1
|
Khan S, Khatri DK. In-silico screening to identify phytochemical inhibitor for hP2X7: A crucial inflammatory cell death mediator in Parkinson's disease. Comput Biol Chem 2025; 115:108285. [PMID: 39615401 DOI: 10.1016/j.compbiolchem.2024.108285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 02/26/2025]
Abstract
The second most prevalent neurological disease among the elderly is Parkinson's disease, where neuroinflammation plays a significant role in its pathology. Purinergic signaling mediated by P2X7 plays a significant role in neuroinflammation and pyroptotic cell death pathways through mediators like NLRP3, Caspase-1, and Caspase-3, instigating pyroptotic cell death. No synthetic agent advanced in late-stage clinical trials due to their inefficacy and toxicity. Hence, in this study, we aimed to identify a phytoconstituent inhibitor against the hP2X7 receptor to ameliorate the inflammatory processes involved. To achieve this aim, we performed homology modeling of the receptor and screened phytoconstituents from a library of over 3500 commercially available phytoconstituents. Molecular docking through the Maestro program of the Schrödinger suite was performed considering evaluation parameters like docking score, docking pose and spatial arrangement, and MMGBSA binding free energy. Predictive pharmacokinetic and toxicity profiling was done using tools like QikProp, ADMETLab 2.0, SwissADME, and Protox-II. Molecular dynamic simulation was performed using Schrödinger's Desmond tool for the top 10 phytoconstituents. The complex stability was evaluated based on the ligand- and protein-RMSD, protein-ligand contact stability over a simulation period of 100 ns, protein RMSF, and ligand properties like RMSF, radius of gyration, intramolecular hydrogen bonding, and SASA. Based on the studies' results, silychristin, silybin, rosmarinic acid, nordihydroguaiaretic acid, and aurantiamide were shortlisted as the top 5 phytoconstituents against hP2X7. Further in-vitro and in-vivo studies would offer better clarity on the mechanism of action of these agents specifically related to pyroptotic cell death in various disease models.
Collapse
Affiliation(s)
- Sabiya Khan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, Rajasthan 303121, India.
| |
Collapse
|
2
|
Yang S, Zou Y, Zhong C, Zhou Z, Peng X, Tang C. Dual role of pyroptosis in liver diseases: mechanisms, implications, and therapeutic perspectives. Front Cell Dev Biol 2025; 13:1522206. [PMID: 39917567 PMCID: PMC11798966 DOI: 10.3389/fcell.2025.1522206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/10/2025] [Indexed: 02/09/2025] Open
Abstract
Pyroptosis, a form of programmed cell death induced by inflammasome with a mechanism distinct from that of apoptosis, occurs via one of the three pathway types: classical, non-classical, and granzyme A/B-dependent pyroptosis pathways. Pyroptosis is implicated in various diseases, notably exhibiting a dual role in liver diseases. It facilitates the clearance of damaged hepatocytes, preventing secondary injury, and triggers immune responses to eliminate pathogens and damaged cells. Conversely, excessive pyroptosis intensifies inflammatory responses, exacerbates hepatocyte damage and promotes the activation and proliferation of hepatic stellate cells, accelerating liver fibrosis. Furthermore, by sustaining an inflammatory state, impacts the survival and proliferation of cancer cells. This review comprehensively summarizes the dual role of pyroptosis in liver diseases and its therapeutic strategies, offering new theoretical foundations and practical guidance for preventing and treating of liver diseases.
Collapse
Affiliation(s)
| | | | | | - Zuoqiong Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Xiyang Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Changfa Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| |
Collapse
|
3
|
Chen Y, Ma H, Liang J, Sun C, Wang D, Chen K, Zhao J, Ji S, Ma C, Ye X, Cao J, Wang Y, Sun C. Hepatoprotective potential of four fruit extracts rich in different structural flavonoids against alcohol-induced liver injury via gut microbiota-liver axis. Food Chem 2024; 460:140460. [PMID: 39068798 DOI: 10.1016/j.foodchem.2024.140460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Alcoholic liver injury (ALI) accounts for a major share of the global burden of non-viral liver disease. In the absence of specialized medications, research on using fruit flavonoids as a treatment is gaining momentum. This study investigated the hepatoprotective effects of four fruits rich in structurally diverse flavonoids: ougan (Citrus reticulata cv. Suavissima, OG), mulberry (Morus alba L., MB), apple (Malus × domestica Borkh., AP), and turnjujube (Hovenia dulcis Thunnb., TJ). A total of one flavanone glycoside, three polymethoxyflavones, two anthocyanins, one flavonol glycoside, and one dihydroflavonol were identified through UPLC analysis. In an acute ethanol-induced ALI mouse model, C57BL/6J mice were supplemented with 200 mg/kg·BW/day of different fruit extracts for three weeks. Our results showed that the four extracts exhibited promising benefits in improving lipid metabolism disorders, iron overload, and oxidative stress. RT-PCR and Western blot tests suggested that the potential mechanism may partially be attributed to the activation of the NRF2-mediated antioxidant response and the inhibition of ferroptosis pathways. Furthermore, fruit extracts administration demonstrated a specific regulatory role in intestinal microecology, with increases in beneficial bacteria such as Dubosiella, Lactobacillus, and Bifidobacterium. Spearman correlation analysis revealed strong links between intestinal flora, lipid metabolism, and iron homeostasis, implying that the fruit extracts mitigated ALI via the gut microbiota-liver axis. In vitro experiments reaffirmed the activity against ethanol-induced oxidative damage and highlighted the positive effects of flavonoid components. These findings endorse the prospective application of OG, MB, AP, and TJ as dietary supplements or novel treatments for ALI.
Collapse
Affiliation(s)
- Yunyi Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hanbing Ma
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiaojiao Liang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Cui Sun
- Hainan Institute of Zhejiang University, Sanya, Hainan, People's Republic of China
| | - Dengliang Wang
- Institute of Fruit Tree Research, Quzhou Academy of Agriculture and Forestry Science, Quzhou, China
| | - Kang Chen
- Liandu Agriculture and Rural Bureau, Lishui, China
| | - Jinmiao Zhao
- Liandu Agriculture and Rural Bureau, Lishui, China
| | - Shiyu Ji
- Lishui Agriculture and Rural Bureau, Zhejiang, China
| | - Chao Ma
- Zhejiang NongZhen Food Co., Ltd., Hangzhou, China
| | - Xianming Ye
- Zhejiang JiaNong Fruit & Vegetable Co., Ltd., Quzhou, China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Li SJ, Liu AB, Yu YY, Ma JH. The role and mechanism of pyroptosis and potential therapeutic targets in non-alcoholic fatty liver disease (NAFLD). Front Cell Dev Biol 2024; 12:1407738. [PMID: 39022762 PMCID: PMC11251954 DOI: 10.3389/fcell.2024.1407738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinical pathological syndrome characterized by the excessive accumulation of fat within liver cells, which can progress to end-stage liver disease in severe cases, posing a threat to life. Pyroptosis is a distinct, pro-inflammatory form of cell death, differing from traditional apoptosis. In recent years, there has been growing research interest in the association between pyroptosis and NAFLD, encompassing the mechanisms and functions of pyroptosis in the progression of NAFLD, as well as potential therapeutic targets. Controlled pyroptosis can activate immune cells, eliciting host immune responses to shield the body from harm. However, undue activation of pyroptosis may worsen inflammatory responses, induce cellular or tissue damage, disrupt immune responses, and potentially impact liver function. This review elucidates the involvement of pyroptosis and key molecular players, including NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome, gasdermin D (GSDMD), and the caspase family, in the pathogenesis and progression of NAFLD. It emphasizes the promising prospects of targeting pyroptosis as a therapeutic approach for NAFLD and offers valuable insights into future directions in the field of NAFLD treatment.
Collapse
Affiliation(s)
- Shu-Jing Li
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuan-Yuan Yu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jin-Hai Ma
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
5
|
Zeng Y, He Y, Wang L, Xu H, Zhang Q, Wang Y, Zhang J, Wang L. Dihydroquercetin improves experimental acute liver failure by targeting ferroptosis and mitochondria-mediated apoptosis through the SIRT1/p53 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155533. [PMID: 38552433 DOI: 10.1016/j.phymed.2024.155533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Ferroptosis and mitochondria-mediated apoptosis are both involved in the pathogenesis of acute liver failure (ALF). Ferroptosis-produced reactive oxygen species (ROS) trigger the chain oxidation of polyunsaturated phospholipids and promote mitochondrial apoptosis. Dihydroquercetin (DHQ) also plays an important protective role against liver injury. PURPOSE Here, we aimed to investigate the protective effects of DHQ on ALF. We also explored the underlying mechanism. METHODS We established a Lipopolysaccharide (LPS)/D-galactosamine (D-Gal)-induced ALF mouse model and tumor necrosis factor-α (TNF-α)/D-Gal-induced ALF LO2 cell model. 2',7'-Dichlorofluorescein diacetate (DCFH-DA) and Dihydroethidium (DHE) were used to detect total ROS levels. Lipid ROS was assessed using C11-BODIPY flow cytometry. Lipid peroxidative products levels were detected using MDA ELISA assay and 4-hydroxynonenal (4-HNE) immunohistochemistry. QRT-PCR and western blots were used to test mRNA and protein expression levels, respectively. Cell viability was evaluated with CCK8 assay, and apoptosis was analyzed using flow cytometry. RESULTS DHQ treatment improved LPS/D-Gal-induced ALF, as well as TNF-α/D-Gal-induced reductions in LO2 viability and increased sirtuin 1 (SIRT1) expression. DHQ pretreatment also reduced the accumulation of ROS, reduced lipid peroxidation, elevated mitochondrial membrane potentials (ΔΨm), and decreased liver cell apoptosis both in vivo and in vitro. Additionally, the knockdown of SIRT1 and p53 activator (Tenovin-6) treatment reversed DHQ's inhibitory effects on ferroptosis and mitochondria-mediated apoptosis in vitro. DHQ enhanced p53 deacetylation by both up-regulating SIRT1 expression and directly bonding to SIRT1. We also found that Tenovin-6's stimulatory effects on ferroptosis and mitochondria-mediated apoptosis in the DHQ-treated LO2 ALF cell model were partially attenuated by overexpression of solute carrier family 7member 11 (SLC7A11), as well as by apoptotic protease activating factor 1 (Apaf-1) knockdown. CONCLUSION Our results suggest that DHQ alleviated ALF by inhibiting both ferroptosis and mitochondria-mediated apoptosis by regulating the SIRT1/p53 axis. Thus, DHQ may serve as a novel therapy for ALF.
Collapse
Affiliation(s)
- Yuqiao Zeng
- Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Yiyu He
- Department of Cardiovascular Disease, Renmin Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei 430060, China
| | - Li Wang
- Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Hao Xu
- Infection Control Center, Linyi People's Hospital. Lanshan District, Linyi City, Shandong 276000, China
| | - Qianwen Zhang
- Infection Control Center, Linyi People's Hospital. Lanshan District, Linyi City, Shandong 276000, China
| | - Yanjun Wang
- Jilin Jianwei Natural Biotechnology Co., Ltd. Kuancheng District, Changchun City, Jilin 510664, China
| | - Jianhua Zhang
- Outpatient Department, Shandong Public Health Clinical Center, Lixia District, Jinan City, Shandong 250100, China
| | - Likun Wang
- Infection Control Center, Linyi People's Hospital. Lanshan District, Linyi City, Shandong 276000, China.
| |
Collapse
|
6
|
Wang X, Yu Q, Bai X, Li X, Sun Y, Peng X, Zhao R. The role of the purinergic ligand-gated ion channel 7 receptor in common digestive system cancers. Eur J Cancer Prev 2024; 33:271-281. [PMID: 37942897 DOI: 10.1097/cej.0000000000000851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The incidence of digestive malignancies has increased in recent years, including colorectal cancer (CRC), hepatocellular carcinoma (HCC) and pancreatic cancer. Advanced stages of these cancers are prone to metastasis, which seriously reduce the standard of living of patients and lead to decline in the survival rate of patients. So far there are no good specific drugs to stop this phenomenon. It is very important and urgent to find new biomarkers and therapeutic targets. Purinergic ligand-gated ion channel 7 receptor (P2X7R) is ATP-gated and nonselective ion channel receptor involved in many inflammatory processes and cancer progression. P2X7R is present in many cancer cells and promotes or inhibits cancer development through signal transduction. Studies have presented that P2X7R plays a role in the proliferation and migration of digestive system cancers, such as CRC, HCC and pancreatic cancer. Therefore, P2X7R may serve as a biomarker or therapeutic target for digestive system cancers. This paper describes the structure and function of P2X7R, and mainly reviews the research progress on the role of P2X7R in CRC, HCC and pancreatic cancer.
