1
|
Özdemir AY, Çetin EA, Novotný J, Rudajev V. Daidzein effectively mitigates amyloid-β-induced damage in SH-SY5Y neuroblastoma cells and C6 glioma cells. Biomed Pharmacother 2025; 187:118157. [PMID: 40359691 DOI: 10.1016/j.biopha.2025.118157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/15/2025] Open
Abstract
Alzheimer's disease (AD) is the most debilitating form of dementia, characterized by amyloid-β (Aβ)-related toxic mechanisms such as oxidative stress, neuroinflammation, and mitochondrial dysfunction. The development of AD is influenced by environmental factors linked to lifestyle, including physical and mental inactivity, diet, and smoking, all of which have been associated with the severity of the disease and Aβ-related pathology. In this study, we used differentiated SH-SY5Y neuroblastoma and C6 glioma cells to investigate the neuroprotective and anti-inflammatory effects of daidzein, a naturally occurring isoflavone, in the context of Aβ oligomer-related toxicity. We observed that pre-treatment with daidzein prevented Aβ-induced cell viability loss, increased oxidative stress, and mitochondrial membrane potential decline in both SH-SY5Y and C6 cells. Furthermore, daidzein application reduced elevated levels of MAPK pathway proteins, pro-inflammatory molecules (cyclooxygenase-2 and IL-1β), and pyroptosis markers, including caspase-1 and gasdermin D, all of which were increased by Aβ exposure. These findings strongly suggest that daidzein alleviates inflammation and toxicity caused by Aβ oligomers. Our results indicate that daidzein could be a potential therapeutic agent for AD and other Aβ-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Alp Yiğit Özdemir
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, Prague 2 12844, Czech Republic
| | - Esin Akbay Çetin
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, Prague 2 12844, Czech Republic; Department of Biology, Hacettepe University, Ankara 06800, Turkey
| | - Jiří Novotný
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, Prague 2 12844, Czech Republic
| | - Vladimír Rudajev
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, Prague 2 12844, Czech Republic.
| |
Collapse
|
2
|
Wei Y, Pan S, Zhou Z, Yang Y, Liu T, Chen J, Xie Y. Remimazolam attenuated lipopolysaccharide-induced behavioral deficits and neuronal injury via activation of the Nrf2 pathway. Sci Rep 2025; 15:13784. [PMID: 40258855 PMCID: PMC12012220 DOI: 10.1038/s41598-025-95379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/20/2025] [Indexed: 04/23/2025] Open
Abstract
Sepsis is a severe disorder that is always accompanied by brain injury and dysfunction. This study aimed to evaluate the effects of remimazolam, a new ultra-short-acting sedative, on LPS-induced neuronal injury, and the role of Nrf2 signaling pathway involved. LPS was administered to Sprague-Dawley rats in the presence or absence of remimazolam. Then the behavior analysis was performed by using the Morris Water Maze and Open Field Test. The levels of the Superoxide Dismutase (SOD) and Malondialdehyde (MDA), the neuronal apoptosis, and the expression of Nrf2, HO-1, and Bcl-2 were detected in the hippocampus. In vitro, primary hippocampal neurons were exposed to LPS with or without remimazolam administration. Then the cell viability, apoptosis, mitochondrial membrane potential (MMP), and intracellular ROS were measured to assess oxidative stress and neuron injury. The expression of Nrf2, and HO-1 was also determined by Western blotting. LPS triggered neuroapoptosis, evoked oxidative stress, and inhibited the expression of Nrf2, and HO-1 in rat hippocampus, which were attenuated by remimazolam treatment. Additionally, remimazolam alleviated LPS-induced cognitive dysfunction and anxiety‑like behaviors in rats. In vitro, remimazolam could ameliorate neuronal damage, decrease the production of ROS, and increase the MMP of neurons exposed to LPS, which was accompanied by an increase in the expression of Nrf2 and HO-1. However, ML385 (an Nrf2 inhibitor) reversed the beneficial effects of remimazolam on primary hippocampal neurons. These findings suggest that remimazolam exerted protective effects on LPS-induced hippocampal neuronal injury in vivo and in vitro, which was associated with activation of Nrf2 signaling. Further experiments are needed to fully explore the exact molecular mechanism of Nrf2 upstream and downstream of remimazolam and its effects on distinct brain regions, which will help to better understand the neural effects of remimazolam.
Collapse
Affiliation(s)
- Yi Wei
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sining Pan
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhan Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ying Yang
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tianxiao Liu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
3
|
Tian B, Ye P, Zhou X, Hu J, Wang P, Cai M, Yang K, Sun P, Zou X. Gallic Acid Ameliorated Chronic DSS-Induced Colitis Through Gut Microbiota Modulation, Intestinal Barrier Improvement, and Inflammation. Mol Nutr Food Res 2025:e70024. [PMID: 40123223 DOI: 10.1002/mnfr.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/05/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
SCOPE Gallic acid (GA) is recognized for its purported antiinflammatory properties. GA has been demonstrated to prevent and alleviate the symptoms of chronic colitis through the modulation of the gut microbiota, improvement of the intestinal barrier, and reduction of inflammation. METHODS AND RESULTS In order to determine the mechanism by which GA exerts its protective effect against chronic colitis, mice were induced by dextran sulfate sodium (DSS). The reduction in the disease activity index by 25% and the decrease in colon tissue damage indicated that 36 days of GA intervention alleviated chronic DSS-induced colitis symptoms. GA was observed to mitigate weight loss by 2.5% and the shortening of colon by 17.3%, and to diminish the expression of pivotal proteins within the TLR4/nuclear factor κB (NF-κB) signaling cascades, consequently lowering the generation of inflammatory cytokines. Furthermore, GA effectively corrected the gut microbiota imbalance, increased the content of short-chain fatty acids (SCFAs), which in turn suppressed inflammation, and enhanced tight junction protein expression, thereby strengthening the intestinal barrier. CONCLUSION GA has the capacity to enhance the efficacy of chronic colitis through a multifaceted mechanism, influencing the gut microbiota, intestinal barrier function, and inflammatory processes. The findings highlight the potential of GA as a preventative strategy for chronic colitis.
Collapse
Affiliation(s)
- Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
- Eco-Industrial Innovation Institute of Zhejiang University of Technology, Quzhou, PR China
| | - Peng Ye
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
- Eco-Industrial Innovation Institute of Zhejiang University of Technology, Quzhou, PR China
| | - Xue Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
| | - Jiangning Hu
- Zhejiang Institute of Modern TCM and Natural Medicine Co., Ltd, Hangzhou, PR China
| | - Peiyi Wang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
| | - Ming Cai
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
- Eco-Industrial Innovation Institute of Zhejiang University of Technology, Quzhou, PR China
| | - Xianguo Zou
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
| |
Collapse
|
4
|
Nakashima Y, Hibi T, Urakami M, Hoshino M, Morii T, Sugawa H, Katsuta N, Tominaga Y, Takahashi H, Otomo A, Hadano S, Yasuda S, Hokamura A, Imai S, Kinoshita H. Soymilk yogurt prepared using Pediococcus pentosaceus TOKAI 759m ameliorates cognitive function through gut microbiota modulation in high-fat diet mice. Curr Res Food Sci 2025; 10:100993. [PMID: 40026903 PMCID: PMC11869912 DOI: 10.1016/j.crfs.2025.100993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/15/2025] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
Recent studies have confirmed that obesity leads to neuroinflammation and cognitive decline. This study aimed to examine whether soymilk yogurt prepared using Pediococcus pentosaceus TOKAI 759m could prevent cognitive decline and neuroinflammation progression in mice fed a high-fat diet (HFD). C57BL/6NJcl male mice were grouped according to the following dietary interventions and monitored for 15 weeks: (1) normal control diet, (2) HFD, (3) HFD with soymilk (SM), (4) HFD with soymilk yogurt (SY), and (5) HFD with bacterial cells of the starter strain (BC). The levels of inflammatory cytokines in serum and hippocampus were measured. Compared to the HFD group, the SY group scored higher in the novel object recognition test and exhibited lower levels of Interleukin-6 (IL-6) and Tumor Necrosis Factor (TNF)-α in the hippocampus. However, the SM and BC groups did not show these significant changes. Proteomic analysis of the hippocampus revealed three enriched protein clusters in the SY group: synaptic proteins, glycolysis, and mitochondrial ATP formation. Fecal samples were also collected to measure the proportion of gut microbiota using 16S rRNA analysis. Interestingly, the proportion of butyrate-producing bacteria, such as Clostridium and Akkermansia, tended to be higher in the SY group than in the HFD group. An additional in vitro study revealed that the components of SY, such as daidzein, genistein, and adenine, could decrease inflammatory cytokine levels in microglial cells. In conclusion, soymilk yogurt prepared using P. pentosaceus TOKAI 759m may modulate gut microbiota and prevent neuroinflammation, thereby leading to a possible improvement in cognitive function.
Collapse
Affiliation(s)
- Yuki Nakashima
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- JSPS Research Fellowship for Young Scientists, Tokyo, 102-0083, Japan
| | - Tomoyuki Hibi
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
| | - Masafumi Urakami
- School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Maki Hoshino
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Taiki Morii
- School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Hikari Sugawa
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Nana Katsuta
- Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
| | - Yuki Tominaga
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Himeno Takahashi
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
| | - Asako Otomo
- Molecular Neuropathobiology Laboratory, Department of Physiology, Tokai University School of Medicine, Isehara, Kanagawa, 259- 1193, Japan
| | - Shinji Hadano
- Molecular Neuropathobiology Laboratory, Department of Physiology, Tokai University School of Medicine, Isehara, Kanagawa, 259- 1193, Japan
| | - Shin Yasuda
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Ayaka Hokamura
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Saki Imai
- Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Hideki Kinoshita
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
- School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- Probio Co., Ltd., 1330-1 Futa, Nishihara-mura, Aso-gun, Kumamoto, Japan
| |
Collapse
|
5
|
Wang K, Wang Y, Zhang T, Chang B, Fu D, Chen X. The Role of Intravenous Anesthetics for Neuro: Protection or Toxicity? Neurosci Bull 2025; 41:107-130. [PMID: 39153174 PMCID: PMC11748649 DOI: 10.1007/s12264-024-01265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/15/2024] [Indexed: 08/19/2024] Open
Abstract
The primary intravenous anesthetics employed in clinical practice encompass dexmedetomidine (Dex), propofol, ketamine, etomidate, midazolam, and remimazolam. Apart from their established sedative, analgesic, and anxiolytic properties, an increasing body of research has uncovered neuroprotective effects of intravenous anesthetics in various animal and cellular models, as well as in clinical studies. However, there also exists conflicting evidence pointing to the potential neurotoxic effects of these intravenous anesthetics. The role of intravenous anesthetics for neuro on both sides of protection or toxicity has been rarely summarized. Considering the mentioned above, this work aims to offer a comprehensive understanding of the underlying mechanisms involved both in the central nerve system (CNS) and the peripheral nerve system (PNS) and provide valuable insights into the potential safety and risk associated with the clinical use of intravenous anesthetics.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Bingcheng Chang
- The Second Affiliated Hospital of Guizhou, University of Traditional Chinese Medicine, Guiyang, 550003, China
| | - Daan Fu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China.
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China.
| |
Collapse
|
6
|
Hoseinpoor S, Ul-Haq Z, Tsatsakis A, Ramu R, Rezaee R. Assessment of binding affinity of major bioactive compounds from Momordica charantia, Azadirachta indica, Nelumbo nucifera, Caesalpinia crista, Martynia annua and Erythrina variegate to COX-2 receptor: an in silico study. J Biomol Struct Dyn 2024:1-14. [PMID: 39659229 DOI: 10.1080/07391102.2024.2439043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/24/2024] [Indexed: 12/12/2024]
Abstract
In traditional medicine, potential anti-inflammatory and pain-relieving activity of Momordica charantia, Azadirachta indica, Nelumbo nucifera, Caesalpinia crista, Martynia annua and Erythrina variegate has been emphasized. In this study, we explored binding affinity of 36 bioactive compounds from these plants to cyclooxygenase-2 (COX-2) receptor using docking method. Six compounds namely, beta carotene, lycopene, lutein, momordicoside, rutin and azadirachtin showed excellent binding affinities (-10.29, -10.22, -10.03, -7.9, -8.81 and -7.88 kcal/mol, respectively) and stable interactions with COX-2 (greater than those of aspirin and diclofenac) and they were chosen for the molecular dynamics (MD) assessments done throughout a 100-ns time period. Based on the computed RMSD, RMSF, Rg, SASA and PCA, all ligands were found to form stable and adequate interactions with COX-2 protein; these findings were comparable to those of aspirin and diclofenac, indicating the potential inhibitory properties of these ligands on COX-2 protein. In addition, the toxicity of compounds was evaluated using Pred-hERG, Pred-Skin and ProTox-II. Since COX-2 inhibitors have been reported to activate the Nrf2 pathway, it is hypothesized that they may confer other health-promoting effects through triggering Nrf2 signaling.
