1
|
Anghel AC, Țăranu I, Orțan A, Marcu Spinu S, Dragoi Cudalbeanu M, Rosu PM, Băbeanu NE. Polyphenols and Microbiota Modulation: Insights from Swine and Other Animal Models for Human Therapeutic Strategies. Molecules 2024; 29:6026. [PMID: 39770115 PMCID: PMC11678809 DOI: 10.3390/molecules29246026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
High consumption of ultra-processed foods, rich in sugar and unhealthy fats, has been linked to the onset of numerous chronic diseases. Consequently, there has been a growing shift towards a fiber-rich diet, abundant in fruits, vegetables, seeds, and nuts, to enhance longevity and quality of life. The primary bioactive components in these plant-based foods are polyphenols, which exert significant effects on modulating the gastrointestinal microbiota through their antioxidant and anti-inflammatory activities. This modulation has preventive effects on neurodegenerative, metabolic, and cardiovascular diseases, and even cancer. The antimicrobial properties of polyphenols against pathogenic bacteria have significantly reduced the need for antibiotics, thereby lowering the risk of antibiotic resistance. This paper advances the field by offering novel insights into the beneficial effects of polyphenols, both directly through the metabolites produced during digestion and indirectly through changes in the host's gastrointestinal microbiota, uniquely emphasizing swine as a model highly relevant to human health, a topic that, to our knowledge, has not been thoroughly explored in previous reviews. This review also addresses aspects related to both other animal models (mice, rabbits, and rats), and humans, providing guidelines for future research into the benefits of polyphenol consumption. By linking agricultural and biomedical perspectives, it proposes strategies for utilizing these bioactive compounds as therapeutic agents in both veterinary and human health sciences.
Collapse
Affiliation(s)
- Andrei Cristian Anghel
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Boulevard, 011464 Bucharest, Romania; (A.C.A.); (N.E.B.)
- National Research-Development Institute for Animal Biology and Nutrition (IBNA), 1 Calea Bucuresti, 077015 Balotesti, Romania;
| | - Ionelia Țăranu
- National Research-Development Institute for Animal Biology and Nutrition (IBNA), 1 Calea Bucuresti, 077015 Balotesti, Romania;
| | - Alina Orțan
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 MarastiBoulevard, 011464 Bucharest, Romania; (S.M.S.); (M.D.C.)
| | - Simona Marcu Spinu
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 MarastiBoulevard, 011464 Bucharest, Romania; (S.M.S.); (M.D.C.)
| | - Mihaela Dragoi Cudalbeanu
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 MarastiBoulevard, 011464 Bucharest, Romania; (S.M.S.); (M.D.C.)
| | - Petronela Mihaela Rosu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Boulevard, 011464 Bucharest, Romania;
| | - Narcisa Elena Băbeanu
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Boulevard, 011464 Bucharest, Romania; (A.C.A.); (N.E.B.)
| |
Collapse
|
2
|
Zheng Y, Qin C, Wen M, Zhang L, Wang W. The Effects of Food Nutrients and Bioactive Compounds on the Gut Microbiota: A Comprehensive Review. Foods 2024; 13:1345. [PMID: 38731716 PMCID: PMC11083588 DOI: 10.3390/foods13091345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
It is now widely recognized that gut microbiota plays a critical role not only in the development and progression of diseases, but also in its susceptibility to dietary patterns, food composition, and nutritional intake. In this comprehensive review, we have compiled the latest findings on the effects of food nutrients and bioactive compounds on the gut microbiota. The research indicates that certain components, such as unsaturated fatty acids, dietary fiber, and protein have a significant impact on the composition of bile salts and short-chain fatty acids through catabolic processes, thereby influencing the gut microbiota. Additionally, these compounds also have an effect on the ratio of Firmicutes to Bacteroides, as well as the abundance of specific species like Akkermansia muciniphila. The gut microbiota has been found to play a role in altering the absorption and metabolism of nutrients, bioactive compounds, and drugs, adding another layer of complexity to the interaction between food and gut microbiota, which often requires long-term adaptation to yield substantial outcomes. In conclusion, understanding the relationship between food compounds and gut microbiota can offer valuable insights into the potential therapeutic applications of food and dietary interventions in various diseases and health conditions.
Collapse
Affiliation(s)
- Yijun Zheng
- Clinical Pharmacy (Sino-Foreign Cooperation) Class, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Chunyin Qin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (C.Q.); (M.W.)
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (C.Q.); (M.W.)
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (C.Q.); (M.W.)
| | - Weinan Wang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Blvd, Dongguan 523808, China
| |
Collapse
|
3
|
Oussou KF, Guclu G, Kelebek H, Selli S. Valorization of cocoa, tea and coffee processing by-products-wastes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 107:91-130. [PMID: 37898543 DOI: 10.1016/bs.afnr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
The growing threat of food insecurity together with some challenges in demography, health, malnutrition, and income instability around the globe has led researchers to take sustainable solutions to ensure secure production and distribution of food. The last decades have been remarkable in the agri-food supply chain for many food industries. However, vast quantities of food by-products and wastes are generated each year. These products are generally disposed in the environment, which could have remarkable adverse effects on the environment and biodiversity. However, they contain significant quantities of bioactive, nutritional, antioxidative, and aroma compounds. Their sustainable use could meet the increased demand for value-added pharmaceutical, nutraceutical, and food products. The amount of agri-food wastes and their disposal in the environment are predicted to double in the next decade. The valorization of these by-products could effectively contribute to the manufacture of cheaper functional food ingredients and supplements while improving regional economy and food security and mitigating environmental pollution. The main aim of this chapter is to present an understanding of the valorization of the wastes and by-products from cacao, coffee and tea processing with a focus on their bioactive, nutritional, and antioxidant capacity.
Collapse
Affiliation(s)
- Kouame Fulbert Oussou
- Department of Food Engineering, Faculty of Engineering, Cukurova University, Adana, Turkey
| | - Gamze Guclu
- Department of Food Engineering, Faculty of Engineering, Cukurova University, Adana, Turkey
| | - Hasim Kelebek
- Department of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Serkan Selli
- Department of Food Engineering, Faculty of Engineering, Cukurova University, Adana, Turkey.
| |
Collapse
|
4
|
Hossain MN, Senaka Ranadheera C, Fang Z, Ajlouni S. Production of short chain fatty acids and vitamin B12 during the in-vitro digestion and fermentation of probiotic chocolate. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Younes A, Li M, Karboune S. Cocoa bean shells: a review into the chemical profile, the bioactivity and the biotransformation to enhance their potential applications in foods. Crit Rev Food Sci Nutr 2022; 63:9111-9135. [PMID: 35467453 DOI: 10.1080/10408398.2022.2065659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During processing, cocoa bean shells (CBS) are de-hulled from the bean and discarded as waste. Undermined by its chemical and bioactive composition, CBS is abundant in dietary fiber and phenolic compounds that may serve the valorization purpose of this by-product material into prebiotic and functional ingredients. In addition, the cell-wall components of CBS can be combined through enzymatic feruloylation to obtain feruloylated oligo- and polysaccharides (FOs), further enhancing the techno-functional properties. FOs have attracted scientific attention due to their prebiotic, antimicrobial, anti-inflammatory and antioxidant functions inherent to their structural features. This review covers the chemical and bioactive compositions of CBS as well as their modifications upon cocoa processing. Physical, chemical, and enzymatic approaches to extract and bio-transform bioactive components from the cell wall matrix of CBS were also discussed. Although nonspecific to CBS, studies were compiled to investigate efforts done to extract and produce feruloylated oligo- and polysaccharides from the cell wall materials.
