1
|
Xiong S, Dong J, Wang W, Zheng G, Wu N, Xie J, Wang R, He X, Li J. The structural characteristics of a pectic polysaccharide from Choerospondias axillaris fruit and its immunomodulatory effect on cyclophosphamide-induced immunosuppressed mice. Int J Biol Macromol 2025; 308:142575. [PMID: 40174828 DOI: 10.1016/j.ijbiomac.2025.142575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/28/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
This study aimed to elucidate the structure of a polysaccharide from Choerospondias axillaris fruit (CAP) and to evaluate the immunomodulatory effect against cyclophosphamide (CTX)-induced immunosuppression mice. The solution of CAP exhibited non-Newtonian pseudoplastic fluid behavior. The backbone of CAP was defined as →2)-α-L-Rhap-(1 → 4)-α-D-GalpA-(1 → 4)-α-D-GalpA-(1 → [4)-α-D-GalpA-(1]5→, with side chains attached at the O-4 and O-3 positions, demonstrating that CAP is a pectic polysaccharide with partial methyl esterification. Administration of CAP improved immune organ indices, reduced levels of inflammation cytokines, and diminished oxidative stress of the immunosuppression mice. Furthermore, CAP significantly promoted the expression of intestinal barrier proteins (Claudin-1, Occludin and ZO-1). Additionally, CAP markedly up-regulated the phosphorylation levels of ERK1/2, p38, IκBα and p65 in the colon tissue, suggesting that CAP might alleviate intestinal inflammation by modulating MAPK/NF-κB signaling pathway. Moreover, CAP could restore the abundance of probiotic species (Lactobacillus and Bacteroides), while decreasing pathogenic species (Oscillospira and Helicobacter). These findings underscore the substantial immunomodulatory potential of CAP.
Collapse
Affiliation(s)
- Shiyi Xiong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jinjiao Dong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenjun Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guodong Zheng
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Nansheng Wu
- Choerospondias Axillaris Research Institute, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jingjing Xie
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ruiling Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaojin He
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jingen Li
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
2
|
Fu Y, Wang C, Gao Z, Liao Y, Peng M, Fu F, Li G, Su D, Guo J, Shan Y. Microbes: Drivers of Chenpi manufacturing, biotransformation, and physiological effects. Food Chem 2025; 464:141631. [PMID: 39454433 DOI: 10.1016/j.foodchem.2024.141631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/16/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Chenpi holds a rich history of both edible and medicinal applications worldwide, garnering increased attention from researchers in recent years due to its diverse physiological effects. While current research predominantly exploresed its chemical composition and physiological effects, there remains a notable gap in knowledge concerning its manufacturing, characteristic chemical substances, and the underlying mechanisms driving its physiological effects. In this review, the impacts of microbes on the manufacturing, biotransformation, and physiological effects of Chenpi were summarized, as well as the present status of product development. Furthermore, this review engaged in an in-depth discussion highlighting the challenges and shortcomings in recent research, while proposing potential directions and prospects. Additionally, the claim that "The longer the aging, the better the quality" of Chenpi was scientifically evaluated for the first time, providing a solid theoretical foundation for advancing the Chenpi industry.