Collapse
Affiliation(s)
- Xin Wang
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Qingqing Yu
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Xue Bai
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Xinyu Li
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Yanli Sun
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Xiaoxiang Peng
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Ronglan Zhao
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
7
|
Sayaf K, Battistella S, Russo FP. NLRP3 Inflammasome in Acute and Chronic Liver Diseases. Int J Mol Sci 2024; 25:4537. [PMID: 38674122 PMCID: PMC11049922 DOI: 10.3390/ijms25084537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) is an intracellular complex that upon external stimuli or contact with specific ligands, recruits other components, forming the NLRP3 inflammasome. The NLRP3 inflammasome mainly mediates pyroptosis, a highly inflammatory mode of regulated cell death, as well as IL-18 and IL-1β production. Acute and chronic liver diseases are characterized by a massive influx of pro-inflammatory stimuli enriched in reactive oxygen species (ROS) and damage-associated molecular patterns (DAMPs) that promote the assemblage and activation of the NLRP3 inflammasome. As the major cause of inflammatory cytokine storm, the NLRP3 inflammasome exacerbates liver diseases, even though it might exert protective effects in regards to hepatitis C and B virus infection (HCV and HBV). Here, we summarize the current knowledge concerning NLRP3 inflammasome function in both acute and chronic liver disease and in the post liver transplant setting, focusing on the molecular mechanisms involved in NLRP3 activity.
Collapse
Affiliation(s)
- Katia Sayaf
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padua, Italy; (K.S.); (S.B.)
| | - Sara Battistella
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padua, Italy; (K.S.); (S.B.)
- Gastroenterology and Multivisceral Transplant Unit, Padua University Hospital, 35128 Padua, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padua, Italy; (K.S.); (S.B.)
- Gastroenterology and Multivisceral Transplant Unit, Padua University Hospital, 35128 Padua, Italy
| |
Collapse
|
8
|
Saad HM, Oda SS, Alexiou A, Papadakis M, Mahmoud MH, Batiha GE, Khalifa E. Hepatoprotective activity of Lactéol® forte and quercetin dihydrate against thioacetamide-induced hepatic cirrhosis in male albino rats. J Cell Mol Med 2024; 28:e18196. [PMID: 38534093 PMCID: PMC10967145 DOI: 10.1111/jcmm.18196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/20/2023] [Accepted: 02/04/2024] [Indexed: 03/28/2024] Open
Abstract
Liver cirrhosis is a silent disease in humans and is experimentally induced by many drugs and toxins as thioacetamide (TAA) in particular, which is the typical model for experimental induction of hepatic fibrosis. Thus, the objective of the present study was to elucidate the possible protective effects of lactéol® forte (LF) and quercetin dihydrate (QD) against TAA-induced hepatic damage in male albino rats. Induction of hepatotoxicity was performed by TAA injection (200 mg/kg I/P, twice/ week) in rats. LF (1 × 109 CFU/rat 5 times/week) and QD (50 mg/kg 5 times/week) treated groups were administered concurrently with TAA injection (200 mg/kg I/P, twice/ week). The experimental treatments were conducted for 12 weeks. Hepatotoxicity was evaluated biochemically by measuring alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transferase (GGT) in the serum and histopathologically with the scoring of histopathological changes besides histochemical assessment of collagen by Masson's trichrome and immunohistochemical analysis for α-smooth muscle actin (α-SMA), Ki67 and caspase-3 expression in liver sections. Our results indicated that LF and QD attenuated some biochemical changes and histochemical markers in TAA-mediated hepatotoxicity in rats by amelioration of biochemical markers and collagen, α-SMA, Ki67 and caspase3 Immunoexpression. Additionally, LF and QD supplementation downregulated the proliferative, necrotic, fibroblastic changes, eosinophilic intranuclear inclusions, hyaline globules and Mallory-like bodies that were detected histopathologically in the TAA group. In conclusion, LF showed better hepatic protection than QD against TAA-induced hepatotoxicity in rats by inhibiting inflammatory reactions with the improvement of some serum hepatic transaminases, histopathological picture and immunohistochemical markers.
Collapse
Affiliation(s)
- Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Samah S. Oda
- Department of Pathology, Faculty of Veterinary MedicineAlexandria UniversityAbeesAlexandria ProvinceEgypt
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliPunjabIndia
- Department of Research & DevelopmentFunogenAthensGreece
- Department of Research & DevelopmentAFNP MedWienAustria
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesGermany
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, Heusnerstrasse 40, University of Witten‐HerdeckeWuppertalGermany
| | - Mohamed H. Mahmoud
- Department of Biochemistry, College of ScienceKing Saud UniversityRiyadhKingdom of Saudi Arabia
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAlBeheiraEgypt
| | - Eman Khalifa
- Department of Microbiology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| |
Collapse
|
9
|
Gu M, Chen YJ, Feng YR, Tang ZP. LanGui tea, an herbal medicine formula, protects against binge alcohol-induced acute liver injury by activating AMPK-NLRP3 signaling. Chin Med 2024; 19:41. [PMID: 38439080 PMCID: PMC10910869 DOI: 10.1186/s13020-024-00906-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/22/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND LanGui tea, a traditional Chinese medicine formulation comprising of Gynostemma pentaphyllum (Thunb.) Makino, Cinnamomum cassia (L.) J. Presl, and Ampelopsis grossedentata (Hand-Mazz) W.T. Wang, has yet to have its potential contributions to alcoholic liver disease (ALD) fully elucidated. Consequently, the objective of this research is to investigate the protective properties of LanGui tea against binge alcohol-induced ALD and the mechanisms underlying its effects. METHODS An experimental model of acute alcohol-induced liver disease was performed to assess the protective effects of extract of LanGui tea (ELG) at both 50 and 100 mg.kg-1 dosages on male C57BL/6 mice. Various parameters, including hepatic histological changes, inflammation, lipids content, as well as liver enzymes and interleukin 1β (IL-1β) in the serum were measured. The pharmacological mechanisms of ELG, specifically its effects on adenosine monophosphate-(AMP)-activated protein kinase (AMPK) and NLR family pyrin domain containing 3 (NLRP3) signaling, were investigated through Western blotting, qRT-PCR, ELISA, immunohistochemistry, immunofluorescence analyses, and by blocking the AMPK activity. RESULTS ELG demonstrated a mitigating effect on fatty liver, inflammation, and hepatic dysfunction within the mouse model. This effect was achieved by activating AMPK signaling and inhibitingNLRP3 signaling in the liver, causing a reduction in IL-1β generation. In vitro studies further confirmed that ELG inhibited cell damage and IL-1β production in ethanol-induced hepatocytes by enhancing AMPK-NLRP3 signaling. Conversely, the pharmacological inhibition of AMPK activity nearly abrogated such alteration. CONCLUSIONS Thus, LanGui tea emerges as a promising herbal therapy for ALD management involving AMPK-NLRP3 signaling.
Collapse
Affiliation(s)
- Ming Gu
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Yu-Jun Chen
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Ya-Ru Feng
- The Third People's Hospital Affiliated to Nantong University, Nantong, 226006, Jiangsu Province, China
| | - Zhi-Peng Tang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|
10
|
Liu R, Zhao B, Zhao J, Zhang M. Ethanol causes non-communicable disease through activation of NLRP3 inflammasome: a review on mechanism of action and potential interventions. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2024; 50:139-149. [PMID: 38237017 DOI: 10.1080/00952990.2023.2297349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/16/2023] [Indexed: 04/28/2024]
Abstract
Background: Ethanol exposure has been suggested to be implicated in the initiation and progression of several non-communicable diseases (NCD), including neurological disorders, diabetes mellitus, alcoholic liver disease, gastric injury, pancreatitis, and atherosclerosis. Recent findings show that the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome is involved in the progression of ethanol-induced NCDs.Objective: The aim of this review was to summarize the research progress on NCDs associated with the action of the NLRP3 inflammasome by ethanol and potential interventions, with a specific focus on preclinical literature.Methods: A literature search was conducted on PubMed using the keywords "[ethanol] and [NLRP3]" up until January 2023. Articles describing cases of NCDs caused by ethanol and associated with the NLRP3 inflammasome were included.Results: After removing duplicates, 35 articles were included in this review. These studies, mostly conducted in animals or in vitro, provide evidence that ethanol can contribute to the development of NCDs, such as neurological disorders, alcoholic liver disease, gastric injury, pancreatitis, and atherosclerosis, by activating the NLRP3 inflammasome. Ethanol exposure primarily triggers NLRP3 inflammasome activation by influencing the TRL/NF-κB, ROS-TXNIP-NLRP3 and P2X7 receptor (P2X7R) signaling pathways. Several natural extracts and compounds have been found to alleviate NCDs caused by ethanol consumption by inhibiting the activation of the NLRP3 inflammasome.Conclusion: Preclinical research supports a role for ethanol-induced NLRP3 inflammasome in the development of NCDs. However, the clinical relevance remains uncertain in the relative absence of clinical studies.
Collapse
Affiliation(s)
- Ruizi Liu
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Bin Zhao
- Hospital of Shandong First Medical University, Jinan, Shandong Province, China
| | - Jie Zhao
- Hospital of Shandong First Medical University, Jinan, Shandong Province, China
| | - Meng Zhang
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| |
Collapse
|
11
|
Lis-López L, Bauset C, Seco-Cervera M, Macias-Ceja D, Navarro F, Álvarez Á, Esplugues JV, Calatayud S, Barrachina MD, Ortiz-Masià D, Cosín-Roger J. P2X7 Receptor Regulates Collagen Expression in Human Intestinal Fibroblasts: Relevance in Intestinal Fibrosis. Int J Mol Sci 2023; 24:12936. [PMID: 37629116 PMCID: PMC10454509 DOI: 10.3390/ijms241612936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Intestinal fibrosis is a common complication that affects more than 50% of Crohn´s Disease (CD) patients. There is no pharmacological treatment against this complication, with surgery being the only option. Due to the unknown role of P2X7 in intestinal fibrosis, we aim to analyze the relevance of this receptor in CD complications. Surgical resections from CD and non-Inflammatory Bowel Disease (IBD) patients were obtained. Intestinal fibrosis was induced with two different murine models: heterotopic transplant model and chronic-DSS colitis in wild-type and P2X7-/- mice. Human small intestine fibroblasts (HSIFs) were transfected with an siRNA against P2X7 and treated with TGF-β. A gene and protein expression of P2X7 receptor was significantly increased in CD compared to non-IBD patients. The lack of P2X7 in mice provoked an enhanced collagen deposition and increased expression of several profibrotic markers in both murine models of intestinal fibrosis. Furthermore, P2X7-/- mice exhibited a higher expression of proinflammatory cytokines and a lower expression of M2 macrophage markers. Moreover, the transient silencing of the P2X7 receptor in HSIFs significantly induced the expression of Col1a1 and potentiated the expression of Col4 and Col5a1 after TGF-β treatment. P2X7 regulates collagen expression in human intestinal fibroblasts, while the lack of this receptor aggravates intestinal fibrosis.
Collapse
Affiliation(s)
- Lluis Lis-López
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (L.L.-L.); (C.B.); (D.M.-C.); (Á.Á.); (J.V.E.); (S.C.); (M.D.B.)
| | - Cristina Bauset
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (L.L.-L.); (C.B.); (D.M.-C.); (Á.Á.); (J.V.E.); (S.C.); (M.D.B.)
| | - Marta Seco-Cervera
- FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica), Hospital Dr. Peset, 46017 Valencia, Spain;
| | - Dulce Macias-Ceja
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (L.L.-L.); (C.B.); (D.M.-C.); (Á.Á.); (J.V.E.); (S.C.); (M.D.B.)
| | - Francisco Navarro
- Servicio Cirugía y Coloproctología, Hospital de Manises, 46940 Valencia, Spain;
| | - Ángeles Álvarez
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (L.L.-L.); (C.B.); (D.M.-C.); (Á.Á.); (J.V.E.); (S.C.); (M.D.B.)
- CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), 28029 Madrid, Spain
| | - Juan Vicente Esplugues
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (L.L.-L.); (C.B.); (D.M.-C.); (Á.Á.); (J.V.E.); (S.C.); (M.D.B.)
- CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), 28029 Madrid, Spain
| | - Sara Calatayud
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (L.L.-L.); (C.B.); (D.M.-C.); (Á.Á.); (J.V.E.); (S.C.); (M.D.B.)
- CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), 28029 Madrid, Spain
| | - Maria Dolores Barrachina
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (L.L.-L.); (C.B.); (D.M.-C.); (Á.Á.); (J.V.E.); (S.C.); (M.D.B.)
- CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), 28029 Madrid, Spain
| | - Dolores Ortiz-Masià
- CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), 28029 Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain;
| | - Jesús Cosín-Roger
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (L.L.-L.); (C.B.); (D.M.-C.); (Á.Á.); (J.V.E.); (S.C.); (M.D.B.)
- CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), 28029 Madrid, Spain
| |
Collapse
|
12
|
Salete-Granado D, Carbonell C, Puertas-Miranda D, Vega-Rodríguez VJ, García-Macia M, Herrero AB, Marcos M. Autophagy, Oxidative Stress, and Alcoholic Liver Disease: A Systematic Review and Potential Clinical Applications. Antioxidants (Basel) 2023; 12:1425. [PMID: 37507963 PMCID: PMC10376811 DOI: 10.3390/antiox12071425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Ethanol consumption triggers oxidative stress by generating reactive oxygen species (ROS) through its metabolites. This process leads to steatosis and liver inflammation, which are critical for the development of alcoholic liver disease (ALD). Autophagy is a regulated dynamic process that sequesters damaged and excess cytoplasmic organelles for lysosomal degradation and may counteract the harmful effects of ROS-induced oxidative stress. These effects include hepatotoxicity, mitochondrial damage, steatosis, endoplasmic reticulum stress, inflammation, and iron overload. In liver diseases, particularly ALD, macroautophagy has been implicated as a protective mechanism in hepatocytes, although it does not appear to play the same role in stellate cells. Beyond the liver, autophagy may also mitigate the harmful effects of alcohol on other organs, thereby providing an additional layer of protection against ALD. This protective potential is further supported by studies showing that drugs that interact with autophagy, such as rapamycin, can prevent ALD development in animal models. This systematic review presents a comprehensive analysis of the literature, focusing on the role of autophagy in oxidative stress regulation, its involvement in organ-organ crosstalk relevant to ALD, and the potential of autophagy-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Daniel Salete-Granado
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
| | - Cristina Carbonell
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - David Puertas-Miranda
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Víctor-José Vega-Rodríguez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Marina García-Macia
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Instituto de Biología Funcional y Genómica (IBFG), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Ana Belén Herrero
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Miguel Marcos
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
13
|
Wang T, Xu H, Dong R, Wu S, Guo Y, Wang D. Effectiveness of targeting the NLRP3 inflammasome by using natural polyphenols: A systematic review of implications on health effects. Food Res Int 2023; 165:112567. [PMID: 36869555 DOI: 10.1016/j.foodres.2023.112567] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/13/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Globally, inflammation and metabolic disorders pose serious public health problems and are major health concerns. It has been shown that natural polyphenols are effective in the treatment of metabolic diseases, including anti-inflammation, anti-diabetes, anti-obesity, neuron-protection, and cardio-protection. NLRP3 inflammasome, which are multiprotein complexes located within the cytosol, play an important role in the innate immune system. However, aberrant activation of the NLRP3 inflammasome were discovered as essential molecular mechanisms in triggering inflammatory processes as well as implicating it in several major metabolic diseases, such as type 2 diabetes mellitus, obesity, atherosclerosis or cardiovascular disease. Recent studies indicate that natural polyphenols can inhibit NLRP3 inflammasome activation. In this review, the progress of natural polyphenols preventing inflammation and metabolic disorders via targeting NLRP3 inflammasome is systemically summarized. From the viewpoint of interfering NLRP3 inflammasome activation, the health effects of natural polyphenols are explained. Recent advances in other beneficial effects, clinical trials, and nano-delivery systems for targeting NLRP3 inflammasome are also reviewed. NLRP3 inflammasome is targeted by natural polyphenols to exert multiple health effects, which broadens the understanding of polyphenol mechanisms and provides valuable guidance to new researchers in this field.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000 Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Ruixia Dong
- College of Horticulture, Jinling Institute of Technology, 211169 Nanjing, China
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hanzhou, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| |
Collapse
|
14
|
Li X, Bai X, Tang Y, Qiao C, Zhao R, Peng X. Research progress on the P2X7 receptor in liver injury and hepatocellular carcinoma. Chem Biol Drug Des 2023; 101:794-808. [PMID: 36403102 DOI: 10.1111/cbdd.14182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Purinergic ligand-gated ion channel 7 receptor (P2X7 receptor) is an adenosine triphosphate (ATP)-gated ion channel that is widely distributed on the surfaces of immune cells and tissues such as those in the liver, kidney, lung, intestine, and nervous system. Hepatocellular carcinoma (HCC) is one of the most common malignancies with increasing incidence and mortality. Although many treatments for liver cancer have been studied, the prognosis for liver cancer is still very poor. Therefore, new liver cancer treatments are urgently needed. P2X7 receptor activation can secrete proinflammatory factors through the P2X7 receptor-NLRP3 signaling pathway, thereby affecting the progression of liver injury. The P2X7 receptor may be a target for growth inhibition of HCC cells and may affect the invasion and migration of HCC cells through the PI3K/AKT and AMPK signaling pathways. In recent years, P2X7 receptor antagonists or inhibitors have attracted widespread attention as therapeutic targets for hepatocellular carcinoma and liver injury. Therefore, this review covers the basic concepts of the P2X7 receptor and role of the P2X7 receptor in liver cancer and liver injury, providing new potential therapeutic targets for hepatocellular carcinoma and liver injury.
Collapse
Affiliation(s)
- Xinyu Li
- School of Medical Laboratory, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of clinical laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China
| | - Xue Bai
- School of Medical Laboratory, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of clinical laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China
| | - Yiqing Tang
- School of Medical Laboratory, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of clinical laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China
| | - Cuicui Qiao
- School of Medical Laboratory, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of clinical laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China
| | - Ronglan Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of clinical laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China
| | - Xiaoxiang Peng
- School of Medical Laboratory, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of clinical laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China
| |
Collapse
|
15
|
Pine pollen extract alleviates ethanol-induced oxidative stress and apoptosis in HepG2 cells via MAPK signaling. Food Chem Toxicol 2023; 171:113550. [DOI: 10.1016/j.fct.2022.113550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
|
16
|
Yang R, Yang X, Zhang F. New Perspectives of Taxifolin in Neurodegenerative Diseases. Curr Neuropharmacol 2023; 21:2097-2109. [PMID: 36740800 PMCID: PMC10556370 DOI: 10.2174/1570159x21666230203101107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), cerebral amyloid angiopathy (CAA), and Huntington's disease (HD) are characterized by cognitive and motor dysfunctions and neurodegeneration. These diseases have become more severe over time and cannot be cured currently. Until now, most treatments for these diseases are only used to relieve the symptoms. Taxifolin (TAX), 3,5,7,3,4-pentahydroxy flavanone, also named dihydroquercetin, is a compound derived primarily from Douglas fir and Larix gemelini. TAX has been confirmed to exhibit various pharmacological activities, including anti-inflammation, anti-cancer, anti-virus, and regulation of oxidative stress effects. In the central nervous system, TAX has been demonstrated to inhibit Aβ fibril formation, protect neurons and improve cerebral blood flow, cognitive ability, and dyskinesia. At present, TAX is only applied as a health additive in clinical practice. This review aimed to summarize the application of TAX in neurodegenerative diseases and the underlying neuroprotective mechanisms, such as suppressing inflammation, attenuating oxidative stress, preventing Aβ protein formation, maintaining dopamine levels, and thus reducing neuronal loss.
Collapse
Affiliation(s)
- Rong Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xinxing Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
17
|
Xia GQ, Fang Q, Cai JN, Li ZX, Zhang FZ, Lv XW. P2X7 Receptor in Alcoholic Steatohepatitis and Alcoholic Liver Fibrosis. J Clin Transl Hepatol 2022; 10:1205-1212. [PMID: 36381094 PMCID: PMC9634783 DOI: 10.14218/jcth.2022.00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Alcoholic liver disease is one of the most common chronic liver diseases in the world. It is a liver disease caused by prolonged heavy drinking and its main clinical features are nausea, vomiting, enlargement of the liver, and jaundice. Recent studies suggest that Kupffer cell-mediated inflammatory response is a core driver in the development of alcoholic steatohepatitis and alcoholic liver fibrosis. As a danger signal, extracellular ATP activates the assembly of NLPR3 inflammasome by acting on purine P2X7 receptor, the activated NLRP3 inflammasome prompts ASC to cleave pro-cCaspase-1 into active caspase-1in KCs. Active caspase-1 promotes the conversion of pro-IL-1β to IL-1β, which further enhances the inflammatory response. Here, we briefly review the role of the P2X7R-NLRP3 inflammasome axis in the pathogenesis of alcoholic liver disease and the evolution of alcoholic steatohepatitis and alcoholic liver fibrosis. Regulation of the inflammasome axis of P2X7R-NLRP3 may be a new approach for the treatment of alcoholic liver disease.
Collapse
Affiliation(s)
- Guo-Qing Xia
- Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Qian Fang
- Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Jun-Nan Cai
- Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Zi-Xuan Li
- Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Feng-Zhi Zhang
- Wannan Medical College, Yijishan Hospital, Affiliated Hospital 1, Wuhu, Anhui, China
| | - Xiong-Wen Lv
- Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Correspondence to: Xiong-Wen Lv, School of Pharmacy, Anhui Medical University, 81 Mei Shan Road, Hefei, Anhui 230032, China. ORCID: https://orcid.org/0000-0003-2354-0168. Tel: +86-13515519961, Fax: +86-551-63633742, E-mail:
| |
Collapse
|
18
|
Wang M, Han H, Wan F, Zhong R, Do YJ, Oh SI, Lu X, Liu L, Yi B, Zhang H. Dihydroquercetin Supplementation Improved Hepatic Lipid Dysmetabolism Mediated by Gut Microbiota in High-Fat Diet (HFD)-Fed Mice. Nutrients 2022; 14:nu14245214. [PMID: 36558373 PMCID: PMC9788101 DOI: 10.3390/nu14245214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Dihydroquercetin (DHQ) is a natural flavonoid with multiple bioactivities, including hepatoprotective effects. This study aimed to investigate whether DHQ improved lipid dysmetabolism in the body, especially in the liver, and whether there is a relationship between hepatic metabolism and altered gut flora in high-fat diet (HFD)-induced mice. HFD-induced mice were given 50 mg/kg body weight DHQ intragastrically for 10 weeks. The data showed that DHQ reduced body weight, the weight of the liver and white adipose tissue as well as serum leptin, LPS, triglyceride and cholesterol levels. RNA-seq results indicated that DHQ down-regulated lipogenesis-related genes and up-regulated fatty acid oxidation-related genes, including MOGAT1 and CPT1A. Furthermore, DHQ had a tendency to decrease hepatic cholesterol contents by reducing the mRNA levels of cholesterol synthesis genes such as FDPS and HMGCS1. 16S rRNA sequencing analysis indicated that DHQ significantly decreased the richness of Lactococcus, Lachnoclostridium, and Eubacterium_xylanophilum_group. Correlation analysis further demonstrated that these bacteria, Lactococcus and Eubacterium_xylanophilum_group in particular, had significantly positive correlation with lipid and cholesterol synthesis genes, and negative correlation with fatty acid oxidation genes. In conclusion, DHQ could improve hepatic lipid dysmetabolism potentially by improved gut microbial community, which may be used as an intervention strategy in hepatic metabolism diseases.
Collapse
Affiliation(s)
- Mengyu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fan Wan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yoon Jung Do
- Division of Animal Disease & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Sang-Ik Oh
- Division of Animal Disease & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Xuemeng Lu
- Division of Animal Disease & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: ; Tel.: +86-010-62816013
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
19
|
Allergic Inflammation: Effect of Propolis and Its Flavonoids. Molecules 2022; 27:molecules27196694. [PMID: 36235230 PMCID: PMC9570745 DOI: 10.3390/molecules27196694] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
The incidence of allergic diseases and their complications are increasing worldwide. Today, people increasingly use natural products, which has been termed a "return to nature". Natural products with healing properties, especially those obtained from plants and bees, have been used in the prevention and treatment of numerous chronic diseases, including allergy and/or inflammation. Propolis is a multi-component resin rich in flavonoids, collected and transformed by honeybees from buds and plant wounds for the construction and adaptation of their nests. This article describes the current views regarding the possible mechanisms and multiple benefits of flavonoids in combating allergy and allergy-related complications. These benefits arise from flavonoid anti-allergic, anti-inflammatory, antioxidative, and wound healing activities and their effects on microbe-immune system interactions in developing host responses to different allergens. Finally, this article presents various aspects of allergy pathobiology and possible molecular approaches in their treatment. Possible mechanisms regarding the antiallergic action of propolis on the microbiota of the digestive and respiratory tracts and skin diseases as a method to selectively remove allergenic molecules by the process of bacterial biotransformation are also reported.
Collapse
|
20
|
Fang C, Pan J, Qu N, Lei Y, Han J, Zhang J, Han D. The AMPK pathway in fatty liver disease. Front Physiol 2022; 13:970292. [PMID: 36203933 PMCID: PMC9531345 DOI: 10.3389/fphys.2022.970292] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
Lipid metabolism disorders are the primary causes for the occurrence and progression of various liver diseases, including non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) caused by a high-fat diet and ethanol. AMPK signaling pathway plays an important role in ameliorating lipid metabolism disorders. Progressive research has clarified that AMPK signal axes are involved in the prevention and reduction of liver injury. Upregulation of AMK can alleviate FLD in mice induced by alcohol or insulin resistance, type 2 diabetes, and obesity, and most natural AMPK agonists can regulate lipid metabolism, inflammation, and oxidative stress in hepatocytes, consequently regulating FLD in mice. In NAFLD and AFLD, increasing the activity of AMPK can inhibit the synthesis of fatty acids and cholesterol by down-regulating the expression of adipogenesis gene (FAS, SREBP-1c, ACC and HMGCR); Simultaneously, by increasing the expression of fatty acid oxidation and lipid decomposition genes (CPT1, PGC1, and HSL, ATGL) involved in fatty acid oxidation and lipid decomposition, the body’s natural lipid balance can be maintained. At present, some AMPK activators are thought to be beneficial during therapeutic treatment. Therefore, activation of AMPK signaling pathway is a potential therapeutic target for disorders of the liver. We summarized the most recent research on the role of the AMPK pathway in FLD in this review. Simultaneously, we performed a detailed description of each signaling axis of the AMPK pathway, as well as a discussion of its mechanism of action and therapeutic significance.
Collapse
Affiliation(s)
- Chunqiu Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Jianheng Pan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Ning Qu
- College of Traditional Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yuting Lei
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Jiajun Han
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Jingzhou Zhang
- College of Traditional Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Dong Han
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
- *Correspondence: Dong Han,
| |
Collapse
|
21
|
Fan J, Chen J, Wu H, Lu X, Fang X, Yin F, Zhao Z, Jiang P, Yu H. Chitosan Oligosaccharide Inhibits the Synthesis of Milk Fat in Bovine Mammary Epithelial Cells through AMPK-Mediated Downstream Signaling Pathway. Animals (Basel) 2022; 12:ani12131692. [PMID: 35804595 PMCID: PMC9265072 DOI: 10.3390/ani12131692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary In order to study the effect of chitosan oligosaccharides on milk fat synthesis of bovine mammary epithelial cells (BMECs), we did a series of related experiments. The results showed that chitosan oligosaccharide (COS) could inhibit the fatty acid synthesis and promote milk fat decomposition and oxidation through AMPK/SREBP1/SCD1, AMPK/HSL and AMPK/PPARα signaling pathways to reduce the milk fat content in bovine mammary epithelial cells. We elucidated the important role of COS in BMECs lipid metabolism. COS may be the potential small-molecule component in milk cow molecular breeding to regulate milk fat synthesis and metabolism. These findings will help us to further understand the mechanism of COS on milk fat metabolism. Abstract Chitosan oligosaccharide (COS) is a variety of oligosaccharides, and it is also the only abundant basic amino oligosaccharide in natural polysaccharides. Chitosan oligosaccharide is a low molecular weight product of chitosan after enzymatic degradation. It has many biological effects, such as lipid-lowering, antioxidant and immune regulation. Previous studies have shown that chitosan oligosaccharide has a certain effect on fat synthesis, but the effect of chitosan oligosaccharide on milk fat synthesis of bovine mammary epithelial cells (BMECs) has not been studied. Therefore, this study aimed to investigate chitosan oligosaccharide’s effect on milk fat synthesis in bovine mammary epithelial cells and explore the underlying mechanism. We treated bovine mammary epithelial cells with different concentrations of chitosan oligosaccharide (0, 100, 150, 200, 400 and 800 μg/mL) for 24 h, 36 h and 48 h respectively. To assess the effect of chitosan oligosaccharide on bovine mammary epithelial cells and determine the concentration and time for chitosan oligosaccharide treatment on cells, several in vitro cellular experiments, including on cell viability, cycle and proliferation were carried out. The results highlighted that chitosan oligosaccharide (100, 150 μg/mL) significantly promoted cell viability, cycle and proliferation, increased intracellular cholesterol content, and reduced intracellular triglyceride and non-esterified fatty acids content. Under the stimulation of chitosan oligosaccharide, the expression of genes downstream of Phosphorylated AMP-activated protein kinase (P-AMPK) and AMP-activated protein kinase (AMPK) signaling pathway changed, increasing the expression of peroxisome proliferator-activated receptor alpha (PPARα) and hormone-sensitive lipase (HSL), but the expression of sterol regulatory element-binding protein 1c (SREBP1) and its downstream target gene stearoyl-CoA desaturase (SCD1) decreased. In conclusion, these results suggest that chitosan oligosaccharide may inhibit milk fat synthesis in bovine mammary epithelial cells by activating the AMP-activated protein kinase signaling pathway, promoting the oxidative decomposition of fatty acids and inhibiting fatty acid synthesis.
Collapse
Affiliation(s)
- Jing Fan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (J.C.); (H.W.); (F.Y.); (Z.Z.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiayi Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (J.C.); (H.W.); (F.Y.); (Z.Z.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China
| | - Haochen Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (J.C.); (H.W.); (F.Y.); (Z.Z.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xin Lu
- College of Animal Science, Jilin University, Changchun 130062, China; (X.L.); (X.F.)
| | - Xibi Fang
- College of Animal Science, Jilin University, Changchun 130062, China; (X.L.); (X.F.)
| | - Fuquan Yin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (J.C.); (H.W.); (F.Y.); (Z.Z.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhihui Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (J.C.); (H.W.); (F.Y.); (Z.Z.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ping Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (J.C.); (H.W.); (F.Y.); (Z.Z.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China
- Correspondence: (P.J.); (H.Y.); Tel.: +86-151-4305-9097 (P.J.); +86-186-8660-9912 (H.Y.)
| | - Haibin Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (J.C.); (H.W.); (F.Y.); (Z.Z.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China
- Correspondence: (P.J.); (H.Y.); Tel.: +86-151-4305-9097 (P.J.); +86-186-8660-9912 (H.Y.)
| |
Collapse
|
22
|
Xie F, Zhong Y, Wang D, So KF, Xiao J, Lv Y. Metformin protects against ethanol-induced liver triglyceride accumulation by the LKB1/AMPK/ACC pathway. Mol Biol Rep 2022; 49:7837-7848. [PMID: 35733070 DOI: 10.1007/s11033-022-07610-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hepatic lipid accumulation is one of the main pathological features of alcoholic liver disease (ALD). Metformin serves as an AMPK activator and has been shown to have lipids lowering effects in non-alcoholic fatty liver disease (NAFLD), but its role in ALD remains unclear. The purpose of this study was to explore the potential mechanism of metformin regulating lipid metabolism in ALD. METHODS AND RESULTS In vitro and in vivo ALD models were established using AML12 cells and C57BL/6 mice, respectively. To determine the effect of metformin on ALD in vitro, the concentration of cellular triglyceride was examined by Nile red staining and a biochemical kit. To further reveal the role of metformin on ALD in vivo, liver tissues were examined by HE and oil red O staining, and the levels of ALT and AST in serum were determined via an automatic biochemical analyzer. The expression of mRNA and proteins were measured using qRT-PCR and Western blot, respectively. The role of the LKB1/AMPK/ACC axis on metformin regulating ethanol-induced lipid accumulation was evaluated by siRNA and AAV-shRNA interference. The results showed metformin reduced the ethanol-induced lipid accumulation in AML12 cells through activating AMPK, inhibiting ACC, reducing SREBP1c, and increasing PPARα. In addition, compared with control mice, metformin treatment inhibited ethanol-induced liver triglyceride accumulation and the increase of ALT and AST in serum. Interference with LKB1 attenuated the effect of metformin on ethanol-induced lipid accumulation both in vitro and in vivo. CONCLUSION Metformin protects against lipid formation in ALD by activating the LKB1/AMPK/ACC axis.
Collapse
Affiliation(s)
- Fotian Xie
- Laboratory of Neuroendocrinology, Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yuanming Zhong
- School of Physical Education and Sport Science, Fujian normal university, Fuzhou, China
| | - Dongmei Wang
- Laboratory of Neuroendocrinology, Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Kwok Fai So
- Laboratory of Neuroendocrinology, Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jia Xiao
- Laboratory of Neuroendocrinology, Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yi Lv
- Laboratory of Neuroendocrinology, Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
23
|
Piao MH, Wang H, Jiang YJ, Wu YL, Nan JX, Lian LH. Taxifolin blocks monosodium urate crystal-induced gouty inflammation by regulating phagocytosis and autophagy. Inflammopharmacology 2022; 30:1335-1349. [PMID: 35708797 DOI: 10.1007/s10787-022-01014-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/11/2022] [Indexed: 12/19/2022]
Abstract
Gout is a chronic disease caused by monosodium urate (MSU) crystal deposition in the joints and surrounding tissues. We examined the effects of Taxifolin, a natural flavonoid mainly existing in vegetables and fruits, on MSU-induced gout. Pretreatment with Taxifolin significantly reduced IL-1β, Caspase-1 and HMGB1 levels, upregulation of autophagy-related protein, LC3, as well as improved phagocytosis of macrophages. This study indicated that Taxifolin-attenuated inflammatory response in MSU-induced acute gout model by decreasing pro-inflammatory cytokine production and promoting the autophagy and phagocytic capacity of macrophages. Dietary supplementation with Taxifolin induces the autophagy and attenuated inflammatory response, which in consequence modulates acute gout. A preventive strategy combining dietary interventions with Taxifolin may offer a potential therapeutic alternative to pharmacological treatment to reduce inflammatory response to gout.
Collapse
Affiliation(s)
- Mei-Hua Piao
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Hui Wang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Yin-Jing Jiang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China.,Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, 133002, Jilin, China
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China. .,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China. .,Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, 133002, Jilin, China.
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China. .,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China. .,Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, 133002, Jilin, China.
| |
Collapse
|
24
|
Emerging roles of Sirtuins in alleviating alcoholic liver Disease: A comprehensive review. Int Immunopharmacol 2022; 108:108712. [PMID: 35397391 DOI: 10.1016/j.intimp.2022.108712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 12/11/2022]
Abstract
Sirtuins (SIRTs), a NAD+ family of dependent deacetylases, are involved in the regulation of various human diseases. Recently, accumulating evidence has uncovered number of substrates and crucial roles of SIRTs in the pathogenesis of alcoholic liver disease (ALD). However, systematic reports are still lacking, so this review provides a comprehensive profile of the crucial physiological functions of SIRTs and its role in attenuating ALD, including alcoholic liver steatosis, steatohepatitis, and fibrosis. SIRTs play beneficial roles in energy/lipid metabolism, oxidative stress, inflammatory response, mitochondrial homeostasis, autophagy and necroptosis of ALD via regulating multiple signaling transduction pathways such as AMPK, LKB1, SREBP1, Lipin1, PGC-1α, PPARα/γ, FoxO1/3a, Nrf2/p62, mTOR, TFEB, RIPK1/3, HMGB1, NFATc4, NF-κB, TLR4, NLRP3, P2X7R, MAPK, TGF1β/Smads and Wnt/β-catenin. In addition, the mechanism and clinical application of natural/ synthetic SIRTs agonists in ALD are summarized, which provide a new idea for the treatment of ALD and basic foundation for further studies into target drugs.