Collapse
Affiliation(s)
- Amalie Younes
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| | - Mingqin Li
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| |
Collapse
|
6
|
Cao G, Yu Y, Wang H, Liu J, Zhang X, Yu Y, Li Z, Zhang Y, Yang C. Effects of Oral Administration of Bamboo (Dendrocalamus membranaceus) Leaf Flavonoids on the Antioxidant Capacity, Caecal Microbiota, and Serum Metabolome of Gallus gallus domesticus. Front Nutr 2022; 9:848532. [PMID: 35308272 PMCID: PMC8930276 DOI: 10.3389/fnut.2022.848532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/11/2022] [Indexed: 12/23/2022] Open
Abstract
The consumption of bamboo leaf flavonoids (BLFs) as novel dietary antioxidants has increased owing to their beneficial biological and pharmacological functions. This study assessed the in vivo effects of BLFs on antioxidant capacity, as well as caecal microbiota, serum metabolome, and health status. The Gallus gallus domesticus model and the oral administration approach were used with four treatment groups (basal diet, basal diet with 20 mg bacitracin/kg, basal diet with 50 mg BLF/kg, and basal diet with 250 mg BLF/kg). Ultra-high-performance liquid chromatography triple-quadrupole mass spectrometry analysis indicated that vitexin, fumaric acid, orientin, isoorientin, and p-coumaric acid were the predominant BLF components. From days 1 to 21, BLF increased the average daily gain and decreased the feed:gain of broilers. Moreover, BLF enhanced the serum antioxidant capacity and immune responses. Further, 16S rRNA sequencing showed that BLF modulated the caecal microbial community structure, which was dominated by Betaproteobacteriales, Erysipelatoclostridium, Parasutterella, Lewinella, Lactobacillus, and Candidatus Stoquefichus in BLF broilers. Among the 22 identified serum metabolites in BLF broilers, sphinganine, indole-3-acetaldehyde retinol, choline, 4-methylthio-2-oxobutanoic acid, and L-phenylalanine were recognised as biomarkers. In summary, BLFs appeared to modulate the caecal microbiome, alter the serum metabolome, and indirectly improve antioxidant capacity and health status.
Collapse
Affiliation(s)
- Guangtian Cao
- College of Standardisation, China Jiliang University, Hangzhou, China
| | - Yang Yu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Huixian Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co., Ltd, Anji, China
| | - Xiping Zhang
- Zhejiang Vegamax Biotechnology Co., Ltd, Anji, China
| | - Yue Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhanming Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yan Zhang
- Zhejiang Vegamax Biotechnology Co., Ltd, Anji, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
- *Correspondence: Caimei Yang,
| |
Collapse
|
7
|
Ghaffari S, Abbasi A, Somi MH, Moaddab SY, Nikniaz L, Kafil HS, Ebrahimzadeh Leylabadlo H. Akkermansia muciniphila: from its critical role in human health to strategies for promoting its abundance in human gut microbiome. Crit Rev Food Sci Nutr 2022; 63:7357-7377. [PMID: 35238258 DOI: 10.1080/10408398.2022.2045894] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Akkermansia muciniphila, a frequent colonizer in the gut mucous layer of individuals, has constantly been recognized as a promising candidate for the next generation of probiotics due to its biological advantages from in vitro and in vivo investigations. This manuscript comprehensively reviewed the features of A. muciniphila in terms of its function in host physiology and frequently utilized nutrition using the published peer-reviewed articles, which should present valuable and critical information to scientists, engineers, and even the general population. A. muciniphila is an important bacterium that shows host physiology. However, its physiological advantages in several clinical settings also have excellent potential to become a probiotic. Consequently, it can be stated that there is a coherent and direct relation between the biological activities of the gut microbiota, intestinal dysbiosis/eubiosis, and the population of A. muciniphila in the gut milieu, which is influenced by various genetical and nutritional factors. Current regulatory barriers, the need for large-scale clinical trials, and the feasibility of production must be removed before A muciniphila can be extensively used as a next-generation probiotic.
Collapse
Affiliation(s)
- Sima Ghaffari
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Yaghoub Moaddab
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Nikniaz
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
8
|
Soares TF, Oliveira MBPP. Cocoa By-Products: Characterization of Bioactive Compounds and Beneficial Health Effects. Molecules 2022; 27:1625. [PMID: 35268725 PMCID: PMC8912039 DOI: 10.3390/molecules27051625] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/29/2022] Open
Abstract
The annual production of cocoa is approximately 4.7 million tons of cocoa beans, of which only 10% corresponds to the cocoa bean and the remaining value corresponds to a high number of residues, cocoa bean shell, pulp and husk. These by-products are a source of nutrients and compounds of notable interest in the food industry as possible ingredients, or even additives. The assessment of such by-products is relevant to the circular economy at both environmental and economic levels. Investigations carried out with these by-products have shown that cocoa husk can be used for the production of useful chemicals such as ketones, carboxylic acids, aldehydes, furans, heterocyclic aromatics, alkylbenzenes, phenols and benzenediols, as well as being efficient for the removal of lead from acidic solutions, without decay in the process due to the other metals in this matrix. The fibre present in the cocoa bean shell has a considerable capacity to adsorb a large amount of oil and cholesterol, thus reducing its bioavailability during the digestion process, as well as preventing lipid oxidation in meats, with better results compared to synthetic antioxidants (butylated hydroxytoluene and β-tocopherol). Finally, cocoa pulp can be used to generate a sweet and sour juice with a natural flavour. Thus, this review aimed to compile information on these by-products, focusing mainly on their chemical and nutritional composition, simultaneously, the various uses proposed in the literature based on a bibliographic review of articles, books and theses published between 2000 and 2021, using databases such as Scopus, Web of Science, ScieLO, PubMed and ResearchGate.
Collapse
Affiliation(s)
| | - M. Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. J. Viterbo, 4050-313 Porto, Portugal;
| |
Collapse
|
9
|
Jeria N, Cornejo S, Prado G, Bustamante A, Garcia-Diaz DF, Jimenez P, Valenzuela R, Poblete-Aro C, Echeverria F. Beneficial Effects of Bioactive Compounds Obtained from Agro-Industrial By-Products on Obesity and Metabolic Syndrome Components. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2013498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nicolas Jeria
- Escuela de Nutricion y Dietetica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sebastian Cornejo
- Escuela de Nutricion y Dietetica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gabriel Prado
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andres Bustamante
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Diego F Garcia-Diaz
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Paula Jimenez
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rodrigo Valenzuela
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Nutritional Science Department, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Carlos Poblete-Aro
- Laboratorio de Ciencias de la Actividad Fisica, el Deporte y la Salud, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
- Centro de Investigación en Rehabilitación en Salud, Universidad de las Americas, Santiago, Chile
| | - Francisca Echeverria
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Carrera de Nutrición y Dietética, Departamento Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago Chile
| |
Collapse
|
10
|
Keto L, Tsitko I, Perttilä S, Särkijärvi S, Immonen N, Kytölä K, Alakomi HL, Hyytiäinen-Pabst T, Saarela M, Rinne M. Effect of silage juice feeding on pig production performance, meat quality and gut microbiome. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Galassi G, Battelli M, Verdile N, Rapetti L, Zanchi R, Arcuri S, Petrera F, Abeni F, Crovetto GM. Effect of a Polyphenol-Based Additive in Pig Diets in the Early Stages of Growth. Animals (Basel) 2021; 11:ani11113241. [PMID: 34827973 PMCID: PMC8614284 DOI: 10.3390/ani11113241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 11/11/2021] [Indexed: 12/18/2022] Open
Abstract
The weaning period is a stressful period for the gastrointestinal tract (GIT) of piglets. This work aims to evaluate the effects of the commercial polyphenol-based product GreenFIS® on: (1) GIT health and performance of 60 weaned piglets; (2) digestibility in 18 growing pigs. Three diets were tested: a control diet (C), C plus 2.5 g of GreenFIS®/kg C (T1), and C plus 5 g of GreenFIS®/kg C (T2). After the post-weaning trial three piglets per treatment were sacrificed for the GIT histological analysis. No differences between diets were recorded in terms of growing performance or clinical and biochemical blood parameters. The GIT histological analysis did not show any indicators of inflammation for any of the groups. The feces of the two extreme treatments (C and T2) were analyzed for microbiota, revealing a greater presence of the Ruminococcus bromii group, positively associated with starch degradation, in T2. In the second experiment six pigs per treatment were randomly chosen for the digestibility study. The inclusion of GreenFIS® at both levels led to a higher fecal digestibility of gross energy (86.2%, 89.1%, and 89.5%, for C, T1, and T2, respectively) and crude protein (87.0%, 90.2%, and 90.0%). In conclusion, the additive did not improve, in the excellent experimental hygienic conditions, the gut health, but it did increase nutrient digestibility.
Collapse
Affiliation(s)
- Gianluca Galassi
- Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (G.G.); (N.V.); (L.R.); (G.M.C.)
| | - Marco Battelli
- Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (G.G.); (N.V.); (L.R.); (G.M.C.)
