan Wu
- Research Groups Microbiology and Plant Genetics, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Hui-Ru Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China.
| | - Yu-Fei Feng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Long-Wei Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Xue-Yi Jiang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yi-Shan Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Dong-Wei Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Jun-Jie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| |
Collapse
|
19
|
Zhou R, Geng J, Jiang J, Shao B, Wang B, Wang Y, Li M. Emerging organophosphite and organophosphate esters in takeaway food and the implications for human exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32588-32598. [PMID: 38656716 DOI: 10.1007/s11356-024-33413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Takeaway food has become a prominent component of the diet in urban areas of China, especially for young people. Although dietary intake is a major pathway to contaminants for human exposure, studies on emerging organophosphite antioxidants (OPAs) and organophosphate esters (OPEs) in food are scarce. Here, we investigated four OPAs and 19 OPEs in takeaway foods (n = 99) and paired takeaway food packaging (n = 50) in China. AO168=O (mean: 14.9 ng/g ww), TPPO (mean: 1.05 ng/g ww), and TCIPP (mean: 0.579 ng/g ww) were dominant in the takeaway food. Some OPEs had significant correlations in takeaway food. Emerging OPAs and OPEs in takeaway food varied significantly depending on the packaging materials and food types. AO168 and AO168=O were widespread in the paired takeaway food packaging. The migration efficiencies of emerging OPAs and OPEs were low in takeaway food packaged in aluminum foil. Although the actual contamination of emerging OPAs and OPEs in takeaway food significantly differed from those of in food simulants migrated from paired takeaway food packaging, the results imply that food itself and takeaway food packaging are potential contamination sources of emerging OPAs and OPEs in takeaway food. The average estimated dietary intakes of emerging OPAs and OPEs were 465 ng/kg body weight (bw)/day and 91.9 ng/kg bw/day, respectively. The exposure risk of emerging OPAs and OPEs through takeaway food intake is low in China.
Collapse
Affiliation(s)
- Ruize Zhou
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Jianqiang Geng
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Jie Jiang
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Bing Shao
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China.
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China.
| | - Baolong Wang
- College of Science, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yu Wang
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Minggang Li
- Laboratory of Key Technologies of Major Comprehensive Guarantee of Food Safety for State Market Regulation, Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| |
Collapse
|
20
|
Lao ZL, Wu D, Li HR, Liu YS, Zhang LW, Feng YF, Jiang XY, Wu DW, Hu JJ, Ying GG. Uptake mechanism, translocation, and transformation of organophosphate esters in water hyacinth (Eichhornia crassipes): A hydroponic study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122933. [PMID: 37977360 DOI: 10.1016/j.envpol.2023.122933] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/28/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Owing to their dominant wastewater origin, bioavailability, and toxicity, the occurrence and behavior of organophosphate esters (OPEs) in aquatic systems have attracted considerable attention over the past two decades. Aquatic plants can accumulate and metabolize OPEs in water, thereby playing an important role in their behavior and fate in waterbodies. However, their uptake, translocation and transformation mechanisms in plants remain incompletely characterized. We investigated the accumulation and transformation of OPEs in water hyacinth (Eichhornia crassipes) through a series of hydroponic experiments using three representative OPEs, tris(2-chloroethyl) phosphate (TCEP), tris(2-butoxyethyl) phosphate (TBEP), and triphenyl phosphate (TPP). These OPEs can not only be adsorbed onto and enter plant roots via passive diffusion pathways, which are facilitated by anion channels and/or aquaporins, but also can return to the solution when concentration gradients exist. After entry, hydrophilic TCEP showed a dominant distribution in the cell sap, strong acropetal transportability, and rapid translocation rate, whereas hydrophobic TPP was mostly retained in the root cell wall and therefore demonstrated weak acropetal transportability; TBEP with moderate hydrophilicity remained in the middle. All these OPEs can be transformed into diesters, which presented higher proportions in the cell sap and therefore have stronger acropetal transferability than their parent OPEs. TCEP exhibits the lowest biodegradability, followed by TPP and TBEP. These OPEs exerted apparent effects on plant growth, photosynthesis, and the diversity and composition of the rhizosphere microbial community.
