1
|
Gamboa-Becerra R, Montoya L, Monribot-Villanueva JL, Guerrero-Analco JA, Bandala VM. Comparative Metabolomics and Nutritional Profiles of Two Edible Boletus Species From Eastern Mexico. Chem Biodivers 2025:e00859. [PMID: 40418831 DOI: 10.1002/cbdv.202500859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/28/2025]
Abstract
Mushrooms related to Boletus edulis s.l. are globally valued as wild-harvested edibles. This study investigated the nutritional composition, antioxidant activity, and metabolic profile of Boletus rubriceps and B. vigasensis from Pinus forests in the Cofre de Perote mountain, Veracruz, Mexico. Using non-targeted metabolomics and predictive Random Forest models, we identified 180 putative metabolites, 29 with documented bioactivity, and discovered metabolite markers distinguishing both taxa. Integrating morphological, nutritional, and metabolomic data confirmed the taxonomic and molecular separation of B. vigasensis from B. rubriceps. However, distinct metabolic profiles further subdivided B. rubriceps into two groups, B. rubriceps 1 and B. rubriceps 2, consistent with the subtle morphological and nutritional differences, suggesting cryptic diversity. The high protein content, antioxidant capacity, and bioactive potential of these species highlight their nutritional and economic value. This study underscores the need for sustainable management and further metabolomic research to explore their ecological roles and health-promoting properties.
Collapse
Affiliation(s)
| | - Leticia Montoya
- Red de Biodiversidad y Sistemática, Instituto de Ecología, Xalapa, Mexico
| | | | | | - Victor M Bandala
- Red de Biodiversidad y Sistemática, Instituto de Ecología, Xalapa, Mexico
| |
Collapse
|
2
|
Wang W, Lu N, Jiang C, Chen G. UPLC-MS metabolite profiling and antioxidant activity of Sanghuangporus sanghuang extract. PeerJ 2025; 13:e18758. [PMID: 39866569 PMCID: PMC11760198 DOI: 10.7717/peerj.18758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/04/2024] [Indexed: 01/28/2025] Open
Abstract
Background The objective of the present study is to examine the total phenolic and flavonoid content of an ethanol extract of Sanghuangporus sanghuang and to evaluate its phytochemical properties, antioxidant activity, and capacity to protect DNA from damage. This pharmaceutical/food resource mushroom may serve as a novel substitute functional food for health-conscious consumers, given its promising source of phenolics and flavonoids. Methods S. sanghuang ethanol extract (SEE) was evaluated for total phenolic and flavonoid contents, while UPLC-MS analysis was used for terpenoids, phenylpropanoid, flavonoids, steroidal, phenols identification, and function prediction. Antioxidant and anti-DNA damage activities were tested in vitro using ferric reducing antioxidant power (FRAP), 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzotiazolin-6-sulfonic acid (ABTS), and DNA damage protection assay. Results and Conclusion Total phenolic content (TPC) in SEE was 385.38 ± 1.36 mg GA/g extract, while total flavonoid content (TFC) was 298.22 ± 2.38 mg QE/g extract. The extracts exhibited high antioxidant and free radical scavenging activities with relatively stronger free radical scavenging activity. A total of 491 metabolites were investigated by Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Most of the top 20 compounds were predicted to have various functions like antioxidant, anti-cancer and anti-inflammatory. This study highlighted S. sanghuang was a beneficial source of phenolics and flavonoids. It contains potential natural antioxidant that could be used as a lead contender in the development of antioxidant medicines for the treatment of a wide range of oxidative stress-related illnesses.
Collapse
Affiliation(s)
- Weike Wang
- Hangzhou Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Na Lu
- Hangzhou Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Cheng Jiang
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Guanping Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Zhao ZX, Zou QY, Ma YH, Morris-Natschke SL, Li XY, Shi LC, Ma GX, Xu XD, Yang MH, Zhao ZJ, Li YX, Xue J, Chen CH, Wu HF. Recent progress on triterpenoid derivatives and their anticancer potential. PHYTOCHEMISTRY 2025; 229:114257. [PMID: 39209239 DOI: 10.1016/j.phytochem.2024.114257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Cancer poses a significant global public health challenge, with commonly used adjuvant or neoadjuvant chemotherapy often leading to adverse side effects and drug resistance. Therefore, advancing cancer treatment necessitates the ongoing development of novel anticancer agents with diverse structures and mechanisms of action. Natural products remain crucial in the process of drug discovery, serving as a primary source for pharmaceutical leads and therapeutic advancements. Triterpenoids are particularly compelling due to their complex structures and wide array of biological activities. Recent research has demonstrated that naturally occurring triterpenes and their derivatives have the potential to serve as promising candidates for new drug development. This review aims to comprehensively explore the anticancer properties of triterpenoids and their synthetic analogs, with a focus on recent advancements. Various aspects, such as synthesis, phytochemistry, and molecular simulation for structure-activity relationship analyses, are summarized. It is anticipated that triterpenoid derivatives will emerge as notable anticancer agents following further investigation into their mechanisms of action and in vivo studies.
Collapse
Affiliation(s)
- Zi-Xuan Zhao
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Qiong-Yu Zou
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Key Laboratory of Natural Products Research and Utilization in Wuling Mountain Area, Department of Chemistry & Chemical Engineering, Huaihua University, Huaihua, 418008, China
| | - Ying-Hong Ma
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Xiang-Yuan Li
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Lin-Chun Shi
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Guo-Xu Ma
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xu-Dong Xu
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Mei-Hua Yang
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zi-Jian Zhao
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Key Laboratory of Natural Products Research and Utilization in Wuling Mountain Area, Department of Chemistry & Chemical Engineering, Huaihua University, Huaihua, 418008, China
| | - Yuan-Xiang Li
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Key Laboratory of Natural Products Research and Utilization in Wuling Mountain Area, Department of Chemistry & Chemical Engineering, Huaihua University, Huaihua, 418008, China
| | - Jing Xue
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China.
| | - Chin-Ho Chen
- Antiviral Drug Discovery Laboratory, Surgical Oncology Research Facility, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Hai-Feng Wu
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Key Laboratory of Natural Products Research and Utilization in Wuling Mountain Area, Department of Chemistry & Chemical Engineering, Huaihua University, Huaihua, 418008, China; Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
4
|
Roszczenko P, Szewczyk-Roszczenko OK, Gornowicz A, Iwańska IA, Bielawski K, Wujec M, Bielawska A. The Anticancer Potential of Edible Mushrooms: A Review of Selected Species from Roztocze, Poland. Nutrients 2024; 16:2849. [PMID: 39275166 PMCID: PMC11397457 DOI: 10.3390/nu16172849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Edible mushrooms are not only a valued culinary ingredient but also have several potential medicinal and industrial applications. They are a rich source of protein, fiber, vitamins, minerals, and bioactive compounds such as polysaccharides and terpenoids, and thus have the capacity to support human health. Some species have been shown to have antioxidant, anti-inflammatory, anticancer, and immunomodulatory properties. We have therefore attempted to summarize the potential properties of the edible mushrooms popular in Poland, in the Roztocze area.