Collapse
Affiliation(s)
- Yanjiao Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Chao Wang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhipeng Gao
- Fisheries College, Hunan Agricultural University, Changsha 410128, China
| | - Yanfang Liao
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mingfang Peng
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Fuhua Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Donglin Su
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiajing Guo
- Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
3
|
Wei S, Li M, Zhao L, Wang T, Wu K, Yang J, Liu Y, Zhao Y, Du F, Chen Y, Deng S, Shen J, Xiao Z, Li W, Li X, Sun Y, Gu L, Wei M, Li Z, Wu X. Gegen-Sangshen oral liquid and its active fractions mitigate alcoholic liver disease in mice through repairing intestinal epithelial injury and regulating gut microbiota. Chin Med 2024; 19:175. [PMID: 39716295 DOI: 10.1186/s13020-024-01049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Liuweizhiji Gegen-Sangshen oral liquid (LGS), as a Chinese medicinal preparation, is developed from a Traditional Chinese medicinal formula consisting of six Chinese medicinal herbs, including Puerariae lobatae radix, Hoveniae semen, Imperatae rhizoma, Crataegi fructus, Mori fructus and Canarli fructus, and has been extensively utilized in the prevention and treatment of alcoholic liver disease (ALD) clinically. Previous study has demonstrated that LGS dose-dependently mitigated ALD in rat models. However, whether and how the main characteristic constituents of LGS (the flavonoid and polysaccharide fractions, LGSF and LGSP) contribute to the anti-ALD effect remains unclear. This study aimed to assess the anti-ALD effect of LGS and its main fractions (LGSF and LGSP) in a murine model of ALD and to explore the underlying mechanisms. METHODS ALD mouse model was constructed using the chronic and binge ethanol feeding method. Biochemical determinations of AST, ALT, TC, TG, ADH, ALDH, HDL, LDL, IL-1β, IL-6, and TNF-α were performed using corresponding kits. Histopathological examination of liver and intestinal sections was conducted based on the H&E staining. Lipid accumulation in hepatocytes was evaluated by oil red O staining. Ethanol metabolism was assessed by determining the activity of ADH and ALDH enzymes. Intestinal barrier function was analyzed based on immunohistochemistry analysis of ZO-1 and occludin and immunofluorescence analysis of epithelial markers, Lgr5, Muc2, and Lyz1. Intestinal epithelial apoptosis was detected by TUNEL staining. Mouse fecal microbiota alterations were analyzed by 16S rRNA sequencing. An in vitro epithelial injury model was established by developing TNF-α-induced 3D-cultured intestinal organoids. In vitro culture of specific bacterial strains was performed. RESULTS The results showed that LGS and its flavonoid and polysaccharide fractions (LGSF and LGSP) significantly alleviated ALD in mice through attenuating hepatic injury and inflammation, improving liver steatosis and promoting ethanol metabolism. Notably, LGS, LGSP, and LGSF mitigated intestinal damage and maintained barrier function in ALD mice. The intestinal barrier protection function of LGS, LGSP, and LGSF was generally more obvious than that of the positive drug meltadosine. Further study demonstrated that LGS, LGSP, and LGSF promoted intestinal epithelial repair via promoting Lgr5+ stem cell mediated regeneration in TNF-α-induced intestinal organoids. LGS and LGSF, other than LGSP, had a better effect on repair of epithelial injury in vitro. Moreover, LGS, LGSP, and LGSF remarkably alleviated gut dysbiosis in ALD mice via at least partially recovery of alcohol-induced microbial changes and induction of specific bacterial groups. In vitro culture of bacterial strains indicated that LGS, LGSP, and LGSF had a specific impact on bacterial growth. LGS and LGSP, but not the LGSF, significantly promoted the growth of Lactobacillus. Similarly, LGS and LGSP significantly increased the proliferation of Bacteroides sartorii, and LGSF had a minimal effect. LGS, LGSP and LGSF all promoted the growth of Bacillus coagulans, Bifidobacterium adolescentis, and Bifidobacterium bifidum. LGS and LGSP promoted the growth of Dubosiella newyorkensis, but the LGSF had no effect. CONCLUSIONS LGS exerts its anti-ALD effect in mice through regulating gut-liver axis, and its flavonoid and polysaccharide fractions, LGSF and LGSP, are responsible for its protective effect.