Collapse
Affiliation(s)
- Zhi-Lang Lao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Dan Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Hui-Ru Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China.
| | - Yi-Shan Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Long-Wei Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yu-Fei Feng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Xue-Yi Jiang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Dong-Wei Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Jun-Jie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
21
|
Chen Y, Xiao Q, Su Z, Yuan G, Ma H, Lu S, Wang L. Discovery and occurrence of organophosphorothioate esters in food contact plastics and foodstuffs from South China: Dietary intake assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167447. [PMID: 37788781 DOI: 10.1016/j.scitotenv.2023.167447] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/07/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
A recent study revealed the presence of non-pesticide organothiophosphate esters (OTPEs) - precursors to organophosphate esters (OPEs) contaminants - in river water. Since OPEs have demonstrated adverse reproductive outcomes in humans, this accentuates the urgency to explore the prevalence of non-pesticide OTPEs in other potential human exposure matrices. In this study, a nontarget screening method based on high-resolution mass spectrometry was used to identify OTPEs in food contact plastic (FCP) samples collected from South China. O,O,O-triphenyl phosphorothioate (TPhPt) and O,O,O-tris(2,4-di-tert-butylphenyl) phosphorothioate (AO168 = S) were unequivocally identified (Level 1), while O,O-di(di-butylphenyl) O-methyl phosphorothioate (BDBPMPt) was tentatively identified (Level 2b, indicating probable structure based on diagnostic evidence). Among n = 70 FCP samples, AO168 = S emerged with the highest detection frequency and median concentration of 74 % and 111 ng/g, respectively. Significant Pearson correlations were observed in log-transformed peak areas of AO168 = S and TPhPt in FCPs with their respective oxons, respectively. Occurrences of AO168 = S and TPhPt were further investigated in n = 100 foodstuff samples using a market basket method. AO168 = S and TPhPt exhibited detection frequencies of 43 % and 44 % in all food items with mean concentrations of 2.17 ng/g wet weight (ww) (range: <0.53-67.8 ng/g ww) and 0.112 ng/g ww (range: <0.006-2.39 ng/g ww), respectively. The highest mean concentrations for AO168 = S and TPhPt were found in vegetables (4.62 ng/g ww) and oil (3.00 ng/g ww), respectively. The median estimated daily intakes (EDIs) of AO168 = S and TPhPt via diet were calculated as 10.4 and 1.51 ng/kg body weight/day, respectively. For AO168 = S, only meat and vegetables contributed to the median EDI, whereas for TPhPt, oil was identified as the principal contributor to the median EDI. This study for the first time evaluated human exposure to OTPEs via diet, providing new insights to overall human exposure to OPEs.
Collapse
Affiliation(s)
- Yanhao Chen
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhanpeng Su
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Guanxiang Yuan
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Haojia Ma
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| | - Lei Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
22
|
Xiao Q, Su Z, Wang L, Yuan G, Ma H, Lu S. Establishment of an Integrated Nontarget and Suspect Screening Workflow for Organophosphate Diesters (Di-OPEs) and Identification of Seven Previously Unknown Di-OPEs in Food Contact Plastics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20348-20358. [PMID: 38051668 DOI: 10.1021/acs.jafc.3c06207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
In this study, an innovative, integrated nontarget and suspect screening workflow was developed for identifying organophosphate diesters (di-OPEs) using high-resolution mass spectrometry. The workflow featured the utilization of 0.02% acetic acid as a mobile-phase additive, differentiated screening methods for alkyl and aryl di-OPEs, and a combination of electrospray negative ionization and positive ionization. Using this workflow, 18 di-OPEs were identified in the extracts of 75 food contact plastic (FCP) samples sourced from South China. Among these, six alkyl and one aryl di-OPEs were previously unknown (one unequivocal identification and six probable structures based on diagnostic evidence). (Semi)quantification revealed that bis(2,4-di-tert-butylphenyl) phosphate was the major di-OPE in FCPs, with a median concentration of 1079 ng/g (range: 23.4-158,414 ng/g). The migration efficiencies of di-OPEs from an FCP sample to four kinds of food simulants were between 2.58 and 54.3%. This study offered a useful workflow for the comprehensive profiling of di-OPEs in FCPs.