Collapse
Affiliation(s)
- Piotr Roszczenko
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | | | - Agnieszka Gornowicz
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Iga Anna Iwańska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| |
Collapse
|
5
|
Du JH, Zhao X, Zhang F, Wang Y, Du K, Ding SY, Feng WS, Zhao ZZ. Ganonorsterone A, a norsteroid from the medicinal fungus Ganoderma lingzhi. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1001-1008. [PMID: 38607260 DOI: 10.1080/10286020.2024.2340691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
Phytochemical investigation on the fruiting bodies of the medicinal fungus Ganoderma lingzhi led to the isolation of a new norsteroid, namely ganonorsterone A (1), together with one known steroid, cyathisterol (2). The structure and absolute configuration of compound 1 were assigned by extensive analysis of MS, NMR data, and quantum-chemical calculations including electronic circular dichroism (ECD) and calculated 13C NMR-DP4+ analysis. Bioassay results showed that compound 1 displayed moderate inhibition on NO production in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Jia-Hui Du
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xuan Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Fei Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yan Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Kun Du
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Si-Yi Ding
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Wei-Sheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhen-Zhu Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
6
|
Deveci E, Tel-Çayan G, Çayan F, Yılmaz Altınok B, Aktaş S. Characterization of Polysaccharide Extracts of Four Edible Mushrooms and Determination of In Vitro Antioxidant, Enzyme Inhibition and Anticancer Activities. ACS OMEGA 2024; 9:25887-25901. [PMID: 38911755 PMCID: PMC11191116 DOI: 10.1021/acsomega.4c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 06/25/2024]
Abstract
Mushroom polysaccharides are important bioactive compounds derived from mushrooms with various beneficial properties. In this study, the chemical characterization and bioactivities of polysaccharide extracts from four different edible mushrooms, Clavariadelphus truncatus Donk, Craterellus tubaeformis (Fr.) Quél., Hygrophorus pudorinus (Fr.) Fr., and Macrolepiota procera (Scop.) Singer were studied. Glucose (13.24-56.02%), galactose (14.18-64.05%), mannose (2.18-18.13%), fucose (1.21-5.78%), and arabinose (0.04-5.43%) were identified in all polysaccharide extracts by GC-MS (gas chromatography-mass spectrometry). FT-IR (Fourier transform infrared spectroscopy) confirmed the presence of characteristic carbohydrate patterns. 1H NMR suggested that all polysaccharide extracts had α- and β-d-mannopyranose, d-glucopyranose, d-galactopyranose, α-l-arabinofuranose, and α-l-fucopyranose residues. Approximate molecular weights of polysaccharide extracts were determined by HPLC (high-performance liquid chromatography). The best antioxidant activity was found in M. procera polysaccharide extract in DPPH• (1,1-diphenyl-2-picrylhydrazyl) scavenging (39.03% at 800 μg/mL), CUPRAC (cupric reducing antioxidant capacity) (A0.50: 387.50 μg/mL), and PRAP (phosphomolybdenum reducing antioxidant power) (A0.50: 384.08 μg/mL) assays. C. truncatus polysaccharide extract showed the highest antioxidant activity in ABTS•+ scavenging (IC50: 734.09 μg/mL), β-carotene-linoleic acid (IC50: 472.16 μg/mL), and iron chelating (IC50: 180.35 μg/mL) assays. Significant anticancer activity was found in C. truncatus polysaccharide extract on HT-29 (IC50: 46.49 μg/mL) and HepG2 (IC50: 48.50 μg/mL) cell lines and H. pudorinus polysaccharide extract on the HeLa cell line (IC50: 51.64 μg/mL). Also, H. pudorinus polysaccharide extract possessed prominent AChE (acetylcholinesterase) inhibition activity (49.14% at 200 μg/mL).
Collapse
Affiliation(s)
- Ebru Deveci
- Chemistry
and Chemical Processing Technology Department, Technical Sciences
Vocational School, Konya Technical University, Konya 42100, Turkey
| | - Gülsen Tel-Çayan
- Department
of Chemistry and Chemical Processing Technologies, Muğla Vocational
School, Muğla Sıtkı Koçman
University, Muğla 48000, Turkey
| | - Fatih Çayan
- Department
of Chemistry and Chemical Processing Technologies, Muğla Vocational
School, Muğla Sıtkı Koçman
University, Muğla 48000, Turkey
| | - Bahar Yılmaz Altınok
- Department
of Bioengineering, Faculty of Engineering, Karamanoğlu Mehmetbey University, Karaman 70000, Turkey
| | - Sinan Aktaş
- Department
of Biology, Faculty of Science, Selçuk
University, Konya 42100, Turkey
| |
Collapse
|
7
|
Araújo-Rodrigues H, Sousa AS, Relvas JB, Tavaria FK, Pintado M. An Overview on Mushroom Polysaccharides: Health-promoting Properties, Prebiotic and Gut Microbiota Modulation Effects and Structure-function Correlation. Carbohydr Polym 2024; 333:121978. [PMID: 38494231 DOI: 10.1016/j.carbpol.2024.121978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024]
Abstract
Mushroom polysaccharides are recognized as "biological response modifiers". Besides several bioactivities, a growing interest in their prebiotic potential has been raised due to the gut microbiota modulation potential. This review comprehensively summarizes mushroom polysaccharides' biological properties, structure-function relationship, and underlying mechanisms. It provides a recent overview of the key findings in the field (2018-2024). Key findings and limitations on structure-function correlation are discussed. Although most studies focus on β-glucans or extracts, α-glucans and chitin have gained interest. Prebiotic capacity has been associated with α-glucans and chitin, while antimicrobial and wound healing potential is attributed to chitin. However, further research is of utmost importance. Human fecal fermentation is the most reported approach to assess prebiotic potential, indicating impacts on intestinal biological, mechanical, chemical and immunological barriers. Gut microbiota dysbiosis has been directly connected with intestinal, cardiovascular, metabolic, and neurological diseases. Concerning gut microbiota modulation, animal experiments have suggested proinflammatory cytokines reduction and redox balance re-establishment. Most literature focused on the anticancer and immunomodulatory potential. However, anti-inflammatory, antimicrobial, antiviral, antidiabetic, hypocholesterolemic, antilipidemic, antioxidant, and neuroprotective properties are discussed. A significant overview of the gaps and research directions in synergistic effects, underlying mechanisms, structure-function correlation, clinical trials and scientific data is also given.