Collapse
Affiliation(s)
- Saeideh Hoseinpoor
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zaheer Ul-Haq
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Aristidis Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ramin Rezaee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Koutsogiannaki S, Limratana P, Bu W, Maisat W, McKinstry-Wu A, Han X, Ohto U, Eckenhoff RG, Soriano SG, Yuki K. Dexmedetomidine directly binds to and inhibits Toll-like receptor 4. Int Immunopharmacol 2024; 141:112975. [PMID: 39163686 PMCID: PMC11408083 DOI: 10.1016/j.intimp.2024.112975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND While a number of anesthetics has been shown potentially associated with neurotoxicity in the developing brain, dexmedetomidine, a drug that was rather recently introduced into the perioperative setting, is considered beneficial from neurological wellbeing. However, the underlying mechanism of how dexmedetomidine affects brain health remains to be determined. Based on our recent study, we hypothesized that dexmedetomidine would directly bind to and inhibit Toll-like receptor 4 (TLR4), a critical receptor largely expressed in microglia and responsible for neurological insult. METHODS We used TLR4 reporter assays to test if dexmedetomidine attenuates TLR4 activation. Furthermore, a direct binding of dexmedetomidine on TLR4 was tested using photoactivatable medetomidine. Lastly, the effect of dexmedetomidine on ketamine (anesthetic)-induced neurotoxicity was tested in rat pups (P7). RESULTS We showed that dexmedetomidine attenuated TLR4 activation using reporter assay (IC50 = 5.8 µg/mL). Photoactivatable dexmedetomidine delineated its direct binding sites on TLR4. We also showed that dexmedetomidine attenuated microglia activation both in vitro and in vivo. DISCUSSION We proposed a novel mechanism of dexmedetomidine-mediated neuroprotection.
Collapse
Affiliation(s)
- Sophia Koutsogiannaki
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, USA; Department of Anaesthesia, Harvard Medical School, Boston, USA; Department of Immunology, Harvard Medical School, Boston, USA
| | - Panop Limratana
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, USA; Department of Anaesthesia, Harvard Medical School, Boston, USA; Department of Immunology, Harvard Medical School, Boston, USA; Department of Anesthesiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Weiming Bu
- Department of Anesthesia and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Wiriya Maisat
- Department of Anesthesiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Andrew McKinstry-Wu
- Department of Anesthesia and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Xiaohui Han
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, USA
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Roderic G Eckenhoff
- Department of Anesthesia and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Sulpicio G Soriano
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, USA; Department of Anaesthesia, Harvard Medical School, Boston, USA
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, USA; Department of Anaesthesia, Harvard Medical School, Boston, USA; Department of Immunology, Harvard Medical School, Boston, USA.
| |
Collapse
|
8
|
Li X, Long J, Yao C, Liu X, Li N, Zhou Y, Li D, Xiong G, Wang K, Hao Y, Chen K, Zhou Z, Ji A, Luo P, Cai T. The role of BTG2/PI3K/AKT pathway-mediated microglial activation in T-2 toxin-induced neurotoxicity. Toxicol Lett 2024; 400:81-92. [PMID: 39147216 DOI: 10.1016/j.toxlet.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/07/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
T-2 toxin is one of the mycotoxins widely distributed in human food and animal feed. Our recent work has shown that microglial activation may contribute to T-2 toxin-induced neurotoxicity. However, the molecular mechanisms involved need to be further clarified. To address this, we employed high-throughput transcriptome sequencing and found altered B cell translocation gene 2 (BTG2) expression levels in microglia following T-2 toxin treatment. It has been shown that altered BTG2 expression is involved in a range of neurological pathologies, but whether it's involved in the regulation of microglial activation is unclear. The aim of this study was to investigate the role of BTG2 in T-2 toxin-induced microglial activation. The results of animal experiments showed that T-2 toxin caused neurobehavioral disorders and promoted the expression of microglial BTG2 and pro-inflammatory activation of microglia in hippocampus and cortical, while microglial inhibitor minocycline inhibited these changes. The results of in vitro experiments showed that T-2 toxin enhanced BTG2 expression and pro-inflammatory microglial activation, and inhibited BTG2 expression weakened T-2 toxin-induced microglial activation. Moreover, T-2 toxin activated PI3K/AKT and its downstream NF-κB signaling pathway, which could be reversed after knock-down of BTG2 expression. Meanwhile, the PI3K inhibitor LY294002 also blocked this process. Therefore, BTG2 may be involved in T-2 toxin's ability to cause microglial activation through PI3K/AKT/NF-κB pathway.
Collapse
Affiliation(s)
- Xiukuan Li
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jinyun Long
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chunyan Yao
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiaoling Liu
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Na Li
- Chongqing Yongchuan District Center for Disease Control and Prevention, Chongqing 402160, China
| | - Yumeng Zhou
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Dawei Li
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Guiyuan Xiong
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Kexue Wang
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ka Chen
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ziyuan Zhou
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ailing Ji
- Department of Preventive Medicine, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China.
| | - Peng Luo
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China.
| | - Tongjian Cai
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
9
|
Retinasamy T, Lee ALY, Lee HS, Lee VLL, Shaikh MF, Yeong KY. Repurposing Anakinra for Alzheimer's Disease: The In Vitro and In Vivo Effects of Anakinra on LPS- and AC-Induced Neuroinflammation. ACS Chem Neurosci 2024; 15:3298-3310. [PMID: 39213521 DOI: 10.1021/acschemneuro.4c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease is a significant global health issue, and studies suggest that neuroinflammation plays a vital role in the advancement of this disease. In this study, anakinra has been shown to display a time- and concentration-dependent antineuroinflammatory effect. In the in vitro studies, it diminished the gene expressions of tumor necrosis factor-alpha (TNF-α) and nitric oxide (NO) synthase 2 stimulated by lipopolysaccharide (LPS). Anakinra also reduced the LPS-induced production of NO and reactive oxygen species. Thus, the hypertrophic state of LPS-activated BV2 microglial cells was reversed by anakinra. Furthermore, acrylamide (ACR)-induced activation of nuclear transcription factor-κB, TNF-α, and interleukin-1β was downregulated, while cAMP response element binding protein and brain-derived neurotrophic factor expression levels were markedly enhanced in ACR-treated zebrafish larvae. It was also observed that anakinra improved the uncoordinated swimming behaviors in ACR-exposed zebrafish larvae. Overall, anakinra demonstrated potential antineuroinflammatory and antioxidative effects.
Collapse
Affiliation(s)
- Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Amber Lot Yee Lee
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Hsien Siang Lee
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Vanessa Lin Lin Lee
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange 2795, NSW, Australia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
10
|
Zhang W, Xu H, Li C, Han B, Zhang Y. Exploring Chinese herbal medicine for ischemic stroke: insights into microglia and signaling pathways. Front Pharmacol 2024; 15:1333006. [PMID: 38318134 PMCID: PMC10838993 DOI: 10.3389/fphar.2024.1333006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Ischemic stroke is a prevalent clinical condition affecting the central nervous system, characterized by a high mortality and disability rate. Its incidence is progressively rising, particularly among younger individuals, posing a significant threat to human well-being. The activation and polarization of microglia, leading to pro-inflammatory and anti-inflammatory responses, are widely recognized as pivotal factors in the pathogenesis of cerebral ischemia and reperfusion injury. Traditional Chinese herbal medicines (TCHMs) boasts a rich historical background, notable efficacy, and minimal adverse effects. It exerts its effects by modulating microglia activation and polarization, suppressing inflammatory responses, and ameliorating nerve injury through the mediation of microglia and various associated pathways (such as NF-κB signaling pathway, Toll-like signaling pathway, Notch signaling pathway, AMPK signaling pathway, MAPK signaling pathway, among others). Consequently, this article focuses on microglia as a therapeutic target, reviewing relevant pathway of literature on TCHMs to mitigate neuroinflammation and mediate IS injury, while also exploring research on drug delivery of TCHMs. The ultimate goal is to provide new insights that can contribute to the clinical management of IS using TCHMs.
Collapse
Affiliation(s)
| | | | | | - Bingbing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yimin Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
11
|
Chao-shun W, Xiao-Li W. The impacts of SphK1 on inflammatory response and oxidative stress in LPS-induced ALI/ARDS. EUR J INFLAMM 2023. [DOI: 10.1177/1721727x231158310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
As severe conditions, acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) threaten human health. Inflammation and oxidative stress play a vital role in the pathogenesis of ALI/ARDS. Sphingosine kinase 1 (SphK1) significantly contributes to mediating inflammatory responses. Nevertheless, the impact of SphK1 on lipopolysaccharide (LPS)-triggered ALI/ARDS remains largely undetermined. In our current work, we explored the impact of SphK1 on ALI/ARDS using a mouse model. We studied whether it could reduce LPS-triggered inflammatory response and oxidative stress by suppressing SphK1 in ALI/ARDS. The mice were treated with the inhibitor of SphK1 (N,N-dimethylsphingosine, DMS) before intraperitoneal injection of LPS. Moreover, we assessed the survival rate, and several parameters, such as the lung wet/dry (W/D) ratio, myeloperoxidase (MPO) activity, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, and the release of inflammatory cytokines. Western blotting analysis was adopted to evaluate the levels of phosphoinositide 3-kinase (PI3K)/serine/threonine kinase (AKT) pathways. We showed that the inhibitor of SphK1 not only ameliorated LPS-stimulated lung histopathological changes and W/D ratio of lung tissue but also elevated the survival rate, the SOD activity and decreased the MDA content, MPO activity, interleukin-6 (IL-6) and tumor necrosis factor-ɑ (TNF-ɑ) production by regulating the PI3K/AKT signaling pathway in lung tissue. Taken together, SphK1 played an essential role in inflammatory responses and oxidative stress. The underlying mechanism might be linked to the activation and up-regulation of the PI3K/AKT signaling pathway in LPS-triggered ALI/ARDS.
Collapse
Affiliation(s)
- Wei Chao-shun
- Medical College of Jishou University, Jishou, P. R. China
| | - Wang Xiao-Li
- Medical College of Jishou University, Jishou, P. R. China
| |
Collapse
|
12
|
Wu PS, Wang CY, Hsu HJ, Yen JH, Wu MJ. 8-Hydroxydaidzein Induces Apoptosis and Inhibits AML-Associated Gene Expression in U-937 Cells: Potential Phytochemical for AML Treatment. Biomolecules 2023; 13:1575. [PMID: 38002257 PMCID: PMC10669020 DOI: 10.3390/biom13111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND 8-hydroxydaidzein (8-OHD) is a compound derived from daidzein, known for its anti-inflammatory and anti-proliferative properties in K562 human chronic myeloid leukemia (CML) cells. However, its effects on acute myeloid leukemia (AML) cells have not been fully understood. METHOD To investigate its potential anti-AML mechanism, we employed an integrated in vitro-in silico approach. RESULTS Our findings demonstrate that 8-OHD suppresses the expression of CDK6 and CCND2 proteins and induces cell apoptosis in U-937 cells by activating Caspase-7 and cleaving PARP-1. Microarray analysis revealed that 8-OHD downregulates differentially expressed genes (DEGs) associated with rRNA processing and ribosome biogenesis pathways. Moreover, AML-target genes, including CCND2, MYC, NPM1, FLT3, and TERT, were downregulated by 8-OHD. Additionally, molecular docking software predicted that 8-OHD has the potential to interact with CDK6, FLT3, and TERT proteins, thereby reducing their activity and inhibiting cell proliferation. Notably, we discovered a synergic pharmacological interaction between 8-OHD and cytarabine (Ara-C). CONCLUSIONS Overall, this study provides insights into the therapeutic applications of 8-OHD in treating AML and elucidates its underlying mechanisms of action.
Collapse
Affiliation(s)
- Pei-Shan Wu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717301, Taiwan;
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 717301, Taiwan
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei 110301, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 110301, Taiwan
| | - Hao-Jen Hsu
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien 970, Taiwan;
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan
| | - Ming-Jiuan Wu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717301, Taiwan;
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 717301, Taiwan
| |
Collapse
|
13
|
Liu Z, Tu K, Zou P, Liao C, Ding R, Huang Z, Huang Z, Yao X, Chen J, Zhang Z. Hesperetin ameliorates spinal cord injury by inhibiting NLRP3 inflammasome activation and pyroptosis through enhancing Nrf2 signaling. Int Immunopharmacol 2023; 118:110103. [PMID: 37001385 DOI: 10.1016/j.intimp.2023.110103] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/08/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
Neuroinflammation is a prominent feature of traumatic spinal cord injuries (SCIs). Hesperetin exhibits anti-inflammatory effects in neurological disorders; however, the potential neuroprotective effects of hesperetin in cases of SCI remain unclear. Sprague-Dawley rats with C5 hemi-contusion injuries were used as an SCI model. Hesperetin was administered to the experimental rats in order to investigate its neuroprotective effects after SCI, and BV2 cells were pretreated with hesperetin or silencing of nuclear factor erythroid 2-related factor 2 (siNrf2), and then stimulated with lipopolysaccharide (LPS) and adenosine triphosphate (ATP). The therapeutic impact and molecular mechanism of hesperetin were elucidated in a series of in vivo and in vitro investigations conducted using a combination of experiments. The results of the present in vivo experiment indicated that hesperetin improved functional recovery and protected spinal cord tissue after SCI. Hesperetin attenuated oxidative stress and microglial activation, lowered malondialdehyde (MDA) levels, and elevated catalase (CAT), glutathione (GSH)-Px, and superoxide dismutase (SOD) levels. Moreover, hesperetin downregulated the expression of advanced oxygenation protein products (AOPPs), ionized calcium-binding adapter molecule 1 (Iba-1), NOD-like receptor protein 3 (NLRP3), and interleukin-1 beta (IL-1β), but increased the expression of Nrf2. In vitro studies have shown that hesperetin inhibits the generation of reactive oxygen species (ROS), as well as the neuroinflammation associated with the upregulation of Nrf2 and heme oxygenase-1 (HO-1) in BV2 cells. The results of the present study indicated that hesperetin inhibited BV2 cell pyroptosis and significantly blocked the expression of NLRP3 inflammasome proteins (NLRP3 Caspase-1 p10 apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain [ASC]) and pro-inflammatory mediators (IL-18, IL-1β). Furthermore, the silencing of Nrf2 by small interfering ribonucleic acid (siRNA) partially abolished its antioxidant effect in the aforementioned cell experiments. Collectively, these findings illustrate that through an increase in Nrf2 signaling hesperetin reduces oxidative stress and neuroinflammation by suppressing NLRP3 inflammasome activation and pyroptosis.
Collapse
|
14
|
Khalil HMA, El Henafy HMA, Khalil IA, Bakr AF, Fahmy MI, Younis NS, El-Shiekh RA. Hypericum perforatum L. Nanoemulsion Mitigates Cisplatin-Induced Chemobrain via Reducing Neurobehavioral Alterations, Oxidative Stress, Neuroinflammation, and Apoptosis in Adult Rats. TOXICS 2023; 11:159. [PMID: 36851034 PMCID: PMC9961500 DOI: 10.3390/toxics11020159] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Cisplatin (Cis) is a potent chemotherapeutic agent; however, it is linked with oxidative stress, inflammation, and apoptosis, which may harmfully affect the brain. Hypericum perforatum L. (HP L.) is a strong medicinal plant, but its hydrophobic polyphenolic compounds limit its activity. Therefore, our study aimed to investigate the neuroprotective action of HP L. and its nanoemulsion (NE) against Cis-induced neurotoxicity. The prepared HP.NE was subjected to characterization. The droplet size distribution, surface charge, and morphology were evaluated. In addition, an in vitro dissolution study was conducted. Compared to Cis-intoxicated rats, HP L. and HP.NE-treated rats displayed improved motor activity and spatial working memory. They also showed an increase in their antioxidant defense system and a reduction in the levels of pro-inflammatory cytokines in the brain. Moreover, they showed an increase in the expression levels of the PON-3 and GPX genes, which are associated with a reduction in the brain levels of COX-2 and TP-53. These findings were confirmed by reducing the immunohistochemical expression of nuclear factor kappa (NF-ƘB) and enhanced Ki-67 levels. In conclusion, HP L. is a promising herb and could be used as an adjuvant candidate to ameliorate chemotherapeutic-induced neurotoxicity. Moreover, HP.NE has superior activity in lessening Cis-induced oxidative stress, inflammation, and apoptosis in brain tissue.
Collapse
Affiliation(s)
- Heba M. A. Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Hanan M. A. El Henafy
- Medical Laboratory Department, Faculty of Applied Medical Sciences, October 6 University, Giza 3230911, Egypt
| | - Islam A. Khalil
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University of Science and Technology (MUST), Giza 12582, Egypt
| | - Alaa F. Bakr
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mohamed I. Fahmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 2834, Egypt
| | - Nancy S. Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Riham A. El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| |
Collapse
|
15
|
Deng J, Xu W, Lei S, Li W, Li Q, Li K, Lyu J, Wang J, Wang Z. Activated Natural Killer Cells-Dependent Dendritic Cells Recruitment and Maturation by Responsive Nanogels for Targeting Pancreatic Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203114. [PMID: 36148846 DOI: 10.1002/smll.202203114] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Although enormous success has been obtained for dendritic cells (DCs)-mediated antigen-specific T cells anticancer immunotherapy in the clinic, it still faces major challenging problems: insufficient DCs in tumor tissue and low response rate for tumor cells lacking antigen expression, especially in low immunogenic tumors such as pancreatic cancer. Here, these challenges are tackled through tumor microenvironment responsive nanogels with prominent tumor-targeting capability by Panc02 cell membranes coating and inhibition of tumor-derived prostaglandin E2 (PGE2), aimed at improving natural killer (NK) cells activation and inducing activated NK cells-dependent DCs recruitment. The engineered nanogels can on-demand release acetaminophen to inhibit PGE2 secretion, thus promoting the activity of NK cells for non-antigen-specific tumor elimination. Furthermore, activated NK cells can secrete chemokines as CC motif chemokine ligand 5 and X-C motif chemokine ligand 1 to recruit immature DCs, and then promote DCs maturation and induce antigen-dependent CD8+ T cells proliferation for enhancing antigen-specific immunotherapy. Notably, these responsive nanogels show excellent therapeutic effect on Panc02 pancreatic tumor growth and postsurgical recurrence, especially combination of the programmed cell death-ligand 1 checkpoint-blockade immunotherapy. Therefore, this study provides a simple strategy for enhancing low immunogenic tumors immunotherapy through an antigen-independent way and antigen-dependent way synergetically.
Collapse
Affiliation(s)
- Junjie Deng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Weide Xu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Siyun Lei
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Wanyu Li
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qinghua Li
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Kaiqiang Li
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Jianxin Lyu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Jilong Wang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Zhen Wang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| |
Collapse
|
16
|
Hu Y, Zhou H, Zhang H, Sui Y, Zhang Z, Zou Y, Li K, Zhao Y, Xie J, Zhang L. The neuroprotective effect of dexmedetomidine and its mechanism. Front Pharmacol 2022; 13:965661. [PMID: 36204225 PMCID: PMC9531148 DOI: 10.3389/fphar.2022.965661] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
Dexmedetomidine (DEX) is a highly selective α2 receptor agonist that is routinely used in the clinic for sedation and anesthesia. Recently, an increasing number of studies have shown that DEX has a protective effect against brain injury caused by traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), cerebral ischemia and ischemia–reperfusion (I/R), suggesting its potential as a neuroprotective agent. Here, we summarized the neuroprotective effects of DEX in several models of neurological damage and examined its mechanism based on the current literature. Ultimately, we found that the neuroprotective effect of DEX mainly involved inhibition of inflammatory reactions, reduction of apoptosis and autophagy, and protection of the blood–brain barrier and enhancement of stable cell structures in five way. Therefore, DEX can provide a crucial advantage in neurological recovery for patients with brain injury. The purpose of this study was to further clarify the neuroprotective mechanisms of DEX therefore suggesting its potential in the clinical management of the neurological injuries.
Collapse
Affiliation(s)
- Yijun Hu
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
- Graduate School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong Zhou
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Huanxin Zhang
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Yunlong Sui
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Zhen Zhang
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Yuntao Zou
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Kunquan Li
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Yunyi Zhao
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Jiangbo Xie
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Lunzhong Zhang
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
- *Correspondence: Lunzhong Zhang,
| |
Collapse
|
17
|
A Novel Soy Isoflavone Derivative, 3′-Hydroxyglycitin, with Potent Antioxidant and Anti-α-Glucosidase Activity. PLANTS 2022; 11:plants11172202. [PMID: 36079584 PMCID: PMC9460358 DOI: 10.3390/plants11172202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022]
Abstract
This study demonstrated the enzymatic hydroxylation of glycitin to 3′-hydroxyglycitin, confirming the structure by mass and nucleic magnetic resonance spectral analyses. The bioactivity assays further revealed that the new compound possessed over 100-fold higher 1,1-diphenyl-2-picrylhydrazine free-radical scavenging activity than the original glycitin, although its half-time of stability was 22.3 min. Furthermore, the original glycitin lacked anti-α-glucosidase activity, whereas the low-toxic 3′-hydroxyglycitin displayed a 10-fold higher anti-α-glucosidase activity than acarbose, a standard clinical antidiabetic drug. The inhibition mode of 3′-hydroxyglycitin was noncompetitive, with a Ki value of 0.34 mM. These findings highlight the potential use of the new soy isoflavone 3′-hydroxyglycitin in biotechnology industries in the future.
Collapse
|
18
|
Torres-Rêgo M, Aquino-Vital AKSD, Cavalcanti FF, Rocha EEA, Daniele-Silva A, Furtado AA, Silva DPD, Ururahy MAG, Silveira ER, Fernandes-Pedrosa MDF, Araújo RM. Phytochemical analysis and preclinical toxicological, antioxidant, and anti-inflammatory evaluation of hydroethanol extract from the roots of Harpalyce brasiliana Benth (Leguminosae). JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115364. [PMID: 35551979 DOI: 10.1016/j.jep.2022.115364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Harpalyce brasiliana Benth (Leguminosae) is a shrub endemic to Brazil, popularly known as "snake's root." This species is used in folk medicine for the treatment of inflammation and snakebites. However, up to now there is no scientific research to justify its popular use. The study aimed to characterize the phytochemical profile of the hydroethanol extract from the roots of H. brasiliana (Hb), to evaluate its antioxidant and anti-inflammatory potential, as well as to investigate its cytotoxicity and acute toxicity. MATERIALS AND METHODS The extract was obtained by maceration method using a solution of ethanol:water (70: 30, v/v). The phytochemical profile was obtained by liquid chromatography coupled to mass spectrometry. The cytotoxicity of extract (31-2000 μg/mL) was evaluated in vitro, by the 3-methyl-[4-5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) method using murine macrophage and fibroblast cell lines (RAW 247.6 and 3T3, respectively) and by the hemolytic assay. For the in vivo acute toxicity, the extract (2000 mg/kg) was administered and after 14 days the weight (body and organs) and hematological and biochemical parameters were analyzed. Chemical free radical scavenging effect of the extract (125-2000 μg/mL) was investigated through diphenylpicryl hydrazine reduction, total antioxidant capacity, reducing power, hydroxyl radical scavenging, and iron and copper chelating assays. In vitro anti-inflammatory effect of the extract (125, 500, and 2000 μg/mL) was demonstrated through of nitric oxide (NO) analyzed in lipopolysaccharides stimulated RAW 264.7 cells. In vivo anti-inflammatory activities were evaluated in carrageenan-induced paw edema and zymosan-air-pouch models, with gavage administration (post-treatment) of extract at 100, 200, and 400 mg/kg. For the first animal model, the anti-edematogenic activity and myeloperoxidase (MPO) levels were investigated, while in the zymosan-air-pouch model the leukocyte number, MPO, total protein and pro-inflammatory cytokine (IL-1β, IL-6, and TNF-α) levels were quantified. In addition, the oxidative parameters such as malondialdehyde (MDA) and reduced glutathione (GSH) were determined. RESULTS The phytochemical profile revealed the presence of 20 compounds, mainly prenylated and geranylated pterocarpans. The extract demonstrated no cytotoxicity in erythrocytes, macrophages and fibroblasts cells at the tested concentrations, as well as no sign of toxicity and mortality or significant alterations on the hematological and biochemical parameters in the acute toxicity model. The extract was also able to neutralize chemical free radicals, with copper and iron chelating effect. For the NO dosage, the extract evidenced the reduction of expression of NO after the administration of the extract (500 and 2000 μg/mL). The edematogenic model revealed a decrease in paw edema and MPO level, while the zymosan-air-pouch model evidenced a reduction of leukocyte number (especially of polymorphornuclears), MPO production, and total protein and cytokine levels, and demonstrated the antioxidant effect through a decrease in MDA and increase in GSH parameters. CONCLUSION This approach demonstrates for the first time that Hb is not cytotoxic, has low acute toxicity, and possesses antioxidant and anti-inflammatory properties in preclinical analyses, corroborating its popular use.