- Correspondence:
| | - Nicole Verdile
- Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (G.G.); (N.V.); (L.R.); (G.M.C.)
| | - Luca Rapetti
- Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (G.G.); (N.V.); (L.R.); (G.M.C.)
| | - Raffaella Zanchi
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy;
| | - Sharon Arcuri
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Via dell’Università 6, 26900 Lodi, Italy;
| | - Francesca Petrera
- Centro di Ricerca Zootecnia e Acquacoltura, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Via Antonio Lombardo 11, 26900 Lodi, Italy; (F.P.); (F.A.)
| | - Fabio Abeni
- Centro di Ricerca Zootecnia e Acquacoltura, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Via Antonio Lombardo 11, 26900 Lodi, Italy; (F.P.); (F.A.)
| | - Gianni Matteo Crovetto
- Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (G.G.); (N.V.); (L.R.); (G.M.C.)
| |
Collapse
|
12
|
Cassini C, Zatti PH, Angeli VW, Branco CS, Salvador M. Mutual effects of free and nanoencapsulated phenolic compounds on human microbiota. Curr Med Chem 2021; 29:3160-3178. [PMID: 34720074 DOI: 10.2174/0929867328666211101095131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/08/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
Phenolic compounds (PC) have many health benefits such as antioxidant, anticarcinogenic, neuroprotective, and anti-inflammatory activities. All of these activities depend on their chemical structures and their interaction with biological targets in the body. PC occur naturally in polymerized form, linked to glycosides and requires metabolic transformation from their ingestion to their absorption. The gut microbiota can transform PC into more easily absorbed metabolites. The PC, in turn, have prebiotic and antimicrobial actions on the microbiota. Despite this, their low oral bioavailability still compromises biological performance. Therefore, the use of nanocarriers has been demonstrated to be a useful strategy to improve PC absorption and, consequently, their health effects. Nanotechnology is an excellent alternative able to overcome the limits of oral bioavailability of PC, since it offers protection from degradation during their passage through the gastrointestinal tract. Moreover, nanotechnology is also capable of promoting controlled PC release and modulating the interaction between PC and the microbiota. However, little is known about the impact of the nanotechnology on PC effects on the gut microbiota. This review highlights the use of nanotechnology for PC delivery on gut microbiota, focusing on the ability of such formulations to enhance oral bioavailability by applying nanocarriers (polymeric nanoparticles, nanostructured lipid carriers, solid lipid nanoparticles). In addition, the effects of free and nanocarried PC or nanocarriers per se on gut microbiota are also described.
Collapse
Affiliation(s)
- Carina Cassini
- Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul. Brazil
| | | | | | - Catia Santos Branco
- Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul. Brazil
| | - Mirian Salvador
- Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul. Brazil
| |
Collapse
|
13
|
Zhang W, Qi S, Xue X, Al Naggar Y, Wu L, Wang K. Understanding the Gastrointestinal Protective Effects of Polyphenols using Foodomics-Based Approaches. Front Immunol 2021; 12:671150. [PMID: 34276660 PMCID: PMC8283765 DOI: 10.3389/fimmu.2021.671150] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Plant polyphenols are rich sources of natural anti-oxidants and prebiotics. After ingestion, most polyphenols are absorbed in the intestine and interact with the gut microbiota and modulated metabolites produced by bacterial fermentation, such as short-chain fatty acids (SCFAs). Dietary polyphenols immunomodulatory role by regulating intestinal microorganisms, inhibiting the etiology and pathogenesis of various diseases including colon cancer, colorectal cancer, inflammatory bowel disease (IBD) and colitis. Foodomics is a novel high-throughput analysis approach widely applied in food and nutrition studies, incorporating genomics, transcriptomics, proteomics, metabolomics, and integrating multi-omics technologies. In this review, we present an overview of foodomics technologies for identifying active polyphenol components from natural foods, as well as a summary of the gastrointestinal protective effects of polyphenols based on foodomics approaches. Furthermore, we critically assess the limitations in applying foodomics technologies to investigate the protective effect of polyphenols on the gastrointestinal (GI) system. Finally, we outline future directions of foodomics techniques to investigate GI protective effects of polyphenols. Foodomics based on the combination of several analytical platforms and data processing for genomics, transcriptomics, proteomics and metabolomics studies, provides abundant data and a more comprehensive understanding of the interactions between polyphenols and the GI tract at the molecular level. This contribution provides a basis for further exploring the protective mechanisms of polyphenols on the GI system.
Collapse
Affiliation(s)
- Wenwen Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suzhen Qi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
The Potential of Selected Agri-Food Loss and Waste to Contribute to a Circular Economy: Applications in the Food, Cosmetic and Pharmaceutical Industries. Molecules 2021; 26:molecules26020515. [PMID: 33478152 PMCID: PMC7835992 DOI: 10.3390/molecules26020515] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
The food sector includes several large industries such as canned food, pasta, flour, frozen products, and beverages. Those industries transform agricultural raw materials into added-value products. The fruit and vegetable industry is the largest and fastest-growing segment of the world agricultural production market, which commercialize various products such as juices, jams, and dehydrated products, followed by the cereal industry products such as chocolate, beer, and vegetable oils are produced. Similarly, the root and tuber industry produces flours and starches essential for the daily diet due to their high carbohydrate content. However, the processing of these foods generates a large amount of waste several times improperly disposed of in landfills. Due to the increase in the world’s population, the indiscriminate use of natural resources generates waste and food supply limitations due to the scarcity of resources, increasing hunger worldwide. The circular economy offers various tools for raising awareness for the recovery of waste, one of the best alternatives to mitigate the excessive consumption of raw materials and reduce waste. The loss and waste of food as a raw material offers bioactive compounds, enzymes, and nutrients that add value to the food cosmetic and pharmaceutical industries. This paper systematically reviewed literature with different food loss and waste by-products as animal feed, cosmetic, and pharmaceutical products that strongly contribute to the paradigm shift to a circular economy. Additionally, this review compiles studies related to the integral recovery of by-products from the processing of fruits, vegetables, tubers, cereals, and legumes from the food industry, with the potential in SARS-CoV-2 disease and bacterial diseases treatment.
Collapse
|
15
|
Nieto-Figueroa KH, Mendoza-García NV, Gaytán-Martínez M, Wall-Medrano A, Guadalupe Flavia Loarca-Piña M, Campos-Vega R. Effect of drying methods on the gastrointestinal fate and bioactivity of phytochemicals from cocoa pod husk: In vitro and in silico approaches. Food Res Int 2020; 137:109725. [PMID: 33233294 DOI: 10.1016/j.foodres.2020.109725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/29/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
Cocoa pod husk (CPH) contains many nutraceutical phytochemicals whose gastrointestinal fate and bioactivity can be affected by drying methods. Microwave (MW), forced-air drying (AF), and AF plus extrusion (AF-E) dried CPH samples were chemically characterized, and their phenolic and theobromine (THB) contents were evaluated under oral-gastric-intestinal (in vitro) and colonic fermentation (ex vivo). Absorption, distribution, metabolism, excretion, and toxicity (ADEMT) properties of CPH's small molecules were evaluated in silico. The chemical composition of CPH [mostly carbohydrates/insoluble dietary fiber], polyphenol [total polyphenols > condensed tannin (CT) > monomeric flavonoids] differed minimally among samples, except for THB content (AF/AF-E > MW) and antioxidant capacity (MW > AF/AF-E). Time- trend gastrointestinal (X3 behavior) and colonic bioaccessibility were AF/AF-E > MW, but phenolic acids, procyanidins, and THB fluctuated in a sample-specific fashion. In silico modeling showed that bioactives of CPH easily crossed the intestinal epithelium illustrating their bioaccessibility and, permeability. These bioactives can act as receptor ligands in a structure-dependent manner, suggesting their use as a functional ingredient.