Collapse
Affiliation(s)
- Helena Araújo-Rodrigues
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Program of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.
| | - Ana Sofia Sousa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - João Bettencourt Relvas
- Program of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal.
| | - Freni K Tavaria
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
8
|
Trepa M, Sułkowska-Ziaja K, Kała K, Muszyńska B. Therapeutic Potential of Fungal Terpenes and Terpenoids: Application in Skin Diseases. Molecules 2024; 29:1183. [PMID: 38474692 DOI: 10.3390/molecules29051183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Terpenes and their derivatives comprise a diverse group of natural compounds with versatile medicinal properties. This article elucidates the general characteristics of fungal terpenes and terpenoids, encompassing their structure and biogenesis. The focal point of this work involves a comprehensive overview of these compounds, highlighting their therapeutic properties, mechanisms of action, and potential applications in treating specific skin conditions. Numerous isolated terpenes and terpenoids have demonstrated noteworthy anti-inflammatory and anti-microbial effects, rivalling or surpassing the efficacy of currently employed treatments for inflammation or skin infections. Due to their well-documented antioxidant and anti-cancer attributes, these compounds exhibit promise in both preventing and treating skin cancer. Terpenes and terpenoids sourced from fungi display the capability to inhibit tyrosinase, suggesting potential applications in addressing skin pigmentation disorders and cancers linked to melanogenesis dysfunctions. This paper further disseminates the findings of clinical and in vivo research on fungal terpenes and terpenoids conducted thus far.
Collapse
Affiliation(s)
- Monika Trepa
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Collegium Medicum, Jagiellonian University, 9 Medyczna St., 30-688 Kraków, Poland
- Doctoral School of Medical and Health Sciences, Collegium Medicum, Jagiellonian University, 16 Św. Łazarza St., 30-530 Kraków, Poland
| | - Katarzyna Sułkowska-Ziaja
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Collegium Medicum, Jagiellonian University, 9 Medyczna St., 30-688 Kraków, Poland
| | - Katarzyna Kała
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Collegium Medicum, Jagiellonian University, 9 Medyczna St., 30-688 Kraków, Poland
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Collegium Medicum, Jagiellonian University, 9 Medyczna St., 30-688 Kraków, Poland
| |
Collapse
|
9
|
Sun X, Shi Y, Shi D, Tu Y, Liu L. Biological Activities of Secondary Metabolites from the Edible-Medicinal Macrofungi. J Fungi (Basel) 2024; 10:144. [PMID: 38392816 PMCID: PMC10890728 DOI: 10.3390/jof10020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Macrofungi are well-known as edible-medicinal mushrooms, which belong mostly to Basidiomycota, with a few from Ascomycota. In recent years, macrofungi have been recognized as a rich resource of structurally unique secondary metabolites, demonstrating a wide range of bioactivities, including anti-tumor, antioxidant, anti-inflammatory, antimicrobial, antimalarial, neuro-protective, hypoglycemic, and hypolipidemic activities. This review highlights over 270 natural products produced by 17 families of macrofungi covering 2017 to 2023, including their structures, bioactivities, and related molecular mechanisms.
Collapse
Affiliation(s)
- Xiaoqi Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongxiao Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Tu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Fan J, Liu P, Zhao K, Chen HP. Three previously undescribed metabolites from Cordyceps cicadae JXCH-1, an entomopathogenic fungus. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:46. [PMID: 37919477 PMCID: PMC10622384 DOI: 10.1007/s13659-023-00410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
Three previously undescribed compounds, cordycicadione (1), cordycicadin F (2), and 7-hydroxybassiatin (3), were isolated from the cultures of Cordyceps cicadae JXCH1, an entomopathogenic fungus. Their structures and relative configurations were elucidated primarily by NMR spectroscopic analysis. The absolute configurations of 1 and 2 were determined by ECD calculations. Single-crystal X-ray diffraction method was adopted to determine the absolute configuration of 3. Compound 2 is a polycyclic polyketide with an unusual enol ether moiety and a spiro ring. The compounds obtained in this study were subjected to screening their inhibition against the proliferation of the human lung cancer cell line A549 and the production of nitric oxide in murine macrophages RAW264.7.
Collapse
Affiliation(s)
- Jing Fan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Pai Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Kuan Zhao
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - He-Ping Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
11
|
Sum WC, Ebada SS, Gonkhom D, Decock C, Teponno RB, Matasyoh JC, Stadler M. Two new lanostanoid glycosides isolated from a Kenyan polypore Fomitopsis carnea. Beilstein J Org Chem 2023; 19:1161-1169. [PMID: 37560136 PMCID: PMC10407780 DOI: 10.3762/bjoc.19.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
Chemical exploration of solid-state cultures of the polypore Fomitopsis carnea afforded two new C31 lanostane-type triterpenoid glycosides, forpiniosides B (1) and C (2) together with two known derivatives, namely 3-epipachymic acid (3) and (3α,25S)-3-O-malonyl-23-oxolanost-8,24(31)-dien-26-oic acid (4). The structures of the isolated compounds were established based on HRESIMS and extensive 1D and 2D NMR experiments. All the isolated compounds were assessed for their antimicrobial and cytotoxic activities. Among the tested compounds, forpinioside B (1) exhibited significant antimicrobial activity against Staphylococcus aureus and Bacillus subtilis at MIC values comparable to gentamycin and oxytetracycline (positive controls), respectively.
Collapse
Affiliation(s)
- Winnie Chemutai Sum
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Sherif S Ebada
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Didsanutda Gonkhom
- Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, 333 Muang, Chiang Rai, 57100 Thailand
| | - Cony Decock
- Mycothéque de l’ Universite Catholique de Louvain (BCCM/MUCL), Place Croix du Sud 3, B-1348 Louvain-la-Neuve, Belgium
| | - Rémy Bertrand Teponno
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- Department of Chemistry, Faculty of Science, University of Dschang, P. O. Box 67, Dschang, Cameroon
| | | | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
12
|
Dembitsky VM. Fascinating Furanosteroids and Their Pharmacological Profile. Molecules 2023; 28:5669. [PMID: 37570639 PMCID: PMC10419491 DOI: 10.3390/molecules28155669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
This review article delves into the realm of furanosteroids and related isoprenoid lipids derived from diverse terrestrial and marine sources, exploring their wide array of biological activities and potential pharmacological applications. Fungi, fungal endophytes, plants, and various marine organisms, including sponges, corals, molluscs, and other invertebrates, have proven to be abundant reservoirs of these compounds. The biological activities exhibited by furanosteroids and related lipids encompass anticancer, cytotoxic effects against various cancer cell lines, antiviral, and antifungal effects. Notably, the discovery of exceptional compounds such as nakiterpiosin, malabaricol, dysideasterols, and cortistatins has revealed their potent anti-tuberculosis, antibacterial, and anti-hepatitis C attributes. These compounds also exhibit activity in inhibiting protein kinase C, phospholipase A2, and eliciting cytotoxicity against cancer cells. This comprehensive study emphasizes the significance of furanosteroids and related lipids as valuable natural products with promising therapeutic potential. The remarkable biodiversity found in both terrestrial and marine ecosystems offers an extensive resource for unearthing novel biologically active compounds, paving the way for future drug development and advancements in biomedical research. This review presents a compilation of data obtained from various studies conducted by different authors who employed the PASS software 9.1 to evaluate the biological activity of natural furanosteroids and compounds closely related to them. The utilization of the PASS software in this context offers valuable advantages, such as screening large chemical libraries, identifying compounds for subsequent experimental investigations, and gaining insights into potential biological activities based on their structural features. Nevertheless, it is crucial to emphasize that experimental validation remains indispensable for confirming the predicted activities.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
13
|
Zhao ZZ, Ji BY, Wang ZZ, Si YY, Sun YJ, Chen H, Feng WS, Zheng XK, Liu JK. Lanostane triterpenoids with anti-proliferative and anti-inflammatory activities from medicinal mushroom Ganoderma lingzhi. PHYTOCHEMISTRY 2023; 213:113791. [PMID: 37454886 DOI: 10.1016/j.phytochem.2023.113791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Eight previously undescribed lanostane triterpenoids and nine known ones were identified from the fruiting bodies of Ganoderma lingzhi S.H. Wu, Y. Cao & Y.C. Dai. Their structures were determined based on spectroscopic data and quantum chemical calculations. Structurally, ganoderane GL-1, featuring a hydrogenated tetramethyls-phenanthraquinone, represents the first example in lanostane nor-triterpenoid group. Biologically, ganoderanes GL-2 and GL-3, distinguished by the presence of a rare "1,11-epoxy" moiety, exhibited significant inhibition against nitric oxide production induced by lipopolysaccharide in RAW264.7 macrophage cells, while ganoderanes GL-4 and GL-8 exhibited bifunctional activities of anti-proliferation and anti-inflammation.
Collapse
Affiliation(s)
- Zhen-Zhu Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Bao-Yu Ji
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zhen-Zhen Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ying-Ying Si
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yan-Jun Sun
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Hui Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wei-Sheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiao-Ke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
14
|
Llanaj X, Törős G, Hajdú P, Abdalla N, El-Ramady H, Kiss A, Solberg SØ, Prokisch J. Biotechnological Applications of Mushrooms under the Water-Energy-Food Nexus: Crucial Aspects and Prospects from Farm to Pharmacy. Foods 2023; 12:2671. [PMID: 37509764 PMCID: PMC10379137 DOI: 10.3390/foods12142671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Mushrooms have always been an important source of food, with high nutritional value and medicinal attributes. With the use of biotechnological applications, mushrooms have gained further attention as a source of healthy food and bioenergy. This review presents different biotechnological applications and explores how these can support global food, energy, and water security. It highlights mushroom's relevance to meet the sustainable development goals of the UN. This review also discusses mushroom farming and its requirements. The biotechnology review includes sections on how to use mushrooms in producing nanoparticles, bioenergy, and bioactive compounds, as well as how to use mushrooms in bioremediation. The different applications are discussed under the water, energy, and food (WEF) nexus. As far as we know, this is the first report on mushroom biotechnology and its relationships to the WEF nexus. Finally, the review valorizes mushroom biotechnology and suggests different possibilities for mushroom farming integration.
Collapse
Affiliation(s)
- Xhensila Llanaj
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Gréta Törős
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Péter Hajdú
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Neama Abdalla
- Plant Biotechnology Department, Biotechnology Research Institute, National Research Centre, 33 El Buhouth St., Dokki, Giza 12622, Egypt
| | - Hassan El-Ramady
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Attila Kiss
- Knowledge Utilization Center of Agri-Food Industry, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary
| | - Svein Ø Solberg
- Faculty of Applied Ecology, Agriculture and Biotechnology, Inland Norway University of Applied Sciences, 2401 Elverum, Norway
| | - József Prokisch
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| |
Collapse
|
15
|
A narrative review on inhibitory effects of edible mushrooms against malaria and tuberculosis-the world’s deadliest diseases. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Yazdani M, Barta A, Berkecz R, Agbadua OG, Ványolós A, Hohmann J. Pholiols E-K, lanostane-type triterpenes from Pholiota populnea with anti-inflammatory properties. PHYTOCHEMISTRY 2023; 205:113480. [PMID: 36279964 DOI: 10.1016/j.phytochem.2022.113480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/30/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Investigation of the chloroform and ethyl acetate extracts of the edible mushroom Pholiota populnea led to the isolation of eight triterpenes, the undescribed natural products pholiols E-K and the known (+)-clavaric acid. HRESIMS and 1D and 2D NMR spectroscopy were employed to determine the structures of the undescribed compounds. The NOESY spectra were used to assign the relative configurations of triterpenes. The isolated compounds were screened for their anti-inflammatory activity on cyclooxygenase (COX-1 and COX-2), and lipoxygenase (5-LOX and 15-LOX) inhibitory assays. Dose-response investigations revealed that lanostane derivatives exhibited moderate 5-LOX and COX-2 inhibitory activities, with pholiol F (IC50 194.5 μM against 5-LOX and 439.8 μM against COX-2) the most active among the isolated compounds. Our findings indicated that P. populnea is an abundant source of new bioactive lanostane-type triterpenes.