Collapse
Affiliation(s)
- Shulin Wei
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Mingxing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translation Medicine, Luzhou, 646000, Sichuan, China
| | - Long Zhao
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Tiangang Wang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ke Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jiayue Yang
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yubin Liu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yueshui Zhao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translation Medicine, Luzhou, 646000, Sichuan, China
| | - Fukuan Du
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translation Medicine, Luzhou, 646000, Sichuan, China
| | - Yu Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translation Medicine, Luzhou, 646000, Sichuan, China
| | - Shuai Deng
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translation Medicine, Luzhou, 646000, Sichuan, China
| | - Jing Shen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translation Medicine, Luzhou, 646000, Sichuan, China
| | - Zhangang Xiao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translation Medicine, Luzhou, 646000, Sichuan, China
- School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang, 621000, Sichuan, China
- Gulin County Hospital of Traditional Chinese Medicine, Luzhou, 646500, Sichuan, China
| | - Wanping Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiaobing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yuhong Sun
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Li Gu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Mei Wei
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhi Li
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xu Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Paediatrics, & Department of Paediatric Care, Luzhou People's Hospital, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
4
|
Wang Z, Yang L, Feng Y, Duan B, Zhang H, Tang Y, Zhang C, Yang J. Isoorientin Alleviates DSS-Treated Acute Colitis in Mice by Regulating Intestinal Epithelial P-Glycoprotein (P-gp) Expression. DNA Cell Biol 2024; 43:520-536. [PMID: 39180442 DOI: 10.1089/dna.2024.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024] Open
Abstract
Isoorientin (ISO) is a naturally occurring flavonoid with diverse functional properties that mitigate the risk of diseases stemming from oxidation, inflammation, and cancer cell proliferation. P-glycoprotein (P-gp) is a vital component of the intestinal epithelium and may play a role in the onset of intestinal inflammatory conditions, such as inflammatory bowel disease (IBD). Recent studies have suggested that short-chain fatty acids (SCFAs) and secondary bile acids (SBAs) produced by the gut microbiota stimulate the increase of P-gp expression, alleviating excessive inflammation and thereby preservation of intestinal homeostasis. ISO has been shown to improve colon health and modulate the gut microbiota. In this study, we aimed to explore whether ISO can modulate the microbes and their metabolites to influence P-gp expression to alleviate IBD. First, the impact of ISO on dextran sulfate sodium (DSS)-treated colitis in mice was investigated. Second, 16S rRNA gene sequencing was conducted. The present study indicated that ISO mitigated the symptoms and pathological damage associated with DSS-treated colitis in mice. Western blot analysis revealed ISO upregulated P-gp in colon tissues, suggesting the critical role of P-gp protein in intestinal epithelial cells. 16S microbial diversity sequencing revealed ISO restored the richness and variety of intestinal microorganisms in colitis-bearing mice and enriched SCFA-producing bacteria, such as Lachnospiraceae_NK4A136_group. The experiments also revealed that the ISO fecal microbiota transplantation (FMT) inoculation of DSS-treated mice had similarly beneficial results. FMT mice showed a reduction in colitis symptoms, which was more pronounced in ISO-FMT than in CON-FMT mice. Meanwhile, ISO-FMT expanded the abundance of beneficial microorganisms, increased the expression of metabolites, such as SCFAs and total SBAs, and significantly upregulated the expression of P-gp protein. In addition, Spearman's correlation analysis demonstrated a positive correlation between the production of SCFAs and SBAs and the expression of P-gp. The present study identified that ISO increases the expression of P-gp in the intestinal epithelium by regulating intestinal microorganisms and their metabolites, which maintains colonic homeostasis, improves the integrity of the colonic epithelium, and alleviates colitis.
Collapse
Affiliation(s)
- Zhenzhen Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Lanzhu Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yun Feng
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bensong Duan
- Department of Gastroenterology Shanghai East Hospital, School of Medicine, Endoscopy Center, Tongji University, Shanghai, China
| | - Haibin Zhang
- Department of Gastroenterology Shanghai East Hospital, School of Medicine, Endoscopy Center, Tongji University, Shanghai, China
| | - Yanru Tang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Caihang Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jingya Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China
| |
Collapse
|
5
|
Lin XY, Ye TW, Duan X, Wang BX, Zhou D, Li HB. Cadmium in Market Pork Kidneys: A Study on Cadmium Bioavailability and the Health Effects Based on Mouse Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14651-14661. [PMID: 39121354 DOI: 10.1021/acs.est.4c04801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Edible offal of farmed animals can accumulate cadmium (Cd). However, no studies have investigated Cd bioavailability and its health effects. Here, based on mouse models, market pork kidney samples exhibited high Cd relative bioavailability of 74.5 ± 11.2% (n = 26), close to 83.8 ± 7.80% in Cd-rice (n = 5). This was mainly due to high vitamin D3 content in pork kidney, causing 1.7-2.3-fold up-regulated expression of duodenal Ca transporter genes in mice fed pork kidney compared to mice fed Cd-rice, favoring Cd intestinal absorption via Ca transporters. However, although pork kidney was high in Cd bioavailability, subchronic low-dose (5% in diet) consumption of two pork kidney samples having 0.48 and 0.97 μg Cd g-1 dw over 35 d did not lead to significant Cd accumulation in the tissue of mice fed Cd-free rice but instead remarkably decreased Cd accumulation in the tissue of mice fed Cd-rice (0.48 μg Cd g-1) by ∼50% and increased abundance of gut probiotics (Faecalibaculum and Lactobacillus). Overall, this study contributed to our understanding of the bioavailability and health effects associated with Cd in edible offal, providing mechanistic insights into pork kidney consumption safety based on Cd bioavailability.
