1
|
Valinezhadi N, Dehghan G, Yaghoubzad-Maleki M, Mohammadi M, Alizadeh AA, Hamishehkar H. Liposome-assisted combination chemotherapy improves the anti-proliferation and anti-angiogenesis response of cisplatin in breast cancer; experimental and computational study. J Chemother 2025:1-18. [PMID: 40231813 DOI: 10.1080/1120009x.2025.2484078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 04/16/2025]
Abstract
AbstractCombination chemotherapy using liposomes offers a promising approach to overcome chemotherapy resistance and minimize side effects in breast cancer treatment. This study explores the synergistic effects of all-trans-retinoic acid (ATRA) and cinnamaldehyde (CA) combined with cisplatin (CPT) in MDA-MB-231 breast cancer cells. The liposomal formulation, CPT_ATRA_CA, significantly reduced cell proliferation to 25.9 ± 2.8% compared to controls and effectively inhibited angiogenesis. Additionally, it induced apoptosis, as demonstrated by flow cytometry, DAPI staining, and an elevated Bax/Bcl-2 gene expression ratio. Computational analysis via molecular docking and molecular dynamics simulation revealed that ATRA exhibited the highest binding affinity for angiogenin (ANG) with a binding energy of -106.072 kcal/mol. Experimental results, corroborated by computational data, highlight the potent anti-tumor effects of this drug trio. These findings suggest that liposomal delivery of ATRA, CA, and CPT could enhance therapeutic outcomes in breast cancer by targeting multiple pathways synergistically.
Collapse
Affiliation(s)
- Nasim Valinezhadi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Maryam Mohammadi
- Department of Food Science and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Ali Akbar Alizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Han M, Zhou X, Cheng H, Qiu M, Qiao M, Geng X. Chitosan and hyaluronic acid in colorectal cancer therapy: A review on EMT regulation, metastasis, and overcoming drug resistance. Int J Biol Macromol 2025; 289:138800. [PMID: 39694373 DOI: 10.1016/j.ijbiomac.2024.138800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/04/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Up to 90% of cancer-related fatalities could be attributed to metastasis. Therefore, understanding the mechanisms that facilitate tumor cell metastasis is beneficial for improving patient survival and results. EMT is considered the main process involved in the invasion and spread of CRC. Essential molecular components like Wnt, TGF-β, and PI3K/Akt play a role in controlling EMT in CRC, frequently triggered by various factors such as Snail, Twist, and ZEB1. These factors affect not only the spread of CRC but also determine the reaction to chemotherapy. The influence of non-coding RNAs, especially miRNAs and lncRNAs, on the regulation of EMT is clear in CRC. Exosomes, involved in cell-to-cell communication, can affect the TME and metastasis of CRC. Pharmacological substances and nanoparticles demonstrate promise as efficient modulators of EMT in CRC. Chitosan and HA are two major carbohydrate polymers with considerable potential in inhibiting CRC. Chitosan and HA can be employed to modify nanoparticles to enhance cargo transport for reducing CRC. Additionally, chitosan and HA-modified nanocarriers, which can be utilized as potential approaches in suppressing EMT and reversing drug resistance in CRC, can inhibit EMT and chemoresistance, crucial components in tumorigenesis.
Collapse
Affiliation(s)
- Mingming Han
- Department of Pharmacy and Medical Devices, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China
| | - Xi Zhou
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China
| | - Hang Cheng
- Department of Bioanalytical Laboratory (ClinicalLaboratory), Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China
| | - Mengru Qiu
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China.
| | - Meng Qiao
- Department of Bioanalytical Laboratory (ClinicalLaboratory), Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China.
| | - Xiao Geng
- Department of Party Committee Office, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China.
| |
Collapse
|
3
|
Radwan IT, Bagato N, Ebaid MS, Hegazy MM, Farghali MA, Selim A, Gattan HS, Alruhaili MH, Baz MM, Alkhaibari AM. Synthesis of eco-friendly lipid-magnetite nanocomposite encapsulated Poinciana extract as promising insecticide against Culex pipiens. Sci Rep 2024; 14:30456. [PMID: 39668148 PMCID: PMC11638267 DOI: 10.1038/s41598-024-81078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024] Open
Abstract
Mosquito-borne diseases represent a growing health challenge over time. Nanostructured lipid carriers (NLCs) are the second generation of solid lipid nanoparticles (SLNs), and they continue to attract significant interest as potential diagnostic and therapeutic tools in disease inhibition and insect control. Activated ingredients presented in the Poinciana leaves were extracted and GC-MS data indicated an increased abundance of terpenes, flavonoids, and phenolic substances. Poinciana extract was encapsulated to the vicinity of nanostructure lipid carrier, Po-NLC, and surface modified with magnetic nanoparticles, Po-NLC-MNPs. The synthesized nanoparticles depicted average particle size of 73.2 and 75.55 nm while zeta potential of (- 29.4) and (‒ 4.44 mV) for Po-NLC and Po-NLC-MNPs, respectively. Transmission electron microscope and morphology determination showed regular, irregular spherical and oval shapes with diverse single particle size. X-rays diffraction pattern of the freely synthesized MNPs was compared to the decorated NLC and the results manifested that the NLC was successfully decorated with MNPs. The larvicidal activity of plant extract, Poinciana extract (Po), and their nanoparticle conjugates against 3rd instar larvae of Culex pipiens was evaluated at 50, 100, 200, 500, 1000, and 1500 ppm concentrations. Both high and low concentrations of Po-NLC-MNPs, indicated potential larval mortality than plant extracts (Po extract) itself. The mortality rate reached 100% for 3rd instar larvae. Based on their relative toxicity, (Po-NLC-MNPs) was the best at killing larvae, followed by Po-NLC. The synthesized nps were checked for their cytotoxic effect against wi38 cell line. The in-vitro cytotoxicity results indicated that there was no significant cytotoxicity and the nanocomposite barely caused weak changes in the tested cells. The synthesized nanoparticles have potential to create a new generation of eco-friendly, effective alternatives for controlling mosquito-borne diseases.
Collapse
Affiliation(s)
- Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, 11835, Egypt.
| | - Noha Bagato
- Egyptian Petroleum Research Institute (EPRI), PO Box 11727, Nasr City, Cairo, Egypt
| | - Manal S Ebaid
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Maysa M Hegazy
- Biology Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Mohamed A Farghali
- Nanotechnology and Advanced Materials Central Lab (NAMCL), Regional Center for Food and Feed (RCFF), Agricultural Research Center (ARC), Giza, Egypt
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), College of Veterinary Medicine, Benha University, Toukh, 13736, Egypt.
| | - Hattan S Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Mohammed H Alruhaili
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King AbdulAziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Mohamed M Baz
- Entomology Department, Faculty of Science, Benha University, Benha, 13518, Qalyubiya, Egypt
| | - Abeer Mousa Alkhaibari
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| |
Collapse
|
4
|
Radwan IT, El-Sherbiny IM, Metwally NH. Synergistic and potential antifungal properties of tailored, one pot multicomponent monoterpenes co-delivered with fluconazole encapsulated nanostructure lipid carrier. Sci Rep 2024; 14:14382. [PMID: 38909063 PMCID: PMC11193721 DOI: 10.1038/s41598-024-63149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/24/2024] [Indexed: 06/24/2024] Open
Abstract
Frequent and variant infections are caused by the virtue of opportunistic fungi pathogens. Candidiasis, aspergillosis, and mucormycosis are pathogenic microorganisms that give rise to vast fungal diseases that alternate between moderate to fatal in severity. The use of fluconazole as an antifungal drug was limited due to the acquired resistance in some types of Candida and other fungal species. This study aims to consolidate fluconazole's biological effectiveness against several pathogenic fungi. Six active monoterpenes (MTs) of carvacrol, linalool, geraniol, α-terpinene, citronellal, and nerolidol were selected and encapsulated in nanostructure lipid carrier (NLC) with (NLC-Flu-MTs) and/without (NLC-MTs) fluconazole in one nanoformulation to determine if they will act synergistically or not? The synthesized nanoformulation NLC-Flu-MTs and NLC-MTs exhibited very good particle size of 144.5 nm and 138.6 nm for size and zeta potential values of (- 23.5 mV) and (- 20.3 mV), respectively. Transmission electron microscope investigation confirmed that the synthesized NLCs have regular and spherical shape. The abundance and concentration of the six released monoterpenes were determined, as a novel approach, using GC-MS with very good results and validity. In-vitro antifungal screening was done before and after nano co-delivery against seven pathogenic, and aggressive fungi of Candida tropicalis, Candida krusei, Candida glabrata, Geotrichum Candidum, Candidaalbicans, Aspergillus Niger, and mucor circinelloides. Inhibition Zone diameter (IZD) and the minimum inhibitory concentration (MIC) were measured. Nanoformulations NLC-Flu-MTs and NLC-MTs manifested potential and unique biological susceptibility against all the tested microorganisms with reduced (MIC) values, especially against Candida Tropicalis (MIC = 0.97 µg/ml) which represents 16-fold of the value shown by NLC-MTs (MIC = 15.6 µg/ml) and 64-fold of fluconazole free before nanoformulation (MIC = 62.5 µg/ml). The efficiency of nanomaterials, particularly NLC-Flu-MTs, has become evident in the diminishing value of MIC which affirmed the synergism between fluconazole and the other six monoterpenes.