Collapse
Affiliation(s)
- Karen Haydeé Nieto-Figueroa
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro (76010), Qro, Mexico
| | | | - Marcela Gaytán-Martínez
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro (76010), Qro, Mexico.
| | - Abraham Wall-Medrano
- Instituto de Ciencias Biomédicas, Departamento de Ciencias de la Salud, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo s/n, Ciudad Juárez (32310), Chihuahua, Mexico.
| | - Ma Guadalupe Flavia Loarca-Piña
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro (76010), Qro, Mexico.
| | - Rocio Campos-Vega
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro (76010), Qro, Mexico
| |
Collapse
|
16
|
Boriollo MFG, Alves VE, Silva TA, Silva JJ, Barros GBS, Dias CTS, Höfling JF, Oliveira NMS. Decrease of the DXR-induced genotoxicity and nongenotoxic effects of Theobroma cacao revealed by micronucleus assay. BRAZ J BIOL 2020; 81:268-277. [PMID: 32696851 DOI: 10.1590/1519-6984.223687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/04/2019] [Indexed: 11/22/2022] Open
Abstract
This study evaluated the genotoxicity of lyophilized glycolic extract of Theobroma cacao Linné seeds (TCL), using the micronucleus assay in bone marrow of mice. The interaction between TCL and doxorubicin (DXR) was also analyzed. Experimental groups were evaluated 24-48 h after treatment with N-Nitroso-N-ethylurea (NEU: 50 mg/kg), DXR (5 mg/kg), NaCl (145 mM), TCL (0.5-2 g/kg), and TCL (2 g/kg) in combination with DXR (antigenotoxic assays). Analysis of micronucleated polychromatic erythrocytes (MNPCEs) showed no significant differences between all the treatment doses of TCL and NaCl control. Mice experimentally treated with DXR and NEU significantly induced MNPCEs. However, a significant reduction of MNPCEs was also observed when TCL was administered in combination with the chemotherapeutic agent DXR. The analysis of the PCE/NCE ratio revealed no significant differences between the NaCl control, all doses of TCL, and DXR. However, there were significant differences in the PCE/NCE ratio between positive NEU control and all other treatments. The PCE/NCE ratio observed after treatment with TCL and DXR showed significant differences and intermediate values to controls (NaCl and NEU). This study suggests absence of genotoxicity and cytotoxicity of TCL, regardless of dose, sex, and time. TCL reduced genotoxic effects induced by DXR, suggesting potential antigenotoxic effects.
Collapse
Affiliation(s)
- M F G Boriollo
- Laboratório de Genética Molecular, Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba - FOP, Universidade Estadual de Campinas - UNICAMP, Av. Limeira, 901, Bairro Areião, CEP 13414-903, Piracicaba, SP, Brasil
| | - V E Alves
- Laboratório de Farmacogenética e Biologia Molecular, Faculdade de Ciências Médicas, Universidade José do Rosário Vellano - UNIFENAS, Rodovia MG 179, Km 0, Campus Universitário, CEP 37132-440, Alfenas, MG, Brasil
| | - T A Silva
- Laboratório de Farmacogenética e Biologia Molecular, Faculdade de Ciências Médicas, Universidade José do Rosário Vellano - UNIFENAS, Rodovia MG 179, Km 0, Campus Universitário, CEP 37132-440, Alfenas, MG, Brasil
| | - J J Silva
- Laboratório de Genética Molecular, Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba - FOP, Universidade Estadual de Campinas - UNICAMP, Av. Limeira, 901, Bairro Areião, CEP 13414-903, Piracicaba, SP, Brasil
| | - G B S Barros
- Laboratório de Farmacogenética e Biologia Molecular, Faculdade de Ciências Médicas, Universidade José do Rosário Vellano - UNIFENAS, Rodovia MG 179, Km 0, Campus Universitário, CEP 37132-440, Alfenas, MG, Brasil
| | - C T S Dias
- Departamento de Ciências Exatas, Escola de Agricultura "Luiz de Queiroz" - ESALQ, Universidade de são Paulo - USP, Av. Pádua Dias, 11, CEP 13418-900, Piracicaba, SP, Brasil
| | - J F Höfling
- Laboratório de Genética Molecular, Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba - FOP, Universidade Estadual de Campinas - UNICAMP, Av. Limeira, 901, Bairro Areião, CEP 13414-903, Piracicaba, SP, Brasil
| | - N M S Oliveira
- Laboratório de Farmacogenética e Biologia Molecular, Faculdade de Ciências Médicas, Universidade José do Rosário Vellano - UNIFENAS, Rodovia MG 179, Km 0, Campus Universitário, CEP 37132-440, Alfenas, MG, Brasil
| |
Collapse
|
17
|
Sorrenti V, Ali S, Mancin L, Davinelli S, Paoli A, Scapagnini G. Cocoa Polyphenols and Gut Microbiota Interplay: Bioavailability, Prebiotic Effect, and Impact on Human Health. Nutrients 2020; 12:nu12071908. [PMID: 32605083 PMCID: PMC7400387 DOI: 10.3390/nu12071908] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
Cocoa and its products are rich sources of polyphenols such as flavanols. These compounds exert antioxidant and anti-inflammatory activities, accountable for cocoa health-promoting effects. However, cocoa polyphenols are poorly absorbed in the intestine, and most of them cannot reach the systemic circulation in their natural forms. Instead, their secondary bioactive metabolites are bioavailable, enter the circulation, reach the target organs, and exhibit their activities. In fact, once reaching the intestine, cocoa polyphenols interact bidirectionally with the gut microbiota. These compounds can modulate the composition of the gut microbiota exerting prebiotic mechanisms. They enhance the growth of beneficial gut bacteria, such as Lactobacillus and Bifidobacterium, while reducing the number of pathogenic ones, such as Clostridium perfringens. On the other hand, bioactive cocoa metabolites can enhance gut health, displaying anti-inflammatory activities, positively affecting immunity, and reducing the risk of various diseases. This review aims to summarize the available knowledge of the bidirectional interaction between cocoa polyphenols and gut microbiota with their various health outcomes.
Collapse
Affiliation(s)
- Vincenzo Sorrenti
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (L.M.); (A.P.)
- Correspondence: ; Tel.: +39-3880944215
| | - Sawan Ali
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Via de Sanctis s.n.c, 86100 Campobasso, Italy; (S.A.); (S.D.); (G.S.)
| | - Laura Mancin
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (L.M.); (A.P.)
- Human Inspired Technology Research Center, University of Padova, 35131 Padova, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Via de Sanctis s.n.c, 86100 Campobasso, Italy; (S.A.); (S.D.); (G.S.)
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (L.M.); (A.P.)
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Via de Sanctis s.n.c, 86100 Campobasso, Italy; (S.A.); (S.D.); (G.S.)
| |
Collapse
|
18
|
Li W, Zhang X, He Z, Chen Y, Li Z, Meng T, Li Y, Cao Y. In vitro and in vivo antioxidant activity of eucalyptus leaf polyphenols extract and its effect on chicken meat quality and cecum microbiota. Food Res Int 2020; 136:109302. [PMID: 32846514 DOI: 10.1016/j.foodres.2020.109302] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 01/17/2023]
Abstract
While eucalyptus leaf polyphenols extract (EPE) has been evaluated for its various bioactivities, few studies thus far have focused on its systemic antioxidant activity or its effects in chickens in relation to meat quality or the intestinal microbiome. Therefore, the goal of this study was to investigate the antioxidant activity of EPE in vitro and in vivo, and to evaluate its effect on chicken meat quality and cecum microbiota. In this study, EPE scavenged DPPH free radical, ABTS free radical, and superoxide radical, and showed strong reducing power in chemical-based assay. EPE protected RAW264.7 cells from H2O2-induced oxidative damage by improving total superoxide dismutase (T-SOD) activity, catalase (CAT) activity and glutathione (GSH) content, decreasing malondialdehyde (MDA) content. Additionally, EPE dietary supplementation was found to increase chicken meat antioxidant levels and quality. Furthermore, chickens fed a diet supplemented with EPE had differentially changed cecal microbial compositions when compared to controls. EPE supplementation notably improved the α-diversity of the cecum. The Firmicutes/Bacteroidetes ratio and the relative abundance of Verrucomicrobia at the phylum level were clearly enhanced in the cecum with EPE supplementation (p < 0.05), with the relative abundance of Subdivision 5 genera incertae sedis and Aminivibrio enriched at genus level (p < 0.05). Therefore, these findings indicate that EPE is a good source of natural antioxidants and could be used as antioxidant supplements in animal feed and other foods, contributing to gut health improvement.