Collapse
Affiliation(s)
- Manoela Torres-Rêgo
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Senador Salgado Filho Avenue, 3000, Lagoa Nova, Natal, 59072-970, Brazil; Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Street, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Ana Karoline Silva de Aquino-Vital
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Senador Salgado Filho Avenue, 3000, Lagoa Nova, Natal, 59072-970, Brazil.
| | - Felipe França Cavalcanti
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Senador Salgado Filho Avenue, 3000, Lagoa Nova, Natal, 59072-970, Brazil.
| | - Enos Emanuel Azevedo Rocha
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Senador Salgado Filho Avenue, 3000, Lagoa Nova, Natal, 59072-970, Brazil.
| | - Alessandra Daniele-Silva
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Street, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Allanny Alves Furtado
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Street, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Diana Pontes da Silva
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Street, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Marcela Abbott Galvão Ururahy
- Department of Clinical Analysis and Toxicology, College of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Street, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Edilberto Rocha Silveira
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Humberto Monte Street, S/N, Campus Pici, Pici, Fortaleza, 60021-970, Brazil.
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Street, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Renata Mendonça Araújo
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Senador Salgado Filho Avenue, 3000, Lagoa Nova, Natal, 59072-970, Brazil.
| |
Collapse
|
19
|
Mafra D, Borges NA, Alvarenga L, Ribeiro M, Fonseca L, Leal VO, Shiels PG, Stenvinkel P. Fermented food: Should patients with cardiometabolic diseases go back to an early neolithic diet? Crit Rev Food Sci Nutr 2022; 63:10173-10196. [PMID: 35593230 DOI: 10.1080/10408398.2022.2077300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fermentation has been used since the Early Neolithic period to preserve foods. It has inherent organoleptic and nutritive properties that bestow health benefits, including reducing inflammation and oxidative stress, supporting the growth of salutogenic microbiota, enhancing intestinal mucosal protection and promoting beneficial immunometabolic health effects. The fermentation of food with specific microbiota increases the production salutogenic bioactive compounds that can activate Nrf2 mediated cytoprotective responses and mitigate the effects of the 'diseasome of aging' and its associated inflammageing, which presents as a prominent feature of obesity, type-2 diabetes, cardiovascular and chronic kidney disease. This review discusses the importance of fermented food in improving health span, with special reference to cardiometabolic diseases.
Collapse
Affiliation(s)
- D Mafra
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - N A Borges
- Institute of Nutrition, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L Alvarenga
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - M Ribeiro
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - L Fonseca
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - V O Leal
- Division of Nutrition, Pedro Ernesto University Hospital, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| | - P Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| |
Collapse
|
20
|
Lee DS, Kim JE. P2X7 Receptor Augments LPS-Induced Nitrosative Stress by Regulating Nrf2 and GSH Levels in the Mouse Hippocampus. Antioxidants (Basel) 2022; 11:antiox11040778. [PMID: 35453462 PMCID: PMC9025791 DOI: 10.3390/antiox11040778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023] Open
Abstract
P2X7 receptor (P2X7R) regulates inducible nitric oxide synthase (iNOS) expression/activity in response to various harmful insults. Since P2X7R deletion paradoxically decreases the basal glutathione (GSH) level in the mouse hippocampus, it is likely that P2X7R may increase the demand for GSH for the maintenance of the intracellular redox state or affect other antioxidant defense systems. Therefore, the present study was designed to elucidate whether P2X7R affects nuclear factor-erythroid 2-related factor 2 (Nrf2) activity/expression and GSH synthesis under nitrosative stress in response to lipopolysaccharide (LPS)-induced neuroinflammation. In the present study, P2X7R deletion attenuated iNOS upregulation and Nrf2 degradation induced by LPS. Compatible with iNOS induction, P2X7R deletion decreased S-nitrosylated (SNO)-cysteine production under physiological and post-LPS treated conditions. P2X7R deletion also ameliorated the decreases in GSH, glutathione synthetase, GS and ASCT2 levels concomitant with the reduced S-nitrosylations of GS and ASCT2 following LPS treatment. Furthermore, LPS upregulated cystine:glutamate transporter (xCT) and glutaminase in P2X7R+/+ mice, which were abrogated by P2X7R deletion. LPS did not affect GCLC level in both P2X7R+/+ and P2X7R−/− mice. Therefore, our findings indicate that P2X7R may augment LPS-induced neuroinflammation by leading to Nrf2 degradation, aberrant glutamate-glutamine cycle and impaired cystine/cysteine uptake, which would inhibit GSH biosynthesis. Therefore, we suggest that the targeting of P2X7R, which would exert nitrosative stress with iNOS in a positive feedback manner, may be one of the important therapeutic strategies of nitrosative stress under pathophysiological conditions.
Collapse
|
21
|
Yu Z, Gao J, Zhang X, Peng Y, Wei W, Xu J, Li Z, Wang C, Zhou M, Tian X, Feng L, Huo X, Liu M, Ye M, Guo DA, Ma X. Characterization of a small-molecule inhibitor targeting NEMO/IKKβ to suppress colorectal cancer growth. Signal Transduct Target Ther 2022; 7:71. [PMID: 35260565 PMCID: PMC8904520 DOI: 10.1038/s41392-022-00888-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
NEMO/IKKβ complex is a central regulator of NF-κB signaling pathway, its dissociation has been considered to be an attractive therapeutic target. Herein, using a combined strategy of molecular pharmacological phenotyping, proteomics and bioinformatics analysis, Shikonin (SHK) is identified as a potential inhibitor of the IKKβ/NEMO complex. It destabilizes IKKβ/NEMO complex with IC50 of 174 nM, thereby significantly impairing the proliferation of colorectal cancer cells by suppressing the NF-κB pathway in vitro and in vivo. In addition, we also elucidated the potential target sites of SHK in the NEMO/IKKβ complex. Our study provides some new insights for the development of potent small-molecule PPI inhibitors.
Collapse
Affiliation(s)
- Zhenlong Yu
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116000, China
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Jian Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiaolei Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yulin Peng
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116000, China
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Wenlong Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jianrong Xu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Zhenwei Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chao Wang
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Meirong Zhou
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Xiangge Tian
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116000, China
| | - Lei Feng
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116000, China
| | - Xiaokui Huo
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116000, China
| | - Min Liu
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
- Neurology Department, Dalian University Affiliated Xinhua Hospital, Dalian, 116021, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Xiaochi Ma
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116000, China.
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
22
|
Novel 18β-glycyrrhetinic acid derivatives as a Two-in-One agent with potent antimicrobial and anti-inflammatory activity. Bioorg Chem 2022; 122:105714. [DOI: 10.1016/j.bioorg.2022.105714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/01/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022]
|
23
|
Song J, Qiu H, Du P, Mou F, Nie Z, Zheng Y, Wang M. Polyphenols extracted from Shanxi-aged vinegar exert hypolipidemic effects on OA-induced HepG2 cells via the PPARα-LXRα-ABCA1 pathway. J Food Biochem 2022; 46:e14029. [PMID: 35023169 DOI: 10.1111/jfbc.14029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/11/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
Abstract
Hyperlipidemia is one of the key risk factors causing many chronic diseases, and lowering blood lipid levels can prevent many diseases. In this paper, a hyperlipidemic cell model of oleic acid (OA) induced hepatocellular carcinoma cells (HepG2) was established using polyphenols extracted from Shanxi-aged vinegar (SAVEP). The effects of SAVEP on nuclear damage, mitochondrial membrane potential, apoptosis, cellular lipid deposition, and lipid metabolism protein expression in HepG2 hyperlipidemic cells were examined to investigate the lipid-lowering mechanism of SAVEP at the cellular level. The results showed that SAVEP could reduce the content of TC/TG index, repair the nuclear damage, reduce lipid accumulation and finally decrease the rate of apoptosis by up-regulating the expression of key proteins such as PPARα, LXRα, and ABCA1 in the process of lipid metabolism. PRACTICAL APPLICATIONS: In this thesis, the hypolipidemic activity of polyphenol extracts from Shanxi-aged vinegar was analyzed on the level of HepG2 cells. The hypolipidemic mechanism of oxidative stress, lipid metabolism and inflammatory stress was also elucidated. It provided a theoretical basis for the in-depth understanding of the hypolipidemic health effects of Shanxi-aged vinegar.
Collapse
Affiliation(s)
- Jia Song
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Huirui Qiu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Peng Du
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Fangming Mou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Zhiqiang Nie
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Yu Zheng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
24
|
Ran X, Liu J, Fu S, He F, Li K, Hu G, Guo W. Phytic Acid Maintains the Integrity of the Blood-Milk Barrier by Regulating Inflammatory Response and Intestinal Flora Structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:381-391. [PMID: 34969251 DOI: 10.1021/acs.jafc.1c06270] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The destruction of the blood-milk barrier (BMB) caused by the mammary inflammatory response (MIR) is one of the main reasons that hinders breastfeeding. To relieve the inflammatory response and maintain BMB, we found that phytic acid (PA) has good anti-inflammatory activity. Therefore, we focused on researching the influence and mechanism of PA on BMB and MIR. We constructed a mammary inflammatory response model using lipopolysaccharide (LPS) in vivo, and we used mammary epithelial cells (mMECs) to construct a cell inflammatory response model in vitro. The results showed that PA alleviated mammary tissue damage and reduced the production of inflammatory mediators (such as IL-1β and iNOS) in mammary tissue and mMECs. PA also maintained the integrity of the BMB in mice by increasing the expression of tight junction proteins. 16S rDNA high-throughput sequencing showed that PA significantly ameliorated the intestinal flora of model mice. Mechanism studies showed that PA exerted an anti-MIR effect by inhibiting the AKT/NF-κB signaling pathway. In summary, our study found that PA maintains the integrity of BMB by regulating the inflammatory response and intestinal flora structure.
Collapse
Affiliation(s)
- Xin Ran
- College of Veterinary Medicine, Jilin University, Changchun 130012, Jilin, China
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun 130012, Jilin, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun 130012, Jilin, China
| | - Fuding He
- College of Veterinary Medicine, Jilin University, Changchun 130012, Jilin, China
| | - Kefei Li
- College of Veterinary Medicine, Jilin University, Changchun 130012, Jilin, China
| | - Guiqiu Hu
- College of Veterinary Medicine, Jilin University, Changchun 130012, Jilin, China
| | - Wenjin Guo
- College of Veterinary Medicine, Jilin University, Changchun 130012, Jilin, China
| |
Collapse
|
25
|
Wu PS, Wang CY, Chen PS, Hung JH, Yen JH, Wu MJ. 8-Hydroxydaidzein Downregulates JAK/STAT, MMP, Oxidative Phosphorylation, and PI3K/AKT Pathways in K562 Cells. Biomedicines 2021; 9:biomedicines9121907. [PMID: 34944720 PMCID: PMC8698423 DOI: 10.3390/biomedicines9121907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
A metabolite isolated from fermented soybean, 8-hydroxydaidzein (8-OHD, 7,8,4′-trihydroxyisoflavone, NSC-678112), is widely used in ethnopharmacological research due to its anti-proliferative and anti-inflammatory effects. We reported previously that 8-OHD provoked reactive oxygen species (ROS) overproduction, and induced autophagy, apoptosis, breakpoint cluster region-Abelson murine leukemia viral oncogene (BCR-ABL) degradation, and differentiation in K562 human chronic myeloid leukemia (CML) cells. However, how 8-OHD regulates metabolism, the extracellular matrix during invasion and metastasis, and survival signaling pathways in CML remains largely unexplored. High-throughput technologies have been widely used to discover the therapeutic targets and pathways of drugs. Bioinformatics analysis of 8-OHD-downregulated differentially expressed genes (DEGs) revealed that Janus kinase/signal transducer and activator of transcription (JAK/STAT), matrix metalloproteinases (MMPs), c-Myc, phosphoinositide 3-kinase (PI3K)/AKT, and oxidative phosphorylation (OXPHOS) metabolic pathways were significantly altered by 8-OHD treatment. Western blot analyses validated that 8-OHD significantly downregulated cytosolic JAK2 and the expression and phosphorylation of STAT3 dose- and time-dependently in K562 cells. Zymography and transwell assays also confirmed that K562-secreted MMP9 and invasion activities were dose-dependently inhibited by 8-OHD after 24 h of treatment. RT-qPCR analyses verified that 8-OHD repressed metastasis and OXPHOS-related genes. In combination with DisGeNET, it was found that 8-OHD’s downregulation of PI3K/AKT is crucial for controlling CML development. A STRING protein–protein interaction analysis further revealed that AKT and MYC are hub proteins for cancer progression. Western blotting revealed that AKT phosphorylation and nuclear MYC expression were significantly inhibited by 8-OHD. Collectively, this systematic investigation revealed that 8-OHD exerts anti-CML effects by downregulating JAK/STAT, PI3K/AKT, MMP, and OXPHOS pathways, and MYC expression. These results could shed new light on the development of 8-OHD for CML therapy.