Collapse
Affiliation(s)
- Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, 11835, Egypt
| | - Ibrahim M El-Sherbiny
- Center for Materials Science (CMS), Zewail City of Science and Technology, 6th of October, Giza, 12578, Egypt
| | | |
Collapse
|
5
|
Huang L, Luo S, Tong S, Lv Z, Wu J. The development of nanocarriers for natural products. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1967. [PMID: 38757428 DOI: 10.1002/wnan.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Natural bioactive compounds from plants exhibit substantial pharmacological potency and therapeutic value. However, the development of most plant bioactive compounds is hindered by low solubility and instability. Conventional pharmaceutical forms, such as tablets and capsules, only partially overcome these limitations, restricting their efficacy. With the recent development of nanotechnology, nanocarriers can enhance the bioavailability, stability, and precise intracellular transport of plant bioactive compounds. Researchers are increasingly integrating nanocarrier-based drug delivery systems (NDDS) into the development of natural plant compounds with significant success. Moreover, natural products benefit from nanotechnological enhancement and contribute to the innovation and optimization of nanocarriers via self-assembly, grafting modifications, and biomimetic designs. This review aims to elucidate the collaborative and reciprocal advancement achieved by integrating nanocarriers with botanical products, such as bioactive compounds, polysaccharides, proteins, and extracellular vesicles. This review underscores the salient challenges in nanomedicine, encompassing long-term safety evaluations of nanomedicine formulations, precise targeting mechanisms, biodistribution complexities, and hurdles in clinical translation. Further, this study provides new perspectives to leverage nanotechnology in promoting the development and optimization of natural plant products for nanomedical applications and guiding the progression of NDDS toward enhanced efficiency, precision, and safety. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Liying Huang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shicui Luo
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sen Tong
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhuo Lv
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Clinical Medical Research Center for Geriatric Diseases, Yunnan First People's Hospital, Kunming, Yunnan, China
| |
Collapse
|
6
|
Tian B, Qiao X, Guo S, Li A, Xu Y, Cao J, Zhang X, Ma D. Synthesis of β-acids loaded chitosan-sodium tripolyphosphate nanoparticle towards controlled release, antibacterial and anticancer activity. Int J Biol Macromol 2024; 257:128719. [PMID: 38101686 DOI: 10.1016/j.ijbiomac.2023.128719] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
The development of nanoparticles loaded with natural active ingredients is one of the hot trends in the pharmaceutical industry. Herein, chitosan was selected as the base material, and sodium tripolyphosphate was chosen as the cross-linking agent. Chitosan nanoparticles loaded with β-acids from hops were prepared by the ionic cross-linking method. The results of Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) indicated that chitosan nanoparticles successfully encapsulated β-acids. The loading capacity of chitosan nanoparticles with β-acids was 2.00 %-18.26 %, and the encapsulation efficiency was 0.58 %-55.94 %. Scanning electron microscopy (SEM), transmission electron microscope (TEM), particle size, and zeta potential results displayed that the nanoparticles revealed a sphere-like distribution with a particle size range of 241-261 nm, and the potential exhibited positive potential (+14.47-+16.27 mV). The chitosan nanoparticles could slowly release β-acids from different simulated release media. Notably, the β-acids-loaded nanoparticles significantly inhibited Staphylococcus aureus ATCC25923 (S. aureus) and Escherichia coli ATCC25922 (E. coli). Besides, β-acids-loaded chitosan nanoparticles were cytotoxic to colorectal cancer cells (HT-29 and HCT-116). Therefore, applying chitosan nanoparticles can further expand the application of β-acids in biomedical fields.
Collapse
Affiliation(s)
- Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Xia Qiao
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Songlin Guo
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Aiqin Li
- Department of Day-care Unit, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yanan Xu
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jia Cao
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xu Zhang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Duan Ma
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China; Department of Biochemistry and Molecular Biology, Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Zhong Q, Reyes-Jurado F, Calumba KF. Structured soft particulate matters for delivery of bioactive compounds in foods and functioning in the colon. SOFT MATTER 2024; 20:277-293. [PMID: 38090993 DOI: 10.1039/d3sm00866e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The present review discusses challenges, perspectives, and current needs of delivering bioactive compounds (BCs) using soft particulate matters (SPMs) for gut health. SPMs can entrap BCs for incorporation in foods, preserve their bioactivities during processing, storage, and gastrointestinal digestion, and deliver BCs to functioning sites in the colon. To enable these functions, physical, chemical, and biological properties of BCs are integrated in designing various types of SPMs to overcome environmental factors reducing the bioavailability and bioactivity of BCs. The design principles are applied using food grade molecules with the desired properties to produce SPMs by additionally considering the cost, sustainability, and scalability of manufacturing processes. Lastly, to make delivery systems practical, impacts of SPMs on food quality are to be evaluated case by case, and health benefits of functional foods incorporated with delivery systems are to be confirmed and must outweigh the cost of preparing SPMs.
Collapse
Affiliation(s)
- Qixin Zhong
- Department of Food Science, University of Tennessee, Knoxville, TN, USA.
| | | | - Kriza Faye Calumba
- Department of Food Science, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
8
|
Prabha J, Kumar M, Kumar D, Chopra S, Bhatia A. Nano-platform Strategies of Herbal Components for the Management of Rheumatoid Arthritis: A Review on the Battle for Next-Generation Formulations. Curr Drug Deliv 2024; 21:1082-1105. [PMID: 37622715 DOI: 10.2174/1567201821666230825102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/01/2023] [Accepted: 07/06/2023] [Indexed: 08/26/2023]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that initially affects small joints and then spreads to the bigger joints. It also affects other organs of the body such as lungs, eyes, kidneys, heart, and skin. In RA, there is destruction of cartilage and joints, and ligaments and tendons become brittle. Damage to the joints leads to abnormalities and bone degradation, which may be quite painful for the patient. METHOD The nano-carriers such as liposomes, phytosomes, nanoparticles, microcapsules, and niosomes are developed to deliver the encapsulated phytoconstituents to targeted sites for the better management of RA. RESULTS The phytoconstituents loaded nano-carriers have been used in order to increase bioavailability, stability and reduce the dose of an active compound. In one study, the curcumin-loaded phytosomes increase the bioavailability of curcumin and also provides relief from RA symptoms. The drug-loaded nano-carriers are the better option for the management of RA. CONCLUSION In conclusion, there are many anti-arthritic herbal and synthetic medicine available in the market that are currently used in the treatment of RA. However, chronic use of these medications may result in a variety of side effects. Because therapy for RA is frequently necessary for the rest of ones life. The use of natural products may be a better option for RA management. These phytoconstituents, however, have several disadvantages, including limited bioavailability, low stability, and the need for a greater dosage. These problems can be rectified by using nano-technology.
Collapse
Affiliation(s)
- Jyoti Prabha
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Shruti Chopra
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh - 201313, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| |
Collapse
|
9
|
Ibrahim IAA, Alzahrani AR, Alanazi IM, Shahzad N, Shahid I, Falemban AH, Azlina MFN, Arulselvan P. Carbohydrate polymers-based surface modified nano delivery systems for enhanced target delivery to colon cancer - A review. Int J Biol Macromol 2023; 253:126581. [PMID: 37652322 DOI: 10.1016/j.ijbiomac.2023.126581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Carbohydrate polymers-based surface-modified nano-delivery systems have gained significant attention in recent years for enhancing targeted delivery to colon cancer. These systems leverage carbohydrate polymers' unique properties, such as biocompatibility, biodegradability, and controlled release. These properties make them suitable candidates for drug delivery applications. Nano-delivery systems loaded with bioactive compounds are well-studied for targeted colorectal cancer delivery. However, those drugs' target reach is still limited in various nano-delivery systems. To overcome this limitation, surface modification of nanoparticles with carbohydrate polymers like chitosan, pectin, alginate, and guar gum showed enhanced target-reaching capacity along with enhanced anticancer efficacy. Recently, a chitosan-decorated PLGA nanoparticle was constructed with tannic acid and vitamin E and showed long-term release of specific targets along with higher anticancer efficacy. Similarly, Chitosan-conjugated glucuronic acid-coated silica nanoparticles loaded with capecitabine were studied against colon cancer and found to be the pH-responsive controlled release of capecitabine with higher anticancer efficacy. Surface-modified carbohydrate polymers have promising potential for improving colon cancer target delivery. By leveraging the unique properties of these polymers, such as surface modification, pH responsiveness, mucoadhesion, controlled drug release, and combination therapy, researchers are working toward developing more effective and targeted treatment strategies for colon cancer.
Collapse
Affiliation(s)
- Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim M Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa Hisham Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohd Fahami Nur Azlina
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Malaysia
| | - Palanisamy Arulselvan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 602 105, India
| |
Collapse
|
10
|
Aldayel TS, M Badran M, H Alomrani A, AlFaris NA, Z Altamimi J, S Alqahtani A, A Nasr F, Ghaffar S, Orfali R. Chitosan-Coated Solid Lipid Nanoparticles as an Efficient Avenue for Boosted Biological Activities of Aloe perryi: Antioxidant, Antibacterial, and Anticancer Potential. Molecules 2023; 28:molecules28083569. [PMID: 37110803 PMCID: PMC10145204 DOI: 10.3390/molecules28083569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Aloe perryi (ALP) is an herb that has several biological activities such as antioxidant, antibacterial, and antitumor effects and is frequently used to treat a wide range of illnesses. The activity of many compounds is augmented by loading them in nanocarriers. In this study, ALP-loaded nanosystems were developed to improve their biological activity. Among different nanocarriers, solid lipid nanoparticles (ALP-SLNs), chitosan nanoparticles (ALP-CSNPs), and CS-coated SLNs (C-ALP-SLNs) were explored. The particle size, polydispersity index (PDI), zeta potential, encapsulation efficiency, and release profile were evaluated. Scanning electron microscopy was used to see the nanoparticles' morphology. Moreover, the possible biological properties of ALP were assessed and evaluated. ALP extract contained 187 mg GAE/g extract and 33 mg QE/g extract in terms of total phenolic and flavonoid content, respectively. The ALP-SLNs-F1 and ALP-SLNs-F2 showed particle sizes of 168.7 ± 3.1 and 138.4 ± 9.5 nm and the zeta potential values of -12.4 ± 0.6, and -15.8 ± 2.4 mV, respectively. However, C-ALP-SLNs-F1 and C-ALP-SLNs-F2 had particle sizes of 185.3 ± 5.5 and 173.6 ± 11.3 nm with zeta potential values of 11.3 ± 1.4 and 13.6 ± 1.1 mV, respectively. The particle size and zeta potential of ALP-CSNPs were 214.8 ± 6.6 nm and 27.8 ± 3.4 mV, respectively. All nanoparticles exhibited PDI < 0.3, indicating homogenous dispersions. The obtained formulations had EE% and DL% in the ranges of 65-82% and 2.8-5.2%, respectively. After 48 h, the in vitro ALP release rates from ALP-SLNs-F1, ALP-SLNs-F2, C-ALP-SLNs-F1, C-ALP-SLNs-F2, and ALP-CSNPs were 86%, 91%, 78%, 84%, and 74%, respectively. They were relatively stable with a minor particle size increase after one month of storage. C-ALP-SLNs-F2 exhibited the greatest antioxidant activity against DPPH radicals at 73.27%. C-ALP-SLNs-F2 demonstrated higher antibacterial activity based on MIC values of 25, 50, and 50 µg/mL for P. aeruginosa, S. aureus, and E. coli, respectively. In addition, C-ALP-SLNs-F2 showed potential anticancer activity against A549, LoVo, and MCF-7 cell lines with IC50 values of 11.42 ± 1.16, 16.97 ± 1.93, and 8.25 ± 0.44, respectively. The results indicate that C-ALP-SLNs-F2 may be promising nanocarriers for enhancing ALP-based medicines.
Collapse
Affiliation(s)
- Tahany Saleh Aldayel
- Department of Health Sciences, Faculty of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohamed M Badran
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Abdullah H Alomrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
- Nanobiotechnology Unit, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Nora A AlFaris
- Department of Physical Sports Sciences, College of Education, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Jozaa Z Altamimi
- Department of Physical Sports Sciences, College of Education, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahd A Nasr
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Safina Ghaffar
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Abd-Allah H, Ragaie MH, Elmowafy E. Unraveling the pharmaceutical and clinical relevance of the influence of syringic acid loaded linoleic acid transferosomes on acne. Int J Pharm 2023; 639:122940. [PMID: 37040824 DOI: 10.1016/j.ijpharm.2023.122940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/13/2023]
Abstract
Natural medicines are promising platforms for competent topical treatment modalities benefiting the cosmetic implementation and proffering solutions to the current remedies. Therefore, the objective of this study was to formulate syringic acid (SA), well-known for its multilateral anti-inflammatory, antimicrobial and antioxidant potentials, in newly developed linoleic acid (LA) transferosomes as an anti-acne nano-form remedy. Herein, LA was incorporated in transferosomes owing to its antimicrobial effect and dermal penetrability. Comprehensive appraisal through physicochemical, antioxidant and dermal deposition investigations was conducted. Clinical assessment was also performed in acne patients and compared with the marketed product (Adapalene® gel). The relevant investigations of the optimum formula indicated stable vesicles with a small-sized diameter (147.46 nm), surface charge (-26.86 mV), spherical architecture, reasonable entrapment (76.63%), considerable antioxidant activity (IC50 = 11.1 µg/mL) and remarkable skin deposition (78.72%).More importantly, LA based transferosomes enclosing SA exhibited inflammation lessening in acne sufferers as manifested by greater reduction in the total count of the acne lesions reaching 79.5% in contrast to Adapalene® gel with only 18.7% reduction in acne lesions. Interestingly, no irritation and erythema were reported for the proposed transferosomes. Inclusively, the cosmetic formulation practice could reap benefits of the development of such vesicles.
Collapse
Affiliation(s)
- Hend Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, AinShams University, Cairo, Egypt,Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo, Egypt, P.O.B. 11566
| | - Maha H Ragaie
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, AinShams University, Cairo, Egypt,Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo, Egypt, P.O.B. 11566.
| |
Collapse
|
12
|
Farhadi A, Homayouni Tabrizi M, Sadeghi S, Vala D, Khosravi T. Targeted delivery and anticancer effects of Chrysin-loaded chitosan-folic acid coated solid lipid nanoparticles in pancreatic malignant cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:315-333. [PMID: 36063019 DOI: 10.1080/09205063.2022.2121589] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of this survey was to load Chrysin (CHY) on solid lipid nanoparticles (SLNs) and decorate the nanoparticles with folate-bound chitosan to increase the effectiveness of the treatment. CHY-SCF-NPs were synthesized by homogenizing and sonication methods and characterized. FA binding and encapsulation efficiency (HPLC), antioxidant capacity (ABTS and DPPH), cell viability assay (MTT), programmed cell death analysis (fluorescence staining, flow cytometry, and qPCR), and angiogenesis (CAM and molecular analysis) assay were done for assessment of therapeutic efficiency of CHY-SCF-NPs. Increases in size and change in surface charge of CHY-SLNs (PS: 84.3 nm and ZP: -18 mV) were reported after coating with folate-bound chitosan (PS: 125 nm and ZP: +34.9 mV). CHY-SCF-NPs inhibited PANC, MCF-7, A2780, and HepG2 as malignant cells and HFF as normal cells with IC50∼53, 55, 249, and >250 µg/mL, respectively. Also, CHY-SCF-NPs scavenged ABTS (IC50: 123.73 µg/mL), and DPPH (IC50: 108.7 µg/mL) free radicals and suppressed angiogenesis in the CAM and qPCR assays. Up-regulation of Bax and caspase 9 genes as well as the fluorescence staining and cell cycle results confirmed the pro-apoptotic properties of CHY-SCF-NPs. CHY-SCF-NPs can be considered a promising anti-cancer candidate for preclinical and clinical studies of pancreatic cancer.
Collapse
Affiliation(s)
- Amin Farhadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Soroush Sadeghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Danial Vala
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Tina Khosravi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
13
|
Dave R, Patel R, Patel M. Hybrid Lipid-Polymer Nanoplatform: A Systematic Review for Targeted Colorectal Cancer Therapy. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
14
|
Mandal D, Sarkar T, Chakraborty R. Critical Review on Nutritional, Bioactive, and Medicinal Potential of Spices and Herbs and Their Application in Food Fortification and Nanotechnology. Appl Biochem Biotechnol 2023; 195:1319-1513. [PMID: 36219334 PMCID: PMC9551254 DOI: 10.1007/s12010-022-04132-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
Medicinal or herbal spices are grown in tropical moist evergreen forestland, surrounding most of the tropical and subtropical regions of Eastern Himalayas in India (Sikkim, Darjeeling regions), Bhutan, Nepal, Pakistan, Iran, Afghanistan, a few Central Asian countries, Middle East, USA, Europe, South East Asia, Japan, Malaysia, and Indonesia. According to the cultivation region surrounded, economic value, and vogue, these spices can be classified into major, minor, and colored tropical spices. In total, 24 tropical spices and herbs (cardamom, black jeera, fennel, poppy, coriander, fenugreek, bay leaves, clove, chili, cassia bark, black pepper, nutmeg, black mustard, turmeric, saffron, star anise, onion, dill, asafoetida, celery, allspice, kokum, greater galangal, and sweet flag) are described in this review. These spices show many pharmacological activities like anti-inflammatory, antimicrobial, anti-diabetic, anti-obesity, cardiovascular, gastrointestinal, central nervous system, and antioxidant activities. Numerous bioactive compounds are present in these selected spices, such as 1,8-cineole, monoterpene hydrocarbons, γ-terpinene, cuminaldehyde, trans-anethole, fenchone, estragole, benzylisoquinoline alkaloids, eugenol, cinnamaldehyde, piperine, linalool, malabaricone C, safrole, myristicin, elemicin, sinigrin, curcumin, bidemethoxycurcumin, dimethoxycurcumin, crocin, picrocrocin, quercetin, quercetin 4'-O-β-glucoside, apiol, carvone, limonene, α-phellandrene, galactomannan, rosmarinic acid, limonene, capsaicinoids, eugenol, garcinol, and α-asarone. Other than that, various spices are used to synthesize different types of metal-based and polymer-based nanoparticles like zinc oxide, gold, silver, selenium, silica, and chitosan nanoparticles which provide beneficial health effects such as antioxidant, anti-carcinogenic, anti-diabetic, enzyme retardation effect, and antimicrobial activity. The nanoparticles can also be used in environmental pollution management like dye decolorization and in chemical industries to enhance the rate of reaction by the use of catalytic activity of the nanoparticles. The nutritional value, phytochemical properties, health advantages, and both traditional and modern applications of these spices, along with their functions in food fortification, have been thoroughly discussed in this review.
Collapse
Affiliation(s)
- Debopriya Mandal
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, 732102, India.
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
15
|
Elmowafy E, O El-Derany M, Casettari L, Soliman ME, El-Gogary RI. Gamma oryzanol loaded into micelle-core/chitosan-shell: from translational nephroprotective potential to emphasis on sirtuin-1 associated machineries. Int J Pharm 2023; 631:122482. [PMID: 36513255 DOI: 10.1016/j.ijpharm.2022.122482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Gamma oryzanol (ORZ) is a nutraceutical that is poorly water soluble with poor intestinal absorption. In the current work, ORZ was nanoformulated into uncoated and chitosan coated micelles based on methoxy-poly(ethylene glycol)-b-poly(ε-caprolactone) (mPEG-PCL) and poly(ε-caprolactone)-b-methoxy-poly(ethylene glycol)-b-poly(ε-caprolactone) (PCL-PEG-PCL) copolymers for augmenting ORZ oral delivery. The physicochemical properties, morphological study, in-vitro release and safety of the nanoplaforms were determined. Importantly, the nephroprotective competence of the nanoplaforms was analyzed against acute kidney injury (AKI) rat model and the sirtuin-1 associated machineries were assessed. The results revealed that the micelles exerted particle size (PS) from 97.9 to 117.8 nm that was markedly increased after chitosan coating. The reversal of zeta potential from negative to highly positive further confirmed efficient coating. In vitro release profiles demonstrated prolonged release pattern. The nanoforms conferred higher cell viability values than free ORZ on Vero cell line. The designed micelles displayed augmented nephroprotection compared to free ORZ with the supremacy of CS coated micelles over uncoated ones in restoring kidney parameters to normal levels. The attenuated AKI was fulfilled via the modulation of sirtuin-1 signaling pathways translated by restoring the histological features, increasing renal antioxidant states, renal autophagy and decreasing renal inflammation and renal apoptosis. These outcomes confirmed that surface modification with chitosan had a considerable leverage on micelles safety, release behavior and in vivo performance.
Collapse
Affiliation(s)
- Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt
| | - Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, AinShams University, Cairo, Egypt, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza delRinascimento, 6, 61029 Urbino, PU, Italy
| | - Mahmoud E Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt; Egypt-Japan University of Science and Technology (EJUST), New Borg El Arab, Alexandria 21934, Egypt.
| | - Riham I El-Gogary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt
| |
Collapse
|
16
|
Ashwagandha-loaded nanocapsules improved the behavioral alterations, and blocked MAPK and induced Nrf2 signaling pathways in a hepatic encephalopathy rat model. Drug Deliv Transl Res 2023; 13:252-274. [PMID: 35672652 PMCID: PMC9726678 DOI: 10.1007/s13346-022-01181-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2022] [Indexed: 12/14/2022]
Abstract
Ashwagandha (ASH), a vital herb in Ayurvedic medicine, demonstrated potent preclinical hepato- and neuroprotective effects. However, its efficacy is limited due to low oral bioavailability. Accordingly, we encapsulated ASH extract in chitosan-alginate bipolymeric nanocapsules (ASH-BPNCs) to enhance its physical stability and therapeutic effectiveness in the gastrointestinal tract. ASH-BPNC was prepared by emulsification followed by sonication. The NCs showed small particle size (< 220 nm), zeta-potential of 25.2 mV, relatively high entrapment efficiency (79%), physical stability at acidic and neutral pH, and in vitro release profile that extended over 48 h. ASH-BPNC was then investigated in a thioacetamide-induced hepatic encephalopathy (HE) rat model. Compared with free ASH, ASH-BPNC improved survival, neurological score, general motor activity, and cognitive task-performance. ASH-BPNC restored ALT, AST and ammonia serum levels, and maintained hepatic and brain architecture. ASH-BPNC also restored GSH, MDA, and glutathione synthetase levels, and Nrf2 and MAPK signaling pathways in liver and brain tissues. Moreover, ASH-BPNC downregulated hepatic NF-κB immunohistochemical expression. Moreover, the in vivo biodistribution studies demonstrated that most of the administered ASH-BPNC is accumulated in the brain and hepatic tissues. In conclusion, chitosan-alginate BPNCs enhanced the hepatoprotective and neuroprotective effects of ASH, thus providing a promising therapeutic approach for HE.
Collapse
|
17
|
Lu L, Xiong Y, Zhou J, Wang G, Mi B, Liu G. The Therapeutic Roles of Cinnamaldehyde against Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9177108. [PMID: 36254234 PMCID: PMC9569207 DOI: 10.1155/2022/9177108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/06/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022]
Abstract
Evidence from epidemiological studies has demonstrated that the incidence and mortality of cardiovascular diseases (CVDs) increase year by year, which pose a great threat on social economy and human health worldwide. Due to limited therapeutic benefits and associated adverse effects of current medications, there is an urgent need to uncover novel agents with favorable safety and efficacy. Cinnamaldehyde (CA) is a bioactive phytochemical isolated from the stem bark of Chinese herbal medicine Cinnamon and has been suggested to possess curative roles against the development of CVDs. This integrated review intends to summarize the physicochemical and pharmacokinetic features of CA and discuss the recent advances in underlying mechanisms and potential targets responsible for anti-CVD properties of CA. The CA-related cardiovascular protective mechanisms could be attributed to the inhibition of inflammation and oxidative stress, improvement of lipid and glucose metabolism, regulation of cell proliferation and apoptosis, suppression of cardiac fibrosis, and platelet aggregation and promotion of vasodilation and angiogenesis. Furthermore, CA is likely to inhibit CVD progression via affecting other possible processes including autophagy and ER stress regulation, gut microbiota and immune homeostasis, ion metabolism, ncRNA expression, and TRPA1 activation. Collectively, experiments reported previously highlight the therapeutic effects of CA and clinical trials are advocated to offer scientific basis for the compound future applied in clinical practice for CVD prophylaxis and treatment.
Collapse
Affiliation(s)
- Li Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Juan Zhou
- Department of Cardiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430073, China
| | - Guangji Wang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
18
|
Buyana B, Naki T, Alven S, Aderibigbe BA. Nanoparticles Loaded with Platinum Drugs for Colorectal Cancer Therapy. Int J Mol Sci 2022; 23:11261. [PMID: 36232561 PMCID: PMC9569963 DOI: 10.3390/ijms231911261] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is a common cancer in both men and women. Numerous studies on the therapeutic effectiveness of nanoparticles against colorectal cancer have been reported. Platinum treatments as well as other medications comprising of nanoparticles have been utilized. Drug resistance restricts the use of platinum medicines, despite their considerable efficacy against a variety of cancers. This review reports clinically licensed platinum medicines (cisplatin, carboplatin, and oxaliplatin) combined with various nanoparticles that have been evaluated for their therapeutic efficacy in the treatment of colorectal cancer, including their mechanism of action, resistance, and limitations.
Collapse
Affiliation(s)
| | | | | | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice 5700, Eastern Cape Province, South Africa
| |
Collapse
|
19
|
Choukaife H, Seyam S, Alallam B, Doolaanea AA, Alfatama M. Current Advances in Chitosan Nanoparticles Based Oral Drug Delivery for Colorectal Cancer Treatment. Int J Nanomedicine 2022; 17:3933-3966. [PMID: 36105620 PMCID: PMC9465052 DOI: 10.2147/ijn.s375229] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
As per the WHO, colorectal cancer (CRC) caused around 935,173 deaths worldwide in 2020 in both sexes and at all ages. The available anticancer therapies including chemotherapy, radiotherapy and anticancer drugs are all associated with limited therapeutic efficacy, adverse effects and low chances. This has urged to emerge several novel therapeutic agents as potential therapies for CRC including synthetic and natural materials. Orally administrable and targeted drug delivery systems are attractive strategies for CRC therapy as they minimize the side effects, enhance the efficacy of anticancer drugs. Nevertheless, oral drug delivery till today faces several challenges like poor drug solubility, stability, and permeability. Various oral nano-based approaches and targeted drug delivery systems have been developed recently, as a result of the ability of nanoparticles to control the release of the encapsulant, drug targeting and reduce the number of dosages administered. The unique physicochemical properties of chitosan polymer assist to overcome oral drug delivery barriers and target the colon tumour cells. Chitosan-based nanocarriers offered additional improvements by enhancing the stability, targeting and bioavailability of several anti-colorectal cancer agents. Modified chitosan derivatives also facilitated CRC targeting through strengthening the protection of encapsulant against acidic and enzyme degradation of gastrointestinal track (GIT). This review aims to provide an overview of CRC pathology, therapy and the barriers against oral drug delivery. It also emphasizes the role of nanotechnology in oral drug targeted delivery system and the growing interest towards chitosan and its derivatives. The present review summarizes the relevant works to date that have studied the potential applications of chitosan-based nanocarrier towards CRC treatment.
Collapse
Affiliation(s)
- Hazem Choukaife
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu, 22200, Malaysia
| | - Salma Seyam
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu, 22200, Malaysia
| | - Batoul Alallam
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, 13200, Malaysia
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, 25200, Malaysia
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu, 22200, Malaysia
| |
Collapse
|
20
|
Garcia-Carrasco M, Picos-Corrales LA, Gutiérrez-Grijalva EP, Angulo-Escalante MA, Licea-Claverie A, Heredia JB. Loading and Release of Phenolic Compounds Present in Mexican Oregano (Lippia graveolens) in Different Chitosan Bio-Polymeric Cationic Matrixes. Polymers (Basel) 2022; 14:polym14173609. [PMID: 36080684 PMCID: PMC9459739 DOI: 10.3390/polym14173609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Mexican oregano (Lippia graveolens) polyphenols have antioxidant and anti-inflammatory potential, but low bioaccessibility. Therefore, in the present work the micro/nano-encapsulation of these compounds in two different matrixes of chitosan (CS) and chitosan-b-poly(PEGMA2000) (CS-b-PPEGMA) is described and assessed. The particle sizes of matrixes of CS (~955 nm) and CS-b-PPEGMA (~190 nm) increased by 10% and 50%, respectively, when the phenolic compounds were encapsulated, yielding loading efficiencies (LE) between 90–99% and 50–60%, correspondingly. The release profiles in simulated fluids revealed a better control of host–guest interactions by using the CS-b-PPEGMA matrix, reaching phenolic compounds release of 80% after 24 h, while single CS retained the guest compounds. The total reducing capacity (TRC) and Trolox equivalent antioxidant capacity (TEAC) of the phenolic compounds (PPHs) are protected and increased (more than five times) when they are encapsulated. Thus, this investigation provides a standard encapsulation strategy and relevant results regarding nutraceuticals stabilization and their improved bioaccessibility.
Collapse
Affiliation(s)
- Melissa Garcia-Carrasco
- Nutraceuticals and Functional Foods Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, Culiacán 80110, Sinaloa, Mexico
| | - Lorenzo A. Picos-Corrales
- Facultad de Ingeniería Culiacán, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Erick P. Gutiérrez-Grijalva
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, Culiacán 80110, Sinaloa, Mexico
| | - Miguel A. Angulo-Escalante
- Nutraceuticals and Functional Foods Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, Culiacán 80110, Sinaloa, Mexico
| | - Angel Licea-Claverie
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de Mexico/Instituto Tecnológico de Tijuana, A.P. 1166, Tijuana 22000, Baja California, Mexico
- Correspondence: (A.L.-C.); (J.B.H.)
| | - J. Basilio Heredia
- Nutraceuticals and Functional Foods Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, Culiacán 80110, Sinaloa, Mexico
- Correspondence: (A.L.-C.); (J.B.H.)
| |
Collapse
|
21
|
Kayabasi C, Yilmaz Susluer S, Balci Okcanoglu T, Ozmen Yelken B, Mutlu Z, Goker Bagca B, Caliskan Kurt C, Saydam G, Durmuskahya C, Kayalar H, Ozbilgin A, Biray Avci C, Gunduz C. Origanum Sipyleum Methanol Extract in Combination with Ponatinib Shows Synergistic anti-Leukemic Activities on Chronic Myeloid Leukemia Cells. Nutr Cancer 2022; 74:3679-3691. [PMID: 35608652 DOI: 10.1080/01635581.2022.2077969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Origanum sipyleum is used in folk medicine due to its anti-inflammatory, antimicrobial, and antioxidant properties. Ponatinib, an effective tyrosine kinase inhibitor in the treatment of chronic myeloid leukemia (CML), has severe side effects. Thus, we aimed to determine a novel herbal combination therapy that might not only increase the anti-leukemic efficacy but also reduce the dose of ponatinib in targeting CML cells. Origanum sipyleum was extracted with methanol (OSM), and secondary metabolites were determined by phytochemical screening tests. The cytotoxic effects of OSM on K562 cells were measured by WST-1 assay. Median-effect equation was used to analyze the combination of ponatinib and OSM (p-OSM). Apoptosis, proliferation, and cell-cycle were investigated by flow-cytometry. Cell-cycle-related gene expressions were evaluated by qRT-PCR. OSM that contains terpenoids, flavonoids, tannins, and anthracenes exhibited cytotoxic effects on K562 cells. The median-effect of p-OSM was found as synergistic; OSM reduced the ponatinib dose ∼5-fold. p-OSM elevated the apoptotic and anti-proliferative activity of ponatinib. Consistently, p-OSM blocked cell-cycle progression in G0/G1, S phases accompanied by regulations in TGFB2, ATR, PP2A, p18, CCND1, CCND2, and CCNA1 expressions. OSM enhanced the anti-leukemic activity of ponatinib synergistically via inducing apoptosis, suppressing proliferation, and cell-cycle. As a result, OSM might offer a potential strategy for treating patients with CML.
Collapse
Affiliation(s)
- Cagla Kayabasi
- Faculty of Medicine, Medical Biology Department, Ege University, Izmir, Turkey
| | | | | | - Besra Ozmen Yelken
- Faculty of Medicine, Department of Medical Biology, Izmir Bakircay University, Izmir, Turkey
| | - Zeynep Mutlu
- Faculty of Medicine, Medical Biology Department, Ege University, Izmir, Turkey
| | - Bakiye Goker Bagca
- Faculty of Medicine, Department of Medical Biology, Aydın Adnan Menderes University, Aydın, Turkey
| | - Cansu Caliskan Kurt
- Faculty of Medicine, Medical Biology Department, Ege University, Izmir, Turkey
| | - Guray Saydam
- Faculty of Medicine, Internal Medicine Department, Division of Hematology, Ege University, Izmir, Turkey
| | - Cenk Durmuskahya
- Faculty of Forestry, Department of Forest Engineering, Izmir Katip Celebi University, Izmir, Turkey
| | - Husniye Kayalar
- Faculty of Pharmacy, Department of Pharmacognosy, Ege University, Izmir, Turkey
| | - Ahmet Ozbilgin
- Faculty of Medicine, Department of Parasitology, Celal Bayar University, Manisa, Turkey
| | - Cigir Biray Avci
- Faculty of Medicine, Medical Biology Department, Ege University, Izmir, Turkey
| | - Cumhur Gunduz
- Faculty of Medicine, Medical Biology Department, Ege University, Izmir, Turkey
| |
Collapse
|
22
|
Rossi YE, Vanden Braber NL, Díaz Vergara LI, Montenegro MA. Bioactive Ingredients Obtained from Agro-industrial Byproducts: Recent Advances and Innovation in Micro- and Nanoencapsulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15066-15075. [PMID: 34878778 DOI: 10.1021/acs.jafc.1c05447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The agro-industry produces numerous byproducts that are currently underused, and its waste contributes to environmental pollution. These byproducts represent an important and economical source of bioactive ingredients, which can promote the sustainable development of high-value-added functional foods. In this context, micro- and nanoencapsulation systems allow for the incorporation and stabilization of the bioactive agents in foods. This perspective will review recent advances in the use of agro-industrial byproducts as a source of bioactive agents. In addition, the latest advances in micro- and nanoencapsulation to improve the stability, solubility, and bioaccessibility of bioactive agents as functional food ingredients are exposed.
Collapse
Affiliation(s)
- Yanina E Rossi
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María, Avenida Arturo Jauretche 1555, 5900 Villa María, Córdoba, Argentina
| | - Noelia L Vanden Braber
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María, Avenida Arturo Jauretche 1555, 5900 Villa María, Córdoba, Argentina
| | - Ladislao I Díaz Vergara
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María, Avenida Arturo Jauretche 1555, 5900 Villa María, Córdoba, Argentina
| | - Mariana A Montenegro
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María, Avenida Arturo Jauretche 1555, 5900 Villa María, Córdoba, Argentina
| |
Collapse
|
23
|
The Potential Role of Nanoparticles as an Anticancer Therapy in the Treatment of Rectal Cancer. Processes (Basel) 2021. [DOI: 10.3390/pr9122172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nanotechnology is a rapidly developing science and is applied in a variety of diagnostic and treatment technologies. Colorectal cancer is one of the deadliest human diseases, and hence, wide research is underway regarding its preventative measures. This review demonstrated that “nano” drug delivery systems have successfully transferred pharmaceutical drug particles at the nanoscale as compared to larger particles. Research has shown a higher rate of disease progression among patients who receive conventional drugs compared to those who were given nanoscale drugs. However, the behavior of the cellular components differs from the performance of larger cellular components of the same type; these differences are due to the physical interactions between the nanoparticles (NPs). The review aimed to discuss several recent research studies focused on delivering NPs for the treatment of colorectal cancer (CRC). The reviewed experiments have primarily compared the use of NPs alone or with the addition of an anticancer drug or nanocarriers. These three research methods may help solve past problems and propose new future approaches for colorectal cancer by utilizing the available nanotechnologies. Furthermore, the review illustrated the underlying idea behind NP carriers and stem cell delivery that can be used to create a rapid delivery system for stem cells.
Collapse
|
24
|
Abstract
Cancer is one of the major causes of death worldwide. Chemotherapeutic drugs have become a popular choice as anticancer agents. Despite the therapeutic benefits of chemotherapeutic drugs, patients often experience side effects and drug resistance. Biopolymers could be used to overcome some of the limitations of chemotherapeutic drugs, as well as be used either as anticancer agents or drug delivery vehicles. Chitosan is a biocompatible polymer derived from chitin. Chitosan, chitosan derivatives, or chitosan nanoparticles have shown their promise as an anticancer agent. Additionally, functionally modified chitosan can be used to deliver nucleic acids, chemotherapeutic drugs, and anticancer agents. More importantly, chitosan-based drug delivery systems improved the efficacy, potency, cytotoxicity, or biocompatibility of these anticancer agents. In this review, we will investigate the properties of chitosan and chemically tuned chitosan derivatives, and their application in cancer therapy.
Collapse
|
25
|
Sumaila M, Marimuthu T, Kumar P, Choonara YE. Lipopolysaccharide Nanosystems for the Enhancement of Oral Bioavailability. AAPS PharmSciTech 2021; 22:242. [PMID: 34595578 DOI: 10.1208/s12249-021-02124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
Nanosystems that incorporate both polymers and lipids have garnered attention as emerging nanotechnology approach for oral drug delivery. These hybrid systems leverage on the combined properties of polymeric and lipid-based nanocarriers while eliminating their inherent limitations. In view of the safety-related benefits of naturally occurring polymers, we have focused on systems incorporating polysaccharides and derivatives into the hybrid structure. The aim of this review is to evaluate existing biopolymers with specific focus on lipopolysaccharide hybrid systems and their advancement toward enhancing oral drug delivery. Furthermore, we shall identify future research areas that require further exploration toward achieving an optimized hybrid system for easy translation into clinical use. In this review, we have appraised formulations that combined polysaccharides/derivatives with lipids in a single nanocarrier system. These formulations were grouped into lipid-core-polysaccharide-shell systems, polysaccharide-core-lipid-shell systems, self-emulsifying lipopolysaccharide hybrid systems, and hybrid lipopolysaccharide matrix systems. In these systems, we highlighted how the polysaccharide phase enhances the oral absorption of encapsulated bioactives with regard to their function and mechanism. The various lipopolysaccharide designs presented in this review demonstrated significant improvement in pharmacokinetics of bioactives. A multitude of studies found lipopolysaccharide hybrid systems as nascent nanoplatforms for the oral delivery of challenging bioactives due to features that favor gastrointestinal absorption and bioavailability improvement. With future research already geared toward product optimization and scaling up processes, as well as detailed pharmacological and toxicology pre-clinical testing, these versatile systems will have remarkable impact in clinical application.
Collapse
|
26
|
Ying K, Bai B, Gao X, Xu Y, Wang H, Xie B. Orally Administrable Therapeutic Nanoparticles for the Treatment of Colorectal Cancer. Front Bioeng Biotechnol 2021; 9:670124. [PMID: 34307319 PMCID: PMC8293278 DOI: 10.3389/fbioe.2021.670124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common and lethal human malignancies worldwide; however, the therapeutic outcomes in the clinic still are unsatisfactory due to the lack of effective and safe therapeutic regimens. Orally administrable and CRC-targetable drug delivery is an attractive approach for CRC therapy as it improves the efficacy by local drug delivery and reduces systemic toxicity. Currently, chemotherapy remains the mainstay modality for CRC therapy; however, most of chemo drugs have low water solubility and are unstable in the gastrointestinal tract (GIT), poor intestinal permeability, and are susceptible to P-glycoprotein (P-gp) efflux, resulting in limited therapeutic outcomes. Orally administrable nanoformulations hold the great potential for improving the bioavailability of poorly permeable and poorly soluble therapeutics, but there are still limitations associated with these regimes. This review focuses on the barriers for oral drug delivery and various oral therapeutic nanoparticles for the management of CRC.
Collapse
Affiliation(s)
- Kangkang Ying
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC), Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bingjun Bai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xing Gao
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuzi Xu
- Department of Oral Implantology and Prosthodontics, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Hangxiang Wang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC), Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Binbin Xie
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC), Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Bhaskaran NA, Kumar L. Treating colon cancers with a non-conventional yet strategic approach: An overview of various nanoparticulate systems. J Control Release 2021; 336:16-39. [PMID: 34118336 DOI: 10.1016/j.jconrel.2021.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022]
Abstract
Regardless of progress in therapy management which are developed for colon cancer (CC), it remains the third most common cause of mortality due to cancers around the world. Conventional medicines pose side effects due to untoward action on non-target cells. Their inability to deliver drugs to the affected regions of the colon locally, in a reproducible manner raises a concern towards the efficacy of therapy. In this regard, nanoparticles emerged as a promising drug delivery system due to their flexibility in designing, drug release modulation and cancer cell targeting. Not only are nanoparticles making their way into colon cancer research in the revolution of conventional onco-therapeutics, but they also offer promising scope in the development of colon cancer vaccines and theranostic tools. However, there are challenges with respect to drug delivery using nanoparticles, which may hamper the delivery of these novel carriers to the colon. The present review addresses recent advents in nanotechnology for colon-specific drug delivery (CDDS) which may help to overcome the existing challenges and intends to recognize futuristic potentials in the treatment of CC with CDDS.
Collapse
Affiliation(s)
- N A Bhaskaran
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Udupi, Karnataka, India
| | - L Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Udupi, Karnataka, India.
| |
Collapse
|
28
|
Amer RI, Ezzat SM, Aborehab NM, Ragab MF, Mohamed D, Hashad A, Attia D, Salama MM, El Bishbishy MH. Downregulation of MMP1 expression mediates the anti-aging activity of Citrus sinensis peel extract nanoformulation in UV induced photoaging in mice. Biomed Pharmacother 2021; 138:111537. [PMID: 34311535 DOI: 10.1016/j.biopha.2021.111537] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/13/2021] [Accepted: 03/21/2021] [Indexed: 01/19/2023] Open
Abstract
Aging of the skin is a complicated bioprocess that is affected by constant exposure to ultraviolet irradiation. The application of herbal-based anti-aging creams is still the best choice for treatment. In the present study, Citrus sinensis L. fruit peels ethanolic extract (CSPE) was formulated into lipid nanoparticles (LNPs) anti-aging cream. Eight different formulations of CSEP-LNPs were prepared and optimized using 23 full factorial designs. In vivo antiaging effect of the best formula was tested in Swiss albino mice where photo-aging was induced by exposure to UV radiation. HPLC-QToF-MS/MS metabolic profiling of CSPE led to the identification of twenty-nine metabolites. CSPE was standardized to a hesperidin content of 15.53 ± 0.152 mg% using RP-HPLC. It was suggested that the optimized formulation (F7) had (245 nm) particle size, (91.065%) EE, and (91.385%) occlusive effect with a spherical and smooth surface. The visible appearance of UV-induced photoaging in mice was significantly improved after topical application on CSPE-NLC cream for 5 weeks, levels of collagen and SOD were significantly increased in CSPE- NLC group, while levels of PGE2, COX2, JNK, MDA, and elastin was reduced. Finally, The prepared anti-aging CSPE-NLC cream represents a safe, convenient, and promising skincare cosmetic product.
Collapse
Affiliation(s)
- Reham I Amer
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt.
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Mai F Ragab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Dalia Mohamed
- Department of Analytical Chemistry, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt; Department of Analytical Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Amira Hashad
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Dalia Attia
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Suez Desert Road, Cairo 11837, Egypt
| | - Maha M Salama
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Suez Desert Road, Cairo 11837, Egypt
| | - Mahitab H El Bishbishy
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| |
Collapse
|
29
|
Iqbal H, Menaa F, Khan NU, Razzaq A, Khan ZU, Ullah K, Kamal R, Sohail M, Thiripuranathar G, Uzair B, Rana NF, Khan BA, Menaa B. Two Promising Anti-Cancer Compounds, 2-Hydroxycinnaldehyde and 2-Benzoyloxycinnamaldehyde: Where do we stand? Comb Chem High Throughput Screen 2021; 25:808-818. [PMID: 33593253 DOI: 10.2174/1386207324666210216094428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/10/2021] [Accepted: 01/17/2021] [Indexed: 11/22/2022]
Abstract
Natural bioactive compounds with anti-carcinogenic activity are gaining tremendous interest in the field of oncology. Cinnamon, an aromatic condiment commonly used in tropical regions, appeared incredibly promising as adjuvant for cancer therapy. Indeed, its whole or active parts (e.g., bark, leaf) exhibited significant anti-carcinogenic activity, which is mainly due to two cinnamaldehyde derivatives, namely 2-hydroxycinnaldehyde (HCA) and 2-benzoyloxycinnamaldehyde (BCA). In addition to their anti-cancer activity, HCA and BCA exert immunomodulatory, anti-platelets, and anti-inflammatory activities. Highly reactive α,ß-unsaturated carbonyl pharmacophore, called Michael acceptor, contribute to their therapeutic effects. The molecular mechanisms, underlying their anti-tumoral and anti-metastatic effects are miscellaneous, strongly suggesting that these compounds are multi-targeting compounds. Nevertheless, unravelling the exact molecular mechanisms of HCA and BCA remain a challenging matter which is necessary for optimal controlled-drug targeting delivery, safety, and efficiency. Eventually, their poor pharmacological properties (e.g., systemic bioavailability and solubility) represent a limitation, and depend both on their administration route (e.g., per os, intravenously) and the nature of the formulation (e.g., free, smart nano-). This concise review focused on the potential of HCA and BCA as adjuvants in Cancer. We described their medicinal effects as well as provide an update about their molecular mechanisms reported either in-vitro, ex-vivo, or in animal models.
Collapse
Affiliation(s)
- Haroon Iqbal
- College of Pharmaceutical Sciences, Soochow University, Suzhou. China
| | - Farid Menaa
- Department of Oncology, California Innovations Corp., San Diego, CA. United States
| | - Naveed Ullah Khan
- College of Pharmaceutical Sciences, Soochow University, Suzhou. China
| | - Anam Razzaq
- College of Pharmaceutical Sciences, Soochow University, Suzhou. China
| | | | - Kifayat Ullah
- College of Pharmaceutical Sciences, Soochow University, Suzhou. China
| | - Robia Kamal
- College of Pharmaceutical Sciences, Soochow University, Suzhou. China
| | - Muhammad Sohail
- Department of Pharmacy, School of Pharmacy, Yantai University, Yantai. China
| | - Gobika Thiripuranathar
- Institute of Chemistry Ceylon, College of Chemical Sciences, Welikada, Rajagiriya. Sri Lanka
| | - Bushra Uzair
- Department of Bioinformatics and Biotechnology, Islamic International University, Islamabad. Pakistan
| | - Nosheen Fatima Rana
- Department of Biomedical Engineering & Sciences, School of Mechanical & Manufacturing Engineering, National University of Sciences & Technology, Islamabad. Pakistan
| | - Barkat Ali Khan
- Department of Pharmacy, Gomal University, D.I. Khan. Pakistan
| | - Bouzid Menaa
- Department of Oncology, California Innovations Corp., San Diego, CA. United States
| |
Collapse
|
30
|
Chitosan Coated Luteolin Nanostructured Lipid Carriers: Optimization, In Vitro-Ex Vivo Assessments and Cytotoxicity Study in Breast Cancer Cells. COATINGS 2021. [DOI: 10.3390/coatings11020158] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the present study, luteolin (LTN)-encapsulated chitosan (CS) coated nanostructured lipid carriers (NLCs) were formulated using the melt emulsification ultrasonication technique. NLCs were optimized by using the 33-QbD approach for improved in vitro efficacy against breast cancer cell lines. The optimized LTN-CS-NLCs were successfully characterized by different in vitro and ex vivo experiments as well as evaluated for cytotoxicity in MDA-MB-231 and MCF-7 cell lines. The prepared LTN-CS-NLCs showed particle size (PS), polydispersity index (PDI), and entrapment efficiency (%EE) in the range between 101.25 nm and 158.04 nm, 0.11 and 0.20, and 65.55% and 95.37%, respectively. Coating of NLCs with CS significantly increased the particle size, encapsulation efficiency, and zeta potential changes positively. Moreover, slow-release rate of LTN was achieved during 24 h of study for LTN-CS-NLCs. In addition, optimized LTN-CS-NLCs showed significantly higher mucoadhesion, gastrointestinal stability, and intestinal permeation compared to non-coated LTN-NLCs and LTN suspension. Furthermore, LTN-CS-NLCs showed statistically enhanced antioxidant potential as well as dose and time-dependent cytotoxicity against MDA-MB-231 and MCF-7 cells compared to uncoated LTN-NLCs and pure LTN. On the basis of the above findings, it may be stated that chitosan-coated LTN-NLCs represents a great potential for breast cancer management.
Collapse
|
31
|
Barros RM, de Oliveira MS, Costa KMN, Sato MR, Santos KLM, de L Damasceno BPG, Cuberes T, Oshiro-Junior JA. Physicochemical Characterization of Bioactive Compounds in Nanocarriers. Curr Pharm Des 2021; 26:4163-4173. [PMID: 32156229 DOI: 10.2174/1381612826666200310144533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
The encapsulation of bioactive compounds is an emerging technique for finding new medicines since it provides protection against ambient degradation factors before reaching the target site. Nanotechnology provides new methods for encapsulating bioactive compounds and for drug carrier development. Nanocarriers satisfactorily impact the absorption, distribution, metabolism, and excretion rate when compared to conventional carriers. The nanocarrier material needs to be compatible and bind to the drug and be bio-resorbable. In this context, the physicochemical characterization of encapsulated bioactive compounds is fundamental to guarantee the quality, reproducibility, and safety of the final pharmaceutical product. In this review, we present the physicochemical techniques most used today by researchers to characterize bioactive compounds in nanocarriers and the main information provided by each technique, such as morphology, size, degree of crystallinity, long-term stability, the efficacy of drug encapsulation, and the amount released as a function of time.
Collapse
Affiliation(s)
- Rafaella M Barros
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Estadual da Paraiba, Av. das Baraunas, 351, Campina Grande, PB, 58109-753, Brazil
| | - Maísa S de Oliveira
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Estadual da Paraiba, Av. das Baraunas, 351, Campina Grande, PB, 58109-753, Brazil
| | - Kammila M N Costa
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Estadual da Paraiba, Av. das Baraunas, 351, Campina Grande, PB, 58109-753, Brazil
| | - Mariana R Sato
- Faculdade de Ciencias Farmaceuticas, Universidade Estadual Paulista (UNESP), Araraquara-Jau, Km 1, Araraquara, Sao Paulo, Brazil
| | - Karen L M Santos
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Estadual da Paraiba, Av. das Baraunas, 351, Campina Grande, PB, 58109-753, Brazil
| | - Bolívar P G de L Damasceno
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Estadual da Paraiba, Av. das Baraunas, 351, Campina Grande, PB, 58109-753, Brazil
| | - Teresa Cuberes
- Laboratorio de Nanotecnologia, Universidad de Castilla-La Mancha (UCLM), Plaza Manuel Meca 1, 13400 Almaden, Spain
| | - Joáo A Oshiro-Junior
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Estadual da Paraiba, Av. das Baraunas, 351, Campina Grande, PB, 58109-753, Brazil
| |
Collapse
|
32
|
Maspes A, Pizzetti F, Rossetti A, Makvandi P, Sitia G, Rossi F. Advances in Bio-Based Polymers for Colorectal CancerTreatment: Hydrogels and Nanoplatforms. Gels 2021; 7:6. [PMID: 33440908 PMCID: PMC7838948 DOI: 10.3390/gels7010006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/29/2020] [Accepted: 01/07/2021] [Indexed: 12/27/2022] Open
Abstract
Adenocarcinoma of the colon is the most common malignant neoplasia of the gastrointestinal tract and is a major contributor to mortality worldwide. Invasiveness and metastatic behavior are typical of malignant tumors and, because of its portal drainage, the liver is the closest capillary bed available in this case, hence the common site of metastatic dissemination. Current therapies forecast total resection of primary tumor when possible and partial liver resection at advanced stages, along with systemic intravenous therapies consisting of chemotherapeutic agents such as 5-fluorouracil. These cures are definitely not exempt from drawbacks and heavy side effects. Biocompatible polymeric networks, both in colloids and bulk forms, able to absorb large quantities of water and load a variety of molecules-belong to the class of innovative drug delivery systems, thus suitable for the purpose and tunable on each patient can represent a promising alternative. Indeed, the implantation of polymeric scaffolds easy to synthesize can substitute chemotherapy and combination therapies scheduling, shortening side effects. Moreover, they do not require a surgical removal thanks to spontaneous degradation and guarantees an extended and regional cargo release, maintaining high drug concentrations. In this review, we focus our attention on the key role of polymeric networks as drug delivery systems potentially able to counteract this dramatic disease.
Collapse
Affiliation(s)
- Anna Maspes
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, 20131 Milan, Italy; (A.M.); (F.P.); (A.R.)
| | - Fabio Pizzetti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, 20131 Milan, Italy; (A.M.); (F.P.); (A.R.)
| | - Arianna Rossetti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, 20131 Milan, Italy; (A.M.); (F.P.); (A.R.)
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, 56025 Pisa, Italy;
| | - Giovanni Sitia
- Division of Immunology, Transplantation and Infectious Diseases, Experimental Hepatology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Filippo Rossi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, 20131 Milan, Italy; (A.M.); (F.P.); (A.R.)
| |
Collapse
|
33
|
Idrees H, Zaidi SZJ, Sabir A, Khan RU, Zhang X, Hassan SU. A Review of Biodegradable Natural Polymer-Based Nanoparticles for Drug Delivery Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1970. [PMID: 33027891 PMCID: PMC7600772 DOI: 10.3390/nano10101970] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 01/19/2023]
Abstract
Biodegradable natural polymers have been investigated extensively as the best choice for encapsulation and delivery of drugs. The research has attracted remarkable attention in the pharmaceutical industry. The shortcomings of conventional dosage systems, along with modified and targeted drug delivery methods, are addressed by using polymers with improved bioavailability, biocompatibility, and lower toxicity. Therefore, nanomedicines are now considered to be an innovative type of medication. This review critically examines the use of natural biodegradable polymers and their drug delivery systems for local or targeted and controlled/sustained drug release against fatal diseases.
Collapse
Affiliation(s)
- Humaira Idrees
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore 54590, Pakistan; (A.S.); (R.U.K.)
| | - Syed Zohaib Javaid Zaidi
- Institute of Chemical Engineering and Technology, University of the Punjab, Lahore 54000, Punjab, Pakistan
| | - Aneela Sabir
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore 54590, Pakistan; (A.S.); (R.U.K.)
| | - Rafi Ullah Khan
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore 54590, Pakistan; (A.S.); (R.U.K.)
- Institute of Chemical Engineering and Technology, University of the Punjab, Lahore 54000, Punjab, Pakistan
| | - Xunli Zhang
- Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK;
| | - Sammer-ul Hassan
- Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK;
| |
Collapse
|
34
|
Villegas-Peralta Y, López-Cervantes J, Madera Santana TJ, Sánchez-Duarte RG, Sánchez-Machado DI, Martínez-Macías MDR, Correa-Murrieta MA. Impact of the molecular weight on the size of chitosan nanoparticles: characterization and its solid-state application. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03139-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Wu CE, Zhuang YW, Zhou JY, Liu SL, Wang RP, Shu P. Cinnamaldehyde enhances apoptotic effect of oxaliplatin and reverses epithelial-mesenchymal transition and stemnness in hypoxic colorectal cancer cells. Exp Cell Res 2019; 383:111500. [PMID: 31306656 DOI: 10.1016/j.yexcr.2019.111500] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 11/27/2022]
Abstract
Oxaliplatin has been widely applied in clinical tumor chemotherapy, the treatment failure of which mainly blames on low susceptibility resulted from intrinsic or acquired drug resistance in tumor cells. Microenvironmental hypoxia is one of the important pathological features of solid tumors, which is closely related to the radiochemotherapy tolerance and poor prognosis. Cinnamaldehyde is extracted from Cinnamomum cassia with inhibiting effect against kinds of tumors. In this study, we demonstrated that hypoxia reduced the sensitivity to oxaliplatin in colorectal cancer (CRC) cells via inducing EMT and stemness. Nonetheless, cinnamaldehyde increased the curative effect of oxaliplatin by promoting apoptosis both in vitro and in vivo. Mechanistically, cinnamaldehyde and oxaliplatin synergistically reversed hypoxia-induced EMT and stemness of CRC cells and suppressed hypoxia-activated Wnt/β-catenin pathway synergistically. These consequences uncovered the potential therapeutic value of cinnamaldehyde and provided novel ideas on improving the sensitivity of oxaliplatin in CRC therapy.
Collapse
Affiliation(s)
- Cun-En Wu
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Yu-Wen Zhuang
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China; Jinling Hospital Department of Integrated Traditional and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210002, Jiangsu, China; The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Jin-Yong Zhou
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Shen-Lin Liu
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Rui-Ping Wang
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| | - Peng Shu
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
36
|
Zhu LF, Zheng Y, Fan J, Yao Y, Ahmad Z, Chang MW. A novel core-shell nanofiber drug delivery system intended for the synergistic treatment of melanoma. Eur J Pharm Sci 2019; 137:105002. [DOI: 10.1016/j.ejps.2019.105002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022]
|
37
|
Chitosan-coated zein nanoparticles for oral delivery of resveratrol: Formation, characterization, stability, mucoadhesive properties and antioxidant activity. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.03.042] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Zengin G, Ferrante C, Orlando G, Zheleva-Dimitrova D, Gevrenova R, Recinella L, Chiavaroli A, Leone S, Brunetti L, Aumeeruddy MZ, Aktumsek A, Mahomoodally MF, Angelini P, Covino S, Venanzoni R, Tirillini B, Menghini L. Chemical profiling and pharmaco-toxicological activity of Origanum sipyleum extracts: Exploring for novel sources for potential therapeutic agents. J Food Biochem 2019; 43:e13003. [PMID: 31393014 DOI: 10.1111/jfbc.13003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/24/2022]
Abstract
The phytochemical, antiradical, and enzyme inhibition profile of three solvent extracts (ethyl acetate, methanol, water) of Origanum sipyleum were assessed. We also performed a pharmacological study in order to explore protective effects induced by extracts in inflamed colon. LC-MS analysis revealed that the extracts contained different classes of phenolics. The aqueous extract showed the highest antioxidant and acetylcholinesterase (AChE) inhibitory effects. Total phenol and flavonoid contents were highest in aqueous and ethyl acetate extract, respectively. All extracts were effective in reducing colon pro-oxidant and pro-inflammatory biomarkers. The extracts revealed also able to inhibit fungal and bacterial species involved in ulcerative colitis, including Candida albicans, Candida tropicalis, Staphylococcus aureus, and Staphylococcus thyphimurium. Finally, we also showed the antiproliferative effects exerted by the EA extracts on human colon cancer HCT116 cell line. Concluding, our results indicated that O. sipyleum extracts displayed promising therapeutic properties which warrants further validation. PRACTICAL APPLICATIONS: The present phytochemical and biological studies, including antioxidant, anti-inflammatory, and antimicrobic assessments, showed significant protective effects exerted by O. sipyleum extracts in an experimental model of ulcerative colitis. The results are intriguing and suggest potential applications O. sipyleum extracts as sources of natural agents for the management of clinical symptoms related to ulcerative colitis, characterized by increased burden of oxidative stress and microbiome dysbiosis.
Collapse
Affiliation(s)
- Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Claudio Ferrante
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Lucia Recinella
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | | | | | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Stefano Covino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Bruno Tirillini
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Luigi Menghini
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
39
|
Shokry MM, Khalil IA, El-Kasapy A, Osman A, Mostafa A, Salah M, El-Sherbiny IM. Multifunctional prosthetic polyester-based hybrid mesh for repairing of abdominal wall hernias and defects. Carbohydr Polym 2019; 223:115027. [PMID: 31426976 DOI: 10.1016/j.carbpol.2019.115027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 01/17/2023]
Abstract
This study involves the design, development and evaluation of a new multifunctional prosthetic mesh for treatment of abdominal wall defects without complications. The developed prosthetic mesh is a hybrid platform of both synthetic and natural materials with its backbone consisting of a synthetic commercial polyester fabric (CPF) to provide the required mechanical integrity. The CPF mesh was coated by a natural biodegradable, biocompatible and antimicrobial layer of chitosan (CS) incorporating phenytoin (PH)-loaded pluronic nanomicelles for healing promotion, and ciprofloxacin (CPX)-alginate polyelectrolyte complex-based microparticles as antibacterial agent. The prosthetic mesh was optimized and evaluated in-vitro and in-vivo. The optimum PH-loaded micelles had particle size of 95.42 nm, polydispersity index of 0.41, zeta potential of -18 and entrapment efficiency of 89.4%, while the optimum CPX microcomplexes had particle size of 1292.0 nm, polydispersity index of 0.8, zeta potential of -20.1, complexation efficiency of 81.1%, and minimum inhibitory concentration of 0.25 μg/ml and 0.125 μg/ml against Staphylococcus aureus and Pseudomonas aeruginosa, respectively. In-vivo study on abdominal wall defect dog model was conducted, followed by implantation of the proposed prosthetic meshes. The developed mesh depicted an efficient healing with excellent biocompatibility, and could be an ideal and feasible alternative prosthesis with many advantages such as low cost, inertness, mechanical stability, pliability, low infection rate, limited modification by body tissues, sterilizability, non-carcinogenicity, limited inflammatory reaction, hypoallergenic as well as minimal complications.
Collapse
Affiliation(s)
- Mohamed M Shokry
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Islam A Khalil
- Nanomaterials & Nanomedicine Lab, Center of Material Science (CMS), Zewail City of Science and Technology, 6th of October, Giza, 12588, Egypt; Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6thof October, Giza, 12566, Egypt
| | - Abdelhaleem El-Kasapy
- Department of Surgery, Faculty of Veterinary Medicine, Benha University, Moshtohor, Egypt
| | - Ahmed Osman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ayman Mostafa
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed Salah
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomaterials & Nanomedicine Lab, Center of Material Science (CMS), Zewail City of Science and Technology, 6th of October, Giza, 12588, Egypt.
| |
Collapse
|
40
|
Roy P, Parveen S, Ghosh P, Ghatak K, Dasgupta S. Flavonoid loaded nanoparticles as an effective measure to combat oxidative stress in Ribonuclease A. Biochimie 2019; 162:185-197. [PMID: 31059754 DOI: 10.1016/j.biochi.2019.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/29/2019] [Indexed: 12/11/2022]
Abstract
Flavonoids like quercetin and myricetin serve as naturally occurring antioxidants but their bioactivity is limited due to low aqueous solubility and oxidation under physiological conditions. In this current study, the antioxidant activity of quercetin and myricetin loaded chitosan nanoparticles during the induced oxidation of Ribonuclease A (RNase A) has been compared with the corresponding free flavonoids. Oxidation of RNase A leads to intermolecular dityrosine (DT) bond formation which shows a characteristic fluorescence emission around 405 nm. Although both quercetin and myricetin loaded nanoparticles initially exhibit lower antioxidant property compared to the free flavonoids, however, with increase in oxidant concentration over time the DT fluorescence showed greater increase for free flavonoids in comparison to the nanoparticles. The polyphenol loaded nanoparticles are also found to be effective in preventing bacterial cell damage in oxidizing medium. The slow release of flavonoids from the nanoparticles is responsible for their prolonged antioxidant effect in the oxidizing medium unlike the free flavonoids which are exhausted almost completely in the initial phase.
Collapse
Affiliation(s)
- Pritam Roy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sultana Parveen
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Pooja Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Kausani Ghatak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
41
|
Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int J Pharm 2019; 561:244-264. [PMID: 30851391 DOI: 10.1016/j.ijpharm.2019.03.011] [Citation(s) in RCA: 291] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/11/2022]
Abstract
Nanomedicines are now considered as the new-generation medication in the current era mainly because of their features related to nano size. The efficacy of many drugs in their micro/macro formulations is shown to have poor bioavailability and pharmacokinetics after oral administration. To overcome this predicament, use of natural/synthetic biodegradable polymeric nanoparticles (NPs) have gained prominence in the field of nanomedicine for targeted drug delivery to improve biocompatibility, bioavailability, safety, enhanced permeability, better retention time and lower toxicity. For drug delivery, it is essential to have biodegradable nanoparticle formulations for safe and efficient transport and release of drug at the intended site. Moreover, depending on the target organ, a suitable biodegradable polymer can be selected as the drug-carrier for target specific as well as for sustained drug delivery. The aim of this review is to present the current status and scope of natural biodegradable polymers as well as some emerging polymers with special characteristics as suitable carriers for drug delivery applications. The most widely preferred preparation methods are discussed along with their characterization using different analytical techniques. Further, the review highlights significant features of methods developed using natural polymers for drug entrapment and release studies.
Collapse
|
42
|
Baranauskaite J, Adomavičiūtė E, Jankauskaitė V, Marksa M, Barsteigienė Z, Bernatoniene J. Formation and Investigation of Electrospun Eudragit E100/Oregano Mats. Molecules 2019; 24:E628. [PMID: 30754653 PMCID: PMC6384711 DOI: 10.3390/molecules24030628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/31/2019] [Accepted: 02/09/2019] [Indexed: 11/16/2022] Open
Abstract
An electrospun mat of Eudragit E100 (EE100) (a cationic copolymer based on dimethylaminoethyl methacrylate, butyl methacrylate, and methyl methacrylate) was used as a delivery system for oregano ethanolic extract (OEE). Oregano is a biologically active material which is widely used because of the antibacterial and antifungal activity. The oregano herb consists of phenolic compounds, the main of which are rosmarinic acid and from essential oil-carvacrol. Such a material could be an ideal candidate for oral drug systems. The influence of the EE100 concentration in the OEE on the structure of electrospun mats, encapsulation efficiency, dissolution profile, release kinetics and the stability of biologically active compounds was investigated. The concentration of the solution is a critical parameter for the structure and properties of electrospun mats. The diameter of electrospun fibers increased with the increase of EE100 concentration in the OEE. Electrospun mats obtained from 24% to 32% EE100 solutions showed high encapsulation efficiency, quick release and high stability of rosmarinic acid and carvacrol. Dissolution tests showed that 99% of carvacrol and 80% of rosmarinic acid were released after 10 min from electrospun nano-microfiber mats and capsules obtained from such formulations. The stability tests showed that physicochemical properties, dissolution profiles, and rosmarinic acid and carvacrol contents of the formulations were not significantly affected by storage.
Collapse
Affiliation(s)
- Juste Baranauskaite
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Medical Academy, Sukileliu pr. 13, LT-50162 Kaunas, Lithuania.
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Medical Academy, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania.
| | - Erika Adomavičiūtė
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu st. 56, LT-51424 Kaunas, Lithuania.
| | - Virginija Jankauskaitė
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu st. 56, LT-51424 Kaunas, Lithuania.
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Medical Academy, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania.
| | - Zita Barsteigienė
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Medical Academy, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania.
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Medical Academy, Sukileliu pr. 13, LT-50162 Kaunas, Lithuania.
- Department of Drugs Technology and Social Pharmacy, Lithuanian University of Health Sciences, Medical Academy, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania.
| |
Collapse
|
43
|
Khalil IA, Ali IH, El-Sherbiny IM. Noninvasive biodegradable nanoparticles-in-nanofibers single-dose ocular insert: in vitro, ex vivo and in vivo evaluation. Nanomedicine (Lond) 2019; 14:33-55. [DOI: 10.2217/nnm-2018-0297] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aim: This study involves, for the first time, the development of mucoadhesive biodegradable polymeric-multilayered nanoparticles-in-nanofibers (NPs-in-NFs) matrix as an innovative single-dose noninvasive ocular-insert that could substitute conventional ocular dosage-forms. Materials & methods: Azithromycin-loaded poly(lactic-co-glycolic acid) copolymer/pluronic NPs were developed then incorporated into electrospun polyvinylpyrrolidone NFs, and tested for their efficient treatment of ocular bacterial infection. Results: Release and permeation studies proved the ability of the insert to control drug release over 10 days. Conclusion: The incorporation of NPs into NFs achieved several other benefits like increasing ocular residence and contact time with conjunctival tissue, accurate dose delivery, sustaining drug release with constant rate, reducing frequency of administration, improving bioavailability along with decreasing incidence of visual and systemic side effects.
Collapse
Affiliation(s)
- Islam A Khalil
- Nanomaterials Lab, Center of Material Science (CMS), Zewail City of Science & Technology, 6th of October, Giza 12578, Egypt
- Department of Pharmaceutics & Industrial Pharmacy, College of Pharmacy & Drug Manufacturing, Misr University of Science & Technology (MUST), 6th of October, Giza 12566, Egypt
| | - Isra H Ali
- Nanomaterials Lab, Center of Material Science (CMS), Zewail City of Science & Technology, 6th of October, Giza 12578, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomaterials Lab, Center of Material Science (CMS), Zewail City of Science & Technology, 6th of October, Giza 12578, Egypt
| |
Collapse
|
44
|
Wang Z, Wei Y, Fang G, Hong D, An L, Jiao T, Shi Y, Zang A. Colorectal cancer combination therapy using drug and gene co-delivered, targeted poly(ethylene glycol)-ε-poly(caprolactone) nanocarriers. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3171-3180. [PMID: 30288022 PMCID: PMC6161722 DOI: 10.2147/dddt.s175614] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Purpose Combination therapy is a promising strategy to treat cancer due to the synergistic effects. The drug and gene co-delivered systems attract more attention in the field of combination therapy. Materials and methods In the present research, poly(ethylene glycol)-ε-poly(caprolactone) block copolymer was used for the co-loading of 5-fluorouracil (5-FU) and gene. The physicochemical characteristics, in vitro and in vivo anticancer, and gene transfection efficiency were tested on colon cancer cells and tumor-bearing mice. Results 5-FU and gene co-loaded nanocarriers had a size of 145 nm. In vivo gene delivery results showed about 60% of gene-positive cells. Tumor volume of nanocarrier groups at day 21 was around 320 mm3, which is significantly smaller compared with free 5-FU group (852 mm3) and control group (1,059 mm3). The maximum 5-FU plasma concentration in nanocarrier groups (49 µg/mL) was significantly greater than free 5-FU (13 µg/mL). At 24 hours, drug level of nanocarrier groups was about 2.8 µg/mL compared with 0.02 µg/mL of free 5-FU. Conclusion The resulting nanocarriers co-loaded with the anticancer drugs and genes could be considered as a promising nanomedicine for colorectal cancer therapy.
Collapse
Affiliation(s)
- Zhiyu Wang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China,
| | - Yaning Wei
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China,
| | - Guotao Fang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China,
| | - Dan Hong
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China,
| | - Lin An
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China,
| | - Ting Jiao
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China,
| | - Yan Shi
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China,
| | - Aimin Zang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China,
| |
Collapse
|
45
|
Sathya S, Shanmuganathan B, Manirathinam G, Ruckmani K, Devi KP. α-Bisabolol loaded solid lipid nanoparticles attenuates Aβ aggregation and protects Neuro-2a cells from Aβ induced neurotoxicity. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Baranauskaite J, Duman G, Corapcıoğlu G, Baranauskas A, Taralp A, Ivanauskas L, Bernatoniene J. Liposomal Incorporation to Improve Dissolution and Stability of Rosmarinic Acid and Carvacrol Extracted from Oregano ( O. onites L.). BIOMED RESEARCH INTERNATIONAL 2018; 2018:6147315. [PMID: 30140697 PMCID: PMC6081540 DOI: 10.1155/2018/6147315] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/22/2018] [Indexed: 12/25/2022]
Abstract
The potential antimicrobial benefit of high levels of rosmarinic acid (RA) and carvacrol (CA) in oregano (O. onites L.) extract has been limited until now by poor bioavailability arising from the low aqueous-phase solubility and slow dissolution behaviour of the lyophilized extract (E). To address this issue, various ratios of phospholipon 90H (P90H) and 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol), sodium salt (DMPG) were sonicated, yielding four empty liposomes (L1, L2, L3, and L90). After an initial selection process, Turkish oregano extract was internalized into the more promising candidates. Each empty liposome, extract-loaded liposome (LE1, LE2, and LE3), and freeze-dried control (E) was assessed in terms of structure, composition, RA and CA dissolution profile, storage stability, and, when relevant, zeta potential. Empty liposome L1, which was prepared using P90H and DMPG in a 1:1 ratio, displayed the most convenient encapsulation traits among the four unloaded types. Loaded liposome LE1, obtained by combining oregano extract and L1 in a 1:1 ratio, proved superior as a vehicle to deliver RA & CA when compared against control freeze-dried E and test liposomes LE2 and LE3. Dissolution profiles of the active compounds RA and CA in loaded liposomes were determined using a semi-automated dissolution tester. The basket method was applied using artificial gastric juice without pepsin (AGJ, 50rpm, 500mL). The pH value was maintained at 1.5 (37 ± 0.5°C). Aliquots (5ml) were manually extracted from parallel dissolution vessels at 1, 3, 5, 7, 10, 15, 20, 25, 30, 45, and 60-minute time points. Dissolution tests, run to completion on LE1, showed that approximately 99% of loaded CA and 88% of RA had been released. Shorter dissolution times were also noted in using LE1. In particular, the release profile of CA and RA had levelled off after only 25 minutes, respectively, depicting an impressive 3.0-3.3 and 2.3-2.6 rate increase compared to the freeze-dried control extract. The improved dispersibility of RA and CA in the form of LE1 was supported by particle size and zeta potential measurements of the liposome, yielding 234.3nm and -30.9mV, respectively. The polydispersity index value was 0.35, indicating a reasonable particle size distribution. To study storage stability, liposomes were stored (4°C, 6 months) in amber coloured glass containers (4 oz.). Each container held 30 capsules, which were stored according to the ICH guidelines prescribed for long-term storage (25°C ± 2°C; 60% ± 5% RH). Triplicate samples were withdrawn after 0, 3, 6, 9, and 12 months for analysis. Lastly, LE1 displayed good storage stability. The results imply that RA and CA can be conveniently and routinely delivered via oral and mucosal routes by first internalizing oregano extracts into appropriately engineered liposomes.
Collapse
Affiliation(s)
- Juste Baranauskaite
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Medical Academy, Sukileliu pr. 13 LT-50162, Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania
| | - Gülengül Duman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University Atasehir, İnönü Mah., Kayışdağı Cad., 34755, Istanbul, Turkey
| | - Gülcan Corapcıoğlu
- Nanotechnology Research and Application Center, Sabanci University, Orta Mahalle, Üniversite Cad. No. 27, Orhanli, 34956, Tuzla, Istanbul, Turkey
| | - Algirdas Baranauskas
- Department of Drugs Technology and Social Pharmacy, Lithuanian University of Health Sciences, Medical Academy, Sukileliu pr. 13 LT-50162, Kaunas, Lithuania
| | - Alpay Taralp
- Altınay Aerospace & Advanced Technologies Inc., Teknopark Istanbul No.1/4A, Pendik, Istanbul, 34906, Turkey
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Medical Academy, Sukileliu pr. 13 LT-50162, Kaunas, Lithuania
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania
- Department of Drugs Technology and Social Pharmacy, Lithuanian University of Health Sciences, Medical Academy, Sukileliu pr. 13 LT-50162, Kaunas, Lithuania
| |
Collapse
|
47
|
Albuquerque C, Pebre Pereira L. Wnt Signalling-Targeted Therapy in the CMS2 Tumour Subtype: A New Paradigm in CRC Treatment? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1110:75-100. [PMID: 30623367 DOI: 10.1007/978-3-030-02771-1_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colorectal cancers (CRC) belonging to the consensus molecular subtype 2 (CMS2) have the highest incidence rate, affect mainly the distal colon and rectum, and are characterized by marked Wnt/β-catenin/Transcription Factor 7-Like 2 (TCF7L2) pathway activation and also by activation of epidermal growth factor receptor (EGFR) signalling. Despite having the highest overall survival, CMS2 tumours are often diagnosed at stage III when an adjuvant chemotherapy-based regimen is recommended. Nevertheless, colorectal cancer stem cells (CSCs) and circulating tumour cells may still evade the current therapeutic options and metastasize, stressing the need to develop more tailored therapeutic strategies. For example, activation of EGFR signalling is being used as a target for tailored therapy, however, therapy resistance is frequently observed. Therefore, targeting the Wnt signalling axis represents an additional therapeutic strategy, considering that CMS2 tumours are "Wnt-addicted". Several efforts have been made to identify Wnt antagonists, either of synthetic or natural origin. However, an inverse gradient of Wnt/β-catenin/TCF7L2 signalling activity during CRC progression has been suggested, with early stage and metastatic tumours displaying high and low Wnt signalling activities, respectively, which lead us to revisit the "just-right" signalling model. This may pinpoint the use of Wnt signalling agonists instead of antagonists for treatment of metastatic stages, in a context-dependent fashion. Moreover, the poor immunogenicity of these tumours challenges the use of recently emerged immunotherapies. This chapter makes a journey about CMS2 tumour characterization, their conventional treatment, and how modulation of Wnt signalling or immune response may be applied to CRC therapy. It describes the newest findings in this field and indicates where more research is required.
Collapse
Affiliation(s)
- Cristina Albuquerque
- Molecular Pathobiology Research Unit, Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E., Lisbon, Portugal.
| | - Lucília Pebre Pereira
- Molecular Pathobiology Research Unit, Portuguese Institute of Oncology of Lisbon Francisco Gentil, E.P.E., Lisbon, Portugal
| |
Collapse
|