Collapse
Affiliation(s)
- Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210023, China
| | - Tian-Wen Ye
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xu Duan
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bo-Xuan Wang
- International Department of Nanjing No. 13 Middle School, No. 14 Xijiadatang Road, Nanjing 210008, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Ma L, Zhou B, Liu H, Chen S, Zhang J, Wang T, Wang C. Dietary rutin improves the antidiarrheal capacity of weaned piglets by improving intestinal barrier function, antioxidant capacity and cecal microbiota composition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6262-6275. [PMID: 38466088 DOI: 10.1002/jsfa.13456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Early weaning is prone to damage intestinal barrier function, resulting in diarrhea, whereas rutin, as a natural flavonoid with multiple biological functions, shows potential in piglets. Therefore, the effects of dietary rutin on growth, antidiarrheal, barrier function, antioxidant status and cecal microbiota of weaned piglets were investigated with the control group (CON) (basal diet) and Rutin (basal diet+500 mg kg-1 rutin) groups fed for 14 days. RESULTS The results showed that dietary 500 mg kg-1 rutin significantly decreased diarrhea index, serum diamine oxidase activity and total aerobic bacterial population in mesenteric lymph nodes, whereas it significantly increased the gain-to-feed ratio (G:F) and serum growth hormone content, jejunal villus height and villus height to crypt depth ratio, and also enhanced jejunal claudin-1 and zonula occludens-1 mRNA and protein expression. Meanwhile, dietary rutin significantly decreased inflammation-associated mRNA expression, malondialdehyde (MDA) content, swollen mitochondrial number and mitochondrial area in the jejunum, whereas it increased the total superoxide dismutase (T-SOD) and glutathione peroxidase activities and activated the Nrf2 signaling pathway. Moreover, dietary rutin significantly increased Firmicutes abundance and decreased Campylobacterota abundance, which were closely associated with the decreased diarrhea index and MDA content or increased Claudin-1 expression and T-SOD activity. CONCLUSION Dietary 500 mg kg-1 rutin increased G:F by improving intestinal morphology, and alleviated diarrhea by enhancing intestinal barrier, which might be associated with the enhanced antioxidant capacity via activating the Nrf2/Keap1 signaling pathway and the improved cecal microbial composition in weaned piglets. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Longfei Ma
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Binbin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Huijuan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shun Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiaqi Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chao Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Dai H, Jiang Y, Liu S, Li D, Zhang X. Dietary flavonoids modulate the gut microbiota: A new perspective on improving autism spectrum disorder through the gut-brain axis. Food Res Int 2024; 186:114404. [PMID: 38729686 DOI: 10.1016/j.foodres.2024.114404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with an unknown etiology. It is associated with various factors and causes great inconvenience to the patient's life. The gut-brain axis (GBA), which serves as a bidirectional information channel for exchanging information between the gut microbiota and the brain, is vital in studying many neurodegenerative diseases. Dietary flavonoids provide anti-inflammatory and antioxidant benefits, as well as regulating the structure and function of the gut microbiota. The occurrence and development of ASD are associated with dysbiosis of the gut microbiota. Modulation of gut microbiota can effectively improve the severity of ASD. This paper reviews the links between gut microbiota, flavonoids, and ASD, focusing on the mechanism of dietary flavonoids in regulating ASD through the GBA.
Collapse
Affiliation(s)
- Haochen Dai
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Yuhan Jiang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Shuxun Liu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| | - Dandan Li
- Sinograin Chengdu Storage Research Institute Co., Ltd, Chengdu 610091, PR China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
8
|
Hou X, Dai P, Song X, Long X, Gao J, Chai T. Understanding the Effect of Compound Probiotics on the Health of Rabbits and Its Mechanisms Through Metagenomics. Probiotics Antimicrob Proteins 2024; 16:815-828. [PMID: 37160588 DOI: 10.1007/s12602-023-10072-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 05/11/2023]
Abstract
In this study, we investigated the effects of probiotics on growth performance, immunity, intestinal flora, and antioxidant capacity of rabbits. Three hundred New Zealand white rabbits were randomly divided into four groups. Groups A, B, C, and D were the lactobacillus group, compound probiotic group, control group, and antibiotic group, respectively. The results showed compared with the control group, the average weight of groups A, B, and D increased by 14.88%, 12.33%, and 11.97%, respectively. Moreover, the index of immune organs and the IgG and IgM in serum of group B were significantly increased (P < 0.05). Meanwhile, the activities of superoxide dismutase (SOD) in group B and catalase (CAT) in group A were significantly increased (P < 0.05). At week 5, the contents of rabbit cecum were taken for metagenome sequencing, and the results showed probiotics increased the relative abundance of Akkermansia, and decreased the relative abundance of Bacteroides. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we found probiotics could enrich metabolic pathways such as carbohydrates, amino acids, and lipids. According to the Comprehensive Antibiotic Resistance Database (CARD), we found antibiotic resistance ontology (ARO) in cecum mainly included β-lactamases, macrolide 2'-phosphotransferase II, and plasmid-mediated quinolone resistance protein. Among them, there were 1964, 2105, and 1982 types of ARO in group B, group D, and groups A and C, respectively. These results showed probiotics played a beneficial role in maintaining or enhancing the health and growth of rabbits and could replace antibiotics under certain feeding conditions.
Collapse
Affiliation(s)
- Xiaohong Hou
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, China
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271000, China
| | - Peiqiang Dai
- Sino-Science Biological Research Institute, Taian, China
| | - Xingdong Song
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Xianrong Long
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271000, China
| | - Jing Gao
- Taian Central Hospital, Taian, 271000, China.
| | - Tongjie Chai
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271000, China.
| |
Collapse
|
9
|
Guarnieri L, Bosco F, Leo A, Citraro R, Palma E, De Sarro G, Mollace V. Impact of micronutrients and nutraceuticals on cognitive function and performance in Alzheimer's disease. Ageing Res Rev 2024; 95:102210. [PMID: 38296163 DOI: 10.1016/j.arr.2024.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's disease (AD) is a major global health problem today and is the most common form of dementia. AD is characterized by the formation of β-amyloid (Aβ) plaques and neurofibrillary clusters, leading to decreased brain acetylcholine levels in the brain. Another mechanism underlying the pathogenesis of AD is the abnormal phosphorylation of tau protein that accumulates at the level of neurofibrillary aggregates, and the areas most affected by this pathological process are usually the cholinergic neurons in cortical, subcortical, and hippocampal areas. These effects result in decreased cognitive function, brain atrophy, and neuronal death. Malnutrition and weight loss are the most frequent manifestations of AD, and these are also associated with greater cognitive decline. Several studies have confirmed that a balanced low-calorie diet and proper nutritional intake may be considered important factors in counteracting or slowing the progression of AD, whereas a high-fat or hypercholesterolemic diet predisposes to an increased risk of developing AD. Especially, fruits, vegetables, antioxidants, vitamins, polyunsaturated fatty acids, and micronutrients supplementation exert positive effects on aging-related changes in the brain due to their antioxidant, anti-inflammatory, and radical scavenging properties. The purpose of this review is to summarize some possible nutritional factors that may contribute to the progression or prevention of AD, understand the role that nutrition plays in the formation of Aβ plaques typical of this neurodegenerative disease, to identify some potential therapeutic strategies that may involve some natural compounds, in delaying the progression of the disease.
Collapse
Affiliation(s)
- Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
10
|
Touati I, Abdalla M, Ali NH, AlRuwaili R, Alruwaili M, Britel MR, Maurady A. Constituents of Stachys plants as potential dual inhibitors of AChE and NMDAR for the treatment of Alzheimer's disease: a molecular docking and dynamic simulation study. J Biomol Struct Dyn 2024; 42:2586-2602. [PMID: 37325873 DOI: 10.1080/07391102.2023.2217925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/17/2023] [Indexed: 06/17/2023]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative condition characterized by progressive cognitive impairment. While the formation of β-amyloid plaques and neurofibrillary tangles are the hallmarks features of AD, the downstream consequence of these byproducts is the disruption of the cholinergic and glutamatergic neural systems. Growing evidence for the existence of interplay between AChE and NMDARs has opened up new venues for the discovery of novel ligands endowed with anticholinesterase and NMDAR-blocking activity. Plants belonging to the stachys genus have been extensively explored for having a broad range of therapeutic applications and have been used traditionally for millennia, to treat various CNS-related disorders, which makes them the ideal source of novel therapeutics. The present study was designed to identify natural dual-target inhibitors for AChE and NMDAR deriving from stachys genus for their potential use in AD. Using molecular docking, drug-likeness-profiling, MD simulation and MMGBSA calculations, an in-house database of biomolecules pertaining to the stachys genus was shortlisted based on their binding affinity, overall stability and critical ADMET parameters. Pre- and post-MD analysis revealed that Isoorientin effectively binds to AChE and NMDAR with various vital interactions, exhibits a stable behavior with minor fluctuations relative to two clinical drugs used as positive control, and displays strong and consistent interactions that lasted for the majority of the simulation. Findings from this study have elucidated the rationale behind the traditional use of Stachys plants for the treatment of AD and could provide new impetus for the development of novel dual-target therapeutics for AD treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Iman Touati
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Naif H Ali
- Department of Internal Medicine, Medical College, Najran University, Najran, Saudi Arabia
| | - Raed AlRuwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed Reda Britel
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
- Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
11
|
Jin Y, Chen L, Yu Y, Hussain M, Zhong H. Bioactive Components in Fruit Interact with Gut Microbes. BIOLOGY 2023; 12:1333. [PMID: 37887043 PMCID: PMC10604038 DOI: 10.3390/biology12101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/30/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Fruits contain many bioactive compounds, including polysaccharides, oligosaccharides, polyphenols, anthocyanins, and flavonoids. All of these bioactives in fruit have potentially beneficial effects on gut microbiota and host health. On the one hand, fruit rich in active ingredients can act as substrates to interact with microorganisms and produce metabolites to regulate the gut microbiota. On the other hand, gut microbes could promote health effects in the host by balancing dysbiosis of gut microbiota. We have extensively analyzed significant information on bioactive components in fruits based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). Although the deep mechanism of action of bioactive components in fruits on gut microbiota needs further study, these results also provide supportive information on fruits as a source of dietary active ingredients to provide support for the adjunctive role of fruits in disease prevention and treatment.
Collapse
Affiliation(s)
- Yuanyuan Jin
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (Y.J.); (Y.Y.)
| | - Ling Chen
- Sanya Branch of Hainan Food and Drug Inspection Institute, Sanya 572011, China;
| | - Yufen Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (Y.J.); (Y.Y.)
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (Y.J.); (Y.Y.)
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (Y.J.); (Y.Y.)
| |
Collapse
|
12
|
Chauhan J, Sharma RK. Synbiotic formulations with microbial biofilm, animal derived (casein, collagen, chitosan) and plant derived (starch, cellulose, alginate) prebiotic polymers: A review. Int J Biol Macromol 2023; 248:125873. [PMID: 37473897 DOI: 10.1016/j.ijbiomac.2023.125873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/29/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
The need for a broader range of probiotics, prebiotics, and synbiotics to improve the activity and functioning of gut microbiota has led to the development of new nutraceuticals formulations. These techniques majorly depend on the type of the concerned food, inclusive factors i.e. application of biotic components, probiotics, and synbiotics along with the type of encapsulation involved. For improvisation of the oral transfer mode of synbiotics delivery within the intestine along with viability, efficacy, and stability co-encapsulation is required. The present study explores encapsulation materials, probiotics and prebiotics in the form of synbiotics. The emphasis was given to the selection and usage of probiotic delivery matrix or prebiotic polymers, which primarily include animal derived (gelatine, casein, collagen, chitosan) and plant derived (starch, cellulose, pectin, alginate) