1
|
Li H, Niu X, Xu F, Ansari AR, Zou W, Yang K, Pang X, Song H. The role of visfatin in peripheral immune organs and intestines of weaned piglets under lipopolysaccharide induced immune stress. Res Vet Sci 2025; 184:105499. [PMID: 39729949 DOI: 10.1016/j.rvsc.2024.105499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024]
Abstract
To investigate the regulatory mechanisms and pathways of visfatin under immune stress injury in weaned piglets, we established a lipopolysaccharide-induced immune stress model in weaned piglets to study how visfatin affects peripheral immune organs and intestinal function. The results revealed that visfatin improved the inflammatory response in immune-stressed weaned piglets by reducing the levels of pro-inflammatory cytokines interleukin-1β, interleukin-6 and monocyte chemoattractant protein-1, as well as decreasing the neutrophil/lymphocyte ratio. Visfatin ameliorated oxidative stress in piglets by promoting the expression of superoxide dismutase and glutathione peroxidase. It also enhanced cell proliferation in peripheral immune organs (spleen and mesenteric lymph nodes) and suppressed cell apoptosis in these organs through the death receptor apoptosis pathway, thereby improving the immune function of weaned piglets under immune stress. Moreover, it alleviated intestinal villi damage, increased the abundance of beneficial bacteria, and elevated the levels of short-chain fatty acids, thus preserving the intestinal barrier's integrity and the balance of intestinal microbiota. Hence, these data indicate that visfatin can ameliorate immune stress injury in weaned piglets by exerting anti-inflammatory and antioxidant effects, enhancing immune organ and intestinal function.
Collapse
Affiliation(s)
- Huizhen Li
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Loudi Vocational and Technical College, Loudi 417000, China.
| | - Xiaoyu Niu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fenliang Xu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Abdur Rahman Ansari
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Anatomy and Histology Section, College of Veterinary and Animal Sciences (CVAS), Jhang: University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Weihua Zou
- Shanghai Fuxin Medical Technology Co., Ltd, Shanghai 200000, China
| | - Keli Yang
- Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xinxin Pang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Song
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Long Y, Huang F, Zhang J, Zhang J, Cheng R, Zhu L, Chen Q, Yang D, Pan X, Yang W, Qin M, Huang J. Identification of SUMOylation-related signature genes associated with immune infiltration in ulcerative colitis through bioinformatics analysis and experimental validation. Gene 2025; 935:148996. [PMID: 39395728 DOI: 10.1016/j.gene.2024.148996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVE Ulcerative colitis (UC) is a chronic inflammatory disorder challenging to diagnose clinically. We focused on identifying and validating SUMOylation-related signature genes in UC and their association with immune infiltration. METHODS Five eligible gene expression profiles were selected from the Gene Expression Omnibus (GEO) database and merged into a single dataset comprising 260 UC patients and 76 healthy controls (HC). Differentially expressed genes (DEGs) were identified, and these were intersected with SUMOylation-related genes to obtain differentially expressed SUMOylation-related genes (DESRGs). Next, we identify the signature genes and validate them through comprehensive analyses employing GO, KEGG, GSVA, Lasso-cox regression, ROC curves, and clustering analysis. The infiltrating immune cells were analyzed using the CIBERSORT algorithm and Pearson correlation analysis. Finally, in vitro and in vivo experiments validated the identified signature genes. RESULTS PALMD, THRB, MAGED1, PARP1, and SLC16A1 were identified. Next, an excellent predictive model for UC was established and distinct subgroups of patients associated with SUMOylation were identified. Moreover, the NF-κB signaling pathway likely plays a pivotal role in the regulation of SUMOylation in UC. Additionally, we validated that the alterations in PALMD, THRB, and MAGED1 expression in LPS-induced Caco-2 cells concurred with our bioinformatics findings, particularly demonstrating statistically significant differences in PALMD and THRB expression. Finally, in a DSS-induced mouse colitis model, we observed a significant upregulation of PALMD expression. Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation. CONCLUSION This study comprehensively elucidates the biological roles of SUMOylation-related genes in UC, identifying PALMD, MAGED1, THRB, PARP1, and SLC16A1 as signature genes that represent promising biomarkers for UC diagnosis and prognosis.
Collapse
Affiliation(s)
- Ying Long
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China; Department of Gastroenterology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou 545006, People's Republic of China
| | - Feihong Huang
- Spine and Osteopathy Ward, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Juan Zhang
- Department of Pediatrics, Zhuzhou Central Hospital, Zhuzhou 412000, People's Republic of China
| | - Jinxiu Zhang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Ruoxi Cheng
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Liye Zhu
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Qiuling Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Dan Yang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Xiaoping Pan
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Wenfang Yang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Mengbin Qin
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China.
| | - Jiean Huang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China.
| |
Collapse
|
3
|
Gao W, Wu X, Wang Y, Lu F, Liu F. Brazilin-Rich Extract from Caesalpinia sappan L. Attenuated the Motor Deficits and Neurodegeneration in MPTP/p-Induced Parkinson's Disease Mice by Regulating Gut Microbiota and Inhibiting Inflammatory Responses. ACS Chem Neurosci 2025; 16:181-194. [PMID: 39711007 DOI: 10.1021/acschemneuro.4c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Parkinson's disease (PD) is a complicated neurological disease with an unclear pathogenesis. However, dysregulation of gut microbiota and inflammation response play crucial roles in the progression of PD. Caesalpinia sappan L., a traditional medicinal plant containing brazilin as its primary active compound, is known for its anti-inflammatory and neuroprotective properties. However, the impact of C. sappan L. extract (SE) on PD through the regulation of the microbiota-gut-brain axis remains unclear. This study investigated the effects and mechanisms of a 91.23% brazilin-enriched SE on MPTP/p-induced PD mice. Results showed that SE significantly ameliorated motor deficits and protected dopaminergic neurons in PD mice. Additionally, SE reduced oxidative stress and inflammation in the brain. SE also restored gut microbiota by increasing Firmicutes and decreasing Bacteroidetes, alongside enhancing the production of short-chain fatty acids (SCFAs) like butyric acid. Furthermore, SE mitigated intestinal barrier damage by enhancing the expression of ZO-1 and occludin, thereby decreasing lipopolysaccharide leakage and inflammatory factor release. Molecular simulations suggested that butyric acid may maintain intestinal integrity by stabilizing ZO-I and occludin conformations. In conclusion, SE exhibited a protective effect on motor deficits and neurodegeneration in PD by regulating gut microbiota and SCFAs, repairing the intestinal barrier, and mitigating inflammatory responses.
Collapse
Affiliation(s)
- Wen Gao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xinni Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yang Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
4
|
Yang M, Liu J, Liu C, Zhang H, Li S, Zhang T, Yu Z, Chi X, Zhang Z, Du Z. Programmable Food-Derived Peptide Coassembly Strategies for Boosting Targeted Colitis Therapy by Enhancing Oral Bioavailability and Restoring Gut Microenvironment Homeostasis. ACS NANO 2025; 19:600-620. [PMID: 39745599 DOI: 10.1021/acsnano.4c11108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Orally targeting nanostrategies of multiple nutraceuticals have attracted increasing attention in ulcerative colitis (UC) therapy for superior patient compliance, cost-effectiveness, and biocompatibility. However, the actual targeting delivery and bioefficacy of nutraceuticals are extremely restricted by their poor solubility, interior gastrointestinal retention, and base permeability. Herein, we developed controllable colon-targeting nanoparticles (NPs) composed of a quaternary ammonium chitosan (HTCC) shell and succinic acid-modified γ-cyclodextrin (SACD) core for precise UC treatment. Egg white-derived peptides (EWDP, typical food-derived peptides) could not only function as potential cross-linkers to induce the differential coassembly with the above biopolymers but also aid the hydrophobic curcumin (Cur) solubility as well as nutrition enhancers for oral synergism of colitis therapy. More specifically, NPs with higher EWDP coassembly efficiency exhibited better pH-sensitive colloidal tunability (e.g., smaller size, higher rigidity, and roughness) and robust nutraceuticals (EWDP/Cur) coloading capacity (24.0-33.2% ≫ 10%, pH 2.0-7.0). Compared with pure nutraceuticals, NPs exhibited excellent cellular absorption (almost 10 times) and oral bioavailability (4.19-5.05 times) enhancement via faster mucus permeation and macropinocytosis transport, indirectly regulating the systemic inflammatory response. The sustainable sequential release and targeted accumulation profiles of NPs directly facilitated the interactions with the colonic microenvironment, verified by the intestinal barrier recovery and gut microbiota restoration. Moreover, the critical role of amino acid metabolism reconfirmed the importance of EWDP coassembly efficiency in maintaining intestinal homeostasis. Overall, this study would provide a facile, quantitative, and versatile perspective into the programmable design of food-derived peptide (e.g., EWDP) coassembled nanoplatforms for oral targeted therapy of UC.
Collapse
Affiliation(s)
- Meng Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
- Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun 130025, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chunmei Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Hui Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Shanglin Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiwen Chi
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Zhihui Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun 130025, China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
5
|
Yan H, Lan G, Peng Q, Zhang W, Wang Y, Li X. Causal associations between gut Bifidobacteriaceae and transplant failure: a Mendelian randomization study. Future Microbiol 2025; 20:23-31. [PMID: 39552557 PMCID: PMC11974344 DOI: 10.1080/17460913.2024.2417608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Aim: Transplant rejection and failure are the primary causes of shortened lifespan in transplant patients and are closely associated with the status of the human immune system. Gut microbiota have the capacity to modulate the human immune system. However, it remains unclear whether any gut microbiota can influence the risk of transplant failure.Materials & methods: A Mendelian randomization study was conducted to explore the causal relationship between gut microbiota and transplant failure. This study utilized three Genome-Wide Association Study results focusing on the gut microbiome, transplant failure and transplantation status. Single nucleotide polymorphisms that were strongly associated with gut microbiota abundance were selected as instrumental variables.Results: The abundance of Bifidobacteriaceae demonstrated a significant causal relationship with transplant failure (inverse variance weighted [IVW] p = 0.049, OR = 0.658, 95% CI: 0.433-0.998), but was not related to the risk of transplantation status (IVW p > 0.200). Notably, a higher intestinal abundance of Bifidobacteriaceae corresponded to a decreased risk of transplant failure. Bifidobacteriaceae instrumental variables were enriched in pathways related to synapses and membranes.Conclusion: The Bifidobacteriaceae may play a crucial role in the mechanism of transplant failure. These study results contribute to elucidating the mechanisms underlying transplant failure.
Collapse
Affiliation(s)
- Han Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P.R. China
| | - Gongbin Lan
- Department of Kidney Transplantation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P.R. China
| | - Qi Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, P.R. China410008
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Hunan, 410028, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, P.R. China410008
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Hunan, 410028, P.R. China
| | - Ying Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P.R. China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, P.R. China410008
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Hunan, 410028, P.R. China
| |
Collapse
|
6
|
Song Q, Zou J, Cheng SW, Li KSL, Lau DTW, Yang X, Shaw PC, Zuo Z. Insights Into Metabolic Signatures and Regulatory Effect of Dendrobium officinale Polysaccharides in Gut Microbiota: A Comparative Study of Healthy and Diabetic Status. Food Sci Nutr 2025; 13:e4651. [PMID: 39803214 PMCID: PMC11717035 DOI: 10.1002/fsn3.4651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 01/16/2025] Open
Abstract
Dendrobium officinale is a kind of popular functional food to be consumed by both healthy and diabetic people. As its major constituent, D. officinale polysaccharide (DOP) is mainly utilized by gut microbiota. Despite distinctive gut microbiota composition between healthy and diabetic individuals, no study compared the interplay between DOP and gut microbiota under healthy and diabetic status. The current study aims to investigate and compare the metabolic signatures and regulatory potential of DOP on gut microbiota between healthy and diabetic status. Our serial in vitro fermentation investigations found that mannose in DOP was more utilized by gut microbiota under diabetic status with higher production of propanoic acid and lower production of butyric acid compared with those under healthy status. Moreover, metabolomic analyses revealed different impacts of DOP on intestinal microbial metabolites between healthy and diabetic status with upregulating taurine and downregulating 2-hydroxybutyric acid only occurring under diabetic status. Biodiversity analyses demonstrated that DOP treatment could only significantly improve the diversity of gut microbiota under diabetic status while there was no significant effect on that under healthy status. Further gut microbiota composition analyses indicated that DOP treatment could promote probiotics (Dubosiella, Bifidobacterium, and Akkermansia) under both healthy and diabetic status while inhibit pathogens (Escherichia-Shigella) only under diabetic status. In summary, our current insights into metabolic signatures and regulatory effects of DOP in the gut microbiota under healthy and diabetic status provided scientific evidence for its broad use as functional food.
Collapse
Affiliation(s)
- Qianbo Song
- Guangdong‐Hong Kong‐Macao Joint Laboratory for New Drug Screening, School of PharmacyThe Chinese University of Hong KongHong Kong SARP. R. China
| | - Junju Zou
- Guangdong‐Hong Kong‐Macao Joint Laboratory for New Drug Screening, School of PharmacyThe Chinese University of Hong KongHong Kong SARP. R. China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal PlantsThe Chinese University of Hong KongHong Kong SARP. R. China
- School of Life Sciences and Li Dak Sum & Yip Yio Chin Research and Development Centre for Chinese MedicineThe Chinese University of Hong KongHong Kong SARP. R. China
- School of Traditional Chinese MedicineHunan University of Chinese MedicineChang ShaP. R. China
| | - Sau Wan Cheng
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal PlantsThe Chinese University of Hong KongHong Kong SARP. R. China
- School of Life Sciences and Li Dak Sum & Yip Yio Chin Research and Development Centre for Chinese MedicineThe Chinese University of Hong KongHong Kong SARP. R. China
| | - Kendra Sek Lam Li
- Department of MicrobiologyThe Chinese University of Hong KongHong Kong SARP. R. China
| | - David Tai Wai Lau
- School of Life Sciences and Li Dak Sum & Yip Yio Chin Research and Development Centre for Chinese MedicineThe Chinese University of Hong KongHong Kong SARP. R. China
| | - Xiao Yang
- Department of MicrobiologyThe Chinese University of Hong KongHong Kong SARP. R. China
| | - Pang Chui Shaw
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal PlantsThe Chinese University of Hong KongHong Kong SARP. R. China
- School of Life Sciences and Li Dak Sum & Yip Yio Chin Research and Development Centre for Chinese MedicineThe Chinese University of Hong KongHong Kong SARP. R. China
| | - Zhong Zuo
- Guangdong‐Hong Kong‐Macao Joint Laboratory for New Drug Screening, School of PharmacyThe Chinese University of Hong KongHong Kong SARP. R. China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal PlantsThe Chinese University of Hong KongHong Kong SARP. R. China
| |
Collapse
|
7
|
Wan J, Wang F, Xiao Y, Cheng Y, Zheng S, Jiang Q, Tan B, Li X, Chen J, Liao S. Poria cocos polysaccharide alleviates dextran sulphate sodium-induced ulcerative colitis in mice by modulating intestinal inflammatory responses and microbial dysbiosis. Int J Biol Macromol 2024; 283:137450. [PMID: 39522895 DOI: 10.1016/j.ijbiomac.2024.137450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Poria cocos polysaccharide (PCP), one of the main active components of P. cocos, is extensively used worldwide and exhibits strong pharmacological effects. However, whether PCP can attenuate inflammatory bowel disease remains unclear. In this study, we assessed the effects of PCP supplementation on dextran sulphate sodium (DSS)-induced ulcerative colitis (UC) in mice. We found that PCP supplementation mitigated UC symptoms in DSS-treated mice, as evidenced by reductions in body weight loss, colon length shortening and disease activity index score. Importantly, PCP supplementation enhanced colonic barrier integrity by increasing tight junction protein abundance and exerted anti-inflammatory effects by suppressing nuclear factor-κB (NF-κB) activation in DSS-treated mice. Furthermore, PCP supplementation reversed DSS-induced dysbiosis in colonic microbiota by increasing the colonic abundance of beneficial bacteria (e.g. Akkermansiaceae) and decreasing the colonic abundance of harmful bacteria (e.g. Erysipelotrichaceae) in DSS-treated mice. Although PCP supplementation failed to ameliorate DSS-induced UC in antibiotic-treated mice, faecal microbiota transplantation from PCP-administered mice ameliorated DSS-induced UC in antibiotic-treated mice. In summary, PCP alleviates UC in mice by attenuating intestinal inflammation via the inhibition of NF-κB activation and modulating the intestinal microbiota.
Collapse
Affiliation(s)
- Jin Wan
- International Institute of Food Innovation, Nanchang University, Nanchang 330200, Jiangxi, People's Republic of China
| | - Fang Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, People's Republic of China
| | - Yintao Xiao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, People's Republic of China
| | - Ying Cheng
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, People's Republic of China
| | - Saizhen Zheng
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, People's Republic of China
| | - Qian Jiang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, People's Republic of China
| | - Bie Tan
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, People's Republic of China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, People's Republic of China
| | - Jiashun Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, People's Republic of China.
| | - Simeng Liao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, People's Republic of China.
| |
Collapse
|
8
|
Liu H, Yan R, Li Y, Wang J, Deng Y, Li Y. Dragon's blood attenuates LPS-induced intestinal epithelial barrier dysfunction via upregulation of FAK-DOCK180-Rac1-WAVE2-Arp3 and downregulation of TLR4/NF-κB signaling pathways. J Nat Med 2024; 78:1013-1028. [PMID: 39014275 DOI: 10.1007/s11418-024-01824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/13/2024] [Indexed: 07/18/2024]
Abstract
Inflammation-induced intestinal epithelial barrier (IEB) dysfunction is one of the important reasons for the occurrence and development of intestinal inflammatory-related diseases, including ulcerative colitis (UC), Crohn's disease and necrotizing enterocolitis (NEC). Dragon's blood (DB) is a traditional Chinese medicine and has been clinically used to treat UC. However, the protective mechanism of DB on intestinal inflammatory-related diseases has still not been elucidated. The present study aimed to explore the protection mechanism of DB on IEB dysfunction in rat ileum and human colorectal adenocarcinoma cells (Caco-2)/human umbilical vein endothelial cells (HUVECs) coculture system induced by lipopolysaccharide (LPS). DB could ameliorate rat ileum mucosa morphological injury, reduce the accumulation of lipid-peroxidation products and increase the expression of junction proteins. DB also alleviated LPS-induced Caco-2 cells barrier integrity destruction in Caco-2/ HUVECs coculture system, leading to increased trans-endothelial electrical resistance (TEER), reduced cell permeability, and upregulation of expressions of F-actin and junction proteins. DB contributed to the assembly of actin cytoskeleton by upregulating the FAK-DOCK180-Rac1-WAVE2-Arp3 pathway and contributed to the formation of intercellular junctions by downregulating TLR4-MyD88-NF-κB pathway, thus reversing LPS-induced IEB dysfunction. These novel findings illustrated the potential protective mechanism of DB on intestinal inflammatory-related diseases and might be useful for further clinical application of DB.
Collapse
Affiliation(s)
- Huayan Liu
- School of Life Science, Beijing Institute of Technology, Haidian, Beijing, 100081, China
| | - Ranran Yan
- School of Life Science, Beijing Institute of Technology, Haidian, Beijing, 100081, China
| | - Yongzhi Li
- China Astronaut Research and Training Center, Haidian, Beijing, 100094, China
| | - Jiaping Wang
- China Astronaut Research and Training Center, Haidian, Beijing, 100094, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Haidian, Beijing, 100081, China
| | - Yujuan Li
- School of Life Science, Beijing Institute of Technology, Haidian, Beijing, 100081, China.
| |
Collapse
|
9
|
Grijaldo-Alvarez SJB, Alvarez MRS, Schindler RL, Oloumi A, Hernandez N, Seales T, Angeles JGC, Nacario RC, Completo GC, Zivkovic AM, Bruce German J, Lebrilla CB. N-Glycan profile of the cell membrane as a probe for lipopolysaccharide-induced microglial neuroinflammation uncovers the effects of common fatty acid supplementation. Food Funct 2024; 15:8258-8273. [PMID: 39011570 PMCID: PMC11668514 DOI: 10.1039/d4fo01598c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Altered N-glycosylation of proteins on the cell membrane is associated with several neurodegenerative diseases. Microglia are an ideal model for studying glycosylation and neuroinflammation, but whether aberrant N-glycosylation in microglia can be restored by diet remains unknown. Herein, we profiled the N-glycome, proteome, and glycoproteome of the human microglia following lipopolysaccharide (LPS) induction to probe the impact of dietary and gut microbe-derived fatty acids-oleic acid, lauric acid, palmitic acid, valeric acid, butyric acid, isobutyric acid, and propionic acid-on neuroinflammation using liquid chromatography-tandem mass spectrometry. LPS changed N-glycosylation in the microglial glycocalyx altering high mannose and sialofucosylated N-glycans, suggesting the dysregulation of mannosidases, fucosyltransferases, and sialyltransferases. The results were consistent as we observed the restoration effect of the fatty acids, especially oleic acid, on the LPS-treated microglia, specifically on the high mannose and sialofucosylated glycoforms of translocon-associated proteins, SSRA and SSRB along with the cell surface proteins, CD63 and CD166. In addition, proteomic analysis and in silico modeling substantiated the potential of fatty acids in reverting the effects of LPS on microglial N-glycosylation. Our results showed that N-glycosylation is likely affected by diet by restoring alterations following LPS challenge, which may then influence the disease state.
Collapse
Affiliation(s)
- Sheryl Joyce B Grijaldo-Alvarez
- Department of Chemistry, University of California, Davis, 95616, USA.
- Institute of Chemistry, University of the Philippines Los Baños, Philippines, 4031.
| | | | | | - Armin Oloumi
- Department of Chemistry, University of California, Davis, 95616, USA.
| | - Noah Hernandez
- Department of Chemistry, University of California, Davis, 95616, USA.
| | - Tristan Seales
- Department of Chemistry, University of California, Davis, 95616, USA.
| | - Jorge Gil C Angeles
- Philippine Genome Center - Program for Agriculture, Livestock, Fisheries and Forestry, University of the Philippines Los Baños, Philippines, 4031.
| | - Ruel C Nacario
- Institute of Chemistry, University of the Philippines Los Baños, Philippines, 4031.
| | - Gladys C Completo
- Institute of Chemistry, University of the Philippines Los Baños, Philippines, 4031.
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, 95616, USA.
| | - J Bruce German
- Department of Food Science and Technology, University of California, Davis, 95616, USA.
| | | |
Collapse
|
10
|
Zhang Q, Zhao W, He J, He J, Shi S, Sun M, Niu X, Zeng Z, Zhao Y, Zhang Y, Wang P, Li Y, Zhang C, Duan S, Hung WL, Wang R. Effect of Lacticaseibacillus paracasei K56 with galactooligosaccharide synbiotics on obese individuals: an in vitro fermentation model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5042-5051. [PMID: 38319685 DOI: 10.1002/jsfa.13359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND The use of synbiotics is emerging as a promising intervention strategy for regulating the gut microbiota and for preventing or reducing obesity, in comparison with the use of probiotics or prebiotics alone. A previous in vivo study revealed that Lacticaseibacillus paracasei K56 (L. paracasei K56) could alleviate obesity induced in high-fat-diet mice; however, the effect of the synbiotic combination of L. paracasei K56 and prebiotics in obese individuals has not been explored fully. RESULTS The effect of prebiotics on the proliferation of L. paracasei K56 was determined by spectrophotometry. The results showed that polydextrose (PG), xylooligosaccharide (XOS), and galactooligosaccharide (GOS) had a greater potential to be used as substrates for L. paracasei K56 than three other prebiotics (melitose, stachyose, and mannan-oligosaccharide). An in vitro fermentation model based on the feces of ten obese female volunteers was then established. The results revealed that K56_GOS showed a significant increase in GOS degradation rate and short-chain fatty acid (SCFA) content, and a decrease in gas levels, compared with PG, XOS, GOS, K56_PG, and K56_XOS. Changes in these microbial biomarkers, including a significant increase in Bacteroidota, Bifidobacterium, Lactobacillus, Faecalibacterium, and Blautia and a decrease in the Firmicutes/Bacteroidota ratio and Escherichia-Shigella in the K56_GOS group, were associated with increased SCFA content and decreased gas levels. CONCLUSION This study demonstrates the effect of the synbiotic combination of L. paracasei K56 and GOS on obese individuals and indicates its potential therapeutic role in obesity treatment. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Wen Zhao
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
- Inner Mongolia National Center of Technology Innovation for Dairy Co. Ltd, Hohhot, China
| | - Jingjing He
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Jian He
- Inner Mongolia National Center of Technology Innovation for Dairy Co. Ltd, Hohhot, China
| | - Shaoqi Shi
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Meiwen Sun
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Xiaokang Niu
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Zhaozhong Zeng
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, China
| | - Yuyang Zhao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yongxiang Zhang
- Hebei Engineering Research Center of Animal Product, Sanhe, China
| | - Pengjie Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Yixuan Li
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Chao Zhang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Sufang Duan
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, China
| | - Wei-Lian Hung
- Inner Mongolia National Center of Technology Innovation for Dairy Co. Ltd, Hohhot, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
- Research Center for Probiotics, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Song Q, Cheng SW, Zou J, Li KSL, Cheng H, Wai Lau DT, Han Q, Yang X, Shaw PC, Zuo Z. Role of gut microbiota on regulation potential of Dendrobium officinale Kimura & Migo in metabolic syndrome: In-vitro fermentation screening and in-vivo verification in db/db mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117437. [PMID: 37981116 DOI: 10.1016/j.jep.2023.117437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium officinale Kimura & Migo (DEN) is a traditional medicine in China since Han dynasty. Decoction of its stem is often used in the treatment of Type-II diabetes (T2D), which is a typical metabolic disease accompanied with the impaired metabolic function of blood glucose and lipid. AIM OF THE STUDY Our study aimed to investigate the role of gut microbiota in differentiating DEN from different sources and its related pathway in the alleviation of metabolic syndromes induced by T2D. MATERIALS AND METHODS The aqueous extracts of four commercially available Dendrobium (DEN-1∼4) were prepared and screened through an in-vitro fermentation system. Based on their alterations in monosaccharide composition and short chain fatty acids (SCFA) formation during fermentation with db/db faecal fluid, one DEN extract was selected for further in vivo verification. The selected Dendrobium (DEN-4) was orally administered to db/db mice for 16 days once daily at the dosage of 200 mg/kg followed by evaluating its effect on blood glucose level, liver function and intestinal microenvironment including alterations of intestinal integrity and gut microbiota composition. In addition, liver metabolomics analysis was employed to reveal the related metabolic pathways. RESULTS Different extent of SCFA formation and utilization of monosaccharides were observed for the extracts of four DEN from different sources with a negative correlation between SCFA level and the ratio of Utilized glucose/Utilized mannose observed in the in-vitro fermentation system with db/db faecal fluid. DEN-4 with the highest SCFA formation during the in-vitro fermentation was selected and exhibited significantly hypoglycaemic effect in db/db mice with the alleviation of hepatic steatosis and impaired lipid homeostasis. Further mechanistic studies revealed that orally administered DEN-4 could improve the intestinal integrity of db/db mice via elevating their tight junction protein (ZO-1 and Occludin) expression in the colon and improve the diversity of gut microbiota with enhanced formation of SCFA. Moreover, metabolomics and KEGG pathway analysis of liver tissues suggested that the alleviated metabolic syndrome in db/db mice by DEN-4 might possibly be achieved through activation of PPAR pathway. CONCLUSION Our current study not only revealed the potential of gut microbiota in differentiating DEN from different sources, but also demonstrated that DEN exhibited its beneficial effect on the T2D induced metabolic syndrome possibly through enhancement of intestinal integrity and activation of PPAR pathway via gut-liver axis in db/db mice.
Collapse
Affiliation(s)
- Qianbo Song
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Sau Wan Cheng
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Junju Zou
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Kendra Sek Lam Li
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Huiyuan Cheng
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region
| | - David Tai Wai Lau
- School of Life Sciences and Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Quanbin Han
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region
| | - Xiao Yang
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Pang Chui Shaw
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region; School of Life Sciences and Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Zhong Zuo
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.
| |
Collapse
|
12
|
Yang X, Zeng D, Li C, Yu W, Xie G, Zhang Y, Lu W. Therapeutic potential and mechanism of functional oligosaccharides in inflammatory bowel disease: a review. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
13
|
Lu X, Luo C, Wu J, Deng Y, Mu X, Zhang T, Yang X, Liu Q, Li Z, Tang S, Hu Y, Du Q, Xu J, Xie R. Ion channels and transporters regulate nutrient absorption in health and disease. J Cell Mol Med 2023; 27:2631-2642. [PMID: 37638698 PMCID: PMC10494301 DOI: 10.1111/jcmm.17853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 08/29/2023] Open
Abstract
Ion channels and transporters are ubiquitously expressed on cell membrane, which involve in a plethora of physiological process such as contraction, neurotransmission, secretion and so on. Ion channels and transporters is of great importance to maintaining membrane potential homeostasis, which is essential to absorption of nutrients in gastrointestinal tract. Most of nutrients are electrogenic and require ion channels and transporters to absorb. This review summarizes the latest research on the role of ion channels and transporters in regulating nutrient uptake such as K+ channels, Ca2+ channels and ion exchangers. Revealing the mechanism of ion channels and transporters associated with nutrient uptake will be helpful to provide new methods to diagnosis and find potential targets for diseases like diabetes, inflammatory bowel diseases, etc. Even though some of study still remain ambiguous and in early stage, we believe that ion channels and transporters will be novel therapeutic targets in the future.
Collapse
Affiliation(s)
- Xianmin Lu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Chen Luo
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Jiangbo Wu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Ya Deng
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Xingyi Mu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Ting Zhang
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Xiaoxu Yang
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Qi Liu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Zhuo Li
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Siqi Tang
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Yanxia Hu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Qian Du
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Jingyu Xu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Rui Xie
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
14
|
Zhang D, Jian YP, Zhang YN, Li Y, Gu LT, Sun HH, Liu MD, Zhou HL, Wang YS, Xu ZX. Short-chain fatty acids in diseases. Cell Commun Signal 2023; 21:212. [PMID: 37596634 PMCID: PMC10436623 DOI: 10.1186/s12964-023-01219-9] [Citation(s) in RCA: 177] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/09/2023] [Indexed: 08/20/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are the main metabolites produced by bacterial fermentation of dietary fibre in the gastrointestinal tract. The absorption of SCFAs is mediated by substrate transporters, such as monocarboxylate transporter 1 and sodium-coupled monocarboxylate transporter 1, which promote cellular metabolism. An increasing number of studies have implicated metabolites produced by microorganisms as crucial executors of diet-based microbial influence on the host. SCFAs are important fuels for intestinal epithelial cells (IECs) and represent a major carbon flux from the diet, that is decomposed by the gut microbiota. SCFAs play a vital role in multiple molecular biological processes, such as promoting the secretion of glucagon-like peptide-1 by IECs to inhibit the elevation of blood glucose, increasing the expression of G protein-coupled receptors such as GPR41 and GPR43, and inhibiting histone deacetylases, which participate in the regulation of the proliferation, differentiation, and function of IECs. SCFAs affect intestinal motility, barrier function, and host metabolism. Furthermore, SCFAs play important regulatory roles in local, intermediate, and peripheral metabolisms. Acetate, propionate, and butyrate are the major SCFAs, they are involved in the regulation of immunity, apoptosis, inflammation, and lipid metabolism. Herein, we review the diverse functional roles of this major class of bacterial metabolites and reflect on their ability to affect intestine, metabolic, and other diseases. Video Abstract.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Yong-Ping Jian
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Yu-Ning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Yao Li
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Li-Ting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Hui-Hui Sun
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Ming-Di Liu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Hong-Lan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yi-Shu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China.
- School of Life Sciences, Henan University, Kaifeng, 475004, China.
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
15
|
Costa EM, Silva S, Pereira CF, Ribeiro AB, Casanova F, Freixo R, Pintado M, Ramos ÓL. Carboxymethyl Cellulose as a Food Emulsifier: Are Its Days Numbered? Polymers (Basel) 2023; 15:polym15102408. [PMID: 37242982 DOI: 10.3390/polym15102408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Carboxymethyl cellulose use in industry is ubiquitous. Though it is recognized as safe by the EFSA and FDA, newer works have raised concerns related to its safety, as in vivo studies showed evidence of gut dysbiosis associated with CMC's presence. Herein lies the question, is CMC a gut pro-inflammatory compound? As no work addressed this question, we sought to understand whether CMC was pro-inflammatory through the immunomodulation of GI tract epithelial cells. The results showed that while CMC was not cytotoxic up to 25 mg/mL towards Caco-2, HT29-MTX and Hep G2 cells, it had an overall pro-inflammatory behavior. In a Caco-2 monolayer, CMC by itself increased IL-6, IL-8 and TNF-α secretion, with the latter increasing by 1924%, and with these increases being 9.7 times superior to the one obtained for the IL-1β pro-inflammation control. In co-culture models, an increase in secretion in the apical side, particularly for IL-6 (692% increase), was observed, and when RAW 264.7 was added, data showed a more complex scenario as stimulation of pro-inflammatory (IL-6, MCP-1 and TNF-α) and anti-inflammatory (IL-10 and IFN-β) cytokines in the basal side was observed. Considering these results, CMC may exert a pro-inflammatory effect in the intestinal lumen, and despite more studies being required, the incorporation of CMC in foodstuffs must be carefully considered in the future to minimize potential GI tract dysbiosis.
Collapse
Affiliation(s)
- Eduardo M Costa
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Sara Silva
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Carla F Pereira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Alessandra B Ribeiro
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Francisca Casanova
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ricardo Freixo
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Óscar L Ramos
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
16
|
Wang K, Tao GZ, Salimi-Jazi F, Lin PY, Sun Z, Liu B, Sinclair T, Mostaghimi M, Dunn J, Sylvester KG. Butyrate induces development-dependent necrotizing enterocolitis-like intestinal epithelial injury via necroptosis. Pediatr Res 2023; 93:801-809. [PMID: 36202969 DOI: 10.1038/s41390-022-02333-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 03/05/2023]
Abstract
BACKGROUND The accumulation of short-chain fatty acids (SCFAs) from bacterial fermentation may adversely affect the under-developed gut as observed in premature newborns at risk for necrotizing enterocolitis (NEC). This study explores the mechanism by which specific SCFA fermentation products may injure the premature newborn intestine mucosa leading to NEC-like intestinal cell injury. METHODS Intraluminal injections of sodium butyrate were administered to 14- and 28-day-old mice, whose small intestine and stool were harvested for analysis. Human intestinal epithelial stem cells (hIESCs) and differentiated enterocytes from preterm and term infants were treated with sodium butyrate at varying concentrations. Necrosulfonamide (NSA) and necrostatin-1 (Nec-1) were used to determine the protective effects of necroptosis inhibitors on butyrate-induced cell injury. RESULTS The more severe intestinal epithelial injury was observed in younger mice upon exposure to butyrate (p = 0.02). Enterocytes from preterm newborns demonstrated a significant increase in sensitivity to butyrate-induced cell injury compared to term newborn enterocytes (p = 0.068, hIESCs; p = 0.038, differentiated cells). NSA and Nec-1 significantly inhibited the cell death induced by butyrate. CONCLUSIONS Butyrate induces developmental stage-dependent intestinal injury that resembles NEC. A primary mechanism of cell injury in NEC is necroptosis. Necroptosis inhibition may represent a potential preventive or therapeutic strategy for NEC. IMPACT Butyrate induces developmental stage-dependent intestinal injury that resembles NEC. A primary mechanism of cell injury caused by butyrate in NEC is necroptosis. Necroptosis inhibitors proved effective at significantly ameliorating the enteral toxicity of butyrate and thereby suggest a novel mechanism and approach to the prevention and treatment of NEC in premature newborns.
Collapse
Affiliation(s)
- Kewei Wang
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, 110001, Shenyang, Liaoning Province, China
| | - Guo-Zhong Tao
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| | | | - Po-Yu Lin
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhen Sun
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Bo Liu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Tiffany Sinclair
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Mirko Mostaghimi
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - James Dunn
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Karl G Sylvester
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Metabolic Health Center, Stanford University School of Medicine and Stanford Healthcare, Stanford, CA, USA.
| |
Collapse
|
17
|
Yu X, Dai Z, Cao G, Cui Z, Zhang R, Xu Y, Wu Y, Yang C. Protective effects of Bacillus licheniformis on growth performance, gut barrier functions, immunity and serum metabolome in lipopolysaccharide-challenged weaned piglets. Front Immunol 2023; 14:1140564. [PMID: 37033995 PMCID: PMC10073459 DOI: 10.3389/fimmu.2023.1140564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Bacillus licheniformis (B. licheniformis) is a well-accepted probiotic that has many benefits on both humans and animals. This study explored the effects of B. licheniformis on growth performance, intestinal mucosal barrier functions, immunity as well as serum metabolome in the weaned piglets exposed to lipopolysaccharide (LPS). One hundred and twenty piglets weaned at four weeks of age were separated into two groups that received a basal diet (the control group, CON), and a basal diet complemented with B. licheniformis (500 mg/kg, the BL group, BL). Twenty-four piglets were chosen from the above two groups and 12 piglets were injected with LPS intraperitoneally at a concentration of 100 μg/kg and the others were injected with sterile saline solution of the same volume. All the piglets were sacrificed 4 h after LPS challenge. Results showed that B. licheniformis enhanced the ADG and final body weight and lowered the F/G and diarrhea rate. Pre-treatment with B. licheniformis markedly attenuated intestinal mucosal damage induced by LPS challenge. Supplementation with B. licheniformis strengthened immune function and suppressed inflammatory response by elevating the concentrations of serum immunoglobulin (Ig) A and jejunum mucosal IgA and IgG and decreasing serum IL-6 and jejunum mucosal IL-1β. In addition, B. licheniformis pretreatment prevented LPS-induced intestinal injury by regulating the NLRP3 inflammasome. Furthermore, pretreatment with B. licheniformis tended to reverse the reduction of acetate and propionic acids in the colonic contents that occurred due to LPS stress. B. licheniformis markedly modulated the metabolites of saccharopine and allantoin from lysine and purine metabolic pathways, respectively. Overall, these data emphasize the potentiality of B. licheniformis as a dietary supplement to overcome the challenge of bacterial LPS in the animal and to enhance the food safety.
Collapse
Affiliation(s)
- Xiaorong Yu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Zhenglie Dai
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Guangtian Cao
- College of Standardisation, China Jiliang University, Hangzhou, China
| | - Zhenchuan Cui
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Yinglei Xu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Yanping Wu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Caimei Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
- *Correspondence: Caimei Yang,
| |
Collapse
|
18
|
Lê A, Mantel M, Marchix J, Bodinier M, Jan G, Rolli-Derkinderen M. Inflammatory bowel disease therapeutic strategies by modulation of the microbiota: how and when to introduce pre-, pro-, syn-, or postbiotics? Am J Physiol Gastrointest Liver Physiol 2022; 323:G523-G553. [PMID: 36165557 DOI: 10.1152/ajpgi.00002.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel diseases (IBD), a heterogeneous group of inflammatory conditions that encompass both ulcerative colitis and Crohn's disease, represent a major public health concern. The etiology of IBD is not yet fully understood and no cure is available, with current treatments only showing long-term effectiveness in a minority of patients. A need to increase our knowledge on IBD pathophysiology is growing, to define preventive measures, to improve disease outcome, and to develop new effective and lasting treatments. IBD pathogenesis is sustained by aberrant immune responses, associated with alterations of the intestinal epithelial barrier (IEB), modifications of the enteric nervous system, and changes in microbiota composition. Currently, most of the treatments target the inflammation and the immune system, but holistic approaches targeting lifestyle and diet improvements are emerging. As dysbiosis is involved in IBD pathogenesis, pre-, pro-, syn-, and postbiotics are used/tested to reduce the inflammation or strengthen the IEB. The present review will resume these works, pointing out the stage of life, the duration, and the environmental conditions that should go along with microbiota or microbiota-derived treatments.
Collapse
Affiliation(s)
- Amélie Lê
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| | - Marine Mantel
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
- Unité Mixte de Recherche Science et Technologie du Lait et de l'Oeuf, Agrocampus Ouest, Institut Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Rennes, France
| | - Justine Marchix
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| | - Marie Bodinier
- Unité de Recherche 1268 Biopolymères Interactions Assemblages, I Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Pays de la Loire, Nantes, France
| | - Gwénaël Jan
- Unité Mixte de Recherche Science et Technologie du Lait et de l'Oeuf, Agrocampus Ouest, Institut Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Rennes, France
| | - Malvyne Rolli-Derkinderen
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| |
Collapse
|
19
|
Li T, Chu C, Yu L, Zhai Q, Wang S, Zhao J, Zhang H, Chen W, Tian F. Neuroprotective Effects of Bifidobacterium breve CCFM1067 in MPTP-Induced Mouse Models of Parkinson's Disease. Nutrients 2022; 14:4678. [PMID: 36364939 PMCID: PMC9655354 DOI: 10.3390/nu14214678] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 08/31/2023] Open
Abstract
There is mounting evidence that the microbiota-gut-brain axis (MGBA) is critical in the pathogenesis and progression of Parkinson's disease (PD), suggesting that probiotic therapy restoring gut microecology may slow down disease progression. In this study, we examined the disease-alleviating effects of Bifidobacterium breve CCFM1067, orally administered for 5 weeks in a PD mouse model. Our study shows that supplementation with the probiotic B. breve CCFM1067 protected dopaminergic neurons and suppressed glial cell hyperactivation and neuroinflammation in PD mice. In addition, the antioxidant capacity of the central nervous system was enhanced and oxidative stress was alleviated. Moreover, B. breve CCFM1067 protected the blood-brain and intestinal barriers from damage in the MPTP-induced mouse model. The results of fecal microbiota analysis showed that B. breve CCFM1067 intervention could act on the MPTP-induced microecological imbalance in the intestinal microbiota, suppressing the number of pathogenic bacteria (Escherichia-Shigella) while increasing the number of beneficial bacteria (Bifidobacterium and Akkermansia) in PD mice. In addition, the increase in short chain fatty acids (acetic and butyric acids) may explain the anti-inflammatory action of B. breve CCFM1067 in the gut or brain of the MPTP-induced PD mouse model. In conclusion, we demonstrated that the probiotic B. breve CCFM1067, which can prevent or treat PD by modulating the gut-brain axis, can be utilized as a possible new oral supplement for PD therapy.
Collapse
Affiliation(s)
- Tiantian Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chuanqi Chu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shunhe Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Department of Child Health Care, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
20
|
Amalia R, Pramono A, Afifah DN, Noer ER, Muniroh M, Kumoro AC. Mangrove fruit ( Bruguiera gymnorhiza) increases circulating GLP-1 and PYY, modulates lipid profiles, and reduces systemic inflammation by improving SCFA levels in obese wistar rats. Heliyon 2022; 8:e10887. [PMID: 36254287 PMCID: PMC9568852 DOI: 10.1016/j.heliyon.2022.e10887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/17/2022] [Accepted: 09/28/2022] [Indexed: 11/26/2022] Open
Abstract
Bruguiera gymnorhiza (BG) has potential as a functional food because of its dietary fibre content and bioactive components such as flavonoids and phenolic compounds. However, it is not studied in the context of diet-related disease prevention. In the present study, we aimed to investigate the effects of Bruguiera gymnorhiza fruit flour (BGF) on satiety hormone, lipid profile, systemic inflammation, body weight, and caecum SCFA levels in diet-induced obese rats. A total of 28 obese male Wistar rats were divided into four groups. Group 1 (K1) was given a standard chow, group 2 (K2) standard chow + orlistat, group 3 (P1) standard chow + BGF 2 g/200 g BW/day, and group 4 (P2) standard chow + BGF 4 g/200 g BW/day for 28 days. The levels of GLP-1, PYY, total cholesterol (TC), triglyceride (TG), HDL, IL-6, TNF-α, and body weight were measured before and after the intervention; meanwhile, the caecum SCFA levels were assessed only after the intervention. In this study, BGF intervention increased the dose-dependent plasma GLP-1 and PYY levels (P < 0.000). In addition, BGF intervention also decreased lipid profiles (TC & TG) (P < 0.000, respectively) and systemic inflammation in a dose-dependent manner. Finally, acetate, propionate, and total SCFA concentrations were higher in the BGF intervention group (P2) compared to the other groups (p < 0.05). The SCFA levels were associated with satiety hormones, lipids, and systemic inflammation (P < 0.05). The BGF intervention improved satiety hormone, lipid profile, systemic inflammation, and SCFA levels.
Collapse
Affiliation(s)
- Rinta Amalia
- Department of Nutrition, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
| | - Adriyan Pramono
- Department of Nutrition, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia,Center of Nutrition Research, Universitas Diponegoro, Semarang, Indonesia,Corresponding author.
| | - Diana Nur Afifah
- Department of Nutrition, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia,Center of Nutrition Research, Universitas Diponegoro, Semarang, Indonesia
| | - Etika Ratna Noer
- Department of Nutrition, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia,Center of Nutrition Research, Universitas Diponegoro, Semarang, Indonesia
| | - Muflihatul Muniroh
- Department of Physiology, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
| | - Andri Cahyo Kumoro
- Department of Chemical Engineering, Faculty of Engineering, Semarang, Indonesia
| |
Collapse
|
21
|
Xiong RG, Zhou DD, Wu SX, Huang SY, Saimaiti A, Yang ZJ, Shang A, Zhao CN, Gan RY, Li HB. Health Benefits and Side Effects of Short-Chain Fatty Acids. Foods 2022; 11:2863. [PMID: 36140990 PMCID: PMC9498509 DOI: 10.3390/foods11182863] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota and their metabolites could play an important role in health and diseases of human beings. Short-chain fatty acids (SCFAs) are mainly produced by gut microbiome fermentation of dietary fiber and could also be produced by bacteria of the skin and vagina. Acetate, propionate, and butyrate are three major SCFAs, and their bioactivities have been widely studied. The SCFAs have many health benefits, such as anti-inflammatory, immunoregulatory, anti-obesity, anti-diabetes, anticancer, cardiovascular protective, hepatoprotective, and neuroprotective activities. This paper summarizes health benefits and side effects of SCFAs with a special attention paid to the mechanisms of action. This paper provides better support for people eating dietary fiber as well as ways for dietary fiber to be developed into functional food to prevent diseases.
Collapse
Affiliation(s)
- Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Si-Xia Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhi-Jun Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ao Shang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Cai-Ning Zhao
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center, Chengdu 610213, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
22
|
Parente IA, Xavier M, Roupar D, Amado IR, Berni P, Botelho C, Teixeira JA, Pastrana L, Nobre C, Gonçalves C. Effect of prebiotic fermentation products from primary human gut microbiota on an in vitro intestinal model. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
23
|
Vinegar reduced renal calcium oxalate stones by regulating acetate metabolism in gut microbiota and crystal adhesion in rats. Int Urol Nephrol 2022; 54:2485-2495. [DOI: 10.1007/s11255-022-03259-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/30/2022] [Indexed: 10/17/2022]
|
24
|
Guo L, Guan Q, Duan W, Ren Y, Zhang XJ, Xu HY, Shi JS, Wang FZ, Lu R, Zhang HL, Xu ZH, Li H, Geng Y. Dietary Goji Shapes the Gut Microbiota to Prevent the Liver Injury Induced by Acute Alcohol Intake. Front Nutr 2022; 9:929776. [PMID: 35898713 PMCID: PMC9309278 DOI: 10.3389/fnut.2022.929776] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
Diet is a major driver of the structure and function of the gut microbiota, which influences the host physiology. Alcohol abuse can induce liver disease and gut microbiota dysbiosis. Here, we aim to elucidate whether the well-known traditional health food Goji berry targets gut microbiota to prevent liver injury induced by acute alcohol intake. The results showed that Goji supplementation for 14 days alleviated acute liver injury as indicated by lowering serum aspartate aminotransferase, alanine aminotransferase, pro-inflammatory cytokines, as well as lipopolysaccharide content in the liver tissue. Goji maintained the integrity of the epithelial barrier and increased the levels of butyric acid in cecum contents. Furthermore, we established the causal relationship between gut microbiota and liver protection effects of Goji with the help of antibiotics treatment and fecal microbiota transplantation (FMT) experiments. Both Goji and FMT-Goji increased glutathione (GSH) in the liver and selectively enriched the butyric acid-producing gut bacterium Akkermansia and Ruminococcaceae by using 16S rRNA gene sequencing. Metabolomics analysis of cecum samples revealed that Goji and its trained microbiota could regulate retinoyl β-glucuronide, vanillic acid, and increase the level of glutamate and pyroglutamic acid, which are involved in GSH metabolism. Our study highlights the communication among Goji, gut microbiota, and liver homeostasis.
Collapse
Affiliation(s)
- Lin Guo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qijie Guan
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Wenhui Duan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yilin Ren
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiao-Juan Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Hong-Yu Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | | | - Ran Lu
- Ningxia Red Power Goji Co., Ltd, Zhongwei, China
| | - Hui-Ling Zhang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, China
| | - Zheng-Hong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Huazhong Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- *Correspondence: Huazhong Li
| | - Yan Geng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
- Yan Geng
| |
Collapse
|
25
|
You H, Tan Y, Yu D, Qiu S, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. The Therapeutic Effect of SCFA-Mediated Regulation of the Intestinal Environment on Obesity. Front Nutr 2022; 9:886902. [PMID: 35662937 PMCID: PMC9157426 DOI: 10.3389/fnut.2022.886902] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal environment disorder is a potential pathological mechanism of obesity. There is increasing evidence that disorders in the homeostasis of the intestinal environment can affect various metabolic organs, such as fat and liver, and lead to metabolic diseases. However, there are few therapeutic approaches for obesity targeting the intestinal environment. In this review, on the one hand, we discuss how intestinal microbial metabolites SCFA regulate intestinal function to improve obesity and the possible mechanisms and pathways related to obesity-related pathological processes (depending on SCFA-related receptors such as GPCRs, MCT and SMCT, and through epigenetic processes). On the other hand, we discuss dietary management strategies to enrich SCFA-producing bacteria and target specific SCFA-producing bacteria and whether fecal bacteria transplantation therapy to restore the composition of the gut microbiota to regulate SCFA can help prevent or improve obesity. Finally, we believe that it will be of great significance to establish a working model of gut– SCFA– metabolic disease development in the future for the improvement this human health concern.
Collapse
Affiliation(s)
- Huimin You
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yue Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dawei Yu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuting Qiu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Guangzhou, China
| | - Jiao Guo
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
26
|
Liu Y, Huang W, Ji S, Wang J, Luo J, Lu B. Sophora japonica flowers and their main phytochemical, rutin, regulate chemically induced murine colitis in association with targeting the NF-κB signaling pathway and gut microbiota. Food Chem 2022; 393:133395. [DOI: 10.1016/j.foodchem.2022.133395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/06/2023]
|
27
|
Truong VL, Jeong WS. Antioxidant and anti-inflammatory roles of tea polyphenols in inflammatory bowel diseases. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Huang S, Gao Y, Wang Z, Yang X, Wang J, Zheng N. Anti-inflammatory actions of acetate, propionate, and butyrate in fetal mouse jejunum cultures ex vivo and immature small intestinal cells in vitro. Food Sci Nutr 2022; 10:564-576. [PMID: 35154692 PMCID: PMC8825721 DOI: 10.1002/fsn3.2682] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/24/2021] [Accepted: 11/14/2021] [Indexed: 12/14/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is an intestinal disease that frequently occurs in premature infants. Presently, there is no effective therapy for NEC. Therefore, the key to reduce the incidence rate of NEC is to take effective intervention measures as early as possible. Short-chain fatty acids (SCFAs) (acetate, propionate, and butyrate), the principal terminal products of enterobacteria fermentation, play anti-inflammatory actions in mature intestinal cells. However, few studies focus on their roles in immature intestine. Here, we evaluated the anti-inflammatory actions of SCFAs ex vivo with ICR fetal mouse jejunum cultures and explored the potential anti-inflammatory regulators through RNA-seq and then verified them in vitro with human fetal small intestinal epithelial FHs 74 Int cells. In this study, we found that acetate, propionate, and butyrate decreased IL-1β-induced production of CXCL2 ex vivo and IL-8 and IL-6 in vitro significantly (p < .05). Furthermore, the inhibitors of NF-κB p65, JNK1/2, and ERK1/2 pathways, which were selected from RNA-seq and depressed by SCFAs, also significantly decreased IL-8 and IL-6 productions induced by IL-1β (p < .05). Therefore, our results showed that acetate, propionate, and butyrate ameliorated the fetal small intestine inflammatory response induced by IL-1β through inhibiting ERK1/2 pathway; NF-κB p65, JNK1/2, and ERK1/2 pathways; or NF-κB p65 and ERK1/2 pathways, respectively. These findings suggested that SCFAs may be a new therapy agent for NEC.
Collapse
Affiliation(s)
- Shengnan Huang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
- Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
- State Key Laboratory of Animal Nutrition Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Yanan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
- Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
- State Key Laboratory of Animal Nutrition Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Ziwei Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
- Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
- State Key Laboratory of Animal Nutrition Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Xue Yang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
- Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
- State Key Laboratory of Animal Nutrition Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
- Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
- State Key Laboratory of Animal Nutrition Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
- Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
- State Key Laboratory of Animal Nutrition Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
29
|
Gao M, Peng X, Tang J, Deng J, Wang F, Zhang Y, Zhao P, Kan H, Liu Y. Anti-Inflammatory Effects of Camellia fascicularis Polyphenols via Attenuation of NF-κB and MAPK Pathways in LPS-Induced THP-1 Macrophages. J Inflamm Res 2022; 15:851-864. [PMID: 35177920 PMCID: PMC8843420 DOI: 10.2147/jir.s349981] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Purpose Plant polyphenols possess beneficial functions against various diseases. This study aimed to identify phenolic ingredients in Camellia fascicularis (C. fascicularis) and investigate its possible underlying anti-inflammatory mechanism in lipopolysaccharide (LPS)-induced human monocytes (THP-1) macrophages. Methods C. fascicularis polyphenols (CFP) were characterized by ultra-performance liquid chromatography (UPLC) combined with quadrupole-time-of-flight mass/mass spectrometry (Q-TOF-MS/MS). The THP-1 cells were differentiated into macrophages under the stimulation of phorbol 12-myristate 13-acetate (PMA) and then treated with LPS to build a cellular inflammation model. The cell viability was detected by CCK-8 assay. The levels of reactive oxygen species (ROS) were assessed by flow cytometry. The secretion and expression of inflammatory cytokines were tested by enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-PCR). In addition, the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were analyzed by Western blotting. Results Twelve phenolic constituents including (–)-epicatechin, casuariin, agastachoside, etc. in CFP were identified. The CCK-8 assay showed that CFP exhibited no significant cytotoxicity between 100 and 300 μg/mL. After treated with CFP, the release of ROS was significantly suppressed. CFP inhibited inflammation in macrophages by attenuating the polarization of LPS-induced THP-1 macrophages, down-regulating the expression of the pro-inflammatory cytokines IL-6, IL-1β and TNF-α, and up-regulating the expression of the anti-inflammatory cytokine IL-10. Western blotting experiments manifested that CFP could markedly inhibit the phosphorylation of p65, ERK and JNK, thereby suppressing the activation of NF-κB and MAPK signaling pathways. Conclusion These findings indicated that CFP exerted anti-inflammatory activity by inhibiting the activation NF-κB and MAPK pathways which may induce the secretion of pro-inflammatory cytokines. This study offers a reference for C. fascicularis as the source of developing natural, safe anti-inflammatory agents in the future.
Collapse
Affiliation(s)
- Miaozi Gao
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
- Key Laboratory of State Forestry and Grassland Administration on Highly-efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, People’s Republic of China
| | - Xiaowei Peng
- School of Life Science, Southwest Forestry University, Kunming, People’s Republic of China
| | - Junrong Tang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
| | - Jia Deng
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
| | - Fang Wang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
| | - Yingjun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People’s Republic of China
| | - Ping Zhao
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
- Key Laboratory of State Forestry and Grassland Administration on Highly-efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, People’s Republic of China
- Correspondence: Ping Zhao; Yun Liu, Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, #300, Bailong Road, Kunming, 650224, People’s Republic of China, Email ;
| | - Huan Kan
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
- School of Life Science, Southwest Forestry University, Kunming, People’s Republic of China
| | - Yun Liu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
- School of Life Science, Southwest Forestry University, Kunming, People’s Republic of China
| |
Collapse
|
30
|
Wu Y, Li Q, Liu J, Liu Y, Xu Y, Zhang R, Yu Y, Wang Y, Yang C. Integrating Serum Metabolome and Gut Microbiome to Evaluate the Benefits of Lauric Acid on Lipopolysaccharide- Challenged Broilers. Front Immunol 2021; 12:759323. [PMID: 34721434 PMCID: PMC8554146 DOI: 10.3389/fimmu.2021.759323] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Lauric acid (LA) is a crucial medium-chain fatty acid (MCFA) that has many beneficial effects on humans and animals. This study aimed to investigate the effects of LA on the intestinal barrier, immune functions, serum metabolism, and gut microbiota of broilers under lipopolysaccharide (LPS) challenge. A total of 384 one-day-old broilers were randomly divided into four groups, and fed with a basal diet, or a basal diet supplemented with 75 mg/kg antibiotic (ANT), or a basal diet supplemented with 1000 mg/kg LA. After 42 days of feeding, three groups were intraperitoneally injected with 0.5 mg/kg Escherichia coli- derived LPS (LPS, ANT+LPS and LA+LPS groups) for three consecutive days, and the control (CON) group was injected with the same volume of saline. Then, the birds were sacrificed. Results showed that LA pretreatment significantly alleviated the weight loss and intestinal mucosal injuries caused by LPS challenge. LA enhanced immune functions and inhibited inflammatory responses by upregulating the concentrations of immunoglobulins (IgA, IgM, and IgY), decreasing IL-6 and increasing IL-4 and IL-10. Metabolomics analysis revealed a significant difference of serum metabolites by LA pretreatment. Twenty-seven serum metabolic biomarkers were identified and mostly belong to lipids. LA also markedly modulated the pathway for sphingolipid metabolism, suggesting its ability to regulate lipid metabolism. Moreover,16S rRNA analysis showed that LA inhibited LPS-induced gut dysbiosis by altering cecal microbial composition (reducing Escherichia-Shigella, Barnesiella and Alistipes, and increasing Lactobacillus and Bacteroides), and modulating the production of volatile fatty acids (VFAs). Pearson’s correlation assays showed that alterations in serum metabolism and gut microbiota were strongly correlated to the immune factors; there were also strong correlations between serum metabolites and microbiota composition. The results highlight the potential of LA as a dietary supplement to combat bacterial LPS challenge in animal production and to promote food safety.
Collapse
Affiliation(s)
- Yanping Wu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Qing Li
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Jinsong Liu
- Institute of Animal Health Products, Zhejiang Vegamax Biotechnology Co., Ltd., Anji, China
| | - Yulan Liu
- Institute of Animal Health Products, Zhejiang Vegamax Biotechnology Co., Ltd., Anji, China
| | - Yinglei Xu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Yang Yu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Yongxia Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Caimei Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| |
Collapse
|
31
|
Hobbs L, Allen L, Bias M, Johnson S, DeRespiris H, Diallo C, Bui L, Sun Y. The Opposing Role of Propionate in Modulating Listeria monocytogenes Intracellular Infections. Front Microbiol 2021; 12:721801. [PMID: 34539613 PMCID: PMC8442606 DOI: 10.3389/fmicb.2021.721801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive, intracellular pathogen responsible for the highly fatal foodborne illness listeriosis. Establishing intracellular infections requires the coordinated expressions of a variety of virulence factors, such as the pore-forming toxin listeriolysin O (LLO), in response to various intra- and extracellular signals. For example, we previously reported that L. monocytogenes differentially modulated LLO production in response to exogenous propionate, a short chain fatty acid either used in salt form as a human food ingredient or produced endogenously by gut microbial fermentation. Therefore, propionate is likely a continuously present signal throughout the L. monocytogenes transmission and infection process. However, little is known about the role of propionate in modulating L. monocytogenes-host interactions. Here we investigated the impact of propionate treatment on L. monocytogenes intracellular infections using cell culture infection models. Propionate treatment was performed separately on L. monocytogenes or host cells before or during infections to better distinguish pathogen-versus-host responses to propionate. Intracellular CFU in RAW264.7 macrophages and plaque diameters in L-fibroblasts were measured as proxy for intracellular infection outcomes. Nitrite levels and cellular morphology were also measured to assess host responses to propionate. We found that propionate pretreatment of anaerobic, but not aerobic, L. monocytogenes significantly enhanced subsequent intracellular infections in both cell types and nitrite production by infected macrophages. Propionate treatment of uninfected macrophages significantly altered cell morphology, seen by longer cells and greater migration, and reduced nitrite concentration in activated macrophages. Treatment of macrophages with propionate prior to or during infections significantly inhibited intracellular growth of L. monocytogenes, including those pre-treated with propionate. These results showcased an opposing effect of propionate on L. monocytogenes intracellular infections and strongly support propionate as an important signaling molecule for both the pathogen and the host cell that can potentially alter the outcome of L. monocytogenes-host interactions.
Collapse
Affiliation(s)
- Laura Hobbs
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Leah Allen
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Megan Bias
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Stephanie Johnson
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Hannah DeRespiris
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Chantal Diallo
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Loan Bui
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Yvonne Sun
- Department of Biology, University of Dayton, Dayton, OH, United States
| |
Collapse
|
32
|
Guo M, Xu W, Yamamoto Y, Suzuki T. Curcumin increases heat shock protein 70 expression via different signaling pathways in intestinal epithelial cells. Arch Biochem Biophys 2021; 707:108938. [PMID: 34051214 DOI: 10.1016/j.abb.2021.108938] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 12/24/2022]
Abstract
Intestinal inflammation is associated with the integrity of the intestinal epithelium, which forms a physical barrier against noxious luminal substances. Heat shock 70 kDa protein 1A (HSP70), a molecular chaperon that exerts a cytoprotective effect, regulates intestinal integrity. This study investigated the modulation of HSP70 expression by dietary polyphenols, with particular reference to curcumin, in human intestinal Caco-2 cells. Immunoblot analysis demonstrated that among the 21 different polyphenols tested, curcumin most potently increased HSP70 levels in Caco-2 cells without affecting cell viability. Curcumin also increased the phosphorylation of heat shock factor 1 (HSF1), a well-known transcription factor of HSP70. Promoter and qRT-PCR assays indicated that curcumin upregulated Hspa1a levels via transcriptional activation. Pharmacological inhibition of MEK, a mechanistic target of rapamycin, p38 mitogen-activated protein kinase, and phosphatidyl 3-inositol kinase suppressed curcumin-mediated HSP70 expression, whereas HSF1 phosphorylation was sensitive only to MEK inhibition. Taken together, curcumin increases the expression of HSP70 in intestinal Caco-2 cells via transcriptional activation, possibly enhancing cell integrity. The effects exerted by curcumin are regulated by various signaling pathways. Our findings will expectedly contribute to a deeper understanding of the regulation of intestinal HSP70 by dietary components.
Collapse
Affiliation(s)
- Mingzu Guo
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan
| | - Wenxi Xu
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan
| | - Yoshinari Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan
| | - Takuya Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan; Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
33
|
Gong W, Liu P, Zheng T, Wu X, Zhao Y, Ren J. The ubiquitous role of spleen tyrosine kinase (Syk) in gut diseases: From mucosal immunity to targeted therapy. Int Rev Immunol 2021; 41:552-563. [PMID: 34355656 DOI: 10.1080/08830185.2021.1962860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Spleen tyrosine kinase (Syk) is a cytoplasmic non-receptor protein tyrosine kinase expressed in a variety of cells and play crucial roles in signal transduction. Syk mediates downstream signaling by recruiting to the dually phosphorylated immunoreceptor tyrosine-based activation motifs (ITAMs) of the transmembrane adaptor molecule or the receptor chain itself. In gut diseases, Syk is observed to be expressed in intestinal epithelial cells, monocytes/macrophages, dendritic cells and mast cells. Activation of Syk in these cells can modulate intestinal mucosal immune response by promoting inflammatory cytokines and chemokines production, thus regulating gut homeostasis. Due to the restriction of specificity and selectivity for the development of Syk inhibitors, only a few such inhibitors are available in gut diseases, including intestinal ischemia/reperfusion damage, infectious disease, inflammatory bowel disease, etc. The promising outcomes of Syk inhibitors from both preclinical and clinical studies have shown to attenuate the progression of gut diseases thereby indicating a great potential in the development of Syk targeted therapy for treatment of gut diseases. This review depicts the characterization of Syk, summarizes the signal pathways of Syk, and discusses its potential targeted therapy for gut diseases.
Collapse
Affiliation(s)
- Wenbin Gong
- School of Medicine, Research Institute of General Surgery, Southeast University, Jinling Hospital, Nanjing, P.R. China
| | - Peizhao Liu
- Research Institute of General Surgery, Jinling Hospital, Nanjing, P.R. China
| | - Tao Zheng
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Nanjing, P.R. China
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Jianan Ren
- School of Medicine, Research Institute of General Surgery, Southeast University, Jinling Hospital, Nanjing, P.R. China.,Research Institute of General Surgery, Jinling Hospital, Nanjing, P.R. China
| |
Collapse
|
34
|
Tu A, Wang XC, Chen H, Jia X, Wang T, Yi Y, Liu B, Xin W, Lü X, Shan Y. Ovomucin Ameliorates Intestinal Barrier and Intestinal Bacteria to Attenuate DSS-Induced Colitis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5887-5896. [PMID: 34013725 DOI: 10.1021/acs.jafc.1c00865] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Egg white ovomucin (OVM) is homologically related to MUC2, the key component of colonic mucous layer. This study investigated the effects of orally administered OVM from egg white on the colonic mucosal barrier and the development of colitis using a colitis C57BL/6J mice model. The results showed that daily supplementation of 125 and 250 mg/kg BW of OVM partially relieved the villous destruction and loss of intestinal barrier integrity, and hence decreased the epithelial barrier permeability. The supplementation also reduced the secretion of proinflammatory cytokines TNF-α and IL-6. Besides, OVM administration significantly increased the relative abundance of intestinal beneficial bacteria including Lactobacilli, Faecalibaculum, Ruminococcus, etc. and further upregulated the production of bacterial metabolites such as short-chain fatty acids (SCFAs), which is a direct source of energy for the proliferation of epithelia and goblet cells. In conclusion, OVM from egg white ameliorates colitis by enhancing the intestinal barrier function and abundance of intestinal bacteria, thereby increasing the number of SCFAs.
Collapse
Affiliation(s)
- Aobai Tu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shannxi 712100, P. R. China
| | - Xiu Chao Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shannxi 712100, P. R. China
| | - Hongwang Chen
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shannxi 712100, P. R. China
| | - Xin Jia
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shannxi 712100, P. R. China
| | - Tao Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shannxi 712100, P. R. China
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shannxi 712100, P. R. China
| | - Bianfang Liu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shannxi 712100, P. R. China
| | - Wang Xin
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shannxi 712100, P. R. China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shannxi 712100, P. R. China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shannxi 712100, P. R. China
| |
Collapse
|
35
|
Sun M, Liu Y, Song Y, Gao Y, Zhao F, Luo Y, Qian F, Mu G, Tuo Y. The ameliorative effect of Lactobacillus plantarum-12 on DSS-induced murine colitis. Food Funct 2021; 11:5205-5222. [PMID: 32458908 DOI: 10.1039/d0fo00007h] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Some strains of lactobacilli can exert beneficial effects on a host when ingested in an adequate dose, such as immunoregulation and anti-inflammatory activities. In this study, the survival abilities under simulated gastrointestinal conditions, adhesion abilities on HT-29 cell monolayers, and hemolytic activities of four Lactobacillus plantarum strains were assessed. Among the four strains, L. plantarum-12 showed the higher survival rate under simulated gastrointestinal conditions and adhesion index on the HT-29 cell monolayers, exhibited γ-haemolytic activity and had no biological amine producing ability. L. plantarum-12 was administered to dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) Balb/c mice by oral gavage for 10 days. It was observed that the UC Balb/c mice showed symptoms of colonic atrophy, intestinal histopathological change, gut microbial disturbance, and pro-inflammatory cytokine expression. L. plantarum-12 administration remarkably attenuated DSS-induced UC in mice. L. plantarum-12 administration could restore gut microbiota by increasing beneficial bacteria such as Lactobacillus and decreasing intestinal pathogenic bacteria like Proteobacteria. L. plantarum-12 administration could improve immunity via activating the janus kinase-signal transducer and the activator of the transcription (JAK-STAT) pathway and up-regulating adenosine deaminase (ADA) and interferon-induced protein with tetratricopeptide repeats 1 protein (IFIT1), and enforce the intestinal barrier function by up-regulating mucin 2 (MUC2) protein expression. In conclusion, L. plantarum-12 could attenuate DSS-induced UC in Balb/c mice by ameliorating intestinal inflammation, and restoring the disturbed gut microbiota. L. plantarum-12 could be used as promising probiotics to ameliorate colitis.
Collapse
Affiliation(s)
- Mengying Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Yujun Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Yinglong Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Yuan Gao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Fujunzhu Zhao
- Food Science Department, Pennsylvania State University, Pennsylvania, USA
| | - Yanghe Luo
- Institute of Food Research, Hezhou University, Hezhou 542899, P. R. China
| | - Fang Qian
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China. and Dalian probiotics function research key laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| |
Collapse
|
36
|
Gasaly N, Hermoso MA, Gotteland M. Butyrate and the Fine-Tuning of Colonic Homeostasis: Implication for Inflammatory Bowel Diseases. Int J Mol Sci 2021; 22:ijms22063061. [PMID: 33802759 PMCID: PMC8002420 DOI: 10.3390/ijms22063061] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
This review describes current evidence supporting butyrate impact in the homeostatic regulation of the digestive ecosystem in health and inflammatory bowel diseases (IBDs). Butyrate is mainly produced by bacteria from the Firmicutes phylum. It stimulates mature colonocytes and inhibits undifferentiated malignant and stem cells. Butyrate oxidation in mature colonocytes (1) produces 70–80% of their energetic requirements, (2) prevents stem cell inhibition by limiting butyrate access to crypts, and (3) consumes oxygen, generating hypoxia and maintaining luminal anaerobiosis favorable to the microbiota. Butyrate stimulates the aryl hydrocarbon receptor (AhR), the GPR41 and GPR109A receptors, and inhibits HDAC in different cell types, thus stabilizing the gut barrier function and decreasing inflammatory processes. However, some studies indicate contrary effects according to butyrate concentrations. IBD patients exhibit a lower abundance of butyrate-producing bacteria and butyrate content. Additionally, colonocyte butyrate oxidation is depressed in these subjects, lowering luminal anaerobiosis and facilitating the expansion of Enterobacteriaceae that contribute to inflammation. Accordingly, gut dysbiosis and decreased barrier function in IBD seems to be secondary to the impaired mitochondrial disturbance in colonic epithelial cells.
Collapse
Affiliation(s)
- Naschla Gasaly
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Marcela A. Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Martín Gotteland
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
- Department of Human Nutrition, Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago 7830490, Chile
- Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago 8380453, Chile
- Correspondence: ; Tel.: +56-989-059-222
| |
Collapse
|
37
|
Wang L, Zou L, Li J, Yang H, Yin Y. Effect of dietary folate level on organ weight, digesta pH, short-chain fatty acid concentration, and intestinal microbiota of weaned piglets. J Anim Sci 2021; 99:6105550. [PMID: 33476395 DOI: 10.1093/jas/skab015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/19/2021] [Indexed: 01/07/2023] Open
Abstract
Folate is increasingly thought to promote gastrointestinal health and regulate the diversity of gut microbiota to alleviate weaning stress in piglets. The present study was conducted to investigate the effects of folate on organ weight, digesta pH, short-chain fatty acids (SCFAs) concentration, and intestinal microbiota in weaned piglets. A total of 28 piglets (6.73 ± 0.62 kg) were allocated to four dietary treatments consisting of a control group, 3, 9, and 18 mg/kg of folate supplementation in a 14-d feeding trial. The results showed that piglets fed with 9 and 18 mg/kg of folate supplementation had greater (P < 0.05) average liver and spleen weight than the control group. Folate supplementation (9 and 18 mg/kg) can significantly increase (P < 0.05) the stomach pH and tend (P < 0.10) to decrease the cecum pH. Folate treatment (9 and 18 mg/kg) had a positive effect on the metabolism of SCFAs in piglets, in particular, compared with the control group, and the content of acetic acid (AA) and valeric acid was markedly increased (P < 0.05) in the cecum and colon, respectively. Moreover, isobutyric acid, butyric acid, and isovaleric acid were tended (P < 0.10) to increase in the colon. Cecum contents samples were used to determine bacterial community diversity by 16S rRNA gene amplicon sequencing. At the genus level, in the cecum, there was a higher (P < 0.05) relative abundance of Lactobacillus reuteri, Lactobacillus salivarius, and Lactobacillus mucosae in the 9 mg/kg folate supplementation group. The functional pathways analysis predicted that folate may modify nutrient metabolism by changing the gut microbiota function of weaned piglets. Furthermore, the data showed that Lactobacillus was positively correlated with AA in the cecum. Overall, these findings suggested that folate treatment could increase the organ weight and the stomach pH of weaned piglets and had beneficial effects on gut health, which might be attributed to the alteration in intestinal microbiota induced by folate and the interaction of the intestinal microbiota with SCFAs.
Collapse
Affiliation(s)
- Lei Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, China
| | - Lijun Zou
- Laboratory of Basic Biology, Hunan First Normal University, Changsha, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, China
| | - Yulong Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
38
|
Citrus limon Peel Powder Reduces Intestinal Barrier Defects and Inflammation in a Colitic Murine Experimental Model. Foods 2021; 10:foods10020240. [PMID: 33503995 PMCID: PMC7912126 DOI: 10.3390/foods10020240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
This study examines the ameliorative effects of lemon (Citrus limon) peel (LP) powder on intestinal inflammation and barrier defects in dextran sulfate sodium (DSS)-induced colitic mice. The whole LP powder was fractionated into methanol (MetOH) extract and its extraction residue (MetOH residue), which were rich in polyphenolic compounds and dietary fibers, respectively. Mice were fed diets containing whole LP powder, MetOH extract, and MetOH residue for 16 d. DSS administration for 9 d induced bodyweight loss, reduced colon length, reduced the colonic expression of tight junction proteins including zonula occludens-1 and -2, and claudin-3 and -7, and upregulated colonic mRNA expression of interleukin 6, chemokine (C-X-C motif) ligand 2, and C-C motif chemokine ligand 2. Feeding LP powder restored these abnormalities, and the MetOH residue, but not MetOH extract, also showed similar restorations. Feeding LP powder and MetOH residue increased fecal concentrations of acetate and n-butyrate. Taken together, LP powder reduced intestinal damage through the protection of tight junction barriers and suppressed an inflammatory reaction in colitic mice. These results suggest that acetate and n-butyrate produced from the microbial metabolism of dietary fibers in LP powder contributed to reducing colitis.
Collapse
|
39
|
Rodrigues LA, Pereira CV, Partidário AMC, Gouveia LF, Simões P, Paiva A, Matias AA. Supercritical CO2 extraction of bioactive lipids from canned sardine waste streams. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Zheng S, Zhang H, Liu R, Huang CL, Li H, Deng ZY, Tsao R. Do short chain fatty acids and phenolic metabolites of the gut have synergistic anti-inflammatory effects? – New insights from a TNF-α-induced Caco-2 cell model. Food Res Int 2021; 139:109833. [DOI: 10.1016/j.foodres.2020.109833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022]
|
41
|
Jiang D, Guo S, Kang A, Ju Y, Li J, Yu S, Bao B, Cao Y, Tang Y, Zhang L, Yao W. Comparison of the short-chain fatty acids in normal rat faeces after the treatment of Euphorbia kansui, a traditional Chinese medicine for edoema. PHARMACEUTICAL BIOLOGY 2020; 58:367-373. [PMID: 32351153 PMCID: PMC7241507 DOI: 10.1080/13880209.2020.1755318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/26/2020] [Accepted: 04/08/2020] [Indexed: 05/26/2023]
Abstract
Context: As a toxic traditional Chinese medicine for edoema, Euphorbia kansui S.L. Liou ex S.B. Ho (Euphorbiaceae) (EK) stir-fried with vinegar for detoxification was associated with alterations of gut microbiota. However, the evidence of correlation between short-chain fatty acids (SCFAs) and toxicity of EK has not been confirmed.Objective: In order to study the biological basis of detoxification of EK stir-fried with vinegar (VEK), a rapid, sensitive and validated GC-MS method was developed to determine SCFAs in normal rat faeces after given EK and VEK.Materials and methods: Sprague Dawley rats were orally administered 0.5% CMC-Na (control group), EK (EK-treated group) and VEK powder (VEK-treated group) at 680 mg/kg for six consecutive days (eight rats each group). Fresh faeces samples were promptly collected, derivatized and then analyzed by GC-MS.Results: The ranges of LOD and LOQ were within 0.13-1.79 and 0.45-5.95 μg/mL, respectively. The RSD values of intra-day and inter-day precisions were less than 15%. Four SCFAs were generally stable under four storage conditions. The extraction recoveries were ranged from 53.5% to 97.3% with RSD values lower than 15%. The concentrations of four SCFAs in EK and VEK were decreased significantly compared with those not administered (EK-treated, p < 0.01; VEK-treated, p < 0.05 and p < 0.01). After being stir-fried with vinegar, the concentrations were all increased (p < 0.05 and p < 0.01).Discussion and conclusions: The negative correlation between SCFAs and toxicity of EK may provide evidence for biological mechanism and toxic Chinese medicine.
Collapse
Affiliation(s)
- Dongjing Jiang
- School of Pharmacy, Suzhou Vocational Health College, Suzhou, China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sijia Guo
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - An Kang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yonghui Ju
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingxian Li
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Yu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Beihua Bao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yudan Cao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Li Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weifeng Yao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
42
|
Fattahi Y, Heidari HR, Khosroushahi AY. Review of short-chain fatty acids effects on the immune system and cancer. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100793] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Kent-Dennis C, Penner GB. Effects of a proinflammatory response on metabolic function of cultured, primary ruminal epithelial cells. J Dairy Sci 2020; 104:1002-1017. [PMID: 33131809 DOI: 10.3168/jds.2020-19092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022]
Abstract
Inflammation of ruminal epithelium may occur during ruminal acidosis as a result of translocation and interaction of ruminal epithelial cells (REC) with molecules such as lipopolysaccharide (LPS). Such inflammation has been reported to alter cellular processes such as nutrient absorption, metabolic regulation, and energy substrate utilization in other cell types but has not been investigated for REC. The objectives of this study were to investigate the effects of LPS on metabolism of short-chain fatty acids by primary REC, as well as investigating the effects of media containing short-chain fatty acids on the proinflammatory response. Ruminal papillae from 9 yearling Speckle Park beef heifers were used to isolate and culture primary REC. Cells were grown in minimum essential medium (MEM) for 12 d before use and then reseeded in 24-well culture plates. The study was conducted as a 2 × 2 factorial, where cells were grown in unaltered MEM (REG) or medium containing 2 mM butyrate and 5 mM propionate (SCFA) with (50,000 EU/mL; +LPS) or without LPS (-LPS) for 24 h. Supernatant samples were collected for analysis of glucose and SCFA consumption. Cells were collected to determine the expression of mRNA for genes associated with inflammation (TNF, IL1B, CXCL2, CXCL8, PTGS2, and TLR4), purinergic signaling (P2RX7, ADORAB2, and CD73), nutrient transport [SLC16A1 (MCT1), SLC16A3 (MCT4), SLC5A8, and MCU], and cell metabolism [ACAT1, SLC2A1 (GLUT1), IGFBP3, and IGFBP5]. Protein expression of TLR4 and ketogenic enzymes (BDH1 and HMGCS1) were also analyzed using flow cytometry. Statistical analysis was conducted with the MIXED model of SAS version 9.4 (SAS Institute Inc., Cary, NC) with medium, LPS exposure, and medium × LPS interaction as fixed effects and animal within plate as a random effect. Cells tended to consume more glucose when exposed to LPS as opposed to no LPS exposure (31.8 vs. 28.7 ± 2.7), but consumption of propionate and butyrate was not influenced by LPS. Expression of TNF and IL1B was upregulated when exposed to LPS, and expression of CXCL2 and CXCL8 increased following LPS exposure with SCFA (medium × LPS). For cells exposed to LPS, we found a downregulation of ACAT1 and IGFBP5 and an upregulation of SLC2A1, SLC16A3, MCU, and IGFBP3. Medium with SCFA led to greater expression of MCU. SLC16A1 was upregulated in cells incubated with SCFA and without LPS compared with the other groups. Protein expression of ketogenic enzymes was not affected; however, BDH1 mean fluorescence intensity (MFI) expression tended to be less in cells exposed to LPS. These data are interpreted to indicate that when REC are exposed to LPS, they may increase glucose metabolism. Moreover, transport of solutes was affected by SCFA in the medium and by exposure to LPS. Overall, the results suggest that metabolic function of REC in vitro is altered by a proinflammatory response, which may lead to a greater glucose requirement.
Collapse
Affiliation(s)
- C Kent-Dennis
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5A8
| | - G B Penner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5A8.
| |
Collapse
|
44
|
Wan J, Zhang J, Chen D, Yu B, Huang Z, Mao X, Zheng P, Yu J, He J. Alterations in intestinal microbiota by alginate oligosaccharide improve intestinal barrier integrity in weaned pigs. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104040] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
45
|
Dvořák Z, Kopp F, Costello CM, Kemp JS, Li H, Vrzalová A, Štěpánková M, Bartoňková I, Jiskrová E, Poulíková K, Vyhlídalová B, Nordstroem LU, Karunaratne CV, Ranhotra HS, Mun KS, Naren AP, Murray IA, Perdew GH, Brtko J, Toporova L, Schön A, Wallace BD, Walton WG, Redinbo MR, Sun K, Beck A, Kortagere S, Neary MC, Chandran A, Vishveshwara S, Cavalluzzi MM, Lentini G, Cui JY, Gu H, March JC, Chatterjee S, Matson A, Wright D, Flannigan KL, Hirota SA, Sartor RB, Mani S. Targeting the pregnane X receptor using microbial metabolite mimicry. EMBO Mol Med 2020; 12:e11621. [PMID: 32153125 PMCID: PMC7136958 DOI: 10.15252/emmm.201911621] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/18/2022] Open
Abstract
The human PXR (pregnane X receptor), a master regulator of drug metabolism, has essential roles in intestinal homeostasis and abrogating inflammation. Existing PXR ligands have substantial off-target toxicity. Based on prior work that established microbial (indole) metabolites as PXR ligands, we proposed microbial metabolite mimicry as a novel strategy for drug discovery that allows exploiting previously unexplored parts of chemical space. Here, we report functionalized indole derivatives as first-in-class non-cytotoxic PXR agonists as a proof of concept for microbial metabolite mimicry. The lead compound, FKK6 (Felix Kopp Kortagere 6), binds directly to PXR protein in solution, induces PXR-specific target gene expression in cells, human organoids, and mice. FKK6 significantly represses pro-inflammatory cytokine production cells and abrogates inflammation in mice expressing the human PXR gene. The development of FKK6 demonstrates for the first time that microbial metabolite mimicry is a viable strategy for drug discovery and opens the door to underexploited regions of chemical space.
Collapse
|
46
|
Gao Y, Ye Q, Bao X, Huang X, Wang J, Zheng N. Transcriptomic and proteomic profiling reveals the intestinal immunotoxicity induced by aflatoxin M1 and ochratoxin A. Toxicon 2020; 180:49-61. [PMID: 32268155 DOI: 10.1016/j.toxicon.2020.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/21/2022]
Abstract
Mycotoxins-contaminated milk could threaten human health; therefore, it is necessary to demonstrate the toxicological effect of mycotoxins in milk. Most recently, researchers have paid more attention to the immunotoxic effects of the individual cereal-contaminating mycotoxins, namely, zearalenone and deoxynivalenol. However, there is scant information about the intestinal immunotoxicity of aflatoxin M1 (AFM1), let alone that of a combination of AFM1 and ochratoxin A (OTA), which often co-occur in milk. To reveal the inflammatory response caused by these mycotoxins, expression of inflammation-related genes in differentiated Caco-2 cells was analyzed, demonstrating a synergistic effect of the mixture of AFM1 (4 μg/mL) and OTA (4 μg/mL). Integrative transcriptomic and proteomic analyses were also performed. A cross-omics analysis identified several mechanisms underlying this synergy: (i) compared with stimulation with either compound alone, combined use resulted in stronger induction of proteins involved in immunity-related pathways; (ii) combination of the two agents targeted different points in the same pathways; and (iii) combination of the two agents activated specific inflammation-related pathways. These results suggested that combined use of AFM1 and OTA might exacerbate intestinal inflammation, indicating that regulatory authorities should pay more attention to food contamination by multiple mycotoxins when performing risk assessments.
Collapse
Affiliation(s)
- Yanan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiaoyan Ye
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoyu Bao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xin Huang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
47
|
Pearce SC, Weber GJ, van Sambeek DM, Soares JW, Racicot K, Breault DT. Intestinal enteroids recapitulate the effects of short-chain fatty acids on the intestinal epithelium. PLoS One 2020; 15:e0230231. [PMID: 32240190 PMCID: PMC7117711 DOI: 10.1371/journal.pone.0230231] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/25/2020] [Indexed: 12/23/2022] Open
Abstract
Enteroids are cultured primary intestinal epithelial cells that recapitulate epithelial lineage development allowing for a more complex and physiologically relevant model for scientific study. The large presence of intestinal stem cells (ISC) in these enteroids allows for the study of metabolite effects on cellular processes and resulting progeny cells. Short-chain fatty acids (SCFA) such as butyrate (BUT) are bacterial metabolites produced in the gastrointestinal tract that are considered to be beneficial to host cells. Therefore, the objective was to study the effects of SCFAs on biomarkers of ISC activity, differentiation, barrier function and epithelial defense in the intestine using mouse and human enteroid models. Enteroids were treated with two concentrations of acetate (ACET), propionate (PROP), or BUT for 24 h. Enteroids treated with BUT or PROP showed a decrease in proliferation via EdU uptake relative to the controls in both mouse and human models. Gene expression of Lgr5 was shown to decrease with BUT and PROP treatments, but increased with ACET. As a result of BUT and PROP treatments, there was an increase in differentiation markers for enterocyte, Paneth, goblet, and enteroendocrine cells. Gene expression of antimicrobial proteins Reg3β, Reg3γ, and Defb1 were stimulated by BUT and PROP, but not by ACET which had a greater effect on expression of tight junction genes Cldn3 and Ocln in 3D enteroids. Similar results were obtained with human enteroids treated with 10 mM SCFAs and grown in either 3D or Transwell™ model cultures, although tight junctions were influenced by BUT and PROP, but not ACET in monolayer format. Furthermore, BUT and PROP treatments increased transepithelial electrical resistance after 24 h compared to ACET or control. Overall, individual SCFAs are potent stimulators of cellular gene expression, however, PROP and especially BUT show great efficacy for driving cell differentiation and gene expression.
Collapse
Affiliation(s)
- Sarah C. Pearce
- Performance Nutrition Team, Combat Feeding Directorate, Combat Capabilities Development Command Soldier Center, Natick, Massachusetts, United States of America
- * E-mail:
| | - Gregory J. Weber
- Performance Nutrition Team, Combat Feeding Directorate, Combat Capabilities Development Command Soldier Center, Natick, Massachusetts, United States of America
| | - Dana M. van Sambeek
- Performance Nutrition Team, Combat Feeding Directorate, Combat Capabilities Development Command Soldier Center, Natick, Massachusetts, United States of America
| | - Jason W. Soares
- Biological Sciences & Technology Team, Soldier Performance Optimization Directorate, Combat Capabilities Development Command Soldier Center, Natick, Massachusetts, United States of America
| | - Kenneth Racicot
- Biological Sciences & Technology Team, Soldier Performance Optimization Directorate, Combat Capabilities Development Command Soldier Center, Natick, Massachusetts, United States of America
| | - David T. Breault
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
48
|
Li XX, Zheng X, Liu Z, Xu Q, Tang H, Feng J, Yang S, Vong CT, Gao H, Wang Y. Cryptotanshinone from Salvia miltiorrhiza Bunge (Danshen) inhibited inflammatory responses via TLR4/MyD88 signaling pathway. Chin Med 2020; 15:20. [PMID: 32158495 PMCID: PMC7053069 DOI: 10.1186/s13020-020-00303-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/23/2020] [Indexed: 12/13/2022] Open
Abstract
Background Cryptotanshinone (CPT), as a major component of Salvia miltiorrhiza Bunge (Danshen), displays many pharmacological activities including anti-inflammatory effects. However, the exact cellular and molecular mechanisms of the anti-inflammatory activities of CPT remain to be elucidated. The present study was aimed to clarify its mechanisms on lipopolysaccharide (LPS)-induced inflammatory responses in mouse macrophages, RAW264.7 cells. Methods In the current study, the anti-inflammatory properties of CPT were evaluated using LPS-stimulated RAW264.7 cell model. MTT assay was used to determine the viability of RAW264.7 cells. The anti-inflammatory effects of CPT were measured based on the detection of nitric oxide (NO) production (Griess and flow cytometry assay), and tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) release (ELISA). Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) enzyme expressions were also determined by western blotting. Besides, by using flow cytometry, we also evaluated the effect of CPT on LPS-induced calcium influx. Finally, the underlying anti-inflammatory mechanisms of CPT were investigated using western blotting to assess the protein levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), phosphatidylinositol 3-kinase (PI3K)/AKT, nuclear factor erythroid 2 related factor 2 (Nrf2), mitogen-activated protein kinase (MAPK), and nuclear factor-kappa B (NF-κB) pathways. Results Our data showed that CPT inhibited LPS-induced pro-inflammatory cytokine release like IL-6, and TNF-α, as well as NO production. It displayed a significant inhibitory effect on the protein expressions such as iNOS, COX-2, NF-κB pathway like inhibitor of kappa B kinase (IKK)α/β, inhibitor of kappa B (IκB)-α and NF-κB/p65, PI3K/AKT pathway like PI3K and AKT, and MAPK pathway like c-Jun N-terminal kinase (JNK)1/2, extracellular signal-regulated kinase (ERK)1/2, and p38, in LPS-stimulated RAW264.7 macrophages. Moreover, the immunofluorescence results indicated that CPT suppressed NF-κB/p65 translocation from the cytoplasm into the nucleus. Further investigations showed that CPT treatment increased NAD(P)H quinone oxidoreductase-1 (NQO1) and heme oxygenase-1 (HO-1) expressions together with its upstream mediator, Nrf2. In addition, CPT inhibited LPS-induced toll-like receptor 4 (TLR4) and MyD88 expressions in RAW264.7 macrophages. Conclusions Collectively, we suggested that CPT exerted significant anti-inflammatory effects via modulating TLR4-MyD88/PI3K/Nrf2 and TLR4-MyD88/NF-κB/MAPK pathways.
Collapse
Affiliation(s)
- Xin-Xing Li
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Xiaoting Zheng
- 3State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 1050, N22 Research Building, Macao, China
| | - Zhenjie Liu
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Qiongming Xu
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,4College of Pharmaceutical Science, Soochow University, Suzhou, 215123 China
| | - Hongzhen Tang
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Jianfang Feng
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Shilin Yang
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Chi Teng Vong
- 3State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 1050, N22 Research Building, Macao, China
| | - Hongwei Gao
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Yitao Wang
- 3State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 1050, N22 Research Building, Macao, China
| |
Collapse
|
49
|
Liu Y, Wang X, Chen Q, Luo L, Ma M, Xiao B, Zeng L. Camellia sinensis and Litsea coreana Ameliorate Intestinal Inflammation and Modulate Gut Microbiota in Dextran Sulfate Sodium-Induced Colitis Mice. Mol Nutr Food Res 2020; 64:e1900943. [PMID: 31951100 DOI: 10.1002/mnfr.201900943] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/31/2019] [Indexed: 12/12/2022]
Abstract
SCOPE Polyphenol-enriched herbal extracts have been proved as alternative therapeutic strategies for experimentally induced colitis. The in vivo and in vitro anti-inflammatory effects of Camellia sinensis (green, white, yellow, oolong, black, and dark tea) and Litsea coreana (hawk tea) are comparatively explored. METHODS AND RESULTS HPLC analysis confirms dissimilarities among phytochemical compositions of these teas. The tea extracts (TEs) significantly decrease the production of pro-inflammatory cytokines (IL-6, IL-12, and tumor necrosis factor-α) and increase the anti-inflammatory cytokines (IL-10) in LPS-stimulated RAW 264.7 macrophages and a dextran sodium sulfate (DSS)-induced colitis mouse model. The treatment of TEs in colitis mice can ameliorate colon inflammation, pro-oxidative enzyme activity, colon integrity, and suppress the activation of nuclear factor-κB. Of note, green TE significantly attenuates the DSS-induced decrease in richness and diversity of gut microbiota. Moreover, TEs are capable of exerting a prebiotic effect on gut microbiota by increasing the abundance of potentially beneficial bacteria (e.g., Faecalibaculum, and Bifidobacterium), and decreasing the abundance of potentially harmful bacteria (e.g., Bacteroids, and Mucispirillum). TEs restore the decreased production of SCFAs in the feces of colitic mice. CONCLUSION The treatment of seven types of tea can alleviate DSS-induced colitis in mice, and modulate the dysbiosis of gut microbiota in colitis mice.
Collapse
Affiliation(s)
- Yan Liu
- College of Food Science, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Xinghua Wang
- Tea Research Institute of Puer, Puer, Yunnan, 665000, P. R. China
| | - Qiubing Chen
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, Beibei, Chongqing, 400715, P. R. of China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing, 400715, P. R. China.,Tea Research Institute, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Mengjun Ma
- Xianning Academy of Agricultural Sciences, Xianning, Hubei, 437100, P. R. China
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, Beibei, Chongqing, 400715, P. R. of China
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing, 400715, P. R. China.,Tea Research Institute, Southwest University, Beibei, Chongqing, 400715, P. R. China
| |
Collapse
|
50
|
Chambers ES, Byrne CS, Morrison DJ, Murphy KG, Preston T, Tedford C, Garcia-Perez I, Fountana S, Serrano-Contreras JI, Holmes E, Reynolds CJ, Roberts JF, Boyton RJ, Altmann DM, McDonald JAK, Marchesi JR, Akbar AN, Riddell NE, Wallis GA, Frost GS. Dietary supplementation with inulin-propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: a randomised cross-over trial. Gut 2019; 68:1430-1438. [PMID: 30971437 PMCID: PMC6691855 DOI: 10.1136/gutjnl-2019-318424] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/21/2019] [Accepted: 02/24/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To investigate the underlying mechanisms behind changes in glucose homeostasis with delivery of propionate to the human colon by comprehensive and coordinated analysis of gut bacterial composition, plasma metabolome and immune responses. DESIGN Twelve non-diabetic adults with overweight and obesity received 20 g/day of inulin-propionate ester (IPE), designed to selectively deliver propionate to the colon, a high-fermentable fibre control (inulin) and a low-fermentable fibre control (cellulose) in a randomised, double-blind, placebo-controlled, cross-over design. Outcome measurements of metabolic responses, inflammatory markers and gut bacterial composition were analysed at the end of each 42-day supplementation period. RESULTS Both IPE and inulin supplementation improved insulin resistance compared with cellulose supplementation, measured by homeostatic model assessment 2 (mean±SEM 1.23±0.17 IPE vs 1.59±0.17 cellulose, p=0.001; 1.17±0.15 inulin vs 1.59±0.17 cellulose, p=0.009), with no differences between IPE and inulin (p=0.272). Fasting insulin was only associated positively with plasma tyrosine and negatively with plasma glycine following inulin supplementation. IPE supplementation decreased proinflammatory interleukin-8 levels compared with cellulose, while inulin had no impact on the systemic inflammatory markers studied. Inulin promoted changes in gut bacterial populations at the class level (increased Actinobacteria and decreased Clostridia) and order level (decreased Clostridiales) compared with cellulose, with small differences at the species level observed between IPE and cellulose. CONCLUSION These data demonstrate a distinctive physiological impact of raising colonic propionate delivery in humans, as improvements in insulin sensitivity promoted by IPE and inulin were accompanied with different effects on the plasma metabolome, gut bacterial populations and markers of systemic inflammation.
Collapse
Affiliation(s)
- Edward S Chambers
- Section for Nutrition Research, Department of Medicine, Imperial College London, London, UK
| | - Claire S Byrne
- Section for Nutrition Research, Department of Medicine, Imperial College London, London, UK
| | - Douglas J Morrison
- Stable Isotope Biochemistry Laboratory, Scottish Universities Environmental Research Centre, Glasgow, UK
| | - Kevin G Murphy
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Tom Preston
- Stable Isotope Biochemistry Laboratory, Scottish Universities Environmental Research Centre, Glasgow, UK
| | - Catriona Tedford
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, UK
| | | | - Sofia Fountana
- Computational and Systems Medicine, Imperial College London, London, UK
| | | | - Elaine Holmes
- Computational and Systems Medicine, Imperial College London, London, UK
| | | | | | | | | | - Julie A K McDonald
- Division of Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Julian R Marchesi
- Division of Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Imperial College London, London, UK,School of Biosciences, University of Cardiff, Cardiff, UK
| | - Arne N Akbar
- Division of Infectionand Immunity, University College London, London, UK
| | - Natalie E Riddell
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Gareth A Wallis
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Gary S Frost
- Section for Nutrition Research, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|