Collapse
Affiliation(s)
- Morteza Yazdani
- Institute of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary
| | - Anita Barta
- Institute of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, University of Szeged, Somogyi u. 4, 6720, Szeged, Hungary
| | | | - Attila Ványolós
- Department of Pharmacognosy, Semmelweis University, Üllői u. 26, H-1085, Budapest, Hungary
| | - Judit Hohmann
- Institute of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary; Interdisciplinary Centre for Natural Products, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary; ELKH-USZ Biologically Active Natural Products Research Group, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary.
| |
Collapse
|
17
|
Zhou L, Chen HP, Li X, Liu JK. Ganoaustralins A and B, Unusual Aromatic Triterpenes from the Mushroom Ganoderma australe. Pharmaceuticals (Basel) 2022; 15:ph15121520. [PMID: 36558971 PMCID: PMC9785556 DOI: 10.3390/ph15121520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Two triterpenes, ganoaustralins A (1) and B (2), featuring unprecedented 6/6/6/5/6 scaffolds were isolated from the fruiting bodies of the mushroom Ganoderma australe. The structures were determined by extensive NMR and HRESIMS spectroscopic analysis. The absolute configuration of the C-25 in ganoaustralin A was assigned by the phenylglycine methyl ester (PGME) method. The relative and absolute configurations of the polycyclic backbones were determined by NMR and ECD calculations, respectively. The plausible biosynthetic pathways of ganoaustralins A and B were proposed. Ganoaustralin B showed weak inhibition against β-secretase 1.
Collapse
Affiliation(s)
- Lin Zhou
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - He-Ping Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xinyang Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Correspondence: (X.L.); or (J.-K.L.)
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
- Correspondence: (X.L.); or (J.-K.L.)
| |
Collapse
|
18
|
Wang QY, Chen HP, Wu KY, Li X, Liu JK. Antibacterial and β-amyloid precursor protein-cleaving enzyme 1 inhibitory polyketides from the fungus Aspergillus chevalieri. Front Microbiol 2022; 13:1051281. [PMID: 36483193 PMCID: PMC9722750 DOI: 10.3389/fmicb.2022.1051281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/07/2022] [Indexed: 11/04/2023] Open
Abstract
One new prenylated benzenoid, (±)-chevalieric acid (1), and four new anthraquinone derivatives, (10S,12S)-, (10S,12R)-, (10R,12S)-, and (10R,12R)-chevalierone (2-5), together with ten previously described compounds (6-15), were isolated from the fungus Aspergillus chevalieri (L. Mangin) Thom and Church. The structures of new compounds were elucidated by extensive 1D and 2D nuclear magnetic resonance (NMR), and HRESIMS spectroscopic analysis. The absolute configurations of 2-5 were determined by experimental and calculated electronic circular dichroism (ECD) and DP4+ analysis. Compound 10 showed weak cytotoxicity against human lung cancer cell line A549 with IC50 39.68 μM. Compounds 2-5 exhibited antibacterial activities against the methicillin-resistant Staphylococcus aureus (MRSA) and opportunistic pathogenic bacterium Pseudomonas aeruginosa. The MIC value for compound 6 against MRSA is 44.02 μM. Additionally, Compounds 8, 10, 11 showed weak to moderate inhibitory activities against the β-secretase (BACE1), with IC50 values of 36.1, 40.9, 34.9 μM, respectively.
Collapse
Affiliation(s)
- Qing-Yuan Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - He-Ping Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Kai-Yue Wu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Xinyang Li
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| |
Collapse
|
19
|
Moussa AY, Fayez S, Xiao H, Xu B. New insights into antimicrobial and antibiofilm effects of edible mushrooms. Food Res Int 2022; 162:111982. [DOI: 10.1016/j.foodres.2022.111982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/20/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
|
20
|
Georgiev YN, Vasicek O, Dzhambazov B, Batsalova TG, Denev PN, Dobreva LI, Danova ST, Simova SD, Wold CW, Ognyanov MH, Paulsen BS, Krastanov AI. Structural Features and Immunomodulatory Effects of Water-Extractable Polysaccharides from Macrolepiota procera (Scop.) Singer. J Fungi (Basel) 2022; 8:848. [PMID: 36012836 PMCID: PMC9410249 DOI: 10.3390/jof8080848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022] Open
Abstract
Macrolepiota procera (MP) is an edible mushroom used in the treatment of diabetes, hypertension and inflammation. However, the structure and biological effects of its polysaccharides (PSs) are unclear. This study investigates the structural features of a PS complex from MP (MP-PSC), its immunomodulatory activities and effects on probiotic and pathogenic bacteria. MP-PSC was obtained by boiling water, and PSs were characterized by 2D NMR spectroscopy. The immunomodulatory effects on blood and derived neutrophils, other leukocytes, and murine macrophages were studied by flow cytometry, chemiluminescence, spectrophotometry, and ELISA. The total carbohydrate content of MP-PSC was 74.2%, with glycogen occupying 36.7%, followed by β-D-glucan, α-L-fuco-2-(1,6)-D-galactan, and β-D-glucomannan. MP-PSC (200 μg/mL) increased the number of CD14+ monocyte cells in the blood, after ex vivo incubation for 24 h. It dose-dependently (50-200 μg/mL) activated the spontaneous oxidative burst of whole blood phagocytes, NO, and interleukin 6 productions in RAW264.7 cells. MP-PSC exhibited a low antioxidant activity and failed to suppress the oxidative burst and NO generation, induced by inflammatory agents. It (2.0%, w/v) stimulated probiotic co-cultures and hindered the growth and biofilm development of Escherichia coli, Streptococcus mutans and Salmonella enterica. MP PSs can be included in synbiotics to test their immunostimulating effects on compromised immune systems and gut health.
Collapse
Affiliation(s)
- Yordan Nikolaev Georgiev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| | - Ondrej Vasicek
- Department of Biophysics of Immune System, Institute of Biophysics, Czech Academy of Sciences, 135 Kralovopolska, 612 65 Brno, Czech Republic
| | - Balik Dzhambazov
- Department of Developmental Biology, Plovdiv University Paisii Hilendarski, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria
| | | | - Petko Nedyalkov Denev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| | - Lili Ivaylova Dobreva
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria
| | - Svetla Trifonova Danova
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria
| | - Svetlana Dimitrova Simova
- Bulgarian NMR Centre, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 9 Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria
| | | | - Manol Hristov Ognyanov
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| | - Berit Smestad Paulsen
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Albert Ivanov Krastanov
- Department of Biotechnology, University of Food Technologies, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria
| |
Collapse
|
21
|
Özgür A, Kaplan Ö, Gökşen Tosun N, Türkekul İ, Gökçe İ. Green synthesis of silver nanoparticles using Macrolepiota procera extract and investigation of their HSP27, HSP70, and HSP90 inhibitory potentials in human cancer cells. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2089303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Aykut Özgür
- Department of Veterinary Medicine, Laboratory and Veterinary Health Program, Artova Vocational School, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Özlem Kaplan
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Nazan Gökşen Tosun
- Department of Biomaterials and Tissue Engineering, Institute of Graduate Studies, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - İbrahim Türkekul
- Department of Biology, Faculty of Arts and Sciences, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - İsa Gökçe
- Department of Bioengineering, Faculty of Engineering and Architecture, Tokat Gaziosmanpaşa University, Tokat, Turkey
| |
Collapse
|
22
|
Wang W, Li X, Zhang Y, Zhang J, Jia L. Mycelium polysaccharides of Macrolepiota procera alleviate reproductive impairments induced by nonylphenol. Food Funct 2022; 13:5794-5806. [PMID: 35543179 DOI: 10.1039/d2fo00680d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nonylphenol (NP) exposure has become a crucial inducement of male reproductive disorders in the world. Therefore, it is urgent to seek solutions to alleviate the toxicity of NP. This study was oriented toward studying the protective effects of Macrolepiota procera mycelium polysaccharides (MMP) on NP-induced reproductive impairments. After NP administration, declined sperm amounts and testis index, increased the deformity rate of sperms, aberrant hormone secretion and testicular pathological injury were observed, corporately leading to reproductive capacity attenuation. Importantly, MMP significantly reversed the foregoing changes in NP-treated mice. Notably, it has been observed that the MMP therapy remarkably improved oxidative stress, apoptosis, autophagy and inflammatory responses, and suppressed the Akt/mTOR signaling pathway in testicular tissues. These results manifested that MMP might be a promising treatment strategy for ameliorating the biotoxicity of NP.
Collapse
Affiliation(s)
- Wenshuai Wang
- College of Life Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, PR China.
| | - Xiaoxu Li
- College of Life Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, PR China.
| | - Yaohan Zhang
- College of Life Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, PR China.
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, PR China.
| | - Le Jia
- College of Life Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, PR China.
| |
Collapse
|
23
|
Adamska I, Tokarczyk G. Possibilities of Using Macrolepiota procera in the Production of Prohealth Food and in Medicine. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:5773275. [PMID: 35655802 PMCID: PMC9153936 DOI: 10.1155/2022/5773275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022]
Abstract
Parasol mushroom (Macrolepiota procera) is a fungus that is often included in the menu of people looking for replacements for meat products and at the same time appreciating mushrooms. Its fruiting bodies are known for their delicate flavor and aroma. The aim of the publication was to analyze the latest information (mainly from 2015 to 2021) on the chemical composition of the M. procera fruiting bodies and their antioxidant properties. The data on other health-promoting properties and the possibilities of using these mushrooms in medicine were also compiled and summarized, taking into account their antibacterial, antioxidant, anti-inflammatory, regulatory, antidepressant, and anticancer effects. Moreover, the influence of various forms of processing and conservation of raw mushroom on its health-promoting properties was discussed. The possibilities of controlling the quality of both the raw material and the prepared dishes were also discussed. Such an opportunity is offered by the possibility of modifying the growing conditions, in particular, the appropriate selection of the substrate for mushroom cultivation and the deliberate enrichment of its composition with the selected substances, which will then be incorporated into the fungus organism.
Collapse
Affiliation(s)
- Iwona Adamska
- Department of Fish, Plant and Gastronomy Technology, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Grzegorz Tokarczyk
- Department of Fish, Plant and Gastronomy Technology, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| |
Collapse
|
24
|
Zara R, Rasul A, Sultana T, Jabeen F, Selamoglu Z. Identification of Macrolepiota procera extract as a novel G6PD inhibitor for the treatment of lung cancer. Saudi J Biol Sci 2022; 29:3372-3379. [PMID: 35865797 PMCID: PMC9295138 DOI: 10.1016/j.sjbs.2022.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/17/2022] [Accepted: 02/13/2022] [Indexed: 01/23/2023] Open
Abstract
Tumor metabolism, an emerging hallmark of cancer, is characterized by aberrant expression of enzymes from various metabolic pathways including glycolysis and PPP (pentose phosphate pathway). Glucose 6 phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD), oxidative carboxylases of PPP, have been reported to accomplish different biosynthetic and energy requirements of cancer cells. G6PD and 6PGD have been proposed as potential therapeutic targets for cancer therapy during recent years due to their overexpression in various cancers. Here, we have employed enzymatic assay based screening using in-house G6PD and 6PGD assay protocols for the identification of mushroom extracts which could inhibit G6PD or 6PGD enzymatic activity for implications in cancer therapy. For the fulfillment of the objectives of present study, nine edible mushrooms were subjected to green extraction for preparation of ethanolic extracts. 6xhis-G6PD and pET-28a-h6PGD plasmids were expressed in BL21-DE3 E. coli cells for the expression and purification of protein of interests. Using purified proteins, in house enzymatic assay protocols were established. The preliminary screening identified two extracts (Macrolepiota procera and Terfezia boudieri) as potent and selective G6PD inhibitors, while no extract was found highly active against 6PGD. Further, evaluation of anticancer potential of mushroom extracts against lung cancer cells revealed Macrolepiota procera as potential inhibitor of cancer cell proliferation with IC50 value of 6.18 μg/ml. Finally, screening of M. procera-derived compounds against G6PD via molecular docking has identified paraben, quercetin and syringic acid as virtual hit compounds possessing good binding affinity with G6PD. The result of present study provides novel findings for possible mechanism of action of M. procera extract against A549 via G6PD inhibition suggesting that M. procera might be of therapeutic interest for lung cancer treatment.
Collapse
Affiliation(s)
- Rabia Zara
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| | - Tayyaba Sultana
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| | - Zeliha Selamoglu
- Department of Medical Biology, Nigde Omer Halisdemir University, 51100 Nigde, Turkey
| |
Collapse
|
25
|
Edible Mushrooms for Sustainable and Healthy Human Food: Nutritional and Medicinal Attributes. SUSTAINABILITY 2022. [DOI: 10.3390/su14094941] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Global food production faces many challenges, including climate change, a water crisis, land degradation, and desertification. These challenges require research into non-traditional sources of human foods. Edible mushrooms are considered an important next-generation healthy food source. Edible mushrooms are rich in proteins, dietary fiber, vitamins, minerals, and other bioactive components (alkaloids, lactones, polysaccharides, polyphenolic compounds, sesquiterpenes, sterols, and terpenoids). Several bioactive ingredients can be extracted from edible mushrooms and incorporated into health-promoting supplements. It has been suggested that several human diseases can be treated with extracts from edible mushrooms, as these extracts have biological effects including anticancer, antidiabetic, antiviral, antioxidant, hepatoprotective, immune-potentiating, and hypo-cholesterolemic influences. The current study focuses on sustainable approaches for handling edible mushrooms and their secondary metabolites, including biofortification. Comparisons between edible and poisonous mushrooms, as well as the common species of edible mushrooms and their different bioactive ingredients, are crucial. Nutritional values and the health benefits of edible mushrooms, as well as different biomedical applications, have been also emphasized. Further research is needed to explore the economic sustainability of different medicinal mushroom bioactive compound extracts and their potential applications against emerging diseases such as COVID-19. New approaches such as nano-biofortification are also needed to supply edible mushrooms with essential nutrients and/or to increase their bioactive ingredients.
Collapse
|
26
|
Chen HY, Lei JY, Li SL, Guo LQ, Lin JF, Wu GH, Lu J, Ye ZW. Progress in biological activities and biosynthesis of edible fungi terpenoids. Crit Rev Food Sci Nutr 2022; 63:7288-7310. [PMID: 35238261 DOI: 10.1080/10408398.2022.2045559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The edible fungi have both edible and medicinal functions, in which terpenoids are one of the most important active ingredients. Terpenoids possess a wide range of biological activities and show great potential in the pharmaceutical and healthcare industries. In this review, the diverse biological activities of edible fungi terpenoids were summarized with emphasis on the mechanism of anti-cancer and anti-inflammation. Subsequently, this review focuses on advances in knowledge and understanding of the biosynthesis of terpenoids in edible fungi, especially in the generation of sesquiterpenes, diterpenes, and triterpenes. This paper is aim to provide an overview of biological functions and biosynthesis developed for utilizing the terpenoids in edible fungi.
Collapse
Affiliation(s)
- Hai-Ying Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jin-Yu Lei
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Shu-Li Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Li-Qiong Guo
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jun-Fang Lin
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Guang-Hong Wu
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Jun Lu
- Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Zhi-Wei Ye
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
27
|
Dai Q, Zhang FL, Li ZH, He J, Feng T. Immunosuppressive Sesquiterpenoids from the Edible Mushroom Craterellus odoratus. J Fungi (Basel) 2021; 7:jof7121052. [PMID: 34947034 PMCID: PMC8707212 DOI: 10.3390/jof7121052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022] Open
Abstract
The aim of this work was to comprehensively understand the chemical constituents of the edible mushroom Craterellus ordoratus and their bioactivity. A chemical investigation on this mushroom led to the isolation of 23 sesquiterpenoids including eighteen previously undescribed bergamotane sesquiterpenes, craterodoratins A–R (1–18), and one new victoxinine derivative, craterodoratin S (19). The new structures were elucidated by detailed interpretation of spectrometric data, theoretical nuclear magnetic resonance (NMR) and electronic circular dichroism (ECD) calculations, and single-crystal X-ray crystallographic analysis. Compounds 1 and 2 possess a ring-rearranged carbon skeleton. Compounds 3, 10, 12–15, 19, 20 and 23 exhibit potent inhibitory activity against the lipopolysaccharide (LPS)-induced proliferation of B lymphocyte cells with the IC50 values ranging from 0.67 to 22.68 μM. Compounds 17 and 20 inhibit the concanavalin A (ConA)-induced proliferation of T lymphocyte cell with IC50 values of 31.50 and 0.98 μM, respectively. It is suggested that C. ordoratus is a good source for bergamotane sesquiterpenoids, and their immunosuppressive activity was reported for the first time. This research is conducive to the further development and utilization of C. ordoratus.
Collapse
Affiliation(s)
- Quan Dai
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Q.D.); (F.-L.Z.); (Z.-H.L.)
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Fa-Lei Zhang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Q.D.); (F.-L.Z.); (Z.-H.L.)
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Zheng-Hui Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Q.D.); (F.-L.Z.); (Z.-H.L.)
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Juan He
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Q.D.); (F.-L.Z.); (Z.-H.L.)
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
- Correspondence: (J.H.); (T.F.)
| | - Tao Feng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Q.D.); (F.-L.Z.); (Z.-H.L.)
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
- Correspondence: (J.H.); (T.F.)
| |
Collapse
|
28
|
Çayan F, Tel‐Çayan G, Deveci E, Duru ME. A comprehensive study on phenolic compounds and bioactive properties of five mushroom species via chemometric approach. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fatih Çayan
- Department of Chemistry and Chemical Processing Technologies Muğla Vocational School Muğla Sıtkı Koçman University Muğla Turkey
| | - Gülsen Tel‐Çayan
- Department of Chemistry and Chemical Processing Technologies Muğla Vocational School Muğla Sıtkı Koçman University Muğla Turkey
| | - Ebru Deveci
- Department of Chemistry and Chemical Processing Technology Technical Sciences Vocational School Konya Technical University Konya Turkey
| | - Mehmet Emin Duru
- Department of Chemistry Faculty of Sciences Muğla Sıtkı Koçman University Muğla Turkey
| |
Collapse
|
29
|
Anti-inflammatory effects of Ganoderma lucidum sterols via attenuation of the p38 MAPK and NF-κB pathways in LPS-induced RAW 264.7 macrophages. Food Chem Toxicol 2021; 150:112073. [DOI: 10.1016/j.fct.2021.112073] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/18/2022]
|
30
|
Jiang W, Rixiati Y, Huang H, Shi Y, Huang C, Jiao B. Asperolide A prevents bone metastatic breast cancer via the PI3K/AKT/mTOR/c-Fos/NFATc1 signaling pathway. Cancer Med 2020; 9:8173-8185. [PMID: 32976685 PMCID: PMC7643645 DOI: 10.1002/cam4.3432] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022] Open
Abstract
Background Breast cancer is the leading cause of death among women with malignant tumors worldwide. Bone metastasis is the main factor affecting the prognosis of breast cancer. Therefore, both antitumor and anti‐breast‐cancer‐induced osteolysis agents are urgently needed. Methods We examined the effect of Asperolide A (AA), a marine‐derived agent, on osteolysis and RANKL‐induced phosphoinositide 3‐kinase (PI3K)/AKT/mTOR/c‐FOS/nuclear factor‐activated T cell 1 (NFATc1) pathway activation, F‐actin ring formation, and reactive oxygen species (ROS) generation in vitro. We evaluated AA effect on breast cancer MDA‐MB‐231 and MDA‐MB‐436 cells in vitro through CCK8 assay, wound healing assay, transwell assay, Annexin V‐FITC/PI staining for cell apoptosis, and cell cycle assay. Furthermore, we assessed the effect of AA in vivo using a breast cancer‐induced bone osteolysis nude mouse model, followed by micro‐computed tomography, tartrate‐resistant acid phosphatase staining, and hematoxylin and eosin staining. Results Asperolide A inhibited osteoclast formation and differentiation, bone resorption, F‐actin belt formation, ROS activity, and osteoclast‐specific gene and protein expressions and prevented PI3K/AKT/mTOR/c‐FOS/NFATc1 signaling activation in a dose‐dependent manner in vitro. AA also inhibited breast cancer growth and breast cancer‐induced bone osteolysis by reducing osteoclast formation and function and inactivated PI3K/AKT/mTOR signaling in vivo. Conclusions Our study demonstrated that AA suppressed bone metastatic breast cancer. These findings indicate AA as a potential, novel curative drug candidate for patients with bone metastatic breast cancer.
Collapse
Affiliation(s)
- Wenli Jiang
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Navy Medical University, Shanghai, China
| | | | - Hao Huang
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, China
| | - YiJun Shi
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Navy Medical University, Shanghai, China
| | - Caiguo Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Navy Medical University, Shanghai, China
| | - Binghua Jiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Navy Medical University, Shanghai, China
| |
Collapse
|
31
|
Cyclic dipeptides with peroxy groups from the fruiting bodies of the edible mushroom Tricholoma matsutake. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Antioxidant and anti-tumour activity of triterpenoid compounds isolated from Morchella mycelium. Arch Microbiol 2020; 202:1677-1685. [PMID: 32285166 DOI: 10.1007/s00203-020-01876-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/20/2020] [Accepted: 04/01/2020] [Indexed: 12/26/2022]
Abstract
Triterpenoid compounds are important bioactivity materials. Morchella is an abundant medicinal fungi found worldwide. In this study, we optimised the isolation and purification of triterpenoid compounds from Morchella mycelium fermentation. The results showed that the triterpenoid compounds yield was 35.22 mg/g, and we also identified two triterpenoid compounds using high-performance liquid chromatography. In addition, we evaluated the anti-tumour and antioxidant activity of the products, and the results showed that triterpenoid compounds from Morchella mycelium fermentation showed good bioactivity. The IC50 values of four cancer cell lines treated with the triterpenoid compounds for 48 h were 7.20, 14.96, 4.41, and 13.43 mg/mL, respectively. Morphological changes associated with the apoptosis of PC-3 cells were observed using confocal scanning laser microscopy after treatment with triterpenoid compounds for 48 and 72 h. The triterpenoid compounds also exhibited DPPH radical, hydroxyl, and ABTS-free radical scavenging activities in vitro. These results suggest that triterpenoid compounds from Morchella mycelium fermentation, which are found in functional foods and used in the field of pharmacology, might be excellent products for the treatment of cancer and age-related illnesses.
Collapse
|
33
|
Wang W, Yang YP, Tasneem S, Daniyal M, Zhang L, Jia YZ, Jian YQ, Li B. Lanostane tetracyclic triterpenoids as important sources for anti-inflammatory drug discovery. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2020. [DOI: 10.4103/wjtcm.wjtcm_17_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
34
|
Han KY, Wu X, Jiang C, Huang R, Li ZH, Feng T, Chen HP, Liu JK. Three New Compounds from the Actinomycete Actinocorallia aurantiaca. NATURAL PRODUCTS AND BIOPROSPECTING 2019; 9:351-354. [PMID: 31529277 PMCID: PMC6814668 DOI: 10.1007/s13659-019-00217-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 09/10/2019] [Indexed: 05/05/2023]
Abstract
Aurantiadioic acids A (1) and B (2), two new furan-containing polyketides, and aurantoic acid A (3), a new natural product, were isolated from the liquid fermentation of the sika deer dung-derived actinomycete Actinocorallia aurantiaca. The structures of the new compounds were established by extensive spectroscopic methods, including 1D & 2D NMR, HRESIMS spectroscopic analysis. The absolute configuration of 3 was assigned by comparison of the specific optical rotations with the reported derivatives. Biological activity evaluations suggested that compounds 1-3 showed weak inhibition on NO production in the murine monocytic RAW 264.7 macrophages with IC50 values of 35.8, 41.8, 45.2 μM, respectively. Compound 3 showed weak inhibition on influenza A virus (A/PuertoRico/8/1934, H1N1) with an EC50 value of 35.9 μM, and a selective index higher than 13.3.
Collapse
Affiliation(s)
- Kai-Yue Han
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China
| | - Xing Wu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China
| | - Chenglin Jiang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| | - Rong Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China
| | - Zheng-Hui Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China
| | - Tao Feng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China
| | - He-Ping Chen
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China.
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
35
|
Feng T, Gan XQ, Zhao YL, Zhang SB, Chen HP, He J, Zheng YS, Sun H, Huang R, Li ZH, Liu JK. Tricholopardins A and B, Anti-inflammatory Terpenoids from the Fruiting Bodies of Tricholoma pardinum. JOURNAL OF NATURAL PRODUCTS 2019; 82:45-50. [PMID: 30629435 DOI: 10.1021/acs.jnatprod.8b00460] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Two new Tricholoma terpenoids, tricholopardins A and B, were isolated from the fruiting bodies of the basidiomycetes Tricholoma pardinum. Their structures were elucidated by spectroscopic methods, as well as electronic circular dichroism and optical rotatory dispersion calculations. Tricholopardin A potently inhibited nitric oxide production in lipopolysaccharide-induced RAW264.7 macrophages with an IC50 of 0.08 μM. Its anti-inflammatory effects on three inflammatory mediators were also evaluated. A plausible biosynthetic pathway for these products is discussed.
Collapse
Affiliation(s)
- Tao Feng
- School of Pharmaceutical Sciences , South-Central University for Nationalities , Wuhan 430074 , People's Republic of China
| | - Xiao-Qing Gan
- School of Pharmaceutical Sciences , South-Central University for Nationalities , Wuhan 430074 , People's Republic of China
| | - Yun-Li Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany , Kunming 650201 , People's Republic of China
| | - Shuai-Bing Zhang
- School of Pharmaceutical Sciences , South-Central University for Nationalities , Wuhan 430074 , People's Republic of China
| | - He-Ping Chen
- School of Pharmaceutical Sciences , South-Central University for Nationalities , Wuhan 430074 , People's Republic of China
| | - Juan He
- School of Pharmaceutical Sciences , South-Central University for Nationalities , Wuhan 430074 , People's Republic of China
| | - Yong-Sheng Zheng
- School of Pharmaceutical Sciences , South-Central University for Nationalities , Wuhan 430074 , People's Republic of China
| | - Huan Sun
- School of Pharmaceutical Sciences , South-Central University for Nationalities , Wuhan 430074 , People's Republic of China
| | - Rong Huang
- School of Pharmaceutical Sciences , South-Central University for Nationalities , Wuhan 430074 , People's Republic of China
| | - Zheng-Hui Li
- School of Pharmaceutical Sciences , South-Central University for Nationalities , Wuhan 430074 , People's Republic of China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences , South-Central University for Nationalities , Wuhan 430074 , People's Republic of China
| |
Collapse
|