Collapse
Affiliation(s)
- Qinru Xiao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhanpeng Su
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Lei Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Guanxiang Yuan
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Haojia Ma
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
23
|
Chen X, Liang X, Yang J, Yuan Y, Xiao Q, Su Z, Chen Y, Lu S, Wang L. High-resolution mass spectrometry-based screening and dietary intake assessment of organophosphate esters in foodstuffs from South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167169. [PMID: 37730029 DOI: 10.1016/j.scitotenv.2023.167169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Organophosphate esters (OPEs) are a group of emerging contaminants with widespread environmental occurrence, yet research on their occurrence in foodstuffs is limited. We collected 100 foodstuff samples in South China using a market basket method, and analyzed food extracts for the presence of OPEs and organophosphite antioxidants (OPAs) by suspect and nontarget screening through high-resolution mass spectrometry. Our analysis resulted in the identification of 30 OPEs, comprised of 25 OPEs with a confidence level (CL) of 1 (unequivocal identification using standards) and five OPEs with CL = 2b (probable structure based on diagnostic evidence). Interestingly, 11 of these identified OPEs had not been previously reported in food. No OPA was identified. The occurrence of identified OPEs within the food samples was further investigated. The highest median concentration of OPEs in all food samples was reached by tris(2-chloroisopropyl) phosphate (TCPP) (1.55 ng/g ww, range < 0.74-12.0 ng/g wet weight (ww)). Cereals demonstrated the highest median concentration of the cumulative 30 OPEs. Tris(2-chloroethyl) phosphate (TCEP), TCPP, and triethyl phosphate (TEP) predominantly contributed to OPEs contamination in most food categories. Eight OPEs, namely TEP, tris(2-ethylhexyl) phosphate (TEHP), TCEP, triphenyl phosphate (TPhP), 2-ethylhexyl diphenyl phosphate (EHDPP), bis(2-ethylhexyl) phenyl phosphate (BEHPP), resorcinol bis(diphenyl phosphate) (RDP), and methyl diphenyl phosphate (MDPP) exhibited significantly higher concentrations in the processed group as compared to non-processed group, suggesting that food processing may result in contamination of these OPEs. The median sum of estimated dietary intake (ΣEDI) of all OPEs was determined to be 161 ng/kg body weight/day. Cereals (38.5 %) and vegetables (23.5 %) were the predominant food categories contributing to ΣEDI, and TEP (29.0 %), TCEP (20.2 %), and TCPP (18.3 %) were three major OPEs contributing to ΣEDI. This study for the first time offered a comprehensive overview of OPE species and revealed their occurrence in foodstuffs from South China.
Collapse
Affiliation(s)
- Xiwei Chen
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xinhan Liang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Junyu Yang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yinqian Yuan
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhanpeng Su
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yanhao Chen
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Lei Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
24
|
Wu Y, Zheng W, Chen C, Yang L, Tong P, Zhong Y, Lin Z, Cai Z. Facile synthesis of spherical covalent organic frameworks for enrichment and quantification of aryl organophosphate esters in mouse serum and tissues. J Sep Sci 2023; 46:e2300482. [PMID: 37727055 DOI: 10.1002/jssc.202300482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
Here, an imine-linked-based spherical covalent organic framework (COF) was prepared at room temperature. The as-synthesized spherical COF served as an adsorbent in dispersive solid-phase extraction (dSPE), by its virtue of great surface area (1542.68 m2 /g), regular distribution of pore size (2.95 nm), and excellent stability. Therefore, a simple and high-efficiency dispersive solid phase extraction method based on a spherical COF coupled with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was established to determine aryl organophosphate esters in biological samples. This approach displayed favorable linearity in the range of 10.0-1000.0 ng/L (r > 0.9989), a high signal enhancement factor (58.8-181.8 folds) with low limits of detection (0.3-3.3 ng/L). Moreover, it could effectively eliminate complex matrix interference to accurately extract seven aryl organophosphate esters from mouse serum and tissue samples with spiked recoveries of 82.0%-117.4%. The as-synthesized spherical COF has been successfully applied in sample preparation. The dSPE-HPLC-MS/MS method based on a spherical COF has potential application to study the pollutants' metabolism in vivo.