Collapse
|
25
|
Modulatory Properties of Food and Nutraceutical Components Targeting NLRP3 Inflammasome Activation. Nutrients 2022; 14:nu14030490. [PMID: 35276849 PMCID: PMC8840562 DOI: 10.3390/nu14030490] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 12/27/2022] Open
Abstract
Inflammasomes are key intracellular multimeric proteins able to initiate the cellular inflammatory signaling pathway. NLRP3 inflammasome represents one of the main protein complexes involved in the development of inflammatory events, and its activity has been largely demonstrated to be connected with inflammatory or autoinflammatory disorders, including diabetes, gouty arthritis, liver fibrosis, Alzheimer’s disease, respiratory syndromes, atherosclerosis, and cancer initiation. In recent years, it has been demonstrated how dietary intake and nutritional status represent important environmental elements that can modulate metabolic inflammation, since food matrices are an important source of several bioactive compounds. In this review, an updated status of knowledge regarding food bioactive compounds as NLRP3 inflammasome modulators is discussed. Several chemical classes, namely polyphenols, organosulfurs, terpenes, fatty acids, proteins, amino acids, saponins, sterols, polysaccharides, carotenoids, vitamins, and probiotics, have been shown to possess NLRP3 inflammasome-modulating activity through in vitro and in vivo assays, mainly demonstrating an anti-NLRP3 inflammasome activity. Plant foods are particularly rich in important bioactive compounds, each of them can have different effects on the pathway of inflammatory response, confirming the importance of the nutritional pattern (food model) as a whole rather than any single nutrient or functional compound.
Collapse
|
26
|
Michalak A, Lach T, Cichoż-Lach H. Oxidative Stress-A Key Player in the Course of Alcohol-Related Liver Disease. J Clin Med 2021; 10:3011. [PMID: 34300175 PMCID: PMC8303854 DOI: 10.3390/jcm10143011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is known to be an inseparable factor involved in the presentation of liver disorders. Free radicals interfere with DNA, proteins, and lipids, which are crucial in liver metabolism, changing their expression and biological functions. Additionally, oxidative stress modifies the function of micro-RNAs, impairing the metabolism of hepatocytes. Free radicals have also been proven to influence the function of certain transcriptional factors and to alter the cell cycle. The pathological appearance of alcohol-related liver disease (ALD) constitutes an ideal example of harmful effects due to the redox state. Finally, ethanol-induced toxicity and overproduction of free radicals provoke irreversible changes within liver parenchyma. Understanding the underlying mechanisms associated with the redox state in the course of ALD creates new possibilities of treatment for patients. The future of hepatology may become directly dependent on the effective action against reactive oxygen species. This review summarizes current data on the redox state in the natural history of ALD, highlighting the newest reports on this topic.
Collapse
Affiliation(s)
- Agata Michalak
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Tomasz Lach
- Department of Orthopedics and Traumatology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Halina Cichoż-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| |
Collapse
|
27
|
Yan J, Nie Y, Luo M, Chen Z, He B. Natural Compounds: A Potential Treatment for Alcoholic Liver Disease? Front Pharmacol 2021; 12:694475. [PMID: 34290612 PMCID: PMC8287649 DOI: 10.3389/fphar.2021.694475] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Excessive alcohol intake is a direct cause of alcoholic liver disease (ALD). ALD usually manifests as fatty liver in the initial stage and then develops into alcoholic hepatitis (ASH), fibrosis and cirrhosis. Severe alcoholism induces extensive hepatocyte death, liver failure, and even hepatocellular carcinoma (HCC). Currently, there are few effective clinical means to treat ALD, except for abstinence. Natural compounds are a class of compounds extracted from herbs with an explicit chemical structure. Several natural compounds, such as silymarin, quercetin, hesperidin, and berberine, have been shown to have curative effects on ALD without side effects. In this review, we pay particular attention to natural compounds and developing clinical drugs based on natural compounds for ALD, with the aim of providing a potential treatment for ALD.
Collapse
Affiliation(s)
- Junbin Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunmeng Nie
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Minmin Luo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiyun Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Beihui He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
28
|
Zhao X, Wang J, Deng Y, Liao L, Zhou M, Peng C, Li Y. Quercetin as a protective agent for liver diseases: A comprehensive descriptive review of the molecular mechanism. Phytother Res 2021; 35:4727-4747. [PMID: 34159683 DOI: 10.1002/ptr.7104] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
Quercetin is the major representative of the flavonoid subgroup of flavones, with good pharmacological activities for the treatment of liver diseases, including liver steatosis, fatty hepatitis, liver fibrosis, and liver cancer. It can significantly influence the development of liver diseases via multiple targets and multiple pathways via antifat accumulation, anti-inflammatory, and antioxidant activity, as well as the inhibition of cellular apoptosis and proliferation. Despite extensive research on understanding the mechanism of quercetin in the treatment of liver diseases, there are still no targeted therapies available. Thus, we have comprehensively searched and summarized the different targets of quercetin in different stages of liver diseases and concluded that quercetin inhibited inflammation of the liver mainly through NF-κB/TLR/NLRP3, reduced PI3K/Nrf2-mediated oxidative stress, mTOR activation in autophagy, and inhibited the expression of apoptotic factors associated with the development of liver diseases. In addition, quercetin showed different mechanisms of action at different stages of liver diseases, including the regulation of PPAR, UCP, and PLIN2-related factors via brown fat activation in liver steatosis. The compound inhibited stromal ECM deposition at the liver fibrosis stage, affecting TGF1β, endoplasmic reticulum stress (ERs), and apoptosis. While at the final liver cancer stage, inhibiting cancer cell proliferation and spread via the hTERT, MEK1/ERK1/2, Notch, and Wnt/β-catenin-related signaling pathways. In conclusion, quercetin is an effective liver protectant. We hope to explore the pathogenesis of quercetin in different stages of liver diseases through the review, so as to provide more accurate targets and theoretical basis for further research of quercetin in the treatment of liver diseases.
Collapse
Affiliation(s)
- Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengting Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
29
|
The Impact of the NLRP3 Pathway in the Pathogenesis of Non-Alcoholic Fatty Liver Disease and Alcohol-Related Liver Disease. LIVERS 2021. [DOI: 10.3390/livers1020007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The presence of hepatic steatosis and inflammation is increasingly associated with both metabolic and alcohol-related liver conditions. Both are on the increase globally and, apart from liver transplantation, there are no licensed therapies that target the full complement of disease features. The presence of some shared pathogenic mechanisms and histological features in NAFLD and ALD suggests that it may be possible to develop markers for prognostication or staging, or indeed new therapeutic tools to treat both conditions. One such example of an approach exists in the form of the NACHT-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome pathway. Activation of the NLRP3 inflammasome results in hepatocyte pyroptosis, persistence, and amplification of liver inflammation and activation of profibrogenic signaling cascades. Thus, targeting elements of the pathway in NAFLD and ALD may provide a tractable route to pharmacological therapy. In this review, we summarize the contribution of this inflammasome to disease and review the current options for therapy.
Collapse
|
30
|
Stenger Moura FC, dos Santos Machado CL, Reisdorfer Paula F, Garcia Couto A, Ricci M, Cechinel-Filho V, Bonomini TJ, Sandjo LP, Bellé Bresolin TM. Taxifolin stability: In silico prediction and in vitro degradation with HPLC-UV/UPLC-ESI-MS monitoring. J Pharm Anal 2021; 11:232-240. [PMID: 34012699 PMCID: PMC8116214 DOI: 10.1016/j.jpha.2020.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Taxifolin has a plethora of therapeutic activities and is currently isolated from the stem bark of the tree Larix gmelinni (Dahurian larch). It is a flavonoid of high commercial interest for its use in supplements or in antioxidant-rich functional foods. However, its poor stability and low bioavailability hinder the use of flavonoid in nutritional or pharmaceutical formulations. In this work, taxifolin isolated from the seeds of Mimusops balata, was evaluated by in silico stability prediction studies and in vitro forced degradation studies (acid and alkaline hydrolysis, oxidation, visible/UV radiation, dry/humid heating) monitored by high performance liquid chromatography with ultraviolet detection (HPLC-UV) and ultrahigh performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS). The in silico stability prediction studies indicated the most susceptible regions in the molecule to nucleophilic and electrophilic attacks, as well as the sites susceptible to oxidation. The in vitro forced degradation tests were in agreement with the in silico stability prediction, indicating that taxifolin is extremely unstable (class 1) under alkaline hydrolysis. In addition, taxifolin thermal degradation was increased by humidity. On the other hand, with respect to photosensitivity, taxifolin can be classified as class 4 (stable). Moreover, the alkaline degradation products were characterized by UPLC-ESI-MS/MS as dimers of taxifolin. These results enabled an understanding of the intrinsic lability of taxifolin, contributing to the development of stability-indicating methods, and of appropriate drug release systems, with the aims of preserving its stability and improving its bioavailability.
Collapse
Affiliation(s)
- Fernanda Cristina Stenger Moura
- Pharmaceutical Sciences Graduate Program, School of Health Sciences, Course of Pharmacy, Universidade do Vale do Itajaí, Itajaí, SC, 88302-202, Brazil
| | - Carmem Lúcia dos Santos Machado
- Laboratory of Research and Development of Drugs, Pharmaceutical Sciences Graduate Program, School of Health Sciences, Course of Pharmacy, Universidade Federal do Pampa, Uruguaiana, RS, 97500-970, Brazil
| | - Favero Reisdorfer Paula
- Laboratory of Research and Development of Drugs, Pharmaceutical Sciences Graduate Program, School of Health Sciences, Course of Pharmacy, Universidade Federal do Pampa, Uruguaiana, RS, 97500-970, Brazil
| | - Angélica Garcia Couto
- Pharmaceutical Sciences Graduate Program, School of Health Sciences, Course of Pharmacy, Universidade do Vale do Itajaí, Itajaí, SC, 88302-202, Brazil
| | - Maurizio Ricci
- Department of Pharmaceutical Science, Università degli Studi di Perugia, Perugia, PG, 06123, Italy
| | - Valdir Cechinel-Filho
- Pharmaceutical Sciences Graduate Program, School of Health Sciences, Course of Pharmacy, Universidade do Vale do Itajaí, Itajaí, SC, 88302-202, Brazil
| | - Tiago J. Bonomini
- Pharmaceutical Sciences Graduate Program, School of Health Sciences, Course of Pharmacy, Universidade do Vale do Itajaí, Itajaí, SC, 88302-202, Brazil
| | - Louis P. Sandjo
- Chemistry Department, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Tania Mari Bellé Bresolin
- Pharmaceutical Sciences Graduate Program, School of Health Sciences, Course of Pharmacy, Universidade do Vale do Itajaí, Itajaí, SC, 88302-202, Brazil
| |
Collapse
|
31
|
Le Daré B, Ferron PJ, Gicquel T. The Purinergic P2X7 Receptor-NLRP3 Inflammasome Pathway: A New Target in Alcoholic Liver Disease? Int J Mol Sci 2021; 22:2139. [PMID: 33670021 PMCID: PMC7926651 DOI: 10.3390/ijms22042139] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
The World Health Organization has estimated that approximately 3 million deaths are attributable to alcohol consumption each year. Alcohol consumption is notably associated with the development and/or progression of many non-communicable inflammatory diseases-particularly in the liver. Although these alcoholic liver diseases were initially thought to be caused by the toxicity of ethanol on hepatocytes, the latest research indicates Kupffer cells (the liver macrophages) are at the heart of this "inflammatory shift". Purinergic signaling (notably through P2X7 receptors and the NLRP3 inflammasome) by Kupffer cells appears to be a decisive factor in the pathophysiology of alcoholic liver disease. Hence, the modulation of purinergic signaling might represent a new means of treating alcoholic liver disease. Here, we review current knowledge on the pathophysiology of alcoholic liver diseases and therapeutic perspectives for targeting these inflammatory pathways.
Collapse
Affiliation(s)
- Brendan Le Daré
- NuMeCan Institute (Nutrition, Metabolisms and Cancer), INSERM, INRAE, CHU—University Rennes, PREVITOX Network, F-35000 Rennes, France; (B.L.D.); (P.-J.F.)
- Forensic and Toxicology Laboratory, Rennes University Hospital, 2 rue Henri Le Guilloux, F-35033 Rennes, France
| | - Pierre-Jean Ferron
- NuMeCan Institute (Nutrition, Metabolisms and Cancer), INSERM, INRAE, CHU—University Rennes, PREVITOX Network, F-35000 Rennes, France; (B.L.D.); (P.-J.F.)
| | - Thomas Gicquel
- NuMeCan Institute (Nutrition, Metabolisms and Cancer), INSERM, INRAE, CHU—University Rennes, PREVITOX Network, F-35000 Rennes, France; (B.L.D.); (P.-J.F.)
- Forensic and Toxicology Laboratory, Rennes University Hospital, 2 rue Henri Le Guilloux, F-35033 Rennes, France
| |
Collapse
|
32
|
Protective Role of Coenzyme Q10 in Acute Sepsis-Induced Liver Injury in BALB/c Mice. BIOMED RESEARCH INTERNATIONAL 2021; 2020:7598375. [PMID: 33381582 PMCID: PMC7762638 DOI: 10.1155/2020/7598375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 11/18/2022]
Abstract
Sepsis increases the risk of the liver injury development. According to the research works, coenzyme Q10 exhibits hepatoprotective properties in vivo as well as in vitro. Current work aimed at investigating the protective impacts of coenzyme Q10 against liver injury in septic BALB/c mice. The male BALB/c mice were randomly segregated into 4 groups: the control group, the coenzyme Q10 treatment group, the puncture and cecal ligation group, and the coenzyme Q10+cecal ligation and puncture group. Cecal ligation and puncture was conducted after gavagaging the mice with coenzyme Q10 during two weeks. Following 48 h postcecal ligation and puncture, we estimated hepatic biochemical parameters and histopathological changes in hepatic tissue. We evaluated the expression of factors associated with autophagy, pyroptosis, and inflammation. Findings indicated that coenzyme Q10 decreased the plasma levels in alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase in the cecal ligation and puncture group. Coenzyme Q10 significantly inhibited the elevation of sequestosome-1, interleukin-1β, oligomerization domain-like receptor 3 and nucleotide-binding, interleukin-6, and tumor necrosis factor-α expression levels; coenzyme Q10 also increased beclin 1 levels. Coenzyme Q10 might be a significant agent in the treatment of liver injury induced by sepsis.
Collapse
|
33
|
Zou J, Wang SP, Wang YT, Wan JB. Regulation of the NLRP3 inflammasome with natural products against chemical-induced liver injury. Pharmacol Res 2020; 164:105388. [PMID: 33359314 DOI: 10.1016/j.phrs.2020.105388] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
The past decades have witnessed significant progress in understanding the process of sterile inflammation, which is dependent on a cytosolic complex termed the nucleotide-binding oligomerization domain (NOD)-like receptor containing pyrin domain 3 (NLRP3) inflammasome. Activation of NLRP3 inflammasome requires two steps, including the activation of Toll-like receptor (TLR) by its ligands, resulting in transcriptional procytokine and inflammasome component activation, and the assembly and activation of NLRP3 inflammasome triggered by various danger signals, leading to caspase-1 activation, which could subsequently cleave procytokines into their active forms. Metabolic disorders, ischemia and reperfusion, viral infection and chemical insults are common pathogenic factors of liver-related diseases that usually cause tissue damage and cell death, providing numerous danger signals for the activation of NLRP3 inflammasome. Currently, natural products have attracted much attention as potential agents for the prevention and treatment of liver diseases due to their multitargets and nontoxic natures. A great number of natural products have been shown to exhibit beneficial effects on liver injury induced by various chemicals through regulating NLRP3 inflammasome pathways. In this review, the roles of the NLRP3 inflammasome in chemical-induced liver injury (CILI) and natural products that exhibit beneficial effects in CILI through the regulation of inflammasomes were systematically summarized.
Collapse
Affiliation(s)
- Jian Zou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Sheng-Peng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China.
| |
Collapse
|
34
|
Zhan ZY, Wu M, Shang Y, Jiang M, Liu J, Qiao CY, Ye H, Lin YC, Piao MH, Sun RH, Zhang ZH, Jiao JY, Wu YL, Nan JX, Lian LH. Taxifolin ameliorate high-fat-diet feeding plus acute ethanol binge-induced steatohepatitis through inhibiting inflammatory caspase-1-dependent pyroptosis. Food Funct 2020; 12:362-372. [PMID: 33325949 DOI: 10.1039/d0fo02653k] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Excessive alcohol drinking and a high-fat diet (HFD) promote steatohepatitis in the comorbidity of NAFLD and AFLD. Taxifolin (TAX) is a rich dihydroxyflavone compound found in onions, milk thistle and Douglas fir. We aimed to explore the intervention mechanism of TAX on chronic steatohepatitis induced by HFD feeding plus acute ethanol binge. We established an in vivo model by HFD feeding plus a single dose of ethanol binge, and established an in vitro model by oleic acid or palmitic acid on HepG2 cells to induce lipid accumulation. TAX regulated lipid synthesis by inhibiting the expression of SREBP1 and upregulating the PPARγ level. In addition, TAX inhibited the expression of P2X7R, IL-1β, and caspase-1. Moreover, TAX reduced the expression of caspase-1 activation; thereby inhibiting the recruitment of macrophages and neutrophils. TAX also improved the inflammatory response caused by caspase-1 activation in steatotic hepatocytes. TAX exhibited an inhibitory effect on lipid accumulation and caspase-1-related pyroptosis. Collectively, TAX has therapeutic potential as an intervention of steatohepatitis induced by alcohol combined with HFD and for preventing non-alcoholic fatty liver degeneration targeting caspase-1-dependent pyroptosis.
Collapse
Affiliation(s)
- Zi-Ying Zhan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China. and Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Mei Wu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China. and Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yue Shang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China. and Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Min Jiang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China. and Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Jian Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China. and Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Chun-Ying Qiao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China. and Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Huan Ye
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China. and Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yong-Ce Lin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China. and Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Mei-Hua Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China. and Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Rong-Hui Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China. and Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Zhi-Hong Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China. and Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Jing-Ya Jiao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China. and Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yan-Ling Wu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China. and Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China. and Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China and Clinical Research Centre, Yanbian University Hospital, Yanji, Jilin Province 133002, China
| | - Li-Hua Lian
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China. and Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| |
Collapse
|
35
|
Yao Y, Zuo A, Deng Q, Liu S, Zhan T, Wang M, Xu H, Ma J, Zhao Y. Physcion Protects Against Ethanol-Induced Liver Injury by Reprogramming of Circadian Clock. Front Pharmacol 2020; 11:573074. [PMID: 33381029 PMCID: PMC7768821 DOI: 10.3389/fphar.2020.573074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
The circadian clock plays a key role in our daily physiology and metabolism. Alcohol consumption disrupts the circadian rhythm of metabolic genes in the liver; however, the potential contribution of circadian clock modulation to alcoholic liver disease (ALD) is unknown. We identified a novel liver protective agent, physcion, which can alleviate fat accumulation and inflammation in ALD mice via reprogramming the hepatic circadian clock. The model of alcoholic hepatitis was established by intragastrically administering ethanol. In vitro, physcion was investigated by treating HepG2 cells with ethanol. The role of circadian clock in Physcion caused liver protection was tested by knocking down the core circadian gene Bmal1. Physcion application caused reduced lipogenesis and alleviated inflammation in alcohol-induced mice. In alcoholic hepatosteatosis models, physcion upregulated the core circadian genes. And the circadian misalignment triggered by ethanol was efficiently reversed by physcion. Physcion attenuated lipogenesis via reprogramming the circadian clock in HepG2 cells. Suppression of Bmal1 by RNA interference abolished the protective of physcion. In addition, Physcion binds to the active pocket of BMAL1 and promotes its expression. The study identified the novel liver protective effects of physcion on alcohol-induced liver injury, and modulation of the core circadian clock regulators contributes to ALD alleviation. More importantly, strategies targeting the circadian machinery, for example, Bmal1, may prove to be beneficial treatment options for this condition.
Collapse
Affiliation(s)
- Youli Yao
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Along Zuo
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University, Yanji, China
| | - Qiyu Deng
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Shikang Liu
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Tianying Zhan
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Maolin Wang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Haidong Xu
- University of Chinese Academy of Sciences, Shenzhen Hospital, Shenzhen, China
| | - Junxian Ma
- School of Information Engineering, Shenzhen University, Shenzhen, China
| | - Yingying Zhao
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
36
|
Zhang YF, Bu FT, Yin NN, Wang A, You HM, Wang L, Jia WQ, Huang C, Li J. NLRP12 negatively regulates EtOH-induced liver macrophage activation via NF-κB pathway and mediates hepatocyte apoptosis in alcoholic liver injury. Int Immunopharmacol 2020; 88:106968. [PMID: 33182058 DOI: 10.1016/j.intimp.2020.106968] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Accepted: 08/31/2020] [Indexed: 12/29/2022]
Abstract
Alcohol-induced liver injury is characterized by abnormal liver dysfunction and excessive inflammation response. Recent years a wealth of data have been yielded indicating that EtOH (ethyl alcohol)-induced macrophage activation along with liver inflammation plays a dominating role in the progression of alcohol-induced liver injury. Here we found high expression of NLRP12 (Nucleotide-binding oligomerization domain protein 12, which is generally considered to be a negative regulator of inflammatory response) in EtOH-fed mouse liver tissue, primary Kupffer cells and EtOH-induced RAW264.7 cells. Additionally, overexpression of NLRP12 following Ad (adenovirus)-NLRP12-EGFP contributed to the attenuation of steatosis and inflammation in EtOH-fed mice model and EtOH-primed RAW264.7 cells. In parallel, Knockdown of NLRP12 aggravated the inflammatory response in RAW264.7 cells triggered by EtOH. Meanwhile, after administration of overexpression or inhibition of NLRP12 expression in vitro, the expression of phosphorylated protein of NF-kB signaling pathway was significantly affected. After increasing or decreasing the expression of NLRP12 in RAW264.7 cells, AML-12 cells were cultured with the supernatant of RAW264.7 cells stimulated by EtOH, and the percent of apoptosis ratio of AML-12 cells was remarkably altered. The study suggested that reduced inflammatory response induced by NLRP12-mediated inhibition of NF-kB pathway participated in the decrease of hepatocyte apoptosis in alcohol-induced liver injury. Collectively, these findings suggested the significance of NLRP12-mediated macrophage activation in alcohol-induced liver injury.
Collapse
Affiliation(s)
- Ya-Fei Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Fang-Tian Bu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Na-Na Yin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Ao Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Hong-Mei You
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Ling Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Wen-Qian Jia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China.
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China.
| |
Collapse
|
37
|
Jiang M, Cui BW, Wu YL, Zhang Y, Shang Y, Liu J, Yang HX, Qiao CY, Zhan ZY, Ye H, Jin Q, Nan JX, Lian LH. P2X7R orchestrates the progression of murine hepatic fibrosis by making a feedback loop from macrophage to hepatic stellate cells. Toxicol Lett 2020; 333:22-32. [PMID: 32721574 DOI: 10.1016/j.toxlet.2020.07.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023]
Abstract
HSCs (hepatic stellate cells) contribute to the excessive extracellular matrix (ECM) deposition, inflammatory pathways and crucial cell-cell interactions in hepatic disease leading to fibrosis. P2x7R is considered a potential orchestrater in liver fibrosis. For this reason, this work explored the role of P2x7R in liver fibrosis and the mechanism by which P2x7R in macrophages promotes fibrogenesis. In a model of liver fibrosis induced by administration of thioacetamide (TAA), inhibition of P2x7R with its selective inhibitor A438079 reversed TAA-induced liver damage and fibrosis. The mechanism was linked to inhibition of P2x7R-NLRP3 inflammasome activation and thereby infiltration of macrophages and neutrophils into the liver. This result indicated that the P2x7R-TLR4-NLRP3 axis is involved in the process of TGF-β-mediated ECM deposition in HSCs. Ectopic overexpression of P2x7R lowered the threshold of extracellular matrix (ECM) deposition and maintained HSCs in an activated state. The culture medium of THP-1 macrophages stimulated by LPS/ATP aggravated ECM deposition in HSCs by activating P2x7R. Additionally, IL-1β secreted by LPS / ATP activated macrophages amplified fibrosis. These data indicate that P2x7R plays a key regulative role in the activation and maintenance of HSCs promoted by macrophages. Thus, pharmacological inhibition of P2x7R could be a potential therapeutic mechanism to treat human liver fibrosis.
Collapse
Affiliation(s)
- Min Jiang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Ben-Wen Cui
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Yan-Ling Wu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Yu Zhang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Yue Shang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Jian Liu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Hong-Xu Yang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Chun-Ying Qiao
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Zi-Ying Zhan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Huan Ye
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Quan Jin
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Ji-Xing Nan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China; Clinical Research Center, Yanbian University Hospital, Yanji, Jilin Province, 133002, China.
| | - Li-Hua Lian
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China.
| |
Collapse
|
38
|
Yang HX, Shang Y, Jin Q, Wu YL, Liu J, Qiao CY, Zhan ZY, Ye H, Nan JX, Lian LH. Gentiopicroside Ameliorates the Progression from Hepatic Steatosis to Fibrosis Induced by Chronic Alcohol Intake. Biomol Ther (Seoul) 2020; 28:320-327. [PMID: 32248671 PMCID: PMC7327139 DOI: 10.4062/biomolther.2020.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
In current study, we aimed to investigate whether the gentiopicroside (GPS) derived from Gentiana manshurica Kitagawa could block the progression of alcoholic hepatic steatosis to fibrosis induced by chronic ethanol intake. C57BL/6 mice were fed an ethanol-containing Lieber-DeCarli diet for 4 weeks. LX-2 human hepatic stellate cells were treated with GPS 1 h prior to transforming growth factor-β (TGF-β) stimulation, and murine hepatocyte AML12 cells were pretreated by GPS 1 h prior to ethanol treatment. GPS inhibited the expression of type I collagen (collagen I), α-smooth muscle actin (α-SMA) and tissue inhibitor of metal protease 1 in ethanol-fed mouse livers with mild fibrosis. In addition, the imbalanced lipid metabolism induced by chronic ethanol-feeding was ameliorated by GPS pretreatment, characterized by the modulation of lipid accumulation. Consistently, GPS inhibited the expression of collagen I and α-SMA in LX-2 cells stimulated by TGF-β. Inhibition of lipid synthesis and promotion of oxidation by GPS were also confirmed in ethanol-treated AML12 cells. GPS could prevent hepatic steatosis advancing to the inception of a mild fibrosis caused by chronic alcohol exposure, suggesting GPS might be a promising therapy for targeting the early stage of alcoholic liver disease.
Collapse
Affiliation(s)
- Hong-Xu Yang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Yue Shang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Quan Jin
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Yan-Ling Wu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Jian Liu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Chun-Ying Qiao
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Zi-Ying Zhan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Huan Ye
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Ji-Xing Nan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji 133002, China.,Clinical Research Center, Yanbian University Hospital, Yanji 133002, China
| | - Li-Hua Lian
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji 133002, China
| |
Collapse
|
39
|
The effects of taxifolin on alveolar bone in experimental periodontitis in rats. Arch Oral Biol 2020; 117:104823. [PMID: 32593876 DOI: 10.1016/j.archoralbio.2020.104823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE This study aimed to evaluate the effect of taxifolin, a powerful antioxidant, on the progression of periodontitis by immunohistochemical and cone-beam computed tomography (CBCT) examination. DESIGN This study was performed with 32 rats in four experimental groups: a non-ligated group (Control, n = 8), periodontitis group (Perio, n = 8), periodontitis with 1 mg/kg/day taxifolin group (Taxi-1, n = 8), and periodontitis with 10 mg/kg/day taxifolin group (Taxi-10, n = 8). A ligature-induced experimental periodontitis design was used. All rats were sacrificed at 30 days. Alveolar bone loss was determined by CBCT. Hematoxylin-eosin stained slides were examined. The expression levels of bone morphogenetic protein 2 (BMP-2), osteocalcin (OCN), alkaline phosphatase (ALP), collagen type I (Col 1), Bcl-2, Bax, and receptor activator of NF-κB ligand (RANKL) were determined immunohistochemically. RESULTS Both doses of taxifolin showed a decrease in alveolar bone loss. The inflammatory reaction was higher in the Perio group and lower in the taxifolin groups. BMP-2, OCN, ALP, and Col 1 expression were dose-dependently elevated in the taxifolin groups. RANKL immunoexpression decreased with both doses of taxifolin. Bcl-2 expression increased and Bax expression decreased in the taxifolin groups. CONCLUSION Taxifolin successfully reduced apoptosis and improved bone formation in alveolar bone in this experimental periodontitis model.
Collapse
|
40
|
Al Mamun A, Wu Y, Jia C, Munir F, Sathy KJ, Sarker T, Monalisa I, Zhou K, Xiao J. Role of pyroptosis in liver diseases. Int Immunopharmacol 2020; 84:106489. [PMID: 32304992 DOI: 10.1016/j.intimp.2020.106489] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/17/2022]
Abstract
Pyroptosis is known as a novel form of pro-inflammatory cell death program, which is exceptional from other types of cell death programs. Particularly, pyroptosis is characterized by Gasdermin family-mediated pore formation and subsequently cellular lysis, also release of several pro-inflammatory intracellular cytokines. In terms of mechanism, there are two signaling pathways involved in pyroptosis, including caspase-1, and caspase-4/5/11 mediated pathways. However, pyroptosis plays important roles in immune defense mechanisms. Recent studies have demonstrated that pyroptosis plays significant roles in the development of liver diseases. In our review, we have focused on the role of pyroptosis based on the molecular and pathophysiological mechanisms in the development of liver diseases. We have also highlighted targeting of pyroptosis for the therapeutic implications in liver diseases in the near future.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, Zhejiang Province, China
| | - Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Kasfia Jahan Sathy
- Department of Pharmacy, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Tamanna Sarker
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Ilma Monalisa
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China.
| |
Collapse
|
41
|
Yao Y, Zhang W, Ming R, Deng Q, Zuo A, Zhang S, Ying Y, Zhao Y, Ma J. Noninvasive 40-Hz Light Flicker Rescues Circadian Behavior and Abnormal Lipid Metabolism Induced by Acute Ethanol Exposure via Improving SIRT1 and the Circadian Clock in the Liver-Brain Axis. Front Pharmacol 2020; 11:355. [PMID: 32269528 PMCID: PMC7109315 DOI: 10.3389/fphar.2020.00355] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Sirtuin 1 (SIRT1) is a protein deacetylase with important cellular functions, as it regulates numerous processes, including the circadian rhythm in peripheral tissues. Efforts are ongoing to reveal how Sirt1 can be used to treat diseases, such as alcoholic liver disease (ALD), Alzheimer's disease, and liver fibrosis. We have recently shown that noninvasive exposure to 40-Hz light flicker activates hypothalamic SIRT1 gene expression, thereby regulating the central circadian clock. This study investigated the effects of 40-Hz light flicker in a mouse model of ALD. RNA sequencing (RNA-seq) analysis was performed to explore the potential pathways affected by 40-Hz light flicker. We found that 40-Hz light flicker significantly decreased the acute ethanol-induced increases in serum alanine aminotransferase (ALT) and serum triglyceride (TG) levels and reduced fat-droplet accumulation in mouse livers. Additionally, 40-Hz light flicker significantly suppressed ethanol-induced increases in sterol regulatory element binding protein 1 (SREBP-1) and fatty acid synthase (Fasn) levels. Furthermore, the ethanol induced significant decreases in both Sirt1 levels and phosphorylation of adenosine monophosphate-activated protein kinase subunit (AMPKα), compared with those in the control group. Strikingly, pretreatment with 40-Hz light flicker ameliorated such ethanol-induced decreases in SIRT1 levels and AMPKα phosphorylation. In addition, ethanol-induced increases in levels of brain and muscle arnt-like protein-1 (BMAL1), circadian locomotor output cycles kaput (CLOCK), and period 2 (PER2) were reversed by 40-Hz light flicker. RNA-seq analysis revealed significant differences in expression of genes related to the AMPK signalling. Moreover, ethanol consumption altered mRNA levels of Sirt1 and circadian genes in the suprachiasmatic nucleus (SCN), indicating that ethanol influenced central pacemaker genes; however, 40-Hz light flicker reversed these ethanol-induced changes. Taken together, our findings demonstrate that 40-Hz light flicker rapidly influence the SCN and exhibits inhibitory properties on hepatic lipogenesis, indicating that 40-Hz light flicker has therapeutic potential for preventing alcoholic liver steatosis.
Collapse
Affiliation(s)
- Youli Yao
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen University, Shenzhen, China.,School of Information Engineering, Shenzhen University, Shenzhen, China
| | - Wenjiang Zhang
- School of Information Engineering, Shenzhen University, Shenzhen, China
| | - Ruibo Ming
- School of Information Engineering, Shenzhen University, Shenzhen, China
| | - Qiyu Deng
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Along Zuo
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University, Yanji, China
| | - Shengli Zhang
- School of Information Engineering, Shenzhen University, Shenzhen, China
| | - Ying Ying
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Yingying Zhao
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Junxian Ma
- School of Information Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
42
|
Zhang Y, Jiang M, Cui BW, Jin CH, Wu YL, Shang Y, Yang HX, Wu M, Liu J, Qiao CY, Zhan ZY, Ye H, Zheng GH, Jin Q, Lian LH, Nan JX. P2X7 receptor-targeted regulation by tetrahydroxystilbene glucoside in alcoholic hepatosteatosis: A new strategy towards macrophage-hepatocyte crosstalk. Br J Pharmacol 2020; 177:2793-2811. [PMID: 32022249 DOI: 10.1111/bph.15007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/26/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Regulating macrophage-hepatocyte crosstalk through P2X7 receptors has led to new pharmacological strategies to reverse alcoholic hepatosteatosis. We investigated how tetrahydroxystilbene glucoside (2354glu), isolated from Polygonum multiflorum, modulates macrophage-hepatocyte crosstalk during alcoholic hepatosteatosis. EXPERIMENTAL APPROACH A model of alcoholic hepatosteatosis was established by giving ethanol intragastrically to C57BL/6 mice. HepG2 cells were incubated in conditioned medium from LPS+ATP-activated THP-1 human macrophages with silenced or overexpressed P2X7 receptors. THP-1 macrophages or mouse peritoneal macrophages were pretreated with 2354glu for 1 hr prior to LPS+ATP stimulation. Western blots, RT-PCR and immunohistochemical analysis were used, along with over-expression and silencing of P2X7 receptors. KEY RESULTS Knockdown or overexpression of P2X7 receptors in THP-1 macrophages affected release of mature IL-1β and, subsequently, modulated lipid metabolism in HepG2 cells via the LKB-AMPK pathway. 2354glu ameliorated alcoholic hepatosteatosis in mice by regulating LKB1-AMPK-SREBP1 pathway and its target genes. Suppression of P2X7 receptor activation by 2354glu inhibited IL-1β release and reduced macrophage and neutrophil infiltration. In macrophages stimulated with LPS+ATP, expression of P2X7 receptors, caspase-1 and NF-κB, release of IL-1β, calcium influx and PI uptake were reduced by 2354glu. SIRT1-LKB1-AMPK-SREBP1 axis-mediated lipid accumulation in HepG2 cells was reduced when they were cultured with conditioned media from LPS+ATP-activated THP-1 macrophages pretreated with 2354glu. CONCLUSION AND IMPLICATIONS Modulation of P2X7 receptors in macrophages regulated lipid accumulation in hepatocytes during alcoholic hepatosteatosis. 2354glu might be a promising candidate that targets P2X7 receptors in macrophages interacting with hepatocytes during alcoholic hepatosteatosis.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Min Jiang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Ben-Wen Cui
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Cheng Hua Jin
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Yan-Ling Wu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Yue Shang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Hong-Xu Yang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Mei Wu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Jian Liu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Chun-Ying Qiao
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Zi-Ying Zhan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Huan Ye
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Guang-Hao Zheng
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Quan Jin
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Li-Hua Lian
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Ji-Xing Nan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China.,Clinical Research Center, Yanbian University Hospital, Yanji, China
| |
Collapse
|
43
|
Wu J, Lin S, Wan B, Velani B, Zhu Y. Pyroptosis in Liver Disease: New Insights into Disease Mechanisms. Aging Dis 2019; 10:1094-1108. [PMID: 31595205 PMCID: PMC6764727 DOI: 10.14336/ad.2019.0116] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/16/2019] [Indexed: 12/12/2022] Open
Abstract
There has been increasing interest in pyroptosis as a novel form of pro-inflammatory programmed cell death. The mechanism of pyroptosis is significantly different from other forms of cell death in its morphological and biochemical features. Pyroptosis is characterized by the activation of two different types of caspase enzymes-caspase-1 and caspase-4/5/11, and by the occurrence of a proinflammatory cytokine cascade and an immune response. Pyroptosis participates in the immune defense mechanisms against intracellular bacterial infections. On the other hand, excessive inflammasome activation can induce sterile inflammation and eventually cause some diseases, such as acute or chronic hepatitis and liver fibrosis. The mechanism and biological significance of this novel form of cell death in different liver diseases will be evaluated in this review. Specifically, we will focus on the role of pyroptosis in alcoholic and non-alcoholic fatty liver disease, as well as in liver failure. Finally, the therapeutic implications of pyroptosis in liver diseases will be discussed.
Collapse
Affiliation(s)
- Jiali Wu
- Liver research center of the First Affiliated Hospital of Fujian Medical University, Fujian 350005, China
| | - Su Lin
- Liver research center of the First Affiliated Hospital of Fujian Medical University, Fujian 350005, China
| | - Bo Wan
- Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, United Kingdom
| | - Bharat Velani
- Basildon and Thurrock University Hospitals NHS Foundation Trust, Nethermayne, Basildon, Essex SS16 5NL, United Kingdom
| | - Yueyong Zhu
- Liver research center of the First Affiliated Hospital of Fujian Medical University, Fujian 350005, China
| |
Collapse
|
44
|
Tu Y, Zhu S, Wang J, Burstein E, Jia D. Natural compounds in the chemoprevention of alcoholic liver disease. Phytother Res 2019; 33:2192-2212. [PMID: 31264302 DOI: 10.1002/ptr.6410] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/29/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022]
Abstract
Alcoholic liver disease (ALD), caused by excessive consumption of alcohol, is a major cause of chronic liver disease worldwide. Much effort has been expended to explore the pathogenesis of ALD. Hepatic cell injury, oxidative stress, inflammation, regeneration, and bacterial translocation are all involved in the pathogenesis of ALD. Immediate abstinence is the most important therapeutic treatment for affected individuals. However, the medical treatment for ALD had not advanced in a long period. Intriguingly, an increasing body of research indicates the potential of natural compounds in the targeted therapy of ALD. A plethora of dietary natural products such as flavonoids, resveratrol, saponins, and β-carotene are found to exert protective effects on ALD. This occurs through various mechanisms composed of antioxidative, anti-inflammatory, iron chelation, pro-apoptosis, and/or antiproliferation of hepatic stellate cells and hepatocellular carcinoma cells. In this review, we will summarize current knowledge about the pathogenesis and treatments of ALD and focus on the potential of natural compounds in ALD therapies and underlying mechanisms.
Collapse
Affiliation(s)
- Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Shu Zhu
- Chinese Academy of Science and Technology for Development, Ministry of Science and Technology, Institute of Foresight and Evaluation Research, Beijing, China
| | - Jing Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Ezra Burstein
- Department of Internal Medicine, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Gao XJ, Tang B, Liang HH, Yi L, Wei ZG. The protective effect of nigeglanine on dextran sulfate sodium-induced experimental colitis in mice and Caco-2 cells. J Cell Physiol 2019; 234:23398-23408. [PMID: 31169313 DOI: 10.1002/jcp.28909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 01/17/2023]
Abstract
Ulcerative colitis (UC) was a nonspecific inflammatory disease. The treatment of UC is imperative. The present study aimed to investigate the effect of nigeglanine on dextran sulfate sodium-induced UC in experimental mice and Caco-2 cells and define the underlying mechanism. The nigeglanine was shown a significant protective effect on the colon, significantly reduced the weight and colon length loss and inhibited intestinal epithelial cell damage. Nigeglanine also reduced proinflammatory factors and increased anti-inflammatory factor production. The results indicate that nigeglanine suppresses the nuclear factor kappa B and mitogen-activated protein kinases pathways in addition to NLRP3 inflammasome action, inhibiting colon epithelial cell pyroptosis. Surprisingly, ZO-1 and occludin protein levels increased with nigeglanine treatment, suggesting that nigeglanine plays a protective role in barrier integrity, reducing colitis progression. The present study suggests that dietary therapy with nigeglanine may be a useful treatment for prophylaxis and palliative UC.
Collapse
Affiliation(s)
- Xue-Jiao Gao
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Bin Tang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Hui-Huang Liang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Li Yi
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Zi-Gong Wei
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| |
Collapse
|
46
|
Ding X, Lei Q, Li T, Li L, Qin B. Hepatitis B core antigen can regulate NLRP3 inflammasome pathway in HepG2 cells. J Med Virol 2019; 91:1528-1536. [PMID: 31017673 DOI: 10.1002/jmv.25490] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/04/2019] [Accepted: 03/27/2019] [Indexed: 12/11/2022]
Abstract
Hepatitis B virus (HBV) has four open reading frames (ORFs) of which ORF C is consists of the pre Core and Core genes encodes the Hepatitis B core antigen (HBcAg) and Hepatitis B e antigen (HBeAg). Studies have shown that HBeAg significantly inhibits the NLRP3 inflammasome activation and interleukin-1β (IL-1β) production. However, the role of HBcAg and ORF C proteins (in this paper, ORF C proteins = HBcAg + HBeAg) were remain unclear. Our study aims to assess whether HBcAg and ORF C proteins can affect the NLRP3 inflammasome pathway. Vectors expressing ORF C proteins and HBcAg were designed and transfected into HepG2 cells. And then, cells were stimulated with lipopolysaccharide (LPS). Activation of the NLRP3 inflammasome and the levels of IL-1β and IL-18 were evaluated by Western blot analysis, quantitative reverse-transcription polymerase chain reaction, enzyme-linked immunosorbent assay, and immunofluorescence. The expression of NLRP3 and IL-1β peaked when HepG2 cells were stimulated with 1000 ng/mL LPS for 18 to 24 hours. HBcAg, but not ORF C proteins, promoted LPS-induced NLRP3 inflammasome activation and IL-1β production. These findings provide a novel mechanism on how the HBV causes liver inflammation and may provide insights into the search for new therapeutic strategies.
Collapse
Affiliation(s)
- Xiaolin Ding
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingsong Lei
- Department of Oncology, Chongqing Cancer Hospital, Chongqing, People's Republic of China
| | - Tianju Li
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Li
- Department of Liver Diseases, Chongqing Traditional Chinese Medicine Hospital, Chongqing, People's Republic of China
| | - Bo Qin
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
47
|
Feng R, Chen JH, Liu CH, Xia FB, Xiao Z, Zhang X, Wan JB. A combination of Pueraria lobata and Silybum marianum protects against alcoholic liver disease in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152824. [PMID: 30836218 DOI: 10.1016/j.phymed.2019.152824] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Excess alcohol exposure leads to alcoholic liver disease (ALD). Pueraria lobata (PUE) and Silybum marianum (SIL) are two well-known hepatoprotective herbal remedies with various activities. The possible effect of combination of PUE and SIL on ALD has not been elucidated yet. PURPOSE We aimed to demonstrate that the combination of PUE and SIL prevents against alcoholic liver injury in mice using a model of chronic-plus-single-binge ethanol feeding. STUDY DESIGN Male C57BL/6 mice were randomly divided into five groups (n = 8-10), namely the control group (CON), ethanol-induced liver injury group (ETH), 150 mg/kg PUE treated group (PUE), 60 mg/kg SIL treated group (SIL), 210 mg/kg PUE+SIL treatment group (PUE+SIL). Except control group, all animals were fed a modified Lieber-DeCarli ethanol liquid diet for 10 days. While, control group received Lieber-DeCarli control diet containing isocaloric maltose dextrin substituted for ethanol. On day 11, the mice orally received a single dose of 31.5% (v/v) ethanol (5 g/kg BW) or an isocaloric maltose solution. RESULTS Ethanol exposure caused liver injury, as demonstrated by remarkably increased plasma parameters, histopathological changes, the increased lipid accumulation, oxidative stress and inflammation in liver. These alterations were ameliorated by the treatments of PUE, SIL and PUE+SIL. While, the PUE+SIL treatment showed the most effective protection, which was associated with reducing alcohol-induced hepatic steatosis via upregulating LKB1/AMPK/ACC signaling, and inhibiting hepatic inflammation via LPS-triggered TLR4-mediated NF-κB signaling pathway. Our results also indicated that the hepatoprotective effects of SIL+PUE might mainly attribute to the protection of SIL and PUE alone in alcohol-induced hepatic steatosis and hepatic inflammation, respectively. CONCLUSION These findings also suggest that the combination of PUE and SIL has a potential to be developed as a functional food for the management of ALD.
Collapse
Affiliation(s)
- Ruibing Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Jie-Hua Chen
- Nutrition and Health Research Centre, By-Health Co. LTD, Guangzhou, China
| | - Cong-Hui Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Fang-Bo Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Zeyu Xiao
- Translational Medicine Collaborative Innovation Center, Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuguang Zhang
- Nutrition and Health Research Centre, By-Health Co. LTD, Guangzhou, China.
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| |
Collapse
|
48
|
Lim H, Heo MY, Kim HP. Flavonoids: Broad Spectrum Agents on Chronic Inflammation. Biomol Ther (Seoul) 2019; 27:241-253. [PMID: 31006180 PMCID: PMC6513185 DOI: 10.4062/biomolther.2019.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
Flavonoids are major plant constituents with numerous biological/pharmacological actions both in vitro and in vivo. Of these actions, their anti-inflammatory action is prominent. They can regulate transcription of many proinflammatory genes such as cyclooxygenase-2/inducible nitric oxide synthase and many cytokines/chemokines. Recent studies have demonstrated that certain flavonoid derivatives can affect pathways of inflammasome activation and autophagy. Certain flavonoids can also accelerate the resolution phase of inflammation, leading to avoiding chronic inflammatory stimuli. All these pharmacological actions with newly emerging activities render flavonoids to be potential therapeutics for chronic inflammatory disorders including arthritic inflammation, meta-inflammation, and inflammaging. Recent findings of flavonoids are summarized and future perspectives are presented in this review.
Collapse
Affiliation(s)
- Hyun Lim
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Moon Young Heo
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun Pyo Kim
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
49
|
Su QQ, Tian YY, Liu ZN, Ci LL, Lv XW. Purinergic P2X7 receptor blockade mitigates alcohol-induced steatohepatitis and intestinal injury by regulating MEK1/2-ERK1/2 signaling and egr-1 activity. Int Immunopharmacol 2019; 66:52-61. [DOI: 10.1016/j.intimp.2018.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022]
|
50
|
Zeng H, Guo X, Zhou F, Xiao L, Liu J, Jiang C, Xing M, Yao P. Quercetin alleviates ethanol-induced liver steatosis associated with improvement of lipophagy. Food Chem Toxicol 2018; 125:21-28. [PMID: 30580029 DOI: 10.1016/j.fct.2018.12.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/06/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023]
Abstract
Although emerging evidence demonstrated that quercetin could be explored as a potential candidate for the early intervention of alcoholic liver disease (ALD), the exact mechanisms against ethanol-induced hepatic steatosis haven't been fully elucidated. Herein, we investigated the effect of quercetin on liver steatosis caused by chronic-plus-single-binge ethanol feeding, focusing on lipophagy. Adult male mice were pair-fed with liquid diets containing ethanol (28% of total calories) and treated with quercetin for 12 weeks. Chronic-plus-binge ethanol consumption led to lipid droplets accumulation and liver damage as evidenced by histopathological changes, the increased content of triglyceride in serum and liver, and the elevated of serum ALT and AST level, which were greatly attenuated by quercetin. Moreover, quercetin blocked autophagy suppression by chronic-binge ethanol intake as manifested by the morphological improvement of mitochondrial characteristics, the increased number of autolysosome and restoration of autophagy-related protein expression. Furthermore, quercetin promoted lipophagy confirmed by the decreased perilipin 2 (PLIN2) level, activated AMPK activity and increased co-localization of liver LC3II and PLIN2 proteins. Collectively, these findings suggest that regular consumption of dietary quercetin has a role in preventing hepatic steatosis induced by chronic-plus-binge ethanol feeding, which mechanism may associate with the evident regulatory effect of quercetin on lipophagy.
Collapse
Affiliation(s)
- Hongmei Zeng
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoping Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lin Xiao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingjing Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chunjie Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mingyou Xing
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|