Collapse
Affiliation(s)
- Wei Li
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou 510642, China
| | - Xiaoying Zhang
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou 510642, China
| | - Zeqi He
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou 510642, China
| | - Yunjiao Chen
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou 510642, China
| | - Ziyin Li
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tianmeng Meng
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou 510642, China
| | - Yifeng Li
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou 510642, China
| | - Yong Cao
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou 510642, China.
| |
Collapse
|
19
|
Rojo-Poveda O, Barbosa-Pereira L, Zeppa G, Stévigny C. Cocoa Bean Shell-A By-Product with Nutritional Properties and Biofunctional Potential. Nutrients 2020; 12:E1123. [PMID: 32316449 PMCID: PMC7230451 DOI: 10.3390/nu12041123] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 01/07/2023] Open
Abstract
Cocoa bean shells (CBS) are one of the main by-products from the transformation of cocoa beans, representing 10%‒17% of the total cocoa bean weight. Hence, their disposal could lead to environmental and economic issues. As CBS could be a source of nutrients and interesting compounds, such as fiber (around 50% w/w), cocoa volatile compounds, proteins, minerals, vitamins, and a large spectrum of polyphenols, CBS may be a valuable ingredient/additive for innovative and functional foods. In fact, the valorization of food by-products within the frame of a circular economy is becoming crucial due to economic and environmental reasons. The aim of this review is to look over the chemical and nutritional composition of CBS and to revise the several uses that have been proposed in order to valorize this by-product for food, livestock feed, or industrial usages, but also for different medical applications. A special focus will be directed to studies that have reported the biofunctional potential of CBS for human health, such as antibacterial, antiviral, anticarcinogenic, antidiabetic, or neuroprotective activities, benefits for the cardiovascular system, or an anti-inflammatory capacity.
Collapse
Affiliation(s)
- Olga Rojo-Poveda
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, 1050 Brussels, Belgium
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy
| | - Letricia Barbosa-Pereira
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Giuseppe Zeppa
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy
| | - Caroline Stévigny
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, 1050 Brussels, Belgium
| |
Collapse
|
20
|
Álvarez-Cilleros D, Ramos S, López-Oliva ME, Escrivá F, Álvarez C, Fernández-Millán E, Martín MÁ. Cocoa diet modulates gut microbiota composition and improves intestinal health in Zucker diabetic rats. Food Res Int 2020; 132:109058. [PMID: 32331673 DOI: 10.1016/j.foodres.2020.109058] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/28/2019] [Accepted: 01/31/2020] [Indexed: 01/02/2023]
Abstract
Cocoa supplementation improves glucose metabolism in Zucker diabetic fatty (ZDF) rats via multiple mechanisms. Furthermore, cocoa rich-diets modify the intestinal microbiota composition both in humans and rats in healthy conditions. Accordingly, we hypothesized that cocoa could interact with the gut microbiota (GM) in ZDF rats, contributing to their antidiabetic effects. Therefore, here we investigate the effect of cocoa intake on gut health and GM in ZDF diabetic rats. Male ZDF rats were fed with standard (ZDF-C) or 10% cocoa-rich diet (ZDF-Co) during 10 weeks. Zucker Lean animals (ZL) received the standard diet. Colon tissues were obtained to determine the barrier integrity and the inflammatory status of the intestine and faeces were analysed for microbial composition, short-chain fatty acids (SCFA) and lactate levels. We found that cocoa supplementation up-regulated the levels of the tight junction protein Zonula occludens-1 (ZO-1) and the mucin glycoprotein and reduced the expression of pro-inflammatory cytokines such as tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) and monocyte chemoattractant protein 1 (MCP-1) in the colon of ZDF diabetic animals. Additionally, cocoa modulated the microbial composition of the ZDF rats to values similar to those of the lean group. Importantly, cocoa treatment increased the relative abundance of acetate-producing bacteria such as Blautia and prevented the increase in the relative amount of lactate-producing bacteria (mainly Enterococcus and Lactobacillus genera) in ZDF diabetic animals. Accordingly, the total levels of SCFA (mainly acetate) increased significantly in the faeces of ZDF-Co diabetic rats. Finally, modified GM was closely associated with improved biochemical parameters related to glucose homeostasis and intestinal integrity and inflammation. These findings demonstrate for the first time that cocoa intake modifies intestinal bacteria composition towards a healthier microbial profile in diabetic animals and suggest that these changes could be associated with the improved glucose homeostasis and gut health induced by cocoa in ZDF diabetic rats.
Collapse
Affiliation(s)
| | - Sonia Ramos
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Madrid, Spain
| | - María Elvira López-Oliva
- Departamento de Fisiología. Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando Escrivá
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Carmen Álvarez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Elisa Fernández-Millán
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain.
| | - María Ángeles Martín
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain.
| |
Collapse
|
21
|
Green Extraction Methods for Active Compounds from Food Waste-Cocoa Bean Shell. Foods 2020; 9:foods9020140. [PMID: 32019261 PMCID: PMC7073572 DOI: 10.3390/foods9020140] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 01/05/2023] Open
Abstract
This is the first report on the extraction of cocoa bean shell (CBS) using deep eutectic solvents (DESs). Screening results with 16 different choline chloride-based DESs showed how choline chloride:oxalic acid DES was the most suitable solvent for the extraction of the bioactive compounds from CBS and that concentrations varied greatly depending on the used solvent. The DES extraction was compared to the DESs coupled with microwave extraction (MAE), and the yields of the extracted compounds were higher for DES/MAE. For theobromine, the obtained yields for DES extraction were 2.145–4.682 mg/g, and for caffeine, were 0.681–1.524 mg/g, whereas for DES/MAE, the same compounds were obtained in 2.502–5.004 mg/g and 0.778–1.599 mg/g. Antioxidant activity was also determined, using DPPH method, obtaining 24.027–74.805% activity for DES extraction and 11.751–55.444% for DES/MAE. Water content significantly influenced the extraction of targeted active compounds from CBS, whereas extraction time and temperature did not show statistically significant influence. The extraction temperature only influenced antioxidant activity. The study demonstrated how extraction using DES and microwaves could be of a great importance in the future trends of green chemistry for the production of CBS extracts rich in bioactive compounds.
Collapse
|
22
|
Bao N, Chen F, Dai D. The Regulation of Host Intestinal Microbiota by Polyphenols in the Development and Prevention of Chronic Kidney Disease. Front Immunol 2020; 10:2981. [PMID: 31969882 PMCID: PMC6960133 DOI: 10.3389/fimmu.2019.02981] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Polyphenols are essential antioxidants in our regular diet, and have shown potential antibacterial effects. Other important biological effects, such as anticancer or antibacterial activities, have been demonstrated by some polyphenols. In recent years, the benefits of polyphenols to human health have attracted increasing attention from the scientific community. Recent studies have shown that polyphenols such as anthocyanin, catechin, chlorogenic acid, and resveratrol can inhibit pathogenic bacteria such as Escherichia coli and Salmonella to help regulate intestinal microflora. An imbalance of intestinal microflora and the destruction of intestinal barrier function have been found to have a potential relationship with the occurrence of chronic kidney disease (CKD). Specifically, they can aberrantly trigger the immune system to cause inflammation, increase the production of uremic toxins, and further worsen the condition of CKD. Therefore, the maintenance of intestinal microflora and the intestinal tract in a stable and healthy state may be able to "immunize" patients against CKD, and treat pre-existing disease. The use of common antibiotics may lead to drug resistance in pathogens, and thus beneficial polyphenols may be suitable natural substitutes for antibiotics. Herein we review the ability of different polyphenols, such as anthocyanin, catechin, chlorogenic acid, and resveratrol, to regulate intestinal microorganisms, inhibit pathogenic bacteria, and improve inflammation. In addition, we review the ability of different polyphenols to reduce kidney injury, as described in recent studies.
Collapse
Affiliation(s)
- Naren Bao
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Fangjie Chen
- Department of Medical Genetics, School of Life Sciences, China Medical University, Shenyang, China
| | - Di Dai
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Verhoog S, Taneri PE, Roa Díaz ZM, Marques-Vidal P, Troup JP, Bally L, Franco OH, Glisic M, Muka T. Dietary Factors and Modulation of Bacteria Strains of Akkermansia muciniphila and Faecalibacterium prausnitzii: A Systematic Review. Nutrients 2019; 11:nu11071565. [PMID: 31336737 PMCID: PMC6683038 DOI: 10.3390/nu11071565] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
Akkermansia muciniphila and Faecalibacterium prausnitzii are highly abundant human gut microbes in healthy individuals, and reduced levels are associated with inflammation and alterations of metabolic processes involved in the development of type 2 diabetes. Dietary factors can influence the abundance of A. muciniphila and F. prausnitzii, but the evidence is not clear. We systematically searched PubMed and Embase to identify clinical trials investigating any dietary intervention in relation to A. muciniphila and F. prausnitzii. Overall, 29 unique trials were included, of which five examined A. muciniphila, 19 examined F. prausnitzii, and six examined both, in a total of 1444 participants. A caloric restriction diet and supplementation with pomegranate extract, resveratrol, polydextrose, yeast fermentate, sodium butyrate, and inulin increased the abundance of A. muciniphila, while a diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols decreased the abundance of A. muciniphila. For F. prausnitzii, the main studied intervention was prebiotics (e.g. fructo-oligosaccharides, inulin type fructans, raffinose); seven studies reported an increase after prebiotic intervention, while two studies reported a decrease, and four studies reported no difference. Current evidence suggests that some dietary factors may influence the abundance of A. muciniphila and F. prausnitzii. However, more research is needed to support these microflora strains as targets of microbiome shifts with dietary intervention and their use as medical nutrition therapy in prevention and management of chronic disease.
Collapse
Affiliation(s)
- Sanne Verhoog
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland.
| | - Petek Eylul Taneri
- Corlu Cancer Early Diognosis and Training Center, 59100 Tekirdag, Turkey
| | - Zayne M Roa Díaz
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - John P Troup
- Standard Process Inc Nutrition Innovation Center, Kannapolis, NC 28018, USA
| | - Lia Bally
- Department of Diabetes, Endocrinology, Clinical Nutrition and Metabolism, Bern University Hospital, 3010 Bern, Switzerland
| | - Oscar H Franco
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
| | - Marija Glisic
- Leibniz Institute for Prevention Research and Epidemiology-BIPS, 28359 Bremen, Germany
| | - Taulant Muka
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
24
|
Cattò C, Garuglieri E, Borruso L, Erba D, Casiraghi MC, Cappitelli F, Villa F, Zecchin S, Zanchi R. Impacts of dietary silver nanoparticles and probiotic administration on the microbiota of an in-vitro gut model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:754-763. [PMID: 30500755 DOI: 10.1016/j.envpol.2018.11.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/05/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Ingestion of silver nanoparticles (AgNPs) is inevitable linked to their widespread use in food, medicines and other consumer products. However, their effects on human microbiota at non-lethal concentrations remain poorly understood. In this study, the interactions among 1 μg mL-1 AgNPs, the intestinal microbiota, and the probiotic Bacillus subtilis (BS) were tested using in-vitro batch fermentation models inoculated with human fecal matter. Results from metagenomic investigations revealed that the core bacterial community was not affected by the exposure of AgNPs and BS at the later stage of fermentation, while the proportions of rare species changed drastically with the treatments. Furthermore, shifts in the Firmicutes/Bacteriodetes (F/B) ratios were observed after 24 h with an increase in the relative abundance of Firmicutes species and a decrease in Bacteroidetes in all fermentation cultures. The co-exposure to AgNPs and BS led to the lowest F/B ratio. Fluorescent in-situ hybridization analyses indicated that non-lethal concentration of AgNPs negatively affected the relative percentage of Faecalibacterium prausnitzii and Clostridium coccoides/Eubacterium rectales taxa in the fermentation cultures after 24 h. However, exposure to single and combined treatments of AgNPs and BS did not change the overall diversity of the fecal microflora. Functional differences in cell motility, translation, transport, and xenobiotics degradation occurred in AgNPs-treated fermentation cultures but not in AgNPs+BS-treated samples. Compared to the control samples, treated fecal cultures showed no significant statistical differences in terms of short-chain fatty acids profiles, cytotoxic and genotoxic effects on Caco-2 cell monolayers. Overall, AgNPs did not affect the composition and diversity of the core fecal microflora and its metabolic and toxic profiles. This work indicated a chemopreventive role of probiotic on fecal microflora against AgNPs, which were shown by the decrease of F/B ratio and the unaltered state of some key metabolic pathways.
Collapse
Affiliation(s)
- Cristina Cattò
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| | - Elisa Garuglieri
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| | - Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bozen, piazza Università 5, 39100, Bolzano, Italy
| | - Daniela Erba
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| | - Maria Cristina Casiraghi
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| | - Francesca Cappitelli
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| | - Federica Villa
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy.
| | - Sarah Zecchin
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| | - Raffaella Zanchi
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| |
Collapse
|
25
|
Hernández-Hernández C, Morales-Sillero A, Fernández-Bolaños J, Bermúdez-Oria A, Morales AA, Rodríguez-Gutiérrez G. Cocoa bean husk: industrial source of antioxidant phenolic extract. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:325-333. [PMID: 29876932 DOI: 10.1002/jsfa.9191] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/23/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Cocoa bean husk (CBH) is the principal by-product of the cocoa industry and a significant agro-industrial residue. In this study, using different hydrothermal treatments of CBH, it is shown that CBH is an important source of bioactive compounds, including theobromine, epicatechin and catechin. RESULTS Treatment over 150 °C significantly increased the yield of total and individual phenols and theobromine as well as the antioxidant capacity of the liquid fraction. A total of 52 different genotypes of CBH harvested in two seasons of production were analyzed. Overall, higher amounts of total phenols, theobromine and epigallocatechin were detected in samples from the 2015 season, while samples from 2014 had higher quantities of catechin and similar quantities of epicatechin. CONCLUSION CBH treatment at 170 °C for 30 min produces an antioxidant-rich extract high in phenols (55 mg g-1 ), sugars (220 mg g-1 ) and theobromine (56 mg g-1 ) that is suitable for applications in the food, cosmetic and nutraceutical industries. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Carolina Hernández-Hernández
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Pablo de Olavide, Seville, Spain
| | - Ana Morales-Sillero
- Departamento de Ciencias Agroforestales, ETSIA, Universidad de Sevilla, Seville, Spain
| | - Juan Fernández-Bolaños
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Pablo de Olavide, Seville, Spain
| | - Alejandra Bermúdez-Oria
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Pablo de Olavide, Seville, Spain
| | - Alfonso Azpeitia Morales
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Huimanguillo, Tabasco, Mexico
| | - Guillermo Rodríguez-Gutiérrez
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Pablo de Olavide, Seville, Spain
| |
Collapse
|
26
|
Effect of A Polyphenol-Rich Canarium album Extract on the Composition of the Gut Microbiota of Mice Fed a High-Fat Diet. Molecules 2018; 23:molecules23092188. [PMID: 30200213 PMCID: PMC6225199 DOI: 10.3390/molecules23092188] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 01/12/2023] Open
Abstract
This study investigated the influence of Canarium album extract (CAext) on intestinal microbiota composition of mice fed a high-fat diet (HFD). Kun Ming (KM) mice were fed either a normal chow diet or a HFD for six weeks. At the seventh week, HFD-fed mice were gavaged daily with saline, or a different dose of CAext for four weeks, respectively. Then, the composition of the gut microbiota was analyzed by high-throughput sequencing technology. Analysis of fecal microbial populations, grouped by phyla, showed significant increases of Firmicutes and Verrucomicrobia, but a decrease of Bacteroidetes in all CAext-fed mice. Particularly, CAext gavage in a low dose or a medium dose caused a significant increase in the proportion of Akkermansia. These findings suggested that CAext can alter the gut microbiota composition of HFD-fed mice, and had a potential prebiotic effects on Akkermansia.
Collapse
|
27
|
Tresserra-Rimbau A, Lamuela-Raventos RM, Moreno JJ. Polyphenols, food and pharma. Current knowledge and directions for future research. Biochem Pharmacol 2018; 156:186-195. [PMID: 30086286 DOI: 10.1016/j.bcp.2018.07.050] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022]
Abstract
Polyphenols are a large family of phytochemicals with great chemical diversity, known to be bioactive compounds of foods, species, medicinal plants and nutraceuticals. These compounds are ingested through the diet in significant amounts, around 1 g per day, an amount that be may be increased through supplements. The in vitro action of many representative polyphenols has been reported. However, their beneficial effects and their role in modulating the risk of high-prevalence diseases are difficult to demonstrate due to the wide variability of polyphenol structures and bioactive actions; the complexity of estimating the polyphenol content of food as a result of their variability in foods and cooked dishes; the potential modulation of the effects of polyphenols by food matrices; the addition of polyphenols and their synergistic interactions with each other and with other dietary bioactive components; the modulation of polyphenol bioavailability as a consequence of food composition and culinary techniques; their metabolism by the human body and the polyphenol gut microbiota metabolism in each metabotypes. Computational strategies, including virtual screening, shape-similarity-screening and molecular docking, were recently used to identify potential targets of polyphenols and thus gain a better understanding of the therapeutic effects exerted of polyphenols and modify natural polyphenol structures to potentiate specific activities. Here, we present the most relevant current knowledge and propose directions for future research in these fields, from the culinary world to the clinical setting. We hope this commentary will prompt scientists and clinicians to consider the therapeutic value of bioactive polyphenols and help shed some light on how much scientific truth lies in Hippocrates' famous quote: "Let your food be your medicine".
Collapse
Affiliation(s)
- Anna Tresserra-Rimbau
- Human Nutrition Unit, University Hospital of Sant Joan de Reus, Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, Pere Virgili Health Research Center, University Rovira i Virgili, Reus, Spain; CIBER Fisiopatologia de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa M Lamuela-Raventos
- CIBER Fisiopatologia de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Department of Nutrition, Food Sciences and Gastronomy, University of Barcelona, Barcelona, Spain; Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Juan J Moreno
- CIBER Fisiopatologia de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Department of Nutrition, Food Sciences and Gastronomy, University of Barcelona, Barcelona, Spain; Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
28
|
Banerjee A, Dhar P. Amalgamation of polyphenols and probiotics induce health promotion. Crit Rev Food Sci Nutr 2018; 59:2903-2926. [PMID: 29787290 DOI: 10.1080/10408398.2018.1478795] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The residing microbiome with its vast repertoire of genes provide distinctive properties to the host by which they can degrade and utilise nutrients that otherwise pass the gastro-intestinal tract unchanged. The polyphenols in our diet have selective growth promoting effects which is of utmost importance as the state of good health has been linked to dominance of particular microbial genera. The polyphenols in native form might more skilfully exert anti-oxidative and anti-inflammatory properties but in a living system it is the microbial derivatives of polyphenol that play a key role in determining health outcome. This two way interaction has invoked great interest among researchers who have commenced several clinical surveys and numerous studies in in-vitro, simulated environment and living systems to find out in detail about the biomolecules involved in such interaction along with their subsequent physiological benefits. In this review, we have thoroughly discussed these studies to develop a fair idea on how the amalgamation of probiotics and polyphenol has an immense potential as an adjuvant therapeutic for disease prevention as well as treatment.
Collapse
Affiliation(s)
- Arpita Banerjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta , 20B Judges Court Road, Alipore, Kolkata , West Bengal , India
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta , 20B Judges Court Road, Alipore, Kolkata , West Bengal , India
| |
Collapse
|
29
|
Panak Balentić J, Ačkar Đ, Jokić S, Jozinović A, Babić J, Miličević B, Šubarić D, Pavlović N. Cocoa Shell: A By-Product with Great Potential for Wide Application. Molecules 2018; 23:E1404. [PMID: 29890752 PMCID: PMC6099939 DOI: 10.3390/molecules23061404] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022] Open
Abstract
Solving the problem of large quantities of organic waste, which represents an enormous ecological and financial burden for all aspects of the process industry, is a necessity. Therefore, there is an emerged need to find specific solutions to utilize raw materials as efficiently as possible in the production process. The cocoa shell is a valuable by-product obtained from the chocolate industry. It is rich in protein, dietary fiber, and ash, as well as in some other valuable bioactive compounds, such as methylxanthines and phenolics. This paper gives an overview of published results related to the cocoa shell, mostly on important bioactive compounds and possible applications of the cocoa shell in different areas. The cocoa shell, due to its nutritional value and high-value bioactive compounds, could become a desirable raw material in a large spectrum of functional, pharmaceutical, or cosmetic products, as well as in the production of energy or biofuels in the near future.
Collapse
Affiliation(s)
- Jelena Panak Balentić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Kuhačeva 20, 31000 Osijek, Croatia.
| | - Đurđica Ačkar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Kuhačeva 20, 31000 Osijek, Croatia.
| | - Stela Jokić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Kuhačeva 20, 31000 Osijek, Croatia.
| | - Antun Jozinović
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Kuhačeva 20, 31000 Osijek, Croatia.
| | - Jurislav Babić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Kuhačeva 20, 31000 Osijek, Croatia.
| | - Borislav Miličević
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Kuhačeva 20, 31000 Osijek, Croatia.
| | - Drago Šubarić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Kuhačeva 20, 31000 Osijek, Croatia.
| | - Nika Pavlović
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10E, 31000 Osijek, Croatia.
| |
Collapse
|
30
|
Solano-Aguilar GI, Lakshman S, Jang S, Beshah E, Xie Y, Sikaroodi M, Gupta R, Vinyard B, Molokin A, Urban JF, Gillevet P, Davis CD. The Effect of Feeding Cocoa Powder and Lactobacillus rhamnosus on the Composition and Function of Pig Intestinal Microbiome. Curr Dev Nutr 2018; 2:nzy011. [PMID: 30019034 PMCID: PMC6041806 DOI: 10.1093/cdn/nzy011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/15/2017] [Accepted: 01/30/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Dietary habits have been linked with variability of gut microbiota composition and disease risk. OBJECTIVE The aim of this study was to evaluate the effect of feeding a cocoa powder with or without a probiotic on the composition and function of the fecal microbiome of pigs. METHODS Four groups of 8 pigs each were fed a standard growth diet supplemented with cocoa powder, Lactobacillus rhamnosus (LGG), cocoa powder + LGG, or an equal amount of fiber similar to that found in cocoa powder (control group). Fecal samples were collected prior to and 4 wk after initiation of the dietary intervention. Microbiota composition was determined after amplification of the first 2 variable regions of the 16S ribosomal DNA (rDNA). Predictions of metagenomic function were calculated using 16S rDNA sequence data through Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). RESULTS After 4 wk of treatment, bacterial abundance analysis demonstrated a prebiotic effect of cocoa powder on endogenous Bifidobacteriaceae and Lactobacillaceae and increased abundance of saccharolytic butyrate-producing bacteria like Roseburia. An increased bacterial evenness, Shannon diversity index, and diverse metabolic profile were detected in microbiomes of pigs fed the cocoa powder + LGG (P < 0.05) but not in pigs in the other 3 groups. CONCLUSION The data generated from this work demonstrated that 4-wk dietary treatment with cocoa powder alone or in combination with LGG probiotic had an impact on the composition and function of the fecal microbiota of healthy pigs.
Collapse
Affiliation(s)
- Gloria I Solano-Aguilar
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Northeast Area, US Department of Agriculture, Beltsville, MD
| | - Sukla Lakshman
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Northeast Area, US Department of Agriculture, Beltsville, MD
| | - Saebyeol Jang
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Northeast Area, US Department of Agriculture, Beltsville, MD
| | - Ethiopia Beshah
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Northeast Area, US Department of Agriculture, Beltsville, MD
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | | | - Richi Gupta
- Microbiome Analysis Center, George Mason University, Manassas, VA
| | - Bryan Vinyard
- Biometrical Consulting Services, Agricultural Research Service, Northeast Area, US Department of Agriculture, Beltsville, MD
| | - Aleksey Molokin
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Northeast Area, US Department of Agriculture, Beltsville, MD
| | - Joseph F Urban
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Northeast Area, US Department of Agriculture, Beltsville, MD
| | - Patrick Gillevet
- Microbiome Analysis Center, George Mason University, Manassas, VA
| | - Cindy D Davis
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD
| |
Collapse
|
31
|
de Souza EL, de Albuquerque TMR, Dos Santos AS, Massa NML, de Brito Alves JL. Potential interactions among phenolic compounds and probiotics for mutual boosting of their health-promoting properties and food functionalities - A review. Crit Rev Food Sci Nutr 2018; 59:1645-1659. [PMID: 29377718 DOI: 10.1080/10408398.2018.1425285] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Several foods are rich sources of phenolic compounds (PC) and their beneficial effects on human health may be increased through the action of probiotics. Additionally, probiotics may use PC as substrates, increasing their survival and functionality. This review presents available studies on the effects of PC on probiotics, including their physiological functionalities, interactions and capability of surviving during exposure to gastrointestinal conditions and when incorporated into food matrices. Studies have shown that PC can improve the adhesion capacity and survival of probiotics during exposure to conditions that mimic the gastrointestinal tract. There is strong evidence that PC can modulate the composition of the gut microbiota in hosts, improving a variety of biochemical markers and risk factors for chronic diseases. Available literature also indicates that metabolites of PC formed by intestinal microorganisms, including probiotics, exert a variety of benefits on host health. These metabolites are typically more active than parental dietary PC. The presence of PC commonly enhances probiotic survival in different foods. Finally, further clinical studies need to be developed to confirm in vitro and experimental findings concerning the beneficial interactions among different PC and probiotics.
Collapse
Affiliation(s)
- Evandro Leite de Souza
- a Department of Nutrition , Health Sciences Center, Federal University of Paraíba , João Pessoa , Paraíba , Brazil
| | | | - Aldeir Sabino Dos Santos
- a Department of Nutrition , Health Sciences Center, Federal University of Paraíba , João Pessoa , Paraíba , Brazil
| | - Nayara Moreira Lacerda Massa
- a Department of Nutrition , Health Sciences Center, Federal University of Paraíba , João Pessoa , Paraíba , Brazil
| | - José Luiz de Brito Alves
- a Department of Nutrition , Health Sciences Center, Federal University of Paraíba , João Pessoa , Paraíba , Brazil
| |
Collapse
|
32
|
Gessner DK, Ringseis R, Eder K. Potential of plant polyphenols to combat oxidative stress and inflammatory processes in farm animals. J Anim Physiol Anim Nutr (Berl) 2017; 101:605-628. [PMID: 27456323 DOI: 10.1111/jpn.12579] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/24/2016] [Indexed: 12/12/2022]
Abstract
Polyphenols are secondary plant metabolites which have been shown to exert antioxidative and antiinflamma tory effects in cell culture, rodent and human studies. Based on the fact that conditions of oxidative stress and inflammation are highly relevant in farm animals, polyphenols are considered as promising feed additives in the nutrition of farm animals. However, in contrast to many studies existing with model animals and humans, potential antioxidative and antiinflammatory effects of polyphenols have been less investigated in farm animals so far. This review aims to give an overview about potential antioxidative and antiinflammatory effects in farm animals. The first part of the review highlights the occurrence and the consequences of oxidative stress and inflammation on animal health and performance. The second part of the review deals with bioavailability and metabolism of polyphenols in farm animals. The third and main part of the review presents an overview of the findings from studies which investigated the effects of polyphenols of various plant sources in pigs, poultry and cattle, with particular consideration of effects on the antioxidant system and inflammation.
Collapse
Affiliation(s)
- D K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - R Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - K Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
33
|
The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochem Pharmacol 2017; 139:82-93. [PMID: 28483461 DOI: 10.1016/j.bcp.2017.04.033] [Citation(s) in RCA: 404] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022]
Abstract
(Poly)phenols (PPs) constitute a large family of phytochemicals with high chemical diversity that are known to be active principles of plant-derived nutraceuticals and herbal medicinal products. Their pharmacological activity, however, is difficult to demonstrate due to their mild physiological effects, and to the large inter-individual variability observed. Many PPs have little bioavailability and reach the colon almost unaltered. There they encounter the gut microbes resulting in a two-way interaction in which PPs modulate the gut microbiota composition, and the intestinal microbes catabolize the ingested PPs to release metabolites that are often more active and better absorbed than the native phenolic compounds. The type and quantity of the PP metabolites produced in humans depend on the gut microbiota composition and function, and different metabotypes have been identified. However, not all the metabolites have the same biological activity, and therefore the final health effects of dietary PPs depend on the gut microbiota composition. Stratification in clinical trials according to individuals' metabotypes is necessary to fully understand the health effects of PPs. In this review, we present and discuss the most significant and updated knowledge regarding the reciprocal interrelation of the gut microbiota with dietary PPs as a key factor that modulates the health effects of these compounds. The review will focus in those PPs that are known to be metabolized by gut microbiota resulting in bioactive metabolites.
Collapse
|
34
|
Iwai K, Yoshikawa Y, Miyoshi N, Fukutomi R, Asada K, Ohashi N. Effects of Short-Term Intake of Wheat Bran with Different Particle Sizes on the Murine Intestinal Environment. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2017. [DOI: 10.3136/fstr.23.733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Katsuki Iwai
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, Department of Food and Nutritional Sciences, University of Shizuoka
| | - Yuko Yoshikawa
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, Department of Food and Nutritional Sciences, University of Shizuoka
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, Department of Food and Nutritional Sciences, University of Shizuoka
| | | | | | - Norio Ohashi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, Department of Food and Nutritional Sciences, University of Shizuoka
| |
Collapse
|
35
|
McIntyre MK, Peacock TJ, Akers KS, Burmeister DM. Initial Characterization of the Pig Skin Bacteriome and Its Effect on In Vitro Models of Wound Healing. PLoS One 2016; 11:e0166176. [PMID: 27824921 PMCID: PMC5100914 DOI: 10.1371/journal.pone.0166176] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/24/2016] [Indexed: 02/01/2023] Open
Abstract
Elucidating the roles and composition of the human skin microbiome has revealed a delicate interplay between resident microbes and wound healing. Evolutionarily speaking, normal cutaneous flora likely has been selected for because it potentiates or, at minimum, does not impede wound healing. While pigs are the gold standard model for wound healing studies, the porcine skin microbiome has not been studied in detail. Herein, we performed 16S rDNA sequencing to characterize the pig skin bacteriome at several anatomical locations. Additionally, we used bacterial conditioned-media with in vitro techniques to examine the paracrine effects of bacterial-derived proteins on human keratinocytes (NHEK) and fibroblasts (NHDF). We found that at the phyla level, the pig skin bacteriome is similar to that of humans and largely consists of Firmicutes (55.6%), Bacteroidetes (20.8%), Actinobacteria (13.3%), and Proteobacteria (5.1%) however species-level differences between anatomical locations exist. Studies of bacterial supernatant revealed location-dependent effects on NHDF migration and NHEK apoptosis and growth factor release. These results expand the limited knowledge of the cutaneous bacteriome of healthy swine, and suggest that naturally occurring bacterial flora affects wound healing differentially depending on anatomical location. Ultimately, the pig might be considered the best surrogate for not only wound healing studies but also the cutaneous microbiome. This would not only facilitate investigations into the microbiome’s role in recovery from injury, but also provide microbial targets for enhancing or accelerating wound healing.
Collapse
Affiliation(s)
- Matthew K. McIntyre
- Damage Control Resuscitation, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, United States of America
| | - Trent J. Peacock
- Dental Trauma Research Detachment, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, United States of America
| | - Kevin S. Akers
- Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, United States of America
| | - David M. Burmeister
- Damage Control Resuscitation, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
36
|
Tomás-Barberán FA, Selma MV, Espín JC. Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr Opin Clin Nutr Metab Care 2016; 19:471-476. [PMID: 27490306 DOI: 10.1097/mco.0000000000000314] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Dietary (poly)phenolic compounds have received attention over the last 20 years as antioxidants with preventive properties against chronic diseases. However, the evidence of these effects in clinical trials is weak, mainly because of a considerable interindividual variability. Polyphenols bioavailability is low, and gut microbiota metabolize them into simpler metabolites. As gut microbiota vary among individuals, such interindividual variability should be considered as a moderating factor in clinical trials. In this review, we show evidence of interactions with gut microbiota that help understanding polyphenols' health effects. RECENT FINDINGS Recent studies indicate that dietary polyphenols are relevant in the modulation of gut microbiota and that these microorganisms convert polyphenols into active and bioavailable metabolites; hence, variations in gut microbiota can affect polyphenol activity. SUMMARY The results show that study participants' stratification by their polyphenol-metabolizing phenotypes would be necessary for clinical trials as specific metabotypes produce the bioactive metabolites responsible for the health effects. Metabotypes can also reflect the gut microbiota composition and metabolic status, and could be biomarkers of the potential polyphenol health effects mediated through gut microbiota.
Collapse
|