Collapse
Affiliation(s)
- Yijing Wu
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Wenjun Zheng
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Canrong Chen
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Linyan Yang
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Ping Tong
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Yanhui Zhong
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Zongwei Cai
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, P. R. China
| |
Collapse
|
25
|
Araújo da Silva A, Fagnani E, Cristale J. A modified QuEChERS method for determination of organophosphate esters in milk by GC-MS. CHEMOSPHERE 2023; 334:138974. [PMID: 37207896 DOI: 10.1016/j.chemosphere.2023.138974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/19/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Organophosphate esters (OPEs) are substances that have been detected in several matrices due to their use as flame retardants and plasticizers. Human exposure to OPEs can cause endocrine disruption, hormonal problems, and reproductive disturbance. Ingestion of contaminated food can be a significant route of exposure to OPEs. Food can be contaminated by OPEs in the food chain, during cultivation, and by contact with plasticizers during the production chain of processed foods. In this study, a method for the determination of 10 OPEs in commercial bovine milk was developed. The procedure was based on QuEChERS extraction and gas chromatography coupled to mass spectrometry (GC-MS) analysis. QuEChERS modification included a freezing-out step after the extraction followed by the concentration of the entire acetonitrile phase before the clean-up step. Calibration linearity, matrix effects, recovery, and precision were evaluated. Significant matrix effects were observed, which could be compensated by the isotopically labeled internal standard quantification and matrix-matched calibration curves. Recoveries ranged from 77 to 105%, with a relative standard deviation ranging from 3 to 38%. The method detection limits (MDLs) were in the range of 0.031-6.7 ng mL-1, while the method quantification limits (MQLs) were within the range from 0.27 to 20 ng mL-1. The proposed method was successfully validated and applied to determine the concentrations of OPEs in bovine milk. The 2-ethylhexyl diphenyl phosphate (EHDPHP) was detected in the analyzed milk samples but at levels below the MQL.
Collapse
Affiliation(s)
- Amanda Araújo da Silva
- School of Technology, University of Campinas (FT-UNICAMP), Rua Paschoal Marmo 1888, 13484-332 Limeira, SP, Brazil
| | - Enelton Fagnani
- School of Technology, University of Campinas (FT-UNICAMP), Rua Paschoal Marmo 1888, 13484-332 Limeira, SP, Brazil
| | - Joyce Cristale
- School of Technology, University of Campinas (FT-UNICAMP), Rua Paschoal Marmo 1888, 13484-332 Limeira, SP, Brazil; Center for Nuclear Energy in Agriculture, University of São Paulo (CENA-USP), Av Centenário 303, 13416-000, Piracicaba, SP, Brazil.
| |
Collapse
|
26
|
Zhou R, Geng J, Jiang J, Lin L, Zhang J, Yang Y, Wang W, Niu Y, Shao B. Occurrences and migration of organophosphite and organophosphate esters into food simulants from single-use food packaging in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121782. [PMID: 37164220 DOI: 10.1016/j.envpol.2023.121782] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Organophosphite antioxidants (OPAs) and organophosphate esters (OPEs) are used as additives in food packaging. Because these chemicals have been found in various foods, they have caused increasing concern about potential health risks through food intake. Little information is available about the migration behaviors of OPAs and OPEs from single-use food packaging into food. In the present study, four OPAs and 23 OPEs were analyzed in paper and plastic single-use food packaging (n = 312), which are widely used for take-out food in China. The total concentrations of OPAs and OPEs in the packaging samples were 1966 and 189 ng/g, respectively. Tris (2,4-di-tert-butylphenyl) phosphite (AO168) was the dominant compound. OPAs and OPEs were present at higher concentrations in the plastic packaging than in the paper packaging. In a migration test, four OPAs and 15 OPEs were found in food simulants (4% acetic acid, 10% ethanol, and hexane). Higher levels of individual and total OPAs were found in hexane than the other food simulants, especially for AO168 migration from plastic packaging. The amounts of OPEs in the food simulants increased from the aqueous simulants (4% acetic acid and 10% ethanol) to the fatty food simulant (hexane). The migration efficiencies of the OPAs were higher than those of the OPEs. Preliminary calculations suggest that dietary exposure to OPAs and OPEs because of migration will be low for the population in China.
Collapse
Affiliation(s)
- Ruize Zhou
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China; Beijing Institute of Food Inspection and Research(Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Jianqiang Geng
- Beijing Institute of Food Inspection and Research(Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Jie Jiang
- Beijing Institute of Food Inspection and Research(Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Li Lin
- Beijing Institute of Food Inspection and Research(Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, 100094, China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Preventive Medical Research, Beijing, 100013, China
| | - Yunjia Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Preventive Medical Research, Beijing, 100013, China
| | - Wenjun Wang
- College of Science, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yumin Niu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Preventive Medical Research, Beijing, 100013, China
| | - Bing Shao
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Preventive Medical Research, Beijing, 100013, China.
| |
Collapse
|
27
|
Li Y, Wang X, Zhu Q, Xu Y, Fu Q, Wang T, Liao C, Jiang G. Organophosphate Flame Retardants in Pregnant Women: Sources, Occurrence, and Potential Risks to Pregnancy Outcomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7109-7128. [PMID: 37079500 DOI: 10.1021/acs.est.2c06503] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Organophosphate flame retardants (OPFRs) are found in various environmental matrixes and human samples. Exposure to OPFRs during gestation may interfere with pregnancy, for example, inducing maternal oxidative stress and maternal hypertension during pregnancy, interfering maternal and fetal thyroid hormone secretion and fetal neurodevelopment, and causing fetal metabolic abnormalities. However, the consequences of OPFR exposure on pregnant women, impact on mother-to-child transmission of OPFRs, and harmful effects on fetal and pregnancy outcomes have not been evaluated. This review describes the exposure to OPFRs in pregnant women worldwide, based on metabolites of OPFRs (mOPs) in urine for prenatal exposure and OPFRs in breast milk for postnatal exposure. Predictors of maternal exposure to OPFRs and variability of mOPs in urine have been discussed. Mother-to-child transmission pathways of OPFRs have been scrutinized, considering the levels of OPFRs and their metabolites in amniotic fluid, placenta, deciduae, chorionic villi, and cord blood. The results showed that bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) and diphenyl phosphate (DPHP) were the two predominant mOPs in urine, with detection frequencies of >90%. The estimated daily intake (EDIM) indicates low risk when infants are exposed to OPFRs from breast milk. Furthermore, higher exposure levels of OPFRs in pregnant women may increase the risk of adverse pregnancy outcomes and influence the developmental behavior of infants. This review summarizes the knowledge gaps of OPFRs in pregnant women and highlights the crucial steps for assessing health risks in susceptible populations, such as pregnant women and fetuses.
Collapse
Affiliation(s)
- Yongting Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqian Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou Zhejiang, 310024, China
| | - Qiuguo Fu
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Germany
| | - Thanh Wang
- Man-Technology-Environment (MTM) Research Centre, Örebro University, Örebro 701 82, Sweden
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou Zhejiang, 310024, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou Zhejiang, 310024, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Li M, Fei J, Zhang Z, Sun Q, Liu C. Organophosphate esters in Chinese rice: Occurrence, distribution, and human exposure risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160915. [PMID: 36521608 DOI: 10.1016/j.scitotenv.2022.160915] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Dietary intake is a crucial pathway of organophosphate esters (OPEs) exposure for human. However, information about the exposure risk of OPEs via rice consumption is still largely unknown. In the present study, a total of 234 rice samples from 25 provinces or city of China were collected and the concentrations of 24 OPEs were determined. Sixteen OPEs were detected in these rice samples and each rice sample was contaminated with at least 5 OPEs, indicating a ubiquitous occurrence of OPEs in Chinese rice. Moreover, the concentrations of Σ16 OPEs ranged from 1.46 to 552.65 μg/kg dry weight (dw), with a mean value of 64.74 μg/kg dw. For the composition profile of OPEs, three Cl-OPEs, including tris(2-chloroethyl) phosphate (TCEP), tri(2-chloroisopropyl) phosphate (TCIPP) and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), accounted for the highest proportion of Σ16 OPEs. For the spatial distribution of OPEs, although obvious spatial variations were observed among the 25 provinces or city, no obvious variations were found among the six rice-cultivating regions of China. Additionally, estimated dietary intakes (EDI) values of the 16 OPEs for adults and children were 1105.24 and 1399.13 ng/kg bw/day, respectively, under the high intake scenario. The hazard indexes of the 10 OPEs were 0.108 and 0.137 for adults and children, respectively. The risk assessment results indicated that Chinese adults and children did not suffer significant adverse effects from OPEs via rice intake.
Collapse
Affiliation(s)
- Meng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiamin Fei
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zihan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|