Collapse
Affiliation(s)
- Pei-Shan Wu
- Department of Applied Life Science and Health, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan; (P.-S.W.); (P.-S.C.)
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - Pin-Shern Chen
- Department of Applied Life Science and Health, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan; (P.-S.W.); (P.-S.C.)
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
| | - Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
| | - Ming-Jiuan Wu
- Department of Applied Life Science and Health, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan; (P.-S.W.); (P.-S.C.)
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
- Correspondence: or ; Tel.: +886-6-2664911 (ext. 2520)
| |
Collapse
|
26
|
Kim J, Lee G, Kang H, Yoo JS, Lee Y, Lee HS, Choi CY. Stauntonia hexaphylla leaf extract (YRA-1909) suppresses inflammation by modulating Akt/NF-κB signaling in lipopolysaccharide-activated peritoneal macrophages and rodent models of inflammation. Food Nutr Res 2021; 65:7666. [PMID: 34776829 PMCID: PMC8559446 DOI: 10.29219/fnr.v65.7666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/11/2021] [Accepted: 08/03/2021] [Indexed: 11/20/2022] Open
Abstract
Background Inflammation is emerging as a key contributor to many vascular diseases and furthermore plays a major role in autoimmune diseases, arthritis, allergic reactions, and cancer. Lipopolysaccharide (LPS), which is a component constituting the outer membrane of Gram-negative bacteria, is commonly used for an inflammatory stimuli to mimic inflammatory diseases. Nuclear factor-kappa B (NF-κB) is a transcription factor and regulates gene expression particularly related to the inflammatory process. Stauntonia hexaphylla (Lardizabalaceae) is widely used as a traditional herbal medicine for rheumatism and osteoporosis and as an analgesic, sedative, and diuretic in Korea, Japan, and China. Objective The purpose of this study was to investigate the anti-inflammatory activity of YRA-1909, the leaf aqueous extract of Stauntonia hexaphylla using LPS-activated rat peritoneal macrophages and rodent inflammation models. Results YRA-1909 inhibited the LPS-induced nitric oxide (NO) and proinflammatory cytokine production in rat peritoneal macrophages without causing cytotoxicity and reduced inducible NO synthase and prostaglandin E2 levels without affecting the cyclooxygenase-2 expression. YRA-1909 also prevented the LPS-stimulated Akt and NF-κB phosphorylation and reduced the carrageenan-induced hind paw edema, xylene-induced ear edema, acetic acid-induced vascular permeation, and cotton pellet-induced granuloma formation in a dose-dependent manner in mice and rats. Conclusions S. hexaphylla leaf extract YRA-1909 had anti-inflammatory activity in vitro and in vivo that involves modulation of Akt/NF-κB signaling. Thus, YRA-1909 is safe and effective for the treatment of inflammation.
Collapse
Affiliation(s)
- Jaeyong Kim
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo, Republic of Korea
| | - Gyuok Lee
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo, Republic of Korea
| | - Huwon Kang
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo, Republic of Korea
| | - Ji-Seok Yoo
- Rexpharmtech. Co., Ltd., Yongin, Seoul, Republic of Korea
| | - Yongnam Lee
- Rexpharmtech. Co., Ltd., Yongin, Seoul, Republic of Korea
| | - Hak-Sung Lee
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo, Republic of Korea
| | - Chul-Yung Choi
- Department of Biomedical Science College of Natural Science, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
27
|
Zhang SS, Liu M, Liu DN, Yang YL, Du GH, Wang YH. TLR4-IN-C34 Inhibits Lipopolysaccharide-Stimulated Inflammatory Responses via Downregulating TLR4/MyD88/NF-κB/NLRP3 Signaling Pathway and Reducing ROS Generation in BV2 Cells. Inflammation 2021; 45:838-850. [PMID: 34727285 DOI: 10.1007/s10753-021-01588-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022]
Abstract
TLR4 signal activated by lipopolysaccharide (LPS) is involved in the pathological process of the central nervous system (CNS) diseases and the suppression of TLR4 signal may become an effective treatment. TLR4-IN-C34, a TLR4 inhibitor, is expected to become a candidate compound with anti-neuroinflammatory response. In the present study, the anti-neuroinflammatory effects and possible mechanism of TLR4-IN-C34 were investigated in BV2 microglia cells stimulated by LPS. The results showed that TLR4-IN-C34 decreased the levels of pro-inflammatory factors and chemokines including NO, TNF-α, IL-1β, IL-6, and MCP-1 in the supernatant of LPS-stimulated BV2 cells. Further research indicated that TLR4-IN-C34 suppressed the expression or phosphorylation levels of inflammatory proteins regarding TLR4/MyD88/NF-κB/NLRP3 signaling pathway. In addition, TLR4-IN-C34 reduced ROS production in BV2 cells after LPS treatment. In conclusion, our findings suggest that anti-neuroinflammatory activity of TLR4-IN-C34 may be interrelated to the inhibition of TLR4/MyD88/NF-κB/NLRP3 signaling pathway and reduction of ROS generation.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.,Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Man Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.,Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Dong-Ni Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.,Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Ying-Lin Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.,Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China. .,Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Yue-Hua Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China. .,Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
28
|
Jurcau A. Insights into the Pathogenesis of Neurodegenerative Diseases: Focus on Mitochondrial Dysfunction and Oxidative Stress. Int J Mol Sci 2021; 22:11847. [PMID: 34769277 PMCID: PMC8584731 DOI: 10.3390/ijms222111847] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
As the population ages, the incidence of neurodegenerative diseases is increasing. Due to intensive research, important steps in the elucidation of pathogenetic cascades have been made and significantly implicated mitochondrial dysfunction and oxidative stress. However, the available treatment in Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis is mainly symptomatic, providing minor benefits and, at most, slowing down the progression of the disease. Although in preclinical setting, drugs targeting mitochondrial dysfunction and oxidative stress yielded encouraging results, clinical trials failed or had inconclusive results. It is likely that by the time of clinical diagnosis, the pathogenetic cascades are full-blown and significant numbers of neurons have already degenerated, making it impossible for mitochondria-targeted or antioxidant molecules to stop or reverse the process. Until further research will provide more efficient molecules, a healthy lifestyle, with plenty of dietary antioxidants and avoidance of exogenous oxidants may postpone the onset of neurodegeneration, while familial cases may benefit from genetic testing and aggressive therapy started in the preclinical stage.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
- Neurology Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| |
Collapse
|
29
|
Production of New Isoflavone Diglucosides from Glycosylation of 8-Hydroxydaidzein by Deinococcus geothermalis Amylosucrase. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
8-Hydroxydaidzein (8-OHDe) is a non-natural isoflavone polyphenol isolated from fermented soybean foods. 8-OHDe exhibits a wide range of pharmaceutical activities. However, both the poor solubility and instability of 8-OHDe limit its applications. To resolve the limitations of 8-OHDe, Deinococcus geothermalis amylosucrase (DgAS) has previously been used to glycosylate 8-OHDe to produce soluble and stable 8-OHDe-7-O-α-glucopyranoside (8-OHDe-7-G) in a 0.5 h reaction time. In this study, we aimed to use DgAS and an extended reaction time to produce 8-OHDe diglucosides. At least three 8-OHDe derivatives were produced after a 24 h reaction time, and two major products were successfully purified and identified as new compounds: 8-OHDe-7-O-[α-glucopyranosyl-(1→6)-α-glucopyranoside] (8-OHDe-7-G2) and 8-OHDe-7,4′-O-α-diglucopyranoside (8-OHDe-7-G-4′-G). 8-OHDe-7-G-4′-G showed a 4619-fold greater aqueous solubility than 8-OHDe. In addition, over 92% of the 8-OHDe diglucosides were stable after 96 h, while only 10% of the 8-OHDe could be detected after being subjected to the same conditions. The two stable 8-OHDe diglucoside derivatives have the potential for pharmacological usage in the future.
Collapse
|
30
|
Cui J, Jia J. Natural COX-2 Inhibitors as Promising Anti-inflammatory Agents: An Update. Curr Med Chem 2021; 28:3622-3646. [PMID: 32942970 DOI: 10.2174/0929867327999200917150939] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
COX-2, a key enzyme that catalyzed the rate-limiting steps in the conversion of arachidonic acid to prostaglandins, played a pivotal role in the inflammatory process. Different from other family members, COX-2 was barely detectable in normal physiological conditions and highly inducible during the acute inflammatory response of human bodies to injuries or infections. Therefore, the therapeutic utilization of selective COX-2 inhibitors has already been considered as an effective approach for the treatment of inflammation with diminished side effects. Currently, both traditional and newer NSAIDs are the commonly prescribed medications that treat inflammatory diseases by targeting COX-2. However, due to the cardiovascular side-effects of the NSAIDs, finding reasonable alternatives for these frequently prescribed medicines are a hot spot in medicinal chemistry research. Naturallyoccurring compounds have been reported to inhibit COX-2, thereby possessing beneficial effects against inflammation and certain cell injury. The review mainly concentrated on recently identified natural products and derivatives as COX-2 inhibitors, the characteristics of their structural core scaffolds, their anti-inflammatory effects, molecular mechanisms for enzymatic inhibition, and related structure-activity relationships. According to the structural features, the natural COX-2 inhibitors were mainly divided into the following categories: natural phenols, flavonoids, stilbenes, terpenoids, quinones, and alkaloids. Apart from the anti-inflammatory activities, a few dietary COX-2 inhibitors from nature origin also exhibited chemopreventive effects by targeting COX-2-mediated carcinogenesis. The utilization of these natural remedies in future cancer prevention was also discussed. In all, the survey on the characterized COX-2 inhibitors from natural sources paves the way for the further development of more potent and selective COX-2 inhibitors in the future.
Collapse
Affiliation(s)
- Jiahua Cui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
31
|
Kim SK, Ko YH, Lee Y, Lee SY, Jang CG. Antineuroinflammatory Effects of 7,3',4'-Trihydroxyisoflavone in Lipopolysaccharide-Stimulated BV2 Microglial Cells through MAPK and NF-κB Signaling Suppression. Biomol Ther (Seoul) 2021; 29:127-134. [PMID: 32812529 PMCID: PMC7921860 DOI: 10.4062/biomolther.2020.093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/09/2020] [Accepted: 07/24/2020] [Indexed: 01/30/2023] Open
Abstract
Neuroinflammation—a common pathological feature of neurodegenerative disorders such as Alzheimer’s disease—is mediated by microglial activation. Thus, inhibiting microglial activation is vital for treating various neurological disorders. 7,3’,4’-Trihydroxyisoflavone (THIF)—a secondary metabolite of the soybean compound daidzein—possesses antioxidant and anticancer properties. However, the effects of 7,3’,4’-THIF on microglial activation have not been explored. In this study, antineuroinflammatory effects of 7,3’,4’-THIF in lipopolysaccharide (LPS)-stimulated BV2 microglial cells were examined. 7,3’,4’-THIF significantly suppressed the production of the proinflammatory mediators nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) as well as of the proinflammatory cytokine interleukin-6 (IL-6) in LPS-stimulated BV2 microglial cells. Moreover, 7,3’,4’-THIF markedly inhibited reactive oxygen species (ROS) generation. Western blotting revealed that 7,3’,4’-THIF diminished LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), glycogen synthase kinase-3β (GSK-3β), and nuclear factor kappa B (NF-κB). Overall, 7,3’,4’-THIF exerts antineuroinflammatory effects against LPS-induced microglial activation by suppressing mitogen-activated protein kinase (MAPK) and NF-κB signaling, ultimately reducing proinflammatory responses. Therefore, these antineuroinflammatory effects of 7,3’,4’-THIF suggest its potential as a therapeutic agent for neurodegenerative disorders.
Collapse
Affiliation(s)
- Seon-Kyung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yong-Hyun Ko
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Youyoung Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
32
|
Jurcau A. The Role of Natural Antioxidants in the Prevention of Dementia-Where Do We Stand and Future Perspectives. Nutrients 2021; 13:282. [PMID: 33498262 PMCID: PMC7909256 DOI: 10.3390/nu13020282] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Dementia, and especially Alzheimer's disease (AD), puts significant burden on global healthcare expenditure through its increasing prevalence. Research has convincingly demonstrated the implication of oxidative stress in the pathogenesis of dementia as well as of the conditions which increase the risk of developing dementia. However, drugs which target single pathways have so far failed in providing significant neuroprotection. Natural antioxidants, due to their effects in multiple pathways through which oxidative stress leads to neurodegeneration and triggers neuroinflammation, could prove valuable weapons in our fight against dementia. Although efficient in vitro and in animal models of AD, natural antioxidants in human trials have many drawbacks related to the limited bioavailability, unknown optimal dose, or proper timing of the treatment. Nonetheless, trials evaluating several of these natural compounds are ongoing, as are attempts to modify these compounds to achieve improved bioavailability.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, nr 1 Universitatii Street, 410087 Oradea, Romania;
- Neurology Ward, Clinical Municipal Hospital “Dr. G. Curteanu”, nr 12 Corneliu Coposu Street, 410469 Oradea, Romania
| |
Collapse
|
33
|
Wu PS, Yen JH, Wang CY, Chen PY, Hung JH, Wu MJ. 8-Hydroxydaidzein, an Isoflavone from Fermented Soybean, Induces Autophagy, Apoptosis, Differentiation, and Degradation of Oncoprotein BCR-ABL in K562 Cells. Biomedicines 2020; 8:E506. [PMID: 33207739 PMCID: PMC7696406 DOI: 10.3390/biomedicines8110506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022] Open
Abstract
8-Hydroxydaidzein (8-OHD, 7,8,4'-trihydoxyisoflavone) is a hydroxylated derivative of daidzein isolated from fermented soybean products. The aim of this study is to investigate the anti-proliferative effects and the underlying mechanisms of 8-OHD in K562 human chronic myeloid leukemia (CML) cells. We found that 8-OHD induced reactive oxygen species (ROS) overproduction and cell cycle arrest at the S phase by upregulating p21Cip1 and downregulating cyclin D2 (CCND2) and cyclin-dependent kinase 6 (CDK6) expression. 8-OHD also induced autophagy, caspase-7-dependent apoptosis, and the degradation of BCR-ABL oncoprotein. 8-OHD promoted Early Growth Response 1 (EGR1)-mediated megakaryocytic differentiation as an increased expression of marker genes, CD61 and CD42b, and the formation of multi-lobulated nuclei in enlarged K562 cells. A microarray-based transcriptome analysis revealed a total of 3174 differentially expressed genes (DEGs) after 8-OHD (100 μM) treatment for 48 h. Bioinformatics analysis of DEGs showed that hemopoiesis, cell cycle regulation, nuclear factor-κB (NF-κB), and mitogen-activated protein kinase (MAPK) and Janus kinase/signal transducers and activators of transcription (JAK-STAT)-mediated apoptosis/anti-apoptosis networks were significantly regulated by 8-OHD. Western blot analysis confirmed that 8-OHD significantly induced the activation of MAPK and NF-κB signaling pathways, both of which may be responsible, at least in part, for the stimulation of apoptosis, autophagy, and differentiation in K562 cells. This is the first report on the anti-CML effects of 8-OHD and the combination of experimental and in silico analyses could provide a better understanding for the development of 8-OHD on CML therapy.
Collapse
Affiliation(s)
- Pei-Shan Wu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan; (J.-H.Y.); (P.-Y.C.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Yi Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan; (J.-H.Y.); (P.-Y.C.)
- Center of Medical Genetics, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
| | - Ming-Jiuan Wu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
| |
Collapse
|
34
|
Wu PS, Jeng J, Yang JJ, Kao V, Yen JH, Wu MJ. Vernonia patula (Dryand.) Merr. and Leucas chinensis (Retz.) R. Brown exert anti-inflammatory activities and relieve oxidative stress via Nrf2 activation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113155. [PMID: 32736054 PMCID: PMC7385944 DOI: 10.1016/j.jep.2020.113155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vernonia patula (Dryand.) Merr. and Leucas chinensis (Retz.) R. Brown have anti-inflammatory properties and are popularly used as complementary and alternative medicine in Asia. AIM OF THE STUDY To investigate the underlying molecular mechanism and active chemicals in the ethanol extracts of V. patula (VP) and L. chinensis (LC). MATERIALS AND METHODS The inhibitory activities of VP and LC on lipopolysaccharide (LPS)-stimulated nitric oxide (NO) and interleukin-6 (IL-6) production were investigated in RAW264.7 macrophages and BV2 microglia. Downregulation of pro-inflammatory genes and upregulation of Nrf2 (NF-E2 p45-related factor 2)-ARE (antioxidant response element) pathway were investigated using RT-Q-PCR and Western blotting. Direct antioxidant capacities were measured using free radical scavenging and Folin-Ciocalteu assays. The flavonoids and triterpenes in VP and LC were identified by HPLC-ESI-MS. RESULTS VP and LC inhibited NO and IL-6 production and suppressed iNOS, IL-6, IL-1β and CCL2 gene expression. VP and LC were potent direct antioxidants and effective indirect antioxidants assayed by Nrf2 activation and induction of heme oxygenase (HO)-1, glutamate-cysteine ligase modifier subunit (GCLM) and NAD(P)H quinone oxidoreductase 1 (NQO1). Three flavonoids including apigenin (1), luteolin (2) and chryseriol (3), and one triterpene betulinic acid (4) were found in VP; while compounds 1-4 and oleanolic acid (5) were in LC. CONCLUSION Anti-inflammatory and antioxidant activities of VP and LC may be in great part attributed to the identified Nrf2 activating compounds, which induce expression of Phase II enzymes and attenuate the upregulation of pro-inflammatory genes.
Collapse
Affiliation(s)
- Pei-Shan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan
| | - Jingyueh Jeng
- Bachelor Program in Cosmeceutical and Biotech Industry, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan; Department of Medicinal Chemistry, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan
| | - Jeng-Jer Yang
- Bachelor Program in Pharmaceutical Botanicals & Health Applications, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan; Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan
| | - Vivia Kao
- Bachelor Program in Cosmeceutical and Biotech Industry, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan; Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, 970, Taiwan
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan.
| |
Collapse
|
35
|
Kuang Y, Zhang Y, Xiao Z, Xu L, Wang P, Ma Q. Protective effect of dimethyl fumarate on oxidative damage and signaling in cardiomyocytes. Mol Med Rep 2020; 22:2783-2790. [PMID: 32945364 PMCID: PMC7453509 DOI: 10.3892/mmr.2020.11342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Myocardial ischemia/reperfusion (I/R) injury contributes to the pathogenesis of numerous diseases. Based on its antioxidant and anti‑inflammatory effects, dimethyl fumarate (DMF) has been reported to exert protective effects against I/R. However, to the best of our knowledge, its potential role as a myocardial protective agent in heart disease has received little attention. Previous studies have suggested that DMF may exert its protective effects by activating nuclear factor erythroid 2‑related factor 2 (Nrf2); however, the exact underlying mechanisms remain to be elucidated. The aim of the present study was to investigate the protective role of DMF in myocardial I/R injury, and to determine the role of Nrf2 in mediating the activity of DMF. H9c2 cells were incubated with DMF (20 µM) for 24 h before establishing the I/R model, and were then subjected to myocardial ischemia for 6 h, followed by reperfusion. Cell viability, lactate dehydrogenase levels, anti‑oxidant enzyme expression levels and anti‑apoptotic effects were evaluated, and AKT/Nrf2 pathway‑associated mechanisms were investigated. The results of the present study indicated that DMF may reduce myocardial I/R injury in a Nrf2‑dependent manner. DMF significantly improved cellular viability, suppressed the expression of apoptotic markers, decreased the production of reactive oxygen species and increased the expression of Nrf2‑regulated antioxidative genes. Notably, these beneficial DMF‑mediated effects were not observed in the control or I/R groups. In conclusion, the results of the present study suggested that DMF may exert protective effects against a myocardial I/R model, and further validated Nrf2 modulation as a primary mode of action. Thus suggesting that DMF may be a potential therapeutic agent for AKT/Nrf2 pathway activation in myocardial, and potentially systemic, diseases.
Collapse
Affiliation(s)
- Yuanyuan Kuang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yinzhuang Zhang
- Department of Cardiovascular Medicine, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Zhen Xiao
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lijun Xu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ping Wang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qilin Ma
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
36
|
Hannan MA, Dash R, Sohag AAM, Haque MN, Moon IS. Neuroprotection Against Oxidative Stress: Phytochemicals Targeting TrkB Signaling and the Nrf2-ARE Antioxidant System. Front Mol Neurosci 2020; 13:116. [PMID: 32714148 PMCID: PMC7346762 DOI: 10.3389/fnmol.2020.00116] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress (OS) plays a critical role in the pathophysiology of several brain-related disorders, including neurodegenerative diseases and ischemic stroke, which are the major causes of dementia. The Nrf2-ARE (nuclear factor erythroid 2-related factor 2/antioxidant responsive element antioxidant) system, the primary cellular defense against OS, plays an essential role in neuroprotection by regulating the expressions of antioxidant molecules and enzymes. However, simultaneous events resulting in the overproduction of reactive oxygen species (ROS) and deregulation of the Nrf2-ARE system damage essential cell components and cause loss of neuron structural and functional integrity. On the other hand, TrkB (tropomyosin-related kinase B) signaling, a classical neurotrophin signaling pathway, regulates neuronal survival and synaptic plasticity, which play pivotal roles in memory and cognition. Also, TrkB signaling, specifically the TrkB/PI3K/Akt (TrkB/phosphatidylinositol 3 kinase/protein kinase B) pathway promotes the activation and nuclear translocation of Nrf2, and thus, confers neuroprotection against OS. However, the TrkB signaling pathway is also known to be downregulated in brain disorders due to lack of neurotrophin support. Therefore, activations of TrkB and the Nrf2-ARE signaling system offer a potential approach to the design of novel therapeutic agents for brain disorders. Here, we briefly overview the development of OS and the association between OS and the pathogenesis of neurodegenerative diseases and brain injury. We propose the cellular antioxidant defense and TrkB signaling-mediated cell survival systems be considered pharmacological targets for the treatment of neurodegenerative diseases, and review the literature on the neuroprotective effects of phytochemicals that can co-activate these neuronal defense systems.
Collapse
Affiliation(s)
- Md. Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Nazmul Haque
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| |
Collapse
|
37
|
Li W, Zhang X, Chen R, Li Y, Miao J, Liu G, Lan Y, Chen Y, Cao Y. HPLC fingerprint analysis of Phyllanthus emblica ethanol extract and their antioxidant and anti-inflammatory properties. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112740. [PMID: 32151757 DOI: 10.1016/j.jep.2020.112740] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyllanthus emblica L. (P. emblica) as a medical plant has been used to treat diseases in Asia. It is famous for a wide range of biological activities, especially for its antioxidant and anti-inflammatory activity. However, quality control underlying the bioactivity of P. emblica fruits remains to be studied. MATERIALS AND METHODS In this study, we evaluated the HPLC fingerprint and bioactivity of polyphenols extracted from P. emblica fruits grown in different habitats. RESULTS P. emblica fruits collected from 10 different habitats in Guangdong, Fujian, Yunnan, and Guangxi provinces in China were used to establish a simple and reliable HPLC fingerprint assay. Simultaneous quantification of three monophenols was also performed to determine assay quality and consistency. Additionally, chemical assessment of the different ethanolic extract (PEEE) from 10 P. emblica fruits demonstrated that they exhibited antioxidant activity by enhancing reducing power and total antioxidant capacity, scavenging hydroxyl radical and superoxide anion. PEEE protected RAW264.7 cells from oxidative damage by increasing glutathione content and total superoxide dismutase activity, suppressing MDA content. PEPE also alleviated lipopolysaccharide-induced inflammation in RAW 264.7 cells by decreasing release of pro-inflammatory mediators. Notably, the PEEE samples from Yunnan province showed the optimal antioxidant and anti-inflammatory effects among all the PEEE samples. CONCLUSION In conclusion, The PEEE HPLC fingerprint may help improve P. emblica quality control, and P. emblica with antioxidant and anti-inflammatory activities may be potentially applied in functional foods or in adjuvant therapy for medicinal development.
Collapse
Affiliation(s)
- Wei Li
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou, 510642, China
| | - Xiaoying Zhang
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou, 510642, China
| | - Rong Chen
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou, 510642, China
| | - Yifeng Li
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou, 510642, China
| | - Jianyin Miao
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou, 510642, China
| | - Guo Liu
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou, 510642, China
| | - Yaqi Lan
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou, 510642, China
| | - Yunjiao Chen
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou, 510642, China.
| | - Yong Cao
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou, 510642, China.
| |
Collapse
|
38
|
Wang S, Zheng L, Zhao T, Zhang Q, Liu Y, Sun B, Su G, Zhao M. Inhibitory Effects of Walnut ( Juglans regia) Peptides on Neuroinflammation and Oxidative Stress in Lipopolysaccharide-Induced Cognitive Impairment Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2381-2392. [PMID: 32037817 DOI: 10.1021/acs.jafc.9b07670] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increasing level of inflammation and oxidative stress could lead to memory impairment. The purpose of this study was to determine the neuroprotective effects of walnut peptides against memory deficits induced by lipopolysaccharide (LPS) in mice and further to explore the underlying anti-inflammatory mechanisms against LPS-elicited inflammation in BV-2 cells. Results showed that walnut protein hydrolysate (WPH) and its low-molecular-weight fraction (WPHL) could ameliorate the memory deficits induced by LPS via normalizing the inflammatory response and oxidative stress in brain, especially WPHL. Furthermore, 18 peptides with anti-inflammatory activities on LPS-activated BV-2 cells were identified from WPHL and it was found that Trp, Gly, and Leu residues in peptides might contribute to the anti-inflammation. Meanwhile, the strong anti-inflammatory effects of LPF, GVYY, and APTLW might be related to their hydrophobic and aromatic amino acid residues as well. LPF, GVYY, and APTLW could reduce the content of proinflammatory mediators and cytokines by downregulating related enzyme expressions and mRNA expressions. Additionally, ROS and mitochondria homeostasis might also contribute to their anti-inflammatory effects.
Collapse
Affiliation(s)
- Shuguang Wang
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Lin Zheng
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Tiantian Zhao
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Qi Zhang
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Yang Liu
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University (BTBU) , Beijing 100048 , China
| | - Guowan Su
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Mouming Zhao
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University (BTBU) , Beijing 100048 , China
| |
Collapse
|
39
|
Aziz N, Kang YG, Kim YJ, Park WS, Jeong D, Lee J, Kim D, Cho JY. Regulation of 8-Hydroxydaidzein in IRF3-Mediated Gene Expression in LPS-Stimulated Murine Macrophages. Biomolecules 2020; 10:biom10020238. [PMID: 32033247 PMCID: PMC7072285 DOI: 10.3390/biom10020238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/17/2020] [Accepted: 01/26/2020] [Indexed: 12/20/2022] Open
Abstract
Cytokines and chemokines are transcriptionally regulated by inflammatory transcription factors such as nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and interferon regulatory factor (IRF)-3. A daidzein derivative compound, 8-hydroxydaidzein (8-HD), isolated from soy products, has recently gained attention due to various pharmacological benefits, including anti-inflammatory activities. However, regulation of the inflammatory signaling mechanism for 8-HD is still poorly understood, particularly with respect to the IRF-3 signaling pathway. In this study, we explored the molecular mechanism of 8-HD in regulating inflammatory processes, with a focus on the IRF-3 signaling pathway using a lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid [Poly (I:C)] stimulated murine macrophage cell line (RAW264.7). The 8-HD downregulated the mRNA expression level of IRF-3-dependent genes by inhibiting phosphorylation of the IRF-3 transcription factor. The inhibitory mechanism of 8-HD in the IRF-3 signaling pathway was shown to inhibit the kinase activity of IKKε to phosphorylate IRF-3. This compound can also interfere with the TRIF-mediated complex formation composed of TRAF3, TANK, and IKKε leading to downregulation of AKT phosphorylation and reduction of IRF-3 activation, resulted in inhibition of IRF-3-dependent expression of genes including IFN-β, C-X-C motif chemokine 10 (CXCL10), and interferon-induced protein with tetratricopeptide repeats 1 (IFIT1). Therefore, these results strongly suggest that 8-HD can act as a promising compound with the regulatory function of IRF-3-mediated inflammatory responses.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (N.A.); (D.J.)
| | - Young-Gyu Kang
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin 17074, Korea; (Y.-G.K.); (Y.-J.K.); (W.-S.P.)
| | - Yong-Jin Kim
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin 17074, Korea; (Y.-G.K.); (Y.-J.K.); (W.-S.P.)
| | - Won-Seok Park
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin 17074, Korea; (Y.-G.K.); (Y.-J.K.); (W.-S.P.)
| | - Deok Jeong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (N.A.); (D.J.)
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (N.A.); (D.J.)
- Correspondence: (J.L.); (D.K.); (J.Y.C.); Tel.: +82-31-290-7861 (J.L.); +82-31-280-5869 (D.K.); +82-31-290-7868 (J.Y.C.)
| | - Donghyun Kim
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin 17074, Korea; (Y.-G.K.); (Y.-J.K.); (W.-S.P.)
- Correspondence: (J.L.); (D.K.); (J.Y.C.); Tel.: +82-31-290-7861 (J.L.); +82-31-280-5869 (D.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (N.A.); (D.J.)
- Correspondence: (J.L.); (D.K.); (J.Y.C.); Tel.: +82-31-290-7861 (J.L.); +82-31-280-5869 (D.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
40
|
Wang X, Yu N, Wang Z, Qiu T, Jiang L, Zhu X, Sun Y, Xiong H. Akebia trifoliata pericarp extract ameliorates inflammation through NF-κB/MAPK signaling pathways and modifies gut microbiota. Food Funct 2020; 11:4682-4696. [DOI: 10.1039/c9fo02917f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Akebia trifoliata fruits, a kind of popular edible berry in Asia, are widely consumed as daily fruits or functional foods.
Collapse
Affiliation(s)
- Xiaoya Wang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Ningxiang Yu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Zhongliang Wang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Tingting Qiu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Li Jiang
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330004
- China
| | - Xuemei Zhu
- School of Food Science and Technology
- Dalian Polytechnic University
- Dalian 116034
- China
| | - Yong Sun
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| |
Collapse
|
41
|
Cognitive Function and Consumption of Fruit and Vegetable Polyphenols in a Young Population: Is There a Relationship? Foods 2019; 8:foods8100507. [PMID: 31627296 PMCID: PMC6836211 DOI: 10.3390/foods8100507] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 12/13/2022] Open
Abstract
Scientific evidence has shown the relationship between consumption of fruits and vegetables and their polyphenols with the prevention or treatment of diseases. The aim of this review was to find out whether the same relationship exists between fruits and vegetables and cognitive function, especially memory, in a young population. The mechanisms by which polyphenols of fruits and vegetables can exert cognitive benefits were also evaluated. These compounds act to improve neuronal plasticity through the protein CREB (Camp Response Element Binding) in the hippocampus, modulating pathways of signaling and transcription factors (ERK/Akt). In the same way, brain-derived neurotrophic factor (BDNF) is implicated in the maintenance, survival, growth, and differentiation of neurons. All these effects are produced by an increase of cerebral blood flow and an increase of the blood’s nitric oxide levels and oxygenation.
Collapse
|
42
|
Cheng Q, Shen Y, Cheng Z, Shao Q, Wang C, Sun H, Zhang Q. Achyranthes bidentata polypeptide k suppresses neuroinflammation in BV2 microglia through Nrf2-dependent mechanism. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:575. [PMID: 31807556 DOI: 10.21037/atm.2019.09.07] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Activated microglia play a critical role in regulating neuroinflammatory responses in central nervous system. Previous studies have shown that Achyranthes bidentata polypeptide k's (ABPPk's) neuroprotective effects are partly due to its anti-inflammatory effect, but the mechanism remains unknown. This study is aimed to investigate the anti-inflammatory effect of ABPPk on lipopolysaccharide (LPS)-activated neuroinflammation in BV2 microglia. Methods We pretreated BV2 microglia with different concentrations of ABPPk (0.04-5 µg/mL) for 30 minutes, and then stimulated microglia with LPS for 24 hours. Pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nitric oxide (NO) and prostaglandin E2 (PGE2) production were measured by enzyme-linked immunosorbent assay (ELISA) kits. Inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), phosphorylated nuclear factor kappa B (NF-κB), heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) expression levels were detected by western blot. Glutathione (GSH) level was measured by GSH-Glo™ Glutathione assay. Immunofluorescent staining was used to detect the nuclear translocation of NF-κB and Nrf2. BV2 microglia transfected with Nrf2 siRNA were used to investigate the effect of Nrf2 on the anti-inflammatory activity of ABPPk. Results ABPPk (0.2-5 µg/mL) reduced the iNOS mediated NO and COX-2 mediated PGE2 production significantly in LPS-activated BV2 microglia. ABPPk (1 and 5 µg/mL) also suppressed the production of TNF-α and IL-6 significantly. NF-κB is phosphorylated and translocated into nuclear in LPS-activated BV2 microglia, but ABPPk is shown to inhibit the phosphorylation and translocation of NF-κB in a concentration-dependent way. ABPPk increased the protein expression levels of HO-1 and Nrf2, as well as the GSH content in BV2 microglia. Immunofluorescent staining showed that ABPPk also promoted nuclear translocation of Nrf2. After knocking down Nrf2 in BV2 cells with siRNA interference, ABPPk's inhibitory effect on pro-inflammatory mediators also disappeared. Conclusions The present study suggests that ABPPk inhibits neuroinflammation in BV2 microglia through Nrf2-dependent mechanism. This provides some strong evidence for the potential of this neuroprotective natural compound to treat neurodegenerative diseases such as ischemic stroke and Parkinson's disease.
Collapse
Affiliation(s)
- Qiong Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong 226001, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Zhenghui Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qian Shao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Caiping Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong 226001, China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
43
|
Li F, Wang X, Zhang Z, Zhang X, Gao P. Dexmedetomidine Attenuates Neuroinflammatory-Induced Apoptosis after Traumatic Brain Injury via Nrf2 signaling pathway. Ann Clin Transl Neurol 2019; 6:1825-1835. [PMID: 31478596 PMCID: PMC6764501 DOI: 10.1002/acn3.50878] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/21/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022] Open
Abstract
Objective Dexmedetomidine (DEX) exhibits neuroprotective effects as a multifunctional neuroprotective agent in numerous neurological disorders. However, in traumatic brain injury (TBI), the molecular mechanisms of these neuroprotective effects remain unclear. The present study investigated whether DEX, which has been reported to exert protective effects against TBI, could attenuate neuroinflammatory‐induced apoptosis and clarified the underlying mechanisms. Methods A weight‐drop model was established, and DEX was intraperitoneally injected 30 min after inducing TBI in rats. The water content in the brain tissue was measured. Terminal deoxynucleotidyl transferase‐mediated dUTP nick‐end labeling (TUNEL) assays were performed on histopathological tissue sections to evaluate neuronal apoptosis. Enzyme‐linked immunosorbent assay and PCR were applied to detect the levels of the inflammatory factors, TNF‐α, IL‐1β, IL‐6, and NF‐κB. Results TBI–challenged rats exhibited significant neuronal apoptosis, which was characterized via the wet‐to‐dry weight ratio, neurobehavioral functions, TUNEL assay results and the levels of cleaved caspase‐3, Bax upregulation and Bcl‐2, which were attenuated by DEX. Western blot, immunohistochemistry, and PCR results revealed that DEX promoted Nrf2 expression and upregulated expression of the Nrf2 downstream factors, HO‐1 and NQO‐1. Furthermore, DEX treatment markedly prevented the downregulation of inflammatory response factors, TNF‐α, IL‐1β and NF‐κB, and IL‐6. Interpretation Administering DEX attenuated inflammation‐induced brain injury in a TBI model, potentially via the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Fayin Li
- Department of Anesthesiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 6 Beijing Road West, Huaian, 223002, Jiangsu, China
| | - Xiaodong Wang
- Department of Neurosurgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 6 Beijing Road West, Huaian, 223002, Jiangsu, China
| | - Zhijie Zhang
- Department of Anesthesiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 6 Beijing Road West, Huaian, 223002, Jiangsu, China
| | - Xianlong Zhang
- Department of Anesthesiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 6 Beijing Road West, Huaian, 223002, Jiangsu, China
| | - Pengfei Gao
- Department of Anesthesiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 6 Beijing Road West, Huaian, 223002, Jiangsu, China
| |
Collapse
|
44
|
Ko YH, Kim SK, Kwon SH, Seo JY, Lee BR, Kim YJ, Hur KH, Kim SY, Lee SY, Jang CG. 7,8,4'-Trihydroxyisoflavone, a Metabolized Product of Daidzein, Attenuates 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells. Biomol Ther (Seoul) 2019; 27:363-372. [PMID: 30866601 PMCID: PMC6609108 DOI: 10.4062/biomolther.2018.211] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/11/2018] [Accepted: 02/18/2019] [Indexed: 12/28/2022] Open
Abstract
Daidzein isolated from soybean (Glycine max) has been widely studied for its antioxidant and anti-inflammatory activities. However, the protective effects of 7,8,4'-trihydroxyisoflavone (THIF), a major metabolite of daidzein, on 6-hydroxydopamine (OHDA)-induced neurotoxicity are not well understood. In the current study, 7,8,4'-THIF significantly inhibited neuronal cell death and lactate dehydrogenase (LDH) release induced by 6-OHDA in SH-SY5Y cells, which were used as an in vitro model of Parkinson' disease (PD). Moreover, pretreatment with 7,8,4'-THIF significantly increased the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) and decreased malondialdehyde (MDA) activity in 6-OHDA-induced SH-SY5Y cells. In addition, 7,8,4'-THIF significantly recovered 6-OHDA-induced cleaved caspase-3, cleaved caspase-9, cleaved poly-ADP-ribose polymerase (PARP), increased Bax, and decreased Bcl-2 levels. Additionally, 7,8,4'-THIF significantly restored the expression levels of phosphorylated c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 1/2 (ERK 1/2), phosphatidylinositol 3-kinases (PI3K)/Akt, and glycogen synthase kinase-3 beta (GSK-3β) in 6-OHDA-induced SH-SY5Y cells. Further, 7,8,4'-THIF significantly increased the reduced tyrosine hydroxylase (TH) level induced by 6-OHDA in SH-SY5Y cells. Collectively, these results suggest that 7,8,4'-THIF protects against 6-OHDA-induced neuronal cell death in cellular PD models. Also, these effects are mediated partly by inhibiting activation of the MAPK and PI3K/Akt/GSK-3β pathways.
Collapse
Affiliation(s)
- Yong-Hyun Ko
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seon-Kyung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung-Hwan Kwon
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jee-Yeon Seo
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bo-Ram Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young-Jung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kwang-Hyun Hur
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
45
|
Chang TS, Wang TY, Yang SY, Kao YH, Wu JY, Chiang CM. Potential Industrial Production of a Well-Soluble, Alkaline-Stable, and Anti-Inflammatory Isoflavone Glucoside from 8-Hydroxydaidzein Glucosylated by Recombinant Amylosucrase of Deinococcus geothermalis. Molecules 2019; 24:molecules24122236. [PMID: 31208027 PMCID: PMC6631725 DOI: 10.3390/molecules24122236] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/09/2019] [Accepted: 06/14/2019] [Indexed: 12/31/2022] Open
Abstract
8-Hydroxydaidzein (8-OHDe), an ortho-hydroxylation derivative of soy isoflavone daidzein isolated from some fermented soybean foods, has been demonstrated to possess potent anti-inflammatory activity. However, the isoflavone aglycone is poorly soluble and unstable in alkaline solutions. To improve the aqueous solubility and stability of the functional isoflavone, 8-OHDe was glucosylated with recombinant amylosucrase of Deinococcus geothermalis (DgAS) with industrial sucrose, instead of expensive uridine diphosphate-glucose (UDP-glucose). One major product was produced from the biotransformation, and identified as 8-OHDe-7-α-glucoside, based on mass and nuclear magnetic resonance spectral analyses. The aqueous solubility and stability of the isoflavone glucoside were determined, and the results showed that the isoflavone glucoside was almost 4-fold more soluble and more than six-fold higher alkaline-stable than 8-OHDe. In addition, the anti-inflammatory activity of 8-OHDe-7-α-glucoside was also determined by the inhibition of lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells. The results showed that 8-OHDe-7-α-glucoside exhibited significant and dose-dependent inhibition on the production of nitric oxide, with an IC50 value of 173.2 µM, which remained 20% of the anti-inflammatory activity of 8-OHDe. In conclusion, the well-soluble and alkaline-stable 8-OHDe-7-α-glucoside produced by recombinant DgAS with a cheap substrate, sucrose, as a sugar donor retains moderate anti-inflammatory activity, and could be used in industrial applications in the future.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan.
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan.
| | - Szu-Yi Yang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan.
| | - Yu-Han Kao
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan.
| | - Jiumn-Yih Wu
- Department of Food Science, National Quemoy University, Kinmen County 892, Taiwan.
| | - Chien-Min Chiang
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, No. 60, Sec. 1, Erh-Jen Rd., Jen-Te District, Tainan 71710, Taiwan.
| |
Collapse
|
46
|
Hyperbaric Oxygen Improves Functional Recovery of the Injured Spinal Cord by Inhibiting Inflammation and Glial Scar Formation. Am J Phys Med Rehabil 2019; 98:914-920. [DOI: 10.1097/phm.0000000000001225] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
47
|
Qi G, Mi Y, Fan R, Li R, Liu Z, Liu X. Nobiletin Protects against Systemic Inflammation-Stimulated Memory Impairment via MAPK and NF-κB Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5122-5134. [PMID: 30995031 DOI: 10.1021/acs.jafc.9b00133] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Neuroinflammation has been intensively demonstrated to be related to various neurodegenerative diseases including Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Alzheimer's disease (AD). A natural polymethoxylated flavone, nobiletin (NOB) has been reported to alleviate oxidative stress, insulin resistance, and obesity. In this study, we evaluated the protection effects of NOB on neuroinflammation and memory deficit. Three-month mice were administrated with NOB by oral gavage every day for 6 weeks (100 mg/kg/day); subsequently mice were injected intraperitoneally with lipopolysaccharide (LPS) for 7 days. Results of behavioral tests revealed that NOB dramatically ameliorated LPS-triggered memory deficit regarding synaptic dysfunctions and neuronal loss. Also, NOB suppressed the microglial activation and proinflammatory cytokine secretion, such as COX-2, IL-1β, TNF-α, and iNOS. Similarly, upon LPS stimulation, pretreatment NOB diminished the secretion of the proinflammatory cytokines in BV-2 microglia cells by exposure to LPS via modulating MAPKs, PI3K/AKT, and NF-κB signaling pathways. In addition, NOB alleviated LPS-amplified redox imbalance, disturbance of mitochondrial membrane potential (MMP), and dampening of the expression of protein related to mitochondrial respiration. The present study provides compelling evidence that NOB decreased LPS-stimulated neuroinflammation and memory impairment through maintaining cellular oxidative balance and blocking the NF-κB transcriptional pathway, illustrating that the nutritional compound NOB may serve as a potential approach to alleviate neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Guoyuan Qi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Yashi Mi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Rong Fan
- Department of Nutrition and Health Sciences , University of Nebraska-Lincoln , Lincoln , Nebraska 68583 , United States
| | - Runnan Li
- Department of Animal and Food Science , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| |
Collapse
|
48
|
Lee YS, Cho IJ, Kim JW, Lee SK, Ku SK, Lee HJ. Evaluation of in vitro anti-oxidant and anti-inflammatory activities of Korean and Chinese Lonicera caerulea. Nutr Res Pract 2018; 12:486-493. [PMID: 30515276 PMCID: PMC6277309 DOI: 10.4162/nrp.2018.12.6.486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/22/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND/OBJECTIVES The honeysuckle berry (HB) contains ascorbic acid and phenolic components, especially anthocyanins, flavonoids, and low-molecular-weight phenolic acids. In order to examine the potential of HB as a hepatoprotective medicinal food, we evaluated the in vitro anti-oxidant and anti-inflammatory activities of Korean HB (HBK) and Chinese HB (HBC). MATERIALS/METHODS Antioxidant and anti-inflammatory effects of the extracts were examined in HepG2 and RAW 264.7 cells, respectively. The anti-oxidant capacity was determined by DPPH, SOD, CAT, and ARE luciferase activities. The production of nitric oxide (NO) as an inflammatory marker was also evaluated. The Nrf2-mediated mRNA levels of heme oxygenase-1 (HO-1), NAD(P)H dehydrogenase [quinone] 1 (Nqo1), and glutamate-cysteine ligase catalytic subunit (Gclc) were measured. The concentrations of HB extracts used were 3, 10, 30, 100, and 300 µg/mL. RESULTS The radical scavenging activity of all HB extracts increased in a concentration-dependent manner (P < 0.01 or P < 0.05). SOD (P < 0.05) and CAT (P < 0.01) activities were increased by treatment with 300 µg/mL of each HB extract, when compared to those in the control. NO production was observed in cells pretreated with 100 or 300 µg/mL of HBC and HBK (P < 0.01). Treatment with 300 µg/mL of HBC significantly increased Nqo1 (P < 0.01) and Gclc (P < 0.05) mRNA levels compared to those in the control. Treatment with 300 µg/mL of HBK (P < 0.05) and HBC (P < 0.01) also significantly increased the HO-1 mRNA level compared to that in the control. CONCLUSIONS Thus, the Korean and Chinese HBs were found to possess favorable in vitro anti-oxidant and anti-inflammatory activities. Nrf2 and its related anti-oxidant genes were associated with both anti-oxidant and anti-inflammatory activities in HB-treated cells. Further studies are needed to confirm these in vivo effects.
Collapse
Affiliation(s)
- You-Suk Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam, Gyeonggi 13120, Korea
| | - Il Je Cho
- The Medical Research Center for Globalization of Herbal Formulation and Department of Herbal Formulation, College of Oriental Medicine, Daegu Haany University, Gyeongbuk 38610, Korea
| | - Joo Wan Kim
- Department of Internal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Sun-Kyoung Lee
- Department of Life Physical Education, Myongji University, Seoul 03674, Korea
| | - Sae Kwang Ku
- Department of Anatomy and Histology, College of Oriental Medicine, Daegu Haany University, 1, Hanuidae-ro, Gyeongsan, Gyeongbuk 38610, Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam, Gyeonggi 13120, Korea
| |
Collapse
|
49
|
Production of New Isoflavone Glucosides from Glycosylation of 8-Hydroxydaidzein by Glycosyltransferase from Bacillus subtilis ATCC 6633. Catalysts 2018. [DOI: 10.3390/catal8090387] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
8-Hydroxydaidzein (8-OHDe) has been proven to possess some important bioactivities; however, the low aqueous solubility and stability of 8-OHDe limit its pharmaceutical and cosmeceutical applications. The present study focuses on glycosylation of 8-OHDe to improve its drawbacks in solubility and stability. According to the results of phylogenetic analysis with several identified flavonoid-catalyzing glycosyltransferases (GTs), three glycosyltransferase genes (BsGT110, BsGT292 and BsGT296) from the genome of the Bacillus subtilis ATCC 6633 strain were cloned and expressed in Escherichia coli. The three BsGTs were then purified and the glycosylation activity determined toward 8-OHDe. The results showed that only BsGT110 possesses glycosylation activity. The glycosylated metabolites were then isolated with preparative high-performance liquid chromatography and identified as two new isoflavone glucosides, 8-OHDe-7-O-β-glucoside and8-OHDe-8-O-β-glucoside, whose identity was confirmed by mass spectrometry and nuclear magnetic resonance spectroscopy. The aqueous solubility of 8-OHDe-7-O-β-glucoside and 8-OHDe-8-O-β-glucoside is 9.0- and 4.9-fold, respectively, higher than that of 8-OHDe. Moreover, more than 90% of the initial concentration of the two 8-OHDe glucoside derivatives remained after 96 h of incubation in 50 mM of Tris buffer at pH 8.0. In contrast, the concentration of 8-OHDe decreased to 0.8% of the initial concentration after 96 h of incubation. The two new isoflavone glucosides might have potential in pharmaceutical and cosmeceutical applications.
Collapse
|
50
|
El-Shoura EA, Messiha BA, Sharkawi SM, Hemeida RA. Perindopril ameliorates lipopolysaccharide-induced brain injury through modulation of angiotensin-II/angiotensin-1-7 and related signaling pathways. Eur J Pharmacol 2018; 834:305-317. [DOI: 10.1016/j.ejphar.2018.07.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022]
|