1
|
Liu J, Zhao Y, Hao N, Sun P, Deng Z, Zhao W. Exposure Risk Identification and Priority Control List Development of Pesticides in Agricultural Cultivation Areas. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8172-8190. [PMID: 40139734 DOI: 10.1021/acs.jafc.4c12155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The adverse effects of 33 typical pesticides in dry and paddy lands in typical cultivation areas of China were investigated. First, the resistance and cross-resistance (for target organisms), toxicity, and joint toxicity (for nontarget organisms) of pesticides were evaluated, and nine pesticides with high resistance, three with wide cross-resistance, nine with high toxicity, and one with wide joint toxicity were screened. Second, the optimal synergist control schemes in dry and paddy lands were developed, under which resistance to target organisms (corn aphid, soybean aphid, and rice water weevil) reduced by 23.46%, 46.06%, and 26.36% (maximum), respectively, and toxicity (neurotoxicity and developmental toxicity) to nontarget organisms (ladybird beetle, parasitic wasp, and Chinese mitten crab) reduced by 38.83%, 17.76%, and 15.94% (maximum), respectively. Third, the multitoxicity (neurotoxicity, metabolic toxicity, developmental toxicity, carcinogenicity, reproductive toxicity, and respiratory toxicity) adverse outcome pathway based on human health risk was constructed, and 10 pesticides with higher risk and composite risk were identified. Finally, the total exposure risk of 33 typical pesticides was predicted, and a priority control list was proposed. This study provides theoretical guidance for controlling pesticide application to achieve the green and sustainable development of agricultural soils.
Collapse
Affiliation(s)
- Jiapeng Liu
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yuanyuan Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Ning Hao
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Peixuan Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhengyang Deng
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Yadav S, Srivastava R, Singh N, Kanda T, Verma E, Choudhary P, Yadav S, Atri N. Cyanobacteria-Pesticide Interactions and Their Implications for Sustainable Rice Agroecosystems. Int J Microbiol 2025; 2025:7265036. [PMID: 40201931 PMCID: PMC11978480 DOI: 10.1155/ijm/7265036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 02/19/2025] [Indexed: 04/10/2025] Open
Abstract
Modern agricultural practices rely heavily on fertilizers and pesticides to boost crop yields, essential for feeding the growing global population. However, their extensive use poses significant environmental risks. Chemical-based fertilizers and pesticides persist in ecosystems, potentially harming ecological stability. Wetland rice farming utilizing nitrogen-fixing cyanobacteria has emerged as an ecofriendly alternative, drawing attention due to its capacity to mitigate pesticide-related issues. Cyanobacteria, capable of fixing atmospheric nitrogen, thrive in low-nitrogen conditions and can aid plant growth. Some species can also biodegrade pesticides, offering a means to clean up contaminated environments. Researchers are exploring ways to leverage cyanobacteria's nitrogen fixation and biodegradation abilities for ecofriendly biofertilizers and environmental cleanup. This approach presents promise for sustainable agriculture and environmental preservation. The current study delves into multiple studies to investigate global pesticide usage levels, primary categorization, and persistence patterns. It also investigates cyanobacterial distribution and their interactions with pesticides in wetland rice ecosystems, aiming to enable their use in sustainable agriculture. Additionally, the review provides a thorough summary of the literature's findings about the potential of cyanobacteria in pesticide degradation.
Collapse
Affiliation(s)
- Sadhana Yadav
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rupanshee Srivastava
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Nidhi Singh
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Tripti Kanda
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ekta Verma
- Department of Botany, Magadh University, Bodhgaya, Bihar, India
| | - Piyush Choudhary
- Oil and Natural Gas Corporation Ltd., Ministry of Petroleum & Natural Gas, New Delhi, India
| | - Shivam Yadav
- Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Neelam Atri
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
3
|
Yu WQ, Zhao LX, Bian Y, Zhang PX, Jia L, Zhao DM, Fu Y, Ye F. Pharmacophore Recombination Design, Synthesis, and Bioactivity of Ester-Substituted Pyrazole Purine Derivatives as Herbicide Safeners. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3341-3352. [PMID: 39902522 DOI: 10.1021/acs.jafc.4c07027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Mesosulfuron-methyl, an acetolactate synthase (ALS) inhibitor primarily applied to wheat and rye, can injure or even kill wheat crops. Herbicide safeners can improve the herbicide resistance of crops without reducing the herbicidal effect on targeted weed species. Herein, we present a series of pyrazole purine derivatives with the primary structure of the natural product cytokinin and commercialized safener mefenpyridyl, designed using the pharmacophore recombination method. The title compounds were synthesized and characterized using infrared spectroscopy, 1H and 13C nuclear magnetic resonance spectroscopy, and high-resolution mass spectrometry. A bioactivity assay proved that most of the target compounds can reduce the wheat phytotoxicity of mesosulfuron-methyl. Measurements of chlorophyll and glutathione contents, along with other enzyme activity assays, confirmed that compounds I-15 and I-13 exhibit higher safety activities compared with the mefenpyr-diethyl safener. Molecular structure comparisons demonstrated that I-15 is more readily absorbed and disseminated through the crop than the commercialized safener mefenpyr-diethyl. Molecular docking models and molecular dynamics simulations elucidated the protective mechanism of safeners; specifically, compound I-15 competitively binds to the ALS active site with mesosulfuron-methyl. The current study reveals the potential of pyrazole purine derivatives in the future discovery of novel herbicide safeners.
Collapse
Affiliation(s)
- Wen-Qing Yu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Bian
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Pan-Xiu Zhang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ling Jia
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Dong-Mei Zhao
- School of Food Engineering, East University of Heilongjiang, Harbin 150076, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
4
|
Gao W, Li J, Zhang Y, Yuan H, Li K, Zhang J, Han L, Fan Z, Chen L, Tang L. Pyruvate Kinase-Based Novel 2-Thiazol-2-yl-1,3,4-oxadiazoles Discovery as Fungicidal Highly Active Leads. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1075-1085. [PMID: 39760922 DOI: 10.1021/acs.jafc.4c08092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
To discover novel inhibitors of pyruvate kinase (PK) as fungicidal candidates, a series of 2-thiazol-2-yl-1,3,4-oxadiazole derivatives were designed by a prediction model with Rhizoctonia solani PK (RsPK) as a protein target and YZK-C22 as a ligand. Fungicidal screening indicated that 5b, 5g, 5h, 5j, 5l, 5p, 5q, and 5s exhibited equal or higher activity compared to YZK-C22 against Botrytis cinerea, Cercospora arachidicola, or R. solani. To our surprise, 5s showed comparable activity to flutriafol with an EC50 of 0.21 μg/mL vs 0.20 μg/mL, but over 14 times more active than the lead compound YZK-C22 against R. solani with its EC50 of 0.21 μg/mL vs 3.14 μg/mL (mole ratio over 17-fold). Compound 5s also displayed 2.30-fold better inhibition potency against RsPK compared with YZK-C22. Moreover, this higher potency of 5s against RsPK was also reflected in a steeper dose-response tendency in the fluorescence quenching assay and a lower dissociation constant in the microscale thermophoresis (MST) assay when compared with YZK-C22. The results in this study not only broadened the structural diversity of PK inhibitors but also supported 5s as a promising PK-based highly active fungicide lead compound, with stronger binding ability to RsPK than YZK-C22.
Collapse
Affiliation(s)
- Wei Gao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Jing Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Yue Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Haolin Yuan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Kun Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Jin Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Lijun Han
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, PR China
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
5
|
Zhang T, Gong C, Pu J, Peng A, Yang J, Wang X. Enhancement of Tolerance against Flonicamid in Solenopsis invicta Queens through Overexpression of CYP6AQ83. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:237-248. [PMID: 39680625 DOI: 10.1021/acs.jafc.4c08903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Solenopsis invicta, an extremely destructive invasive species, has rapidly spread in China, with queens exhibiting chemical tolerance. In this study, bioassays were conducted on S. invicta colonies collected in Nanchong, revealing that the LC50 value of flonicamid for queens (3.91 mg/L) was significantly higher than that for workers (1.07 mg/L). Comparative analysis of transcriptomes of workers and queens treated with flonicamid revealed that differentially expressed genes (DEGs) were significantly enriched in the metabolism of xenobiotics by cytochrome P450 and drug metabolism by cytochrome P450 pathways. Based on the screening of transcriptome data, CYP6AQ83 might be involved in the detoxification metabolism of flonicamid in queens. After RNA interference, the sensitivity of queens to flonicamid was significantly increased by 30% in the treatment of the dsCYP6AQ83 group. Furthermore, heterologous overexpression of CYP6AQ83 in Drosophila melanogaster also significantly enhanced the tolerance against flonicamid. These results indicated that the overexpression of CYP6AQ83 in the queen enhances the tolerance against flonicamid.
Collapse
Affiliation(s)
- Tianyi Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Changwei Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Pu
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Anchun Peng
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jizhi Yang
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuegui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
6
|
Liang P, Zhang Z, Zhen C, Li D, Cheng S, Li R, Zhang L. Risk Assessment of Cyclaniliprole Resistance in Peach-Potato Aphid Myzus persicae: Laboratory Selection, Inheritance, and Cross-Resistance Patterns. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70031. [PMID: 39865561 DOI: 10.1002/arch.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/30/2025]
Abstract
Cyclaniliprole, a type of the third-generation anthranilic diamide insecticide, was mainly used for management of various pests. Myzus persicae (Hemiptera: Aphididae), known as the peach-potato aphid, is an economically essential pest with worldwide distribution. However, the risk assessment of cyclaniliprole in M. persicae is unclear. The cyclaniliprole risk assessment in M. persicae showed 2.56-fold resistance to cyclaniliprole after 26 generation selection in comparison to the initial susceptible population. The cross-resistance experiment revealed that the low cross-resistance to imidacloprid (4.2-fold) in the cyclaniliprole-selected strain was observed when comparing to the susceptible population. Realized heritability (h2) of cyclaniliprole resistance was 0.0362. When mean slope = 2.217 and h2 = 0.0362, then 31-69 generations would be required for an increase of LC50s with ten times at 90%-50% selection intensity. The fecundity (the number of offspring per female) of the cyclaniliprole-selected strain had no significant difference with the susceptible population. The mRNA expression of the target gene ryanodine receptor was significantly enhanced in the cyclaniliprole-selected strain. The absence of fitness costs, the minimal resistance risk, and very low levels of cross-resistance in the cyclaniliprole-selected strain provide strong support for designing the effective management strategies against M. persicae.
Collapse
Affiliation(s)
- Pingzhuo Liang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zihao Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Congai Zhen
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Dapeng Li
- Department of Landscape, The Museum of Chinese Gardens and Landscape Architecture, Beijing, China
| | - Shenhang Cheng
- School of Synthetic biology, Shanxi University, Taiyuan, Shanxi, China
| | - Ren Li
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lei Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Simonsen D, Livania V, Cwiertny DM, Samuelson RJ, Sivey JD, Lehmler HJ. A systematic review of herbicide safener toxicity. Crit Rev Toxicol 2024; 54:805-855. [PMID: 39351770 DOI: 10.1080/10408444.2024.2391431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 12/24/2024]
Abstract
Herbicide safeners are agrochemicals added to herbicide formulations to protect crops from herbicide damage without reducing the effectiveness of the herbicide against weeds. While safeners are typically structurally similar to their co-formulated herbicides, they are classified as "inert" in the United States, meaning they are not held to the same regulatory standards as the herbicides. This review systematically examines the toxicity of safeners, which is important given their large-scale global use and potential for exposure to wildlife, livestock, and humans. A systematic review of peer-reviewed literature identified only seven studies examining safener toxicity. Regulatory toxicity data, compiled from the European Chemicals Agency (ECHA) database, included data for 9 of the 18 commercial safeners. Most safeners have low acute ecotoxicity and mammalian toxicity; however, chronic effects and the underlying mechanism are less clear. Benoxacor showed enantioselective metabolism and depletion by drug-metabolizing enzymes. In conclusion, despite the widespread use of safeners, significant knowledge gaps exist regarding their toxicity. More research is needed to fully characterize the potential risks of safeners to human health and the environment. Regulatory agencies should consider reclassifying safeners as active ingredients to ensure adequate toxicity testing and risk assessment.
Collapse
Affiliation(s)
- Derek Simonsen
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa, USA
- IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa, USA
| | - Vanessa Livania
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa, USA
| | - David M Cwiertny
- IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa, USA
- Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, Iowa, USA
| | | | - John D Sivey
- Department of Chemistry, Towson University, Towson, Maryland, USA
- Urban Environmental Biogeochemistry Laboratory, Towson University, Towson, Maryland, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa, USA
- IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Dong J, Yu XH, Dong J, Wang GH, Wang XL, Wang DW, Yan YC, Xiao H, Ye BQ, Lin HY, Yang GF. An artificially evolved gene for herbicide-resistant rice breeding. Proc Natl Acad Sci U S A 2024; 121:e2407285121. [PMID: 39133859 PMCID: PMC11348328 DOI: 10.1073/pnas.2407285121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/18/2024] [Indexed: 08/29/2024] Open
Abstract
Discovering and engineering herbicide-resistant genes is a crucial challenge in crop breeding. This study focuses on the 4-hydroxyphenylpyruvate dioxygenase Inhibitor Sensitive 1-Like (HSL) protein, prevalent in higher plants and exhibiting weak catalytic activity against many β-triketone herbicides (β-THs). The crystal structures of maize HSL1A complexed with β-THs were elucidated, identifying four essential herbicide-binding residues and explaining the weak activity of HSL1A against the herbicides. Utilizing an artificial evolution approach, we developed a series of rice HSL1 mutants targeting the four residues. Then, these mutants were systematically evaluated, identifying the M10 variant as the most effective in modifying β-THs. The initial active conformation of substrate binding in HSL1 was also revealed from these mutants. Furthermore, overexpression of M10 in rice significantly enhanced resistance to β-THs, resulting in a notable 32-fold increase in resistance to methyl-benquitrione. In conclusion, the artificially evolved M10 gene shows great potential for the development of herbicide-resistant crops.
Collapse
Affiliation(s)
- Jin Dong
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Xin-He Yu
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Jiangqing Dong
- Hubei Shizhen Laboratory, Wuhan430061, People’s Republic of China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan430065, People’s Republic of China
| | - Gao-Hua Wang
- Edgene Biotechnology Co., Ltd., Wuhan430074, People’s Republic of China
| | - Xin-Long Wang
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Da-Wei Wang
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Yao-Chao Yan
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Han Xiao
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Bao-Qin Ye
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Hong-Yan Lin
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Guang-Fu Yang
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan430079, People’s Republic of China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan430079, People’s Republic of China
| |
Collapse
|
9
|
Fu Y, Yu J, Fan F, Wang B, Cao Z. Elucidating the Enzymatic Mechanism of Dihydrocoumarin Degradation: Insight into the Functional Evolution of Methyl-Parathion Hydrolase from QM/MM and MM MD Simulations. J Phys Chem B 2024; 128:5567-5575. [PMID: 38814729 DOI: 10.1021/acs.jpcb.4c00970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Methyl-parathion hydrolase (MPH), which evolved from dihydrocoumarin hydrolase, offers one of the most efficient enzymes for the hydrolysis of methyl-parathion. Interestingly, the substrate preference of MPH shifts from the methyl-parathion to the lactone dihydrocoumarin (DHC) after its mutation of five specific residues (R72L, L273F, L258H, T271I, and S193Δ, m5-MPH). Here, extensive QM/MM calculations and MM MD simulations have been used to delve into the structure-function relationship of MPH enzymes and plausible mechanisms for the chemical and nonchemical steps, including the transportation and binding of the substrate DHC to the active site, the hydrolysis reaction, and the product release. The results reveal that the five mutations remodel the active pocket and reposition DHC within the active site, leading to stronger enzyme-substrate interactions. The MM/GBSA-estimated binding free energies are about -20.7 kcal/mol for m5-MPH and -17.1 kcal/mol for wild-type MPH. Furthermore, this conformational adjustment of the protein may facilitate the chemical step of DHC hydrolysis and the product release, although there is a certain influence on the substrate transport. The hydrolytic reaction begins with the nucleophilic attack of the bridging OH- with the energy barriers of 22.0 and 18.0 kcal/mol for the wild-type and m5-MPH enzymes, respectively, which is rate-determining for the entire process. Unraveling these mechanistic intricacies may help in the understanding of the natural evolution of enzymes for diverse substrates and establish the enzyme structure-function relationship.
Collapse
Affiliation(s)
- Yuzhuang Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fangfang Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
10
|
Stara J, Hubert J. Does Leptinotarsa decemlineata larval survival after pesticide treatment depend on microbiome composition? PEST MANAGEMENT SCIENCE 2023; 79:4921-4930. [PMID: 37532920 DOI: 10.1002/ps.7694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/04/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND The microbiomes of some arthropods are believed to eliminate pesticides by chemical degradation or stimulation of the host immune system. The Colorado potato beetle (CPB; Leptinotarsa decemlineata) is an important agricultural pest with known resistance to used pesticides. We sought to analyze microbiome composition in CPB larvae from different sites and to identify the effect of pesticides on the microbiome of surviving and dead larvae after chlorpyrifos treatment in laboratory. Changes in the Lactococcus lactis community in larvae treated with chlorpyrifos and fed by potato leaves with L. lactis cover were studied by manipulative experiment. The microbiome was characterized by sequencing the 16S RNA gene. RESULTS The microbiome of L. decemlineata larvae is composed of a few operational taxonomic units (OTUs) (Enterobacteriaceae, Pseudocitrobacter, Acinetobacter, Pseudomonas, L. lactis, Enterococcus, Burkholderia and Spiroplasma leptinotarsae). The microbiome varied among the samples from eight sites and showed differences in profiles between surviving and dead larvae. The survival of larvae after chlorpyrifos treatment was correlated with a higher proportion of L. lactis sequences in the microbiome. The S. leptinotarsa profile also increased in the surviving larvae, but this OTU was not present in all sampling sites. In manipulative experiments, larvae treated with L. lactis had five-fold lower mortality rates than untreated larvae. CONCLUSION These results indicate that the microbiome of larvae is formed from a few bacterial taxa depending on the sampling site. A member of the gut microbiome, L. lactis, is believed to help overcome the toxic effects of chlorpyrifos in the larval gut. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Jan Hubert
- Crop Research Institute, Prague, Czechia
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
11
|
Egede Frøkjær E, Rüsz Hansen H, Hansen M. Non-targeted and suspect screening analysis using ion exchange chromatography-Orbitrap tandem mass spectrometry reveals polar and very mobile xenobiotics in Danish drinking water. CHEMOSPHERE 2023; 339:139745. [PMID: 37558003 DOI: 10.1016/j.chemosphere.2023.139745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/21/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Non-targeted and suspect screening analysis is gaining approval across the scientific and regulatory community to monitor the chemical status in the environment and thus environmental quality. These holistic screening analyses provides the means to perform suspect screening and go beyond to discover previously undescribed chemical pollutants in environmental samples. In a case study, we developed and optimized a high-resolution tandem mass spectrometry platform hyphenated with anion exchange chromatography to screen drinking water samples in Denmark. The optimized non-targeted screening method was able to detect anionic and polar compounds and was successfully applied to drinking water from two drinking water facilities. Following a data analysis pipeline optimization, anionic pesticide residues and other environmental contaminants were detected at confidence identification level 1 such as dimethachlor ESA, mecoprop, and dichlorprop in drinking water. In addition to these three substances, it was possible to detect another 1662 compounds, of which 97 were annotated at confidence identification level 2. More research is urgently needed to health risk prioritize the detected substances and to determine their concentrations.
Collapse
Affiliation(s)
- Emil Egede Frøkjær
- Environmental Metabolomics Lab, Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark.
| | - Helle Rüsz Hansen
- Danish Environmental Protection Agency, Tolderlundsvej 5, 5000, Odense C, Denmark
| | - Martin Hansen
- Environmental Metabolomics Lab, Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark.
| |
Collapse
|
12
|
Ni R, Wang Y, Zhong Q, Li M, Zhang D, Zhang Y, Qiu X. Absence of known knockdown resistance mutations but fixation of CYP337B3 was detected in field populations of Helicoverpa armigera across China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105542. [PMID: 37666613 DOI: 10.1016/j.pestbp.2023.105542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 09/06/2023]
Abstract
The cotton bollworm (Helicoverpa armigera) is a worldwide agricultural pest that infests many important crops. Pyrethroids targeting the voltage-gated sodium channel (VGSC) have been long used in the control of the cotton bollworm. Two amino acid substitutions (D1561V and E1565G) in H. armigera VGSC (HaVGSC) and the presence of a chimeric P450 gene (CYP337B3) have been documented to be associated with pyrethroid resistance. To understand the current occurrence of kdr mutations and the CYP337B3 gene in Chinese H. armigera populations, high-throughput amplicon sequencing was adopted to detect potential nucleotide variations in three fragments of the VGSC gene that cover 10 reported knockdown resistance (kdr) sites in insects, and gene-specific PCR was performed to examine the presence of CYP337B3 gene in H. armigera samples collected across China. The nucleotide variation analysis revealed a wealth of nucleotide variations in not only exons but also introns in the VGSC gene in Chinese H. armigera populations. However, neither previously reported kdr-conferring amino acid replacements nor other non-synonymous mutations were observed in a total of 1439 examined individuals. Population genetic analysis suggested that the H. armigera population in Nanchang, Jiangxi Province (JNC) had a moderate genetic differentiation from other populations, while no significant divergence was observed in other populations in northern and northwestern China. The CYP337B3 was present in all the examined individuals, indicating that CYP337B3 is extensively fixed in H. armigera populations across China. These results support that point mutations in VGSC are not a major factor involved in the current pyrethroid resistance in H. armigera. Instead, CYP337B3 plays a prevalent role in the development of resistance to pyrethroids in H. armigera.
Collapse
Affiliation(s)
- Ruoyao Ni
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yawei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiuzan Zhong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Ganzhou Vegetable and Flower Research Institute, Ganzhou, Jiangxi Province 341413, China.
| | - Mei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Dandan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xinghui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
13
|
Leng XY, Zhao LX, Gao S, Ye F, Fu Y. Review on the Discovery of Novel Natural Herbicide Safeners. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37466454 DOI: 10.1021/acs.jafc.3c03585] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The phytotoxicity of herbicides on crops is a major dilemma in agricultural production. Fortunately, the emergence of herbicide safeners is an excellent solution to this challenge, selectively enhancing the performance of herbicides in controlling weeds while reducing the phytotoxicity to crops. But owing to their potential toxicity, only a tiny proportion of safeners are commercially available. Natural products as safeners have been extensively explored, which are generally safe to mammals and cause little pollution to the environment. They are typically endogenous signal molecules or phytohormones, which are generally difficult to extract and synthesize, and exhibit relatively lower activity than commercial products. Therefore, it is necessary to adopt rational design approaches to modify the structure of natural safeners. This paper reviews the application, safener effects, structural characteristics, and modifications of natural safeners and provides insights on the discovery of natural products as potential safeners in the future.
Collapse
Affiliation(s)
- Xin-Yu Leng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
14
|
Yang C, Li Y, Zhang Y, Hu Q, Liu Y, Li YF, Shi HC, Song LL, Cao H, Hao XJ, Zhi XY. Natural Sesquiterpene Lactone as Source of Discovery of Novel Fungicidal Candidates: Structural Modification and Antifungal Activity Evaluation of Xanthatin Derived from Xanthium strumarium L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37449982 DOI: 10.1021/acs.jafc.3c02435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
As part of our ongoing efforts to discover novel agricultural fungicidal candidates from natural sesquiterpene lactones, in the present work, sixty-three xanthatin-based derivatives containing a arylpyrazole, arylimine, thio-acylamino, oxime, oxime ether, or oxime ester moiety were synthesized. Their structures were well characterized by 1H and 13C nuclear magnetic resonance and high-resolution mass spectrometry, while the absolute configurations of compounds 5' and 6a were further determined by single-crystal X-ray diffraction. Meanwhile, the antifungal activities of the prepared compounds against several phytopathogenic fungi were investigated using the spore germination method and the mycelium growth rate method in vitro. The bioassay results illustrated that compounds 5, 5', and 15 exhibited excellent inhibitory activity against the tested fungal spores and displayed remarkable inhibitory effects on fungal mycelia. Compounds 5 and 5' exhibited more potent inhibitory activity (IC50 = 1.1 and 24.8 μg/mL, respectively) against the spore of Botrytis cinerea than their precursor xanthatin (IC50 = 37.6 μg/mL), wherein the antifungal activity of compound 5 was 34-fold higher than that of xanthatin and 71-fold higher than that of the positive control, difenoconazole (IC50 = 78.5 μg/mL). Notably, compound 6'a also demonstrated broad-spectrum inhibitory activity against the four tested fungal spores. Meanwhile, compounds 2, 5, 8, and 15 showed prominent inhibitory activity against the mycelia of Cytospora mandshurica with the EC50 values of 2.3, 11.7, 11.1, and 3.0 μg/mL, respectively, whereas the EC50 value of xanthatin was 14.8 μg/mL. Additionally, compounds 5' and 15 exhibited good in vivo therapeutic and protective effects against B. cinerea with values of 55.4 and 62.8%, respectively. The preliminary structure-activity relationship analysis revealed that the introduction of oxime, oxime ether, or oxime ester structural fragment at the C-4 position of xanthatin or the introduction of a chlorine atom at the C-3 position of xanthatin might be significantly beneficial to antifungal activity. In conclusion, the comprehensive investigation indicated that partial xanthatin-based derivatives from this study could be considered for further exploration as potential lead structures toward developing novel fungicidal candidates for crop protection.
Collapse
Affiliation(s)
- Chun Yang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Yang Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Yuan Zhang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Qiang Hu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Ying Liu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Yang-Fan Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Hong-Cheng Shi
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Li-Li Song
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Hui Cao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Xiao-Juan Hao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Xiao-Yan Zhi
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| |
Collapse
|
15
|
Expression and purification of snustorr snarlik protein from Plutella xylostella. Protein Expr Purif 2023; 206:106256. [PMID: 36871763 DOI: 10.1016/j.pep.2023.106256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Snustorr snarlik (Snsl) is a type of extracellular protein essential for insect cuticle formation and insect survival, but is absent in mammals, making it a potential selective target for pest control. Here, we successfully expressed and purified the Snsl protein of Plutella xylostella in Escherichia coli. Two truncated forms of Snsl protein, Snsl 16-119 and Snsl 16-159, were expressed as a maltose-binding protein (MBP) fusion protein and purified to a purity above 90% after a five-step purification protocol. Snsl 16-119, forming stable monomer in solution, was crystallized, and the crystal was diffracted to a resolution of ∼10 Å. Snsl 16-159, forming an equilibrium between monomer and octamer in solution, was shown to form rod-shaped particles on negative staining electron-microscopy images. Our results lay a foundation for the determination of the structure of Snsl, which would improve our understanding of the molecular mechanism of cuticle formation and related pesticide resistance and provide a template for structure-based insecticide design.
Collapse
|
16
|
Ding Y, Zhao DM, Kang T, Shi J, Ye F, Fu Y. Design, Synthesis, and Structure-Activity Relationship of Novel Aryl-Substituted Formyl Oxazolidine Derivatives as Herbicide Safeners. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7654-7668. [PMID: 37191232 DOI: 10.1021/acs.jafc.3c00467] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Nicosulfuron is the leading herbicide in the global sulfonylurea (SU) herbicide market; it was jointly developed by DuPont and Ishihara. Recently, the widespread use of nicosulfuron has led to increasingly prominent agricultural production hazards, such as environmental harm and influence on subsequent crops. The use of herbicide safeners can significantly alleviate herbicide injury to protect crop plants and expand the application scope of existing herbicides. A series of novel aryl-substituted formyl oxazolidine derivatives were designed using the active group combination method. Title compounds were synthesized using an efficient one-pot method and characterized by infrared (IR) spectrometry, 1H and 13C nuclear magnetic resonance (NMR), and high-resolution mass spectrometry (HRMS). The chemical structure of compound V-25 was further identified by X-ray single crystallography. The bioactivity assay and structure-activity relationship proved that nicosulfuron phytotoxicity to maize could be reduced by most title compounds. The glutathione S-transferase (GST) activity and acetolactate synthase (ALS) in vivo were determined, and compound V-12 showed inspiring activity comparable to that of the commercial safener isoxadifen-ethyl. The molecular docking model indicated that compound V-12 competed with nicosulfuron for the acetolactate synthase active site and that this is the protective mechanism of safeners. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) predictions demonstrated that compound V-12 exhibited superior pharmacokinetic properties to the commercialized safener isoxadifen-ethyl. The target compound V-12 shows strong herbicide safener activity in maize; thus, it may be a potential candidate compound that can help further protect maize from herbicide damage.
Collapse
Affiliation(s)
- Yu Ding
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Dong-Mei Zhao
- School of Food Engineering, East University of Heilongjiang, Harbin, Heilongjiang 150076, People's Republic of China
| | - Tao Kang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Juan Shi
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
- School of Food Engineering, East University of Heilongjiang, Harbin, Heilongjiang 150076, People's Republic of China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
17
|
Chen J, Yang C, Nie H, Li H. Aptamer recognition-promoted hybridization chain reaction for amplified label-free and enzyme-free fluorescence analysis of pesticide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122451. [PMID: 36801730 DOI: 10.1016/j.saa.2023.122451] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/13/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Development of high-performance fluorescence sensors for pesticide is highly urgent but remains a grand challenge. It is due to that most of known fluorescence sensors detect pesticides based on enzyme-inhibited strategy, which requires high-price cholinesterase, suffers from serious interference of reductive materials, and can't difference pesticides with each other; the known aptamer-based fluorescence ones entail tool enzymes or nanomaterials to transducer/amplify the signal and demand signalers to be tagged in nucleic acid, which are expensive and intricate. Herein, we develop a novel aptamer-based fluorescence system for label-free, enzyme-free and highly sensitive detection of pesticide (profenofos) based on target-initiated hybridization chain reaction (HCR)-assisted signal amplification and specific intercalation of N-methylmesoporphyrin IX (NMM) in G-quadruplex DNA. Hairpin probe ON1 recognizes profenofos to generate profenofos@ON1 complex, which switches the HCR to yield multiple G-quadruplex DNA, consequently making large numbers of NMM be locked. In comparison with profenofos absence, a sharply improved fluorescence signal was recorded and it was dependent on profenofos dose. Hence, label-free, enzyme-free and highly sensitive detection of profenofos is achieved with limit of detection of 0.085 nM, which compared favorably with or superior to those of known fluorescence methods. Furthermore, the present method was applied to determine the profenofos residue in rice with agreeable result, and will provide more valuable information for guaranteeing the pesticide-related food safety.
Collapse
Affiliation(s)
- Jianling Chen
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071002, Hebei, China.
| | - Chunliu Yang
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071002, Hebei, China
| | - Hailiang Nie
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071002, Hebei, China
| | - Haiyin Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Provinence, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, Hebei, China; College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| |
Collapse
|
18
|
Yao Q, Quan L, Wang S, Xing D, Chen B, Lu K. Predatory stink bug, Eocanthecona furcellata (Wolff) responses to oral exposure route of λ-cyhalothrin via sex-specific modulation manner. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105381. [PMID: 37105612 DOI: 10.1016/j.pestbp.2023.105381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
The toxic effects of insecticides on predatory arthropods have closely related to their exposure routes. However, little is known about the effects of insecticide on reproductive parameters when the route of exposure occurs at a trophic level via prey intake. We therefore conducted current studies assessing whether Eocanthecona furcellata adults would be affected by feeding with λ-cyhalothrin-contaminated prey. Reproductive parameters, i.e. prolonged premating and preoviposition durations, reduced number of egg batches and egg amount, disturbed ovarian development, and suppressed expression of reproductive related genes were observed in E. furcellata females by feeding with treated prey. Moreover, reduced survival rate and altered carbohydrate metabolism parameters were detected in male bugs. Biochemical parameters, including MDA content, the activities of three antioxidant enzymes and three detoxification enzymes exhibited sex-specific responses after oral-exposure to λ-cyhalothrin in E. furcellata. The results indicate that the insecticide affects the fitness and leads to impairing reproductive potential via sex-specific modulation manner in predator insects. Taken together, our results provide a comprehensive assessment about detrimental impacts of λ-cyhalothrin-exposure on predators via prey intake, as well as a solid basis for further research to protect the predators from hazardous impacts of insecticides.
Collapse
Affiliation(s)
- Qiong Yao
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Linfa Quan
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Siwei Wang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Dongxu Xing
- Sericulture and Agri-Food Research Institute, Guangdong, Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Bingxu Chen
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
19
|
Yao Q, Liang Z, Chen B. Evidence for the Participation of Chemosensory Proteins in Response to Insecticide Challenge in Conopomorpha sinensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1360-1368. [PMID: 36622209 DOI: 10.1021/acs.jafc.2c05973] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chemosensory proteins (CSPs) are a type of efficient transporters that can bind various hydrophobic compounds. Previous research has shown that the expression levels of some insect CSPs were significantly increased after insecticide treatment. However, the role of CSPs in response to insecticide challenge is unclear. Conopomorpha sinensis is the most destructive borer pest of litchi (Litchi chinensis) and longan (Euphoria longan) in the Asia-Pacific region. Here, we studied the expression patterns and potential functions of 12 CSP genes (CsCSPs) from C. sinensis in response to λ-cyhalothrin exposure. The spatiotemporal distribution of CsCSPs suggested that they were predominantly expressed in the female abdomen, female legs, and male legs. The expression levels of CsCSPs were affected in a time-dependent manner after λ-cyhalothrin treatment in both sexes of C. sinensis adults. Compared to the control group, the expression levels of CsCSP1, CsCSP2, CsCSP9, and CsCSP12 in females were significantly increased by 2-4 times, while only one CsCSP, three CsCSPs, and two CsCSPs were significantly upregulated in males at three time points post-treatment. The sex-biased variance of CSP expression may be related to sex-specific detoxification enzymatic activities and survival rates of C. sinensis in response to insecticide challenge. Homology modeling and molecular docking analyses showed that the binding energy value of CsCSP1-12 to λ-cyhalothrin was negative and the binding energy between CsCSP9 and λ-cyhalothrin was the lowest (-11.35 kJ/mol). Combined with expression alterations of CsCSP1-12, the results indicate that CsCSP1, CsCSP2, CsCSP9, and CsCSP12 were involved in binding and ferrying of λ-cyhalothrin in C. sinensis.
Collapse
Affiliation(s)
- Qiong Yao
- Guangdong Provincial Key Laboratory of New High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhantu Liang
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Bingxu Chen
- Guangdong Provincial Key Laboratory of New High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
20
|
Pang R, Chen B, Wang S, Chi Y, Huang S, Xing D, Yao Q. Decreased cuticular penetration minimizes the impact of the pyrethroid insecticide λ-cyhalothrin on the insect predator Eocanthecona furcellata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114369. [PMID: 36508800 DOI: 10.1016/j.ecoenv.2022.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The use of broad-spectrum pesticides may reduce the biological control efficacy of predatory arthropods. Hence, the risks of pesticides to predators need to be evaluated. Here, we assessed the effects of a broad spectrum pyrethroid λ-cyhalothrin on a polyphagous predatory insect Eocanthecona furcellata via contact exposure route. The recommended application rate of λ-cyhalothrin was lower than the LR50 and HQ (in-field) was equal to 0.57, indicating the risk of λ-cyhalothrin to E. furcellata was low. Dried λ-cyhalothrin residue had no effect on the mortality, body weight, protein content of cuticle, or activities of major detoxification enzymes in E. furcellata. Residual of λ-cyhalothrin was only detected in the cuticle and legs of E. furcellata with a decreasing trend as time went by and no λ-cyhalothrin was detected inside the body. Additionally, a comparative transcriptome analysis was conducted to study global changes in gene expression in E. furcellata at different time points following exposure to λ-cyhalothrin-contaminated environment. A total of 57,839 unigenes with an average length of 1044 bp and an N50 of 1820 bp were obtained. In total, 118 and 109 differentially expressed genes (DEGs) at 12 h, and 60 h were identified between two groups. The DEGs were largely enriched in functional categories related to the structural constituent of cuticle. Accordingly, multiple cuticle protein-coding genes were up-regulated at 12 h after pesticide exposure. The present study stressed the importance of evaluating the compatibility between a specific pesticide (λ-cyhalothrin) and E. furcellata via simulating the releasing predators after insecticide application. The data could help optimize the pesticide use, optimizing the ecological services of E. furcellata as a BCA, and expanding its use into more areas of agriculture.
Collapse
Affiliation(s)
- Rui Pang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China; South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, China
| | - Bingxu Chen
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Siwei Wang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Yanyan Chi
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Shixuan Huang
- South China Agricultural University, Guangzhou 510642, China
| | - Dongxu Xing
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Qiong Yao
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China.
| |
Collapse
|
21
|
Meier CJ, Rouhier MF, Hillyer JF. Chemical Control of Mosquitoes and the Pesticide Treadmill: A Case for Photosensitive Insecticides as Larvicides. INSECTS 2022; 13:1093. [PMID: 36555003 PMCID: PMC9783766 DOI: 10.3390/insects13121093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Insecticides reduce the spread of mosquito-borne disease. Over the past century, mosquito control has mostly relied on neurotoxic chemicals-such as pyrethroids, neonicotinoids, chlorinated hydrocarbons, carbamates and organophosphates-that target adults. However, their persistent use has selected for insecticide resistance. This has led to the application of progressively higher amounts of insecticides-known as the pesticide treadmill-and negative consequences for ecosystems. Comparatively less attention has been paid to larvae, even though larval death eliminates a mosquito's potential to transmit disease and reproduce. Larvae have been targeted by source reduction, biological control, growth regulators and neurotoxins, but hurdles remain. Here, we review methods of mosquito control and argue that photoactive molecules that target larvae-called photosensitive insecticides or PSIs-are an environmentally friendly addition to our mosquitocidal arsenal. PSIs are ingested by larvae and produce reactive oxygen species (ROS) when activated by light. ROS then damage macromolecules resulting in larval death. PSIs are degraded by light, eliminating environmental accumulation. Moreover, PSIs only harm small translucent organisms, and their broad mechanism of action that relies on oxidative damage means that resistance is less likely to evolve. Therefore, PSIs are a promising alternative for controlling mosquitoes in an environmentally sustainable manner.
Collapse
Affiliation(s)
- Cole J. Meier
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Julián F. Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
22
|
Mendonça JDS, Hirano LQL, Santos ALQ, de Melo E Silva D, de Castro Pereira C, Costa MS, de Lima PN, Araújo APDC, Malafaia G, Ambrósio IS, de Moura Bife Castilho L, Dos Santos ALR, de Faria AM, de Andrade DV, Vieira LG. The exposure in ovo of embryos belonging to Amazonian turtle species Podocnemis expansa (Testudines) to commercial glyphosate and fipronil formulations impairs their growth and changes their skeletal development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156709. [PMID: 35718176 DOI: 10.1016/j.scitotenv.2022.156709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Pesticides are widely used in agricultural production; moreover, they can have direct and indirect effect on both flora and fauna. Aquatic organisms, among other animals, including reptiles, are mainly susceptible to contamination effects. Accordingly, the aim of the present study is to test the hypothesis that the incubation of Podocnemis expansa eggs in substrate added with glyphosate and fipronil formulations changes their viability, interferes with their growth and induces bone alterations. Eggs collected in natural environment were artificially incubated in sand moistened with water added with glyphosate Atar 48, at concentrations of 65 or 6500 μg/L (groups G1 and G2, respectively), and with fipronil Regent 800 WG at 4 or 400 μg/L (groups F1 and F2, respectively) or, yet, with the combination of 65 μg/L glyphosate and 4 μg/L fipronil, or with 6500 μg/L glyphosate and 400 μg/L fipronil (groups GF1 and GF2, respectively). The level of exposure to the herein assessed pesticides was quantified at the end of the incubation period; it was done by dosing its concentration in eggshells. Eggs exposed to the tested pesticides did not have their viability affected by it; however, all embryos exposed to the tested pesticides showed lowered body mass at hatch, as well as impaired development. In addition, bone malformation in the scleral ossicular ring was observed in individuals in groups F1, F2 and GF1. Pesticides accumulated in eggshells at concentrations related to exposure level. Thus, the recorded results have evidenced some remarkably relevant, and previously unknown, impacts associated with the exposure of a species listed as lower risk/conservation dependent, which spends most of its life in the water, to two widely used pesticides, at a very sensitive stage of its life, namely: egg incubation on land.
Collapse
Affiliation(s)
- Juliana Dos Santos Mendonça
- Programa de Pós-Graduação em Ecologia, Evolução e Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil.
| | - Líria Queiroz Luz Hirano
- Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília (UNB), Brasília, DF, Brazil
| | - André Luiz Quagliatto Santos
- Laboratório de Ensino e Pesquisa em Animais Silvestres, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Daniela de Melo E Silva
- Laboratório de Genética e Mutagênese, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Carolina de Castro Pereira
- Laboratório Multidisciplinar em Morfologia e Ontogenia, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Matheus Santos Costa
- Laboratório Multidisciplinar em Morfologia e Ontogenia, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Phâmella Neres de Lima
- Laboratório Multidisciplinar em Morfologia e Ontogenia, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Amanda Pereira da Costa Araújo
- Laboratório de Toxicologia Amplicada ao Meio Ambiente, Programa de Pós-Graduação em Conservação dos Recursos Naturais do Cerrado, Instituto Federal Goiano - Campus Urutaí, GO, Brazil; Programa de Pós-Graduação em Ciências Ambientais, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Guilherme Malafaia
- Laboratório de Toxicologia Amplicada ao Meio Ambiente, Programa de Pós-Graduação em Conservação dos Recursos Naturais do Cerrado, Instituto Federal Goiano - Campus Urutaí, GO, Brazil; Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Instituição Federal Goiano e Universidade Federal de Goiás, GO, Brazil; Programa de Pós-Graduação em Ecologia, Conservação e Biodiversidade, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Isabela Sayuri Ambrósio
- Instituto de Ciências Exatas e Naturais do Pontal, Universidade Federal de Uberlândia (UFU), Ituiutaba, MG, Brazil
| | - Lais de Moura Bife Castilho
- Instituto de Ciências Exatas e Naturais do Pontal, Universidade Federal de Uberlândia (UFU), Ituiutaba, MG, Brazil
| | | | - Anizio Marcio de Faria
- Instituto de Ciências Exatas e Naturais do Pontal, Universidade Federal de Uberlândia (UFU), Ituiutaba, MG, Brazil
| | - Denis Vieira de Andrade
- Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Lucélia Gonçalves Vieira
- Laboratório Multidisciplinar em Morfologia e Ontogenia, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| |
Collapse
|
23
|
Khallaf A, Wang P, Zhuo S, Zhu H, Liu H. Structural design and insecticidal activity of 1,3,4‐oxadiazole‐ring containing pyridylpyrazole‐4‐carboxamides. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Abdalla Khallaf
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Road Zibo P. R. China
- Department of Applied Chemistry College of Chemistry and Molecular Engineering, Nanjing Tech. University Nanjing P. R. China
| | - Ping Wang
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Road Zibo P. R. China
| | - Shuping Zhuo
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Road Zibo P. R. China
| | - Hongjun Zhu
- Department of Applied Chemistry College of Chemistry and Molecular Engineering, Nanjing Tech. University Nanjing P. R. China
| | - Hui Liu
- School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Road Zibo P. R. China
| |
Collapse
|
24
|
Dong J, Gao W, Li K, Hong Z, Tang L, Han L, Wang Z, Fan Z. Design, Synthesis, and Biological Evaluation of Novel Psoralen-Based 1,3,4-Oxadiazoles as Potent Fungicide Candidates Targeting Pyruvate Kinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3435-3446. [PMID: 35271258 DOI: 10.1021/acs.jafc.1c07911] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pyruvate kinase (PK) has been considered as a promising fungicide target discovered in our previous studies. Natural compounds are important sources for discovery and development of new pesticides. To continue our ongoing studies on the discovery of novel PK-targeted fungicides, a series of novel psoralen derivatives including a 1,3,4-oxadiazole moiety were designed by a computer-aided pesticide molecular design method, synthesized, and evaluated for their fungicidal activity. The bioassay results indicated that compounds 11d, 11e, 11g, 11i, and 12a showed excellent in vitro fungicidal activity against Botrytis cinerea with EC50 values of 4.8, 3.3, 6.3, 5.4, and 3.9 μg/mL, respectively. They were more active than the corresponding positive control YZK-C22 [3-(4-methyl-1,2,3-thiadiazol-5-yl)-6-(trichloromethyl)-[1,2,4]-triazolo-[3,4-b][1,3,4]-thiadiazole] (with an EC50 value of 13.4 μg/mL). Compounds 11g and 11i displayed promising in vivo fungicidal activity against B. cinerea with 80 and 70% inhibition at a concentration of 200 μg/mL, respectively. They possessed much higher fungicidal activity than the positive control psoralen and comparable activity with the positive control pyrisoxazole. Enzymatic assays indicated that 11i showed good BcPK inhibition with an IC50 value of 39.6 μmol/L, comparable to the positive control YZK-C22 (32.4 μmol/L). Molecular docking provided a possible binding mode of 11i in the BcPK active site. Our studies suggested that the psoralen-based 1,3,4-oxadiazole 11i could be used as a new fungicidal lead targeting PK for further structural optimization.
Collapse
Affiliation(s)
- Jingyue Dong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Wei Gao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Kun Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zeyu Hong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lijun Han
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Zhihong Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
25
|
Qiong Y, Linfa Q, Shu X, Longyu Y, Bingxu C. Detrimental Impact of λ-Cyhalothrin on the Biocontrol Efficacy of Eocanthecona furcellata by Affecting Global Transcriptome and Predatory Behavior. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1037-1046. [PMID: 35043630 DOI: 10.1021/acs.jafc.1c06237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Whether and how insecticide exposure will affect the biological control efficacy of predatory arthropods is critical in insecticide toxicology research but largely unexplored. In the current study, reduced biocontrol efficacy was observed in a predatory stink bug─Eocanthecona furcellata─after insecticide application in the field. Thus, we constructed a comparative transcriptome analysis and identified a total of 4364 upregulated and 1043 down regulated differentially expressed genes following the sublethal exposure of λ-cyhalothrin. The reduced juvenile hormone (JH) titer and increased trehalose content were observed. The predation capacity and theoretical maximum predation of predators were decreased by 31.08 and 48.90% in response to λ-cyhalothrin, respectively. Furthermore, JH supplementation after λ-cyhalothrin treatment could significantly stimulate trehalase and detoxification enzyme activities, as well as restore the predatory ability of E. furcellata. Our results help to understand the toxicological mechanism of predatory stink bug species in responding to insecticides, benefit predators' ecological services, and optimize the insecticide selection.
Collapse
Affiliation(s)
- Yao Qiong
- Guangdong Provincial Key Laboratory of New High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Quan Linfa
- Guangdong Provincial Key Laboratory of New High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Xu Shu
- Guangdong Provincial Key Laboratory of New High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Yuan Longyu
- Guangdong Provincial Key Laboratory of New High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Chen Bingxu
- Guangdong Provincial Key Laboratory of New High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| |
Collapse
|
26
|
Fu Y, Zhang Y, Fan F, Wang B, Cao Z. Degradation of pesticides diazinon and diazoxon by phosphotriesterase: insight into divergent mechanisms from QM/MM and MD simulations. Phys Chem Chem Phys 2022; 24:687-696. [PMID: 34927643 DOI: 10.1039/d1cp05034f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymatic hydrolysis by phosphotriesterase (PTE) is one of the most effective ways of degrading organophosphorus pesticides, but the catalytic efficiency depends on the structural features of substrates. Here the enzymatic degradation of diazinon (DIN) and diazoxon (DON), characterized by PS and PO, respectively, have been investigated by QM/MM calculations and MM MD simulations. Our calculations demonstrate that the hydrolysis of DON (with PO) is inevitably initiated by the nucleophilic attack of the bridging-OH- on the phosphorus center, while for DIN (with PS), we proposed a new degradation mechanism, initiated by the nucleophilic attack of the Znα-bound water molecule, for its low-energy pathway. For both DIN and DON, the hydrolytic reaction is predicted to be the rate-limiting step, with energy barriers of 18.5 and 17.7 kcal mol-1, respectively. The transportation of substrates to the active site, the release of the leaving group and the degraded product are generally verified to be favorable by MD simulations via umbrella sampling, both thermodynamically and dynamically. The side-chain residues Phe132, Leu271 and Tyr309 play the gate-switching role to manipulate substrate delivery and product release. In comparison with the DON-enzyme system, the degraded product of DIN is more easily released from the active site. These new findings will contribute to the comprehensive understanding of the enzymatic degradation of toxic organophosphorus compounds by PTE.
Collapse
Affiliation(s)
- Yuzhuang Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Yuwei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Fangfang Fan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
27
|
Carvalho R, Dhar P, Haselton A, Heckler I, Hoffmann J, Wilklow-Marnell M, Juneja R, Li Y. Evaluation of the insecticidal properties of Terminalia arjuna ethanolic extracts against Drosophila melanogaster. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
28
|
Wang ZW, Zhao LX, Gao S, Leng XY, Yu Y, Fu Y, Ye F. Quinoxaline derivatives as herbicide safeners by improving Zea mays tolerance. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104958. [PMID: 34802537 DOI: 10.1016/j.pestbp.2021.104958] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Isoxaflutole (IXF), a 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor, causes injury to crops leading to reductions in grain yield. In order to solve the phytotoxicity caused by IXF, the present work evaluated the protective response of the substituted quinoxaline derivatives as potential safeners on Zea mays. The bioassay results showed that all of the test compounds displayed protection against IXF. In particular, safener I-6 exhibited excellent safener activity against IXF injury via enhancing glutathione (GSH) content, glutathione S transferases (GSTs) and cytochrome P450 monooxygenases (CYP450) activity. The tested compounds induced the activity of CYP450 and GSTs in Z. mays. The physicochemical properties and ADMET properties of safener I-6, benoxacor and diketonitrile (DKN, IXF metabolite) were compared to predict pharmaceutical behavior. The present work demonstrates that the safener I-6 could be considered as a potential candidate for developing novel safeners in the future.
Collapse
Affiliation(s)
- Zi-Wei Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xin-Yu Leng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yue Yu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
29
|
Jia L, Gao S, Zhang YY, Zhao LX, Fu Y, Ye F. Fragmenlt Recombination Design, Synthesis, and Safener Activity of Novel Ester-Substituted Pyrazole Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8366-8379. [PMID: 34310139 DOI: 10.1021/acs.jafc.1c02221] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fenoxaprop-p-ethyl (FE), a type of acetyl-CoA carboxylase (ACCase) inhibitor, has been extensively applied to a variety of crop plants. It can cause damage to wheat (Triticum aestivum) even resulting in the death of the crop. On the prerequisite of not reducing herbicidal efficiency on target weed species, herbicide safeners selectively protect crops from herbicide injury. Based on fragment splicing, a series of novel substituted pyrazole derivatives was designed to ultimately address the phytotoxicity to wheat caused by FE. The title compounds were synthesized in a one-pot way and characterized via infrared spectroscopy, 1H nuclear magnetic resonance, 13C nuclear magnetic resonance, and high-resolution mass spectrometry. The bioactivity assay proved that the FE phytotoxicity to wheat could be reduced by most of the title compounds. The molecular docking model indicated that compound IV-21 prevented fenoxaprop acid (FA) from reaching or acting with ACCase. The absorption, distribution, metabolism, excretion, and toxicity predictions demonstrated that compound IV-21 exhibited superior pharmacokinetic properties to the commercialized safener mefenpyr-diethyl. The current work revealed that a series of newly substituted pyrazole derivatives presented strong herbicide safener activity in wheat. This may serve as a potential candidate structure to contribute to the further protection of wheat from herbicide injury.
Collapse
Affiliation(s)
- Ling Jia
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yuan-Yuan Zhang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
30
|
Li Q, Wu J, Yang Q, Li H, Li F. pH and Redox Dual-Response Disulfide Bond-Functionalized Red-Emitting Gold Nanoclusters for Monitoring the Contamination of Organophosphorus Pesticides in Foods. Anal Chem 2021; 93:7362-7368. [PMID: 33961403 DOI: 10.1021/acs.analchem.1c01414] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most of the fluorescence sensors require choline oxidase or quenchers to detect organophosphorus pesticides (OPs) based on a single hydrolysate and suffer from high cost, complex procedures, weak stability, and low sensitivity. Here, we proposed a brand-new fluorescence strategy for highly sensitive detection of OPs based on both hydrolysate-response disulfide bond-functionalized gold nanoclusters (S-S-AuNCs) without additional substances. S-S-AuNCs were synthesized via a facile one-step redox reaction and emitted bright red light with ultrasmall size and high water dispersion. Interestingly, S-S-AuNCs displayed a unique response to thiol compounds and low pH values and were thus pioneered as a high-efficiency sensor for OPs based on acetylcholinesterase (AChE)-catalyzed hydrolysis of acetylthiocholine into thiocholine and CH3COOH and OP inhibition of AChE activity. Further, S-S-AuNCs were employed to monitor the residue, distribution, and metabolization of methidathion in pakchoi with acceptable results. We believe that this work supplies a simpler and more highly sensitive approach for OP assay than the known ones and opens a new avenue to development of multistimulus-responsive and high-performance fluorescence substances.
Collapse
Affiliation(s)
- Qian Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Jiahui Wu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Qiaoting Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| |
Collapse
|
31
|
Wang L, Yang Q, Tang R, Liu X, Fan Z, Li J, Price M, Yue B. Gene Expression Differences Between Developmental Stages of the Fall Armyworm ( Spodoptera frugiperda). DNA Cell Biol 2021; 40:580-588. [PMID: 33761271 DOI: 10.1089/dna.2020.6191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The fall armyworm (Spodoptera frugiperda) is one of the most significant agricultural pests in the world and invaded China in early 2019. We sampled and sequenced RNA-seq data from 15 individuals across different developmental stages. Developmental stages were the larval stage (5th instar larvae and 6th instar larvae), chrysalis stage, and adult stage (female adult and male adult). Individual samples were mainly clustered by developmental stages and we then identified variation between developmental stages of differentially expressed transcripts (DETs). There were 2136 upregulated DETs and 1391 downregulated DETs in the larval stage when comparing larval and chrysalis stages. In the comparison between the chrysalis and adult stages, there were 2033 upregulated DETs and 1391 downregulated DETs in the chrysalis stage. In total, 19,195 abundantly expressed transcripts were obtained and 10% of them were DETs. We then obtained stage-specific DETs to investigate the potential function of the fall armyworm during different developmental stages. We also constructed our annotation background set for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. This indicated that the fall armyworm may undergo active metabolism during its lifespan, even in the chrysalis stage. And it also may experience detoxifying and xenobiotic metabolism throughout its life, especially in the larval stage, which partially explains the difficulty to eradicate using chemical control. Our study is the first insight into the developmental patterns of the fall armyworm and we also provide the fundamental information about enhanced drug resistance at the level of transcriptome. These results are beneficial for a future investigation related to the eradication and/or control stage.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Qiao Yang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Ruixiang Tang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xu Liu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zhenxin Fan
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Megan Price
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Bisong Yue
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Xie X, Jiang J, Chen M, Huang M, Jin L, Li X. De novo Transcriptome Assembly of Myllocerinus aurolineatus Voss in Tea Plants. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.631990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Myllocerinus aurolineatus Voss is a species of the insecta class in the arthropod. In this study, we first observed and identified M. aurolineatus Voss in tea plants in Guizhou, China, where it caused severe quantity and quality losses in tea plants. Knowledge on M. aurolineatus Voss genome is inadequate, especially for biological or functional research. We performed the first transcriptome sequencing by using the Illumina Hiseq™ technique on M. aurolineatus Voss. Over 55.9 million high-quality paired-end reads were generated and assembled into 69,439 unigenes using the Trinity short read software, resulting in a cluster of 1,207 bp of the N50 length. A total of 69,439 genes were predicted by BLAST to known proteins in the NCBI database and were distributed into Gene Ontology (20,190), eukaryotic complete genomes (12,488), and the Kyoto Encyclopedia of Genes and Genomes (3,170). We also identified 96,790 single-nucleotide polymorphisms and 13,121 simple sequence repeats in these unigenes. Our transcriptome data provide a useful resource for future functional studies of M. aurolineatus Voss for dispersal control in tea plants.
Collapse
|
33
|
Li Y, Yao W, Lin J, Gao G, Huang C, Wu Y. Design, synthesis, and biological evaluation of phenyloxadiazole derivatives as potential antifungal agents against phytopathogenic fungi. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-020-02717-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
De Luca V, Mandrich L. Enzyme Promiscuous Activity: How to Define it and its Evolutionary Aspects. Protein Pept Lett 2020; 27:400-410. [PMID: 31868141 DOI: 10.2174/0929866527666191223141205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 11/22/2022]
Abstract
Enzymes are among the most studied biological molecules because better understanding enzymes structure and activity will shed more light on their biological processes and regulation; from a biotechnological point of view there are many examples of enzymes used with the aim to obtain new products and/or to make industrial processes less invasive towards the environment. Enzymes are known for their high specificity in the recognition of a substrate but considering the particular features of an increasing number of enzymes this is not completely true, in fact, many enzymes are active on different substrates: this ability is called enzyme promiscuity. Usually, promiscuous activities have significantly lower kinetic parameters than to that of primary activity, but they have a crucial role in gene evolution. It is accepted that gene duplication followed by sequence divergence is considered a key evolutionary mechanism to generate new enzyme functions. In this way, promiscuous activities are the starting point to increase a secondary activity in the main activity and then get a new enzyme. The primary activity can be lost or reduced to a promiscuous activity. In this review we describe the differences between substrate and enzyme promiscuity, and its rule in gene evolution. From a practical point of view the knowledge of promiscuity can facilitate the in vitro progress of proteins engineering, both for biomedical and industrial applications. In particular, we report cases regarding esterases, phosphotriesterases and cytochrome P450.
Collapse
Affiliation(s)
- Valentina De Luca
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino, 111, 80131, Naples, Italy
| | - Luigi Mandrich
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Pietro Castellino, 111, 80131, Naples, Italy
| |
Collapse
|
35
|
Design, Synthesis and Fungicidal Activity of New 1,2,4-Triazole Derivatives Containing Oxime Ether and Phenoxyl Pyridinyl Moiety. Molecules 2020; 25:molecules25245852. [PMID: 33322288 PMCID: PMC7763646 DOI: 10.3390/molecules25245852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 11/24/2022] Open
Abstract
A series of novel 1,2,4-triazole derivatives containing oxime ether and phenoxy pyridine moiety were designed and synthesized. The new compounds were identified by nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HRMS). Compound (Z)-1-(6-(4-nitrophenoxy)pyridin-3-yl)-2-(1H-1,2,4-triazol-1-yl)ethan-1-one O-methyl oxime (5a18) was further confirmed by X-ray single crystal diffraction. Their antifungal activities were evaluated against eight phytopathogens. The in vitro bioassays indicated that most of the title compounds displayed moderate to high fungicidal activities. Compound (Z)-1-(6-(4-bromo-2-chlorophenoxy)pyridin-3-yl)-2-(1H-1,2,4-triazol-1-yl)ethan-1-one O-methyl oxime (5a4) exhibited a broad-spectrum antifungal activities with the EC50 values of 1.59, 0.46, 0.27 and 11.39 mg/L against S. sclerotiorum, P. infestans, R. solani and B. cinerea, respectively. Compound (Z)-1-(6-(2-chlorophenoxy)pyridin-3-yl)-2-(1H-1,2,4-triazol-1-yl)ethan-1-one O-benzyl oxime (5b2) provided the lowest EC50 value of 0.12 mg/L against S. sclerotiorum, which were comparable to the commercialized difenoconazole. Moreover, homologous modeling and molecular docking disclosed possible binding modes of compounds 5a4 and 5b2 with CYP51. This work provided useful guidance for the discovery of new 1,2,4-triazole fungicides.
Collapse
|
36
|
Aguiar LM, Souza MDF, de Laia ML, de Oliveira Melo J, da Costa MR, Gonçalves JF, Silva DV, Dos Santos JB. Metagenomic analysis reveals mechanisms of atrazine biodegradation promoted by tree species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115636. [PMID: 33254605 DOI: 10.1016/j.envpol.2020.115636] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/18/2020] [Accepted: 09/08/2020] [Indexed: 06/12/2023]
Abstract
Metagenomics has provided the discovery of genes and metabolic pathways involved in the degradation of xenobiotics. Some microorganisms can metabolize these compounds, potentiating phytoremediation in association with plant. This study aimed to study the metagenome and the occurrence of atrazine degradation genes in rhizospheric soils of the phytoremediation species Inga striata and Caesalphinea ferrea. The genera of microorganisms predominant in the rhizospheric soils of I. striata and C. ferrea were Mycobacterium, Conexibacter, Bradyrhizobium, Solirubrobacter, Rhodoplanes, Streptomyces, Geothrix, Gaiella, Nitrospira, and Haliangium. The atzD, atzE, and atzF genes were detected in the rhizospheric soils of I. striata and atzE and atzF in the rhizospheric soils of C. ferrea. The rhizodegradation by both tree species accelerates the degradation of atrazine residues, eliminating toxic effects on plants highly sensitive to this herbicide. This is the first report for the species Agrobacterium rhizogenes and Candidatus Muproteobacteria bacterium and Micromonospora genera as atrazine degraders.
Collapse
Affiliation(s)
- Luciana Monteiro Aguiar
- Plant Production Department, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Minas Gerais, Brazil
| | - Matheus de Freitas Souza
- Department of Agricultural and Forestry Sciences, Universidade Federal Rural do Semi-Árido, Rio Grande do Norte, Brazil.
| | - Marcelo Luiz de Laia
- Department of Forest Engineering, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Minas Gerais, Brazil
| | - Janaína de Oliveira Melo
- Department of Basic Sciences, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Minas Gerais, Brazil
| | - Márcia Regina da Costa
- Plant Production Department, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Minas Gerais, Brazil
| | - Janaína Fernandes Gonçalves
- Department of Forest Engineering, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Minas Gerais, Brazil
| | - Daniel Valadão Silva
- Department of Agricultural and Forestry Sciences, Universidade Federal Rural do Semi-Árido, Rio Grande do Norte, Brazil
| | - José Barbosa Dos Santos
- Plant Production Department, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Minas Gerais, Brazil
| |
Collapse
|
37
|
Giannakopoulos G, Dittgen J, Schulte W, Zoellner P, Helmke H, Lagojda A, Edwards R. Safening activity and metabolism of the safener cyprosulfamide in maize and wheat. PEST MANAGEMENT SCIENCE 2020; 76:3413-3422. [PMID: 32083366 DOI: 10.1002/ps.5801] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/03/2020] [Accepted: 02/21/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Safeners extend the application of existing herbicides by selectively enhancing tolerance in large-grained cereal crops. While their activity is linked to enhanced herbicide metabolism, their exact mode of action and reasons for their crop specificity have yet to be determined. In this study, we investigated the selectivity of the recently developed sulfonamide safener cyprosulfamide (CSA) in maize (Zea mays L.) and wheat (Triticum aestivum), focusing on its uptake, distribution and metabolism in the two species. RESULTS CSA protected maize, but not wheat, from injury by thiencarbazone-methyl (TCM). This correlated with the selective enhanced detoxification of the herbicide in maize. CSA underwent more rapid metabolism in maize than in wheat, with the formation of a specific hydroxylated metabolite correlating with safening. Studies with the nsf1 mutant sweetcorn line showed that the hydroxylation of CSA was partly mediated by the cytochrome P450 CYP81A9. However, primary metabolites of CSA were chemically synthesised and tested for their ability to safen TCM in maize but when tested were inactive as safeners. CONCLUSION The results of this study suggest that the protection against TCM injury by CSA is linked to enhanced herbicide metabolism. This selective activity is due to the specific recognition of parent CSA in maize but not in wheat. Subsequent rapid oxidative metabolism of CSA led to its inactivation, demonstrating that cytochrome P450s regulate the activity of safeners as well as herbicides. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- George Giannakopoulos
- Crop Protection Group, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jan Dittgen
- Weed Control Research, Bayer AG, Frankfurt, Germany
| | | | - Peter Zoellner
- Small Molecules Technologies, Bayer AG, Frankfurt, Germany
| | | | - Andreas Lagojda
- Structure Elucidation, Environmental Safety, Development, Bayer AG, Monheim, Germany
| | - Robert Edwards
- Crop Protection Group, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
38
|
Guo KL, Zhao LX, Wang ZW, Gao YC, Li JJ, Gao S, Fu Y, Ye F. Design, Synthesis, and Bioevaluation of Substituted Phenyl Isoxazole Analogues as Herbicide Safeners. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10550-10559. [PMID: 32886503 DOI: 10.1021/acs.jafc.0c01867] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herbicide safeners enhance herbicide detoxification in crops without affecting target weed sensitivity. To enhance crop tolerance to the toxicity-related stress caused by the herbicide acetochlor (ACT), a new class of substituted phenyl isoxazole derivatives was designed by an intermediate derivatization method as herbicide safeners. Microwave-assisted synthesis was used to prepare the phenyl isoxazole analogues, and all of the structures were confirmed via IR, 1H NMR, 13C NMR, and HRMS. Compound I-1 was further characterized by X-ray diffraction analysis. Bioassay results showed that most of the obtained compounds provided varying degrees of safening against ACT-induced injury by increasing the corn growth recovery, glutathione content, and glutathione S-transferase activity. In particular, compound I-20 showed excellent safener activity against ACT toxicity, comparable to that of the commercial safener benoxacor. Gaussian calculations have been performed and the results indicated that the nucleophilic ability of compound I-20 is higher than that of benoxacor, thus the activity is higher than that of benoxacor. These findings demonstrate that phenyl isoxazole derivatives possess great potential for protective management in cornfields.
Collapse
Affiliation(s)
- Ke-Liang Guo
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Li-Xia Zhao
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zi-Wei Wang
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying-Chao Gao
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Juan-Juan Li
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
39
|
Lv M, Sun Z, Li S, Zhang S, Xu H. Non-food bioactive products for insecticides (II): Investigation on stress responses of Tetranychus cinnabarinus Boisduval against a derivative of the alkaloid matrine. Bioorg Med Chem Lett 2020; 30:127346. [DOI: 10.1016/j.bmcl.2020.127346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/19/2022]
|
40
|
Paventi G, de Acutis L, De Cristofaro A, Pistillo M, Germinara GS, Rotundo G. Biological Activity of Humulus Lupulus (L.) Essential Oil and Its Main Components Against Sitophilus granarius (L.). Biomolecules 2020; 10:E1108. [PMID: 32722511 PMCID: PMC7465044 DOI: 10.3390/biom10081108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Besides its use in the brewing industry, hop cones appear as a powerful source of biologically active compounds, already checked for their putative anticancer, antimicrobial, and other bioactivities. Conversely, hop use in pest control remains to date under-investigated. Therefore, the biological activity of hop essential oil (EO) and its main constituents was investigated here against Sitophilus granarius. Adult contact toxicity was found 24 h after treatment with hop EO (LD50/LD90 13.30/40.23 µg/adult), and its three most abundant components, α-humulene, β-myrcene, and β-caryophyllene (LD50/LD90 41.87/73.51, 75.91/126.05, and 138.51/241.27 µg/adult, respectively); negligible variations at 48 h, except for α-humulene (LD50/LD90 26.83/49.49 µg/adult), were found. The fumigant toxicity of the EO and terpenes was also checked: in the absence of wheat grains, β-myrcene showed the highest inhalation toxicity (LC50/LC90 72.78/116.92 mg/L air), whereas α-humulene, β-caryophyllene, and the EO induced similar values (LC50/LC90 about 130/200 mg/L air); with the exception for EO, the wheat presence increased (30-50%) LC50/LC90 values. Moreover, EO and terpenes were perceived by insect antennae and elicited repellent activity. Only β-caryophyllene showed an anticholinesterase effect, this suggesting that different mechanisms of action should be responsible for hop EO toxicity. Therefore, hop EO appears suitable for developing control means against this pest.
Collapse
Affiliation(s)
- Gianluca Paventi
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, via de Sanctis, 86100 Campobasso, Italy
| | - Laura de Acutis
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via de Sanctis, 86100 Campobasso, Italy; (L.d.A.); (A.D.C.)
| | - Antonio De Cristofaro
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via de Sanctis, 86100 Campobasso, Italy; (L.d.A.); (A.D.C.)
| | - Marco Pistillo
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy;
| | - Giacinto S. Germinara
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy;
| | - Giuseppe Rotundo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via de Sanctis, 86100 Campobasso, Italy; (L.d.A.); (A.D.C.)
| |
Collapse
|
41
|
Untracht Z, Ozcan A, Santra S, Kang EH. SDS-PAGE for Monitoring the Dissolution of Zinc Oxide Bactericidal Nanoparticles (Zinkicide) in Aqueous Solutions. ACS OMEGA 2020; 5:1402-1407. [PMID: 32010811 PMCID: PMC6990419 DOI: 10.1021/acsomega.9b02893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Zinkicide is a systemic bactericidal formulation containing protein-size fluorescent zinc oxide-based nanoparticles (nano-ZnO). Previous studies have shown that Zinkicide is effective in controlling citrus diseases. Its field performance as an antimicrobial agent has been linked to the bioavailability of zinc ions (Zn2+) at the target site. It is therefore important to monitor Zn2+ release from Zinkicide so that application rates and frequency can be estimated. In this study, we present a simplistic approach designed to monitor Zinkicide nanoparticle dissolution rates in water and acidic buffer solutions using traditional sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The evolution of nano-ZnO in the polyacrylamide gel scaffolds was studied by exciting the sample with UV light and detecting the fluorescence of nano-ZnO. Fluorescence intensities measured with this assay allowed for quantitative analysis of molecular weight changes of nano-ZnO in citrate buffer, a surrogate of citrus juice. Our results demonstrated that citrate buffer induced the greatest degradation of Zinkicide. Fluorescence intensity fluctuations were observed over time, indicating interactions of citrate with the surface of nano-ZnO. These findings provide a new approach to quantify the dissolution of nanoparticles in simulated environments, even when other analytical methods lack sensitivity because of the small size of the system (≈4 nm).
Collapse
Affiliation(s)
- Zachary
T. Untracht
- NanoScience
Technology Center, Department of Chemistry, Burnett School of Biomedical Sciences, Department of Materials
Science and Engineering, and Department of Physics, University of Central Florida, Orlando 32816, Florida, United States
| | - Ali Ozcan
- NanoScience
Technology Center, Department of Chemistry, Burnett School of Biomedical Sciences, Department of Materials
Science and Engineering, and Department of Physics, University of Central Florida, Orlando 32816, Florida, United States
| | - Swadeshmukul Santra
- NanoScience
Technology Center, Department of Chemistry, Burnett School of Biomedical Sciences, Department of Materials
Science and Engineering, and Department of Physics, University of Central Florida, Orlando 32816, Florida, United States
| | - Ellen H. Kang
- NanoScience
Technology Center, Department of Chemistry, Burnett School of Biomedical Sciences, Department of Materials
Science and Engineering, and Department of Physics, University of Central Florida, Orlando 32816, Florida, United States
| |
Collapse
|
42
|
Xu H, Xu M, Sun Z, Li S. Preparation of Matrinic/Oxymatrinic Amide Derivatives as Insecticidal/Acaricidal Agents and Study on the Mechanisms of Action against Tetranychus cinnabarinus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12182-12190. [PMID: 31609606 DOI: 10.1021/acs.jafc.9b05092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In continuation of our program to develop natural-product-based pesticidal candidates, matrinic/oxymatrinic amides were obtained through structural optimization of matrine. N'-(4-Fluoro)phenyl-N-(4-bromo)phenylsulfonyloxymatrinic amide (IIm) showed potent insecticidal activity against Mythimna separata. N-(Un)substituted phenylsulfonylmatrinic acids (3a-c) exhibited promising acaricidal activity against Tetranychus cinnabarinus. By qRT-PCR analysis of nAChR subunits and AChE genes and determination of AChE activity of (un)treated T. cinnabarinus, it suggested that the open lactam ring of matrine and carboxyl group and (4-methyl)phenylsulfonyl of N-(4-methyl)phenylsulfonylmatrinic acid (3b) were necessary for action with α2, α4, α5, and β3 nAChR subunits; compound 3b was an inhibitor of AChE in T. cinnabarinus, and AChE was one possible target of action in T. cinnabarinus against 3b; and compound 3b may be an antagonist of nAChR and AChE in T. cinnabarinus.
Collapse
Affiliation(s)
- Hui Xu
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection/Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi Province 712100 , China
- School of Pharmacy , Liaocheng University , Liaocheng , Shandong Province 252059 , China
| | - Ming Xu
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection/Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi Province 712100 , China
| | - Zhiqiang Sun
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection/Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi Province 712100 , China
| | - Shaochen Li
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection/Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi Province 712100 , China
| |
Collapse
|
43
|
Ding F, Li LX, Peng W, Peng YK, Liu BQ. Molecular basis for the resistance of American sloughgrass to aryloxyphenoxypropionic acid pesticides and its environmental relevance: A combined experimental and computational study. CHEMOSPHERE 2019; 235:1030-1040. [PMID: 31561292 DOI: 10.1016/j.chemosphere.2019.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
Organic pesticides are one of the main environmental pollutants, and how to reduce their environmental risks is an important issue. In this contribution, we disclose the molecular basis for the resistance of American sloughgrass to aryloxyphenoxypropionic acid pesticides using site-directed mutagenesis and molecular modeling and then construct an effective screening model. The results indicated that the target-site mutation (Trp-1999-Leu) in acetyl-coenzyme A carboxylase (ACCase) can affect the effectiveness of the pesticides (clodinafop, fenoxaprop, cyhalofop, and metamifop), and the plant resistance to fenoxaprop, clodinafop, cyhalofop, and metamifop was found to be 564, 19.5, 10, and 0.19 times, respectively. The established computational models (i.e. wild-type/mutant ACCase models) could be used for rational screening and evaluation of the resistance to pesticides. The resistance induced by target gene mutation can markedly reduce the bioreactivity of the ACCase-clodinafop/fenoxaprop adducts, and the magnitudes are 10 and 102, respectively. Such event will seriously aggravate environmental pollution. However, the biological issue has no distinct effect on cyhalofop (RI=10), and meanwhile it may markedly increase the bioefficacy of metamifop (RI=0.19). We could selectively adopt the two chemicals so as to decrease the residual pesticides in the environment. Significantly, research findings from the computational screening models were found to be negatively correlated with the resistance level derived from the bioassay testing, suggesting that the screening models can be used to guide the usage of pesticides. Obviously, this story may shed novel insight on the reduction of environmental risks of pesticides and other organic pollutants.
Collapse
Affiliation(s)
- Fei Ding
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710064, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, No. 126 Yanta Road, Yanta District, Xi'an, 710064, China
| | - Ling-Xu Li
- Department of Agricultural Chemistry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Peng
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Department of Chemistry, China Agricultural University, Beijing, 100193, China.
| | - Yu-Kui Peng
- Center for Food Quality Supervision, Inspection & Testing, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Bing-Qi Liu
- Department of Agricultural Chemistry, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
44
|
Ye F, Zhai Y, Guo KL, Liu YX, Li N, Gao S, Zhao LX, Fu Y. Safeners Improve Maize Tolerance under Herbicide Toxicity Stress by Increasing the Activity of Enzymes in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11568-11576. [PMID: 31584809 DOI: 10.1021/acs.jafc.9b03587] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Tribenuron-methyl (TM), as one of the sulfonylurea (SU) herbicides, has been widely and effectively applied for many kinds of plants. SUs inhibit plant growth by restraining the biosynthetic pathway of branched-chain amino acids (BCAAs) catalyzed by acetolactate synthase (ALS). Safeners are agrochemicals that protect crops from herbicide injuries. To improve the crop tolerance under TM toxicity stress, this paper evaluated the protective effect of N-tosyloxazolidine-3-carboxamide. It turned out that most of the tested compounds showed significant protection against TM via enhancing the glutathione (GSH) content and glutathione S-transferase (GST) activity. Among all of the tested compounds, compound 16 exhibited more excellent protection than the contrast safener R-28725 and other target compounds. A positive correlation between the growth level, endogenous GSH content, and GST activity was observed in this research. The GST kinetic parameter Vmax of the maize was increased by 29.6% after treatment with compound 16, while Km was decreased by 51.9% compared to the untreated control. The molecular docking model indicated that compound 16 could compete with TM in the active site of ALS, which could interpret the protective effects of safeners. The present work demonstrated that N-tosyloxazolidine-3-carboxamide derivatives could be considered as potential candidates for developing new safeners in the future.
Collapse
Affiliation(s)
- Fei Ye
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Yue Zhai
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Ke-Liang Guo
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Yong-Xuan Liu
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Na Li
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Shuang Gao
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Li-Xia Zhao
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Ying Fu
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| |
Collapse
|
45
|
Saruta F, Yamada N, Yamamoto K. An omega-class glutathione S-transferase in the brown planthopper Nilaparvata lugens exhibits glutathione transferase and dehydroascorbate reductase activities. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21599. [PMID: 31328816 DOI: 10.1002/arch.21599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A complementary DNA that encodes an omega-class glutathione S-transferase (GST) of the brown planthopper, Nilaparvata lugens (nlGSTO), was isolated by reverse transcriptase polymerase chain reaction. A recombinant protein (nlGSTO) was obtained via overexpression in the Escherichia coli cells and purified. nlGSTO catalyzes the biotransformation of glutathione with 1-chloro-2,4-dinitrobenzene, a general substrate for GST, as well as with dehydroascorbate to synthesize ascorbate. Mutation experiments revealed that putative substrate-binding sites, including Phe28, Cys29, Phe30, Arg176, and Lue225, were important for glutathione transferase and dehydroascorbate reductase activities. As ascorbate is a reducing agent, nlGSTO may participate in antioxidant resistance.
Collapse
Affiliation(s)
- Fumiko Saruta
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, Fukuoka, Japan
| | - Naotaka Yamada
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, Fukuoka, Japan
| | - Kohji Yamamoto
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, Fukuoka, Japan
| |
Collapse
|
46
|
Robatscher P, Eisenstecken D, Innerebner G, Roschatt C, Raifer B, Rohregger H, Hafner H, Oberhuber M. 3-Chloro-5-trifluoromethylpyridine-2-carboxylic acid, a Metabolite of the Fungicide Fluopyram, Causes Growth Disorder in Vitis vinifera. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7223-7231. [PMID: 31180671 DOI: 10.1021/acs.jafc.8b05567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The aim of this study was to investigate the effect of 3-chloro-5-trifluoromethylpyridine-2-carboxylic acid (PCA), a metabolite of the fungicide fluopyram, on grapevine. During spring and summer 2015, grapevine growth disorders were observed in several countries in Europe. An unprecedented herbicide-like damage was diagnosed on leaves and flowers, causing significant loss of harvest. This study proposes PCA as the causing agent of the observed growth disorders. PCA was shown to cause leaf epinasty, impaired berry development that leads to crop loss, and root growth anomalies in Vitis vinifera similar to auxin herbicides in a dose-dependent manner. Using both field trials and greenhouse experiments, the present study provides first evidence for a link between the application of fluopyram in vineyards 2014, the formation of PCA, and the emergence of growth anomalies in 2015. Our data could be useful to optimize dosage, application time point, and other conditions for an application of fluopyram without phytotoxic effects.
Collapse
Affiliation(s)
- Peter Robatscher
- Laimburg Research Centre , Laimburg 6 , Pfatten (Vadena), IT-39040 Auer (Ora), South Tyrol , Italy
| | - Daniela Eisenstecken
- Laimburg Research Centre , Laimburg 6 , Pfatten (Vadena), IT-39040 Auer (Ora), South Tyrol , Italy
| | - Gerd Innerebner
- Laimburg Research Centre , Laimburg 6 , Pfatten (Vadena), IT-39040 Auer (Ora), South Tyrol , Italy
| | - Christian Roschatt
- Laimburg Research Centre , Laimburg 6 , Pfatten (Vadena), IT-39040 Auer (Ora), South Tyrol , Italy
| | - Barbara Raifer
- Laimburg Research Centre , Laimburg 6 , Pfatten (Vadena), IT-39040 Auer (Ora), South Tyrol , Italy
| | - Hannes Rohregger
- South Tyrolean Extension Service for Fruit- and Winegrowing , Via Andreas Hofer 9/1 , IT-39011 Lana , South Tyrol , Italy
| | - Hansjörg Hafner
- South Tyrolean Extension Service for Fruit- and Winegrowing , Via Andreas Hofer 9/1 , IT-39011 Lana , South Tyrol , Italy
| | - Michael Oberhuber
- Laimburg Research Centre , Laimburg 6 , Pfatten (Vadena), IT-39040 Auer (Ora), South Tyrol , Italy
| |
Collapse
|
47
|
Pitti Caballero J, Murillo L, List O, Bastiat G, Flochlay-Sigognault A, Guerino F, Lefrançois C, Lautram N, Lapied B, Apaire-Marchais V. Nanoencapsulated deltamethrin as synergistic agent potentiates insecticide effect of indoxacarb through an unusual neuronal calcium-dependent mechanism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 157:1-12. [PMID: 31153457 DOI: 10.1016/j.pestbp.2019.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/04/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
The use of neurotoxic chemical insecticides has led to consequences against the environment, insect resistances and side-effects on non-target organisms. In this context, we developed a novel strategy to optimize insecticide efficacy while reducing doses. It is based on nanoencapsulation of a pyrethroid insecticide, deltamethrin, used as synergistic agent, combined with a non-encapsulated oxadiazine (indoxacarb). In this case, the synergistic agent is used to increase insecticide efficacy by activation of calcium-dependant intracellular signaling pathways involved in the regulation of the membrane target of insecticides. In contrast to permethrin (pyrethroid type I), we report that deltamethrin (pyrethroid type II) produces an increase in intracellular calcium concentration in insect neurons through the reverse Na/Ca exchanger. The resulting intracellular calcium rise rendered voltage-gated sodium channels more sensitive to lower concentration of the indoxacarb metabolite DCJW. Based on these findings, in vivo studies were performed on the cockroach Periplaneta americana and mortality rates were measured at 24 h, 48 h and 72 h after treatments. Comparative studies of the toxicity between indoxacarb alone and indoxacarb combined with deltamethrin or nanoencapsulated deltamethrin (LNC-deltamethrin), indicated that LNC-deltamethrin potentiated the effect of indoxacarb. We also demonstrated that nanoencapsulation protected deltamethrin from esterase-induced enzymatic degradation and led to optimize indoxacarb efficacy while reducing doses. Moreover, our results clearly showed the benefit of using LNC-deltamethrin rather than piperonyl butoxide and deltamethrin in combination commonly used in formulation. This innovative strategy offers promise for increasing insecticide efficacy while reducing both doses and side effects on non-target organisms.
Collapse
Affiliation(s)
- Javier Pitti Caballero
- Laboratoire Signalisation Fonctionnelle des Canaux Ioniques et des Récepteurs (SiFCIR), UPRES EA 2647, USC INRA 1330, SFR QUASAV 4207, UFR Sciences Université d'Angers, 2 boulevard Lavoisier, 49045 Angers, Cedex, France
| | - Laurence Murillo
- LIttoral ENvironnement et Sociétés (LIENSs), UMR 7266 CNRS, Université de La Rochelle, Institut du Littoral et de l'Environnement, 2 rue Olympe de Gouges, La Rochelle, France
| | - Olivier List
- Laboratoire Signalisation Fonctionnelle des Canaux Ioniques et des Récepteurs (SiFCIR), UPRES EA 2647, USC INRA 1330, SFR QUASAV 4207, UFR Sciences Université d'Angers, 2 boulevard Lavoisier, 49045 Angers, Cedex, France
| | - Guillaume Bastiat
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, 4 rue Larrey, 49933 Angers, Cedex 9, France
| | | | - Frank Guerino
- Merck Animal Health, 2 Giralda Farms, Madison, NJ 07940-1026, USA
| | - Corinne Lefrançois
- Laboratoire Signalisation Fonctionnelle des Canaux Ioniques et des Récepteurs (SiFCIR), UPRES EA 2647, USC INRA 1330, SFR QUASAV 4207, UFR Sciences Université d'Angers, 2 boulevard Lavoisier, 49045 Angers, Cedex, France
| | - Nolwenn Lautram
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, 4 rue Larrey, 49933 Angers, Cedex 9, France
| | - Bruno Lapied
- Laboratoire Signalisation Fonctionnelle des Canaux Ioniques et des Récepteurs (SiFCIR), UPRES EA 2647, USC INRA 1330, SFR QUASAV 4207, UFR Sciences Université d'Angers, 2 boulevard Lavoisier, 49045 Angers, Cedex, France
| | - Véronique Apaire-Marchais
- Laboratoire Signalisation Fonctionnelle des Canaux Ioniques et des Récepteurs (SiFCIR), UPRES EA 2647, USC INRA 1330, SFR QUASAV 4207, UFR Sciences Université d'Angers, 2 boulevard Lavoisier, 49045 Angers, Cedex, France.
| |
Collapse
|
48
|
Rotundo G, Paventi G, Barberio A, De Cristofaro A, Notardonato I, Russo MV, Germinara GS. Biological activity of Dittrichia viscosa (L.) Greuter extracts against adult Sitophilus granarius (L.) (Coleoptera, Curculionidae) and identification of active compounds. Sci Rep 2019; 9:6429. [PMID: 31015563 PMCID: PMC6478880 DOI: 10.1038/s41598-019-42886-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/05/2019] [Indexed: 01/25/2023] Open
Abstract
Dittrichia viscosa (L.) Greuter, a perennial weed of the Mediterranean area, was reported to be source of active substances. Here, by means of both ingestion and contact assays, the biological activity of three different extracts (n-hexane, methanol, and distilled water) of D. viscosa aerial part has been evaluated against Sitophilus granarius (L.) adults, an important pest of stored grains. Ingestion assays showed negligible mortality and food deterrence for all the extracts, whereas only a slight reduction of some nutritional parameters (relative growth rate, relative consumption rate, food efficiency conversion) was recorded for water extract. High contact toxicity was found only for the n-hexane extract (24 h median lethal dose LD50 = 53.20 μg/adult). This extract was further subfractioned by silica gel column chromatography and then by thin layer chromatography. Further contact toxicity bioassays highlighted two active subfractions which were analyzed by GC-MS. This revealed the occurrence, in both subfractions, of two major peaks that were identified as α- and γ- costic acid isomers. Moreover, D. viscosa active subfractions, did not cause acetylcholinesterase (AChE) inhibition; therefore, in the light of progressive limitation of compounds acting by this mechanism of action, D. viscosa represents a promising eco-sustainable source of natural products for pest control.
Collapse
Affiliation(s)
- Giuseppe Rotundo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via de Sanctis, 86100, Campobasso, Italy.
| | - Gianluca Paventi
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, via de Sanctis, 86100, Campobasso, Italy.
| | - Antonia Barberio
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via de Sanctis, 86100, Campobasso, Italy
| | - Antonio De Cristofaro
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via de Sanctis, 86100, Campobasso, Italy
| | - Ivan Notardonato
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via de Sanctis, 86100, Campobasso, Italy
| | - Mario V Russo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via de Sanctis, 86100, Campobasso, Italy
| | - Giacinto S Germinara
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71100, Foggia, Italy
| |
Collapse
|
49
|
Wang ZG, Jiang SS, Mota-Sanchez D, Wang W, Li XR, Gao YL, Lu XP, Yang XQ. Cytochrome P450-Mediated λ-Cyhalothrin-Resistance in a Field Strain of Helicoverpa armigera from Northeast China. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3546-3553. [PMID: 30882220 DOI: 10.1021/acs.jafc.8b07308] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Resistance to pyrethroid and organophosphate insecticides has been a growing problem in the management of cotton bollworm Helicoverpa armigera (Hübner) populations in the Yangtze River and Yellow River valleys of China, but resistance status and mechanisms of H. armigera populations from northeast China are less documented. In this study, a field strain collected from Shenyang in northeast China (SYR) is up to 16-fold more resistant than a susceptible strain (SS) to λ-cyhalothrin, while the resistance level to phoxim remained low (2.6-fold). Synergist tests and enzymatic assays show that increased cytochrome P450 monooxygenase (P450) activity is the main mechanism for λ-cyhalothrin resistance. Eight out of 10 genes from CYP6 and CYP9 subfamilies were significantly overexpressed in the SYR strain, and CYP6AE11 was the mostly overexpressed P450 (59-fold). These results suggest that overexpression of multiple P450 enzymes contributes to λ-cyhalothrin resistance in the SYR strain of H. armigera from northeast China.
Collapse
Affiliation(s)
- Zi-Guo Wang
- College of Plant Protection , Shenyang Agricultural University , Shenyang , 110866 , Liaoning China
| | - Shan-Shan Jiang
- College of Plant Protection , Shenyang Agricultural University , Shenyang , 110866 , Liaoning China
| | - David Mota-Sanchez
- Department of Entomology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Wei Wang
- College of Plant Protection , Shenyang Agricultural University , Shenyang , 110866 , Liaoning China
| | - Xin-Ru Li
- College of Plant Protection , Shenyang Agricultural University , Shenyang , 110866 , Liaoning China
| | - Yu-Lin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| | - Xu-Peng Lu
- Green Agricultural Technology Center of Liaoning Province , Shenyang , 110034 , Liaoning China
| | - Xue-Qing Yang
- College of Plant Protection , Shenyang Agricultural University , Shenyang , 110866 , Liaoning China
| |
Collapse
|
50
|
Gonzalez-Morales MA, Romero A. Effect of Synergists on Deltamethrin Resistance in the Common Bed Bug (Hemiptera: Cimicidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:786-791. [PMID: 30535372 DOI: 10.1093/jee/toy376] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Indexed: 06/09/2023]
Abstract
The common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae), is an obligate hematophagous insect that has resurged worldwide since the early 2000s. Bed bug control is largely based on the widespread, intensive application of pyrethroid-based insecticide formulations, resulting in the emergence of insecticide-resistant bed bug populations. Insecticide resistance is frequently linked to metabolic detoxification enzymes such as cytochrome monooxygenase (P450s), esterases, glutathione S-tranferase, and carboxylesterase. Therefore, one way to overcome insecticide resistance could be the formulation of insecticides with synergists that counteract metabolic resistance. To test this hypothesis, we evaluated the impact of four synergists-piperonyl butoxide (PBO), diethyl maleate (DEM), S,S,S-tributyl phosphorotrithioate (DEF), and triphenyl phosphate (TPP)-on deltamethrin efficacy in two pyrethroid-resistant bed bug strains. A statistically significant difference in synergism ratios (SR) of a highly resistant field-derived strain (Jersey City, resistance ratio [RR] = 20,000) was noted when any of the four synergists (PBO SR = 20.5; DEM SR = 11.7; DEF SR = 102.3; and TPP SR = 9.7) were used with deltamethrin. In a less deltamethrin-resistant strain, Cincinnati (RR = 3,333), pretreatment with PBO and DEM significantly synergized deltamethrin (PBO SR = 158.8; DEM = 58.8), whereas application of DEF and TPP had no synergistic effect. The synergism data collected strongly suggest that detoxification enzymes play a significant role in the metabolic mechanisms that mediate deltamethrin resistance in bed bugs. The development and use of safe metabolic synergists that suppress detoxification enzymes offers an interesting avenue for the management of insecticide-resistant field populations.
Collapse
Affiliation(s)
- Maria A Gonzalez-Morales
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM
| | - Alvaro Romero
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM
| |
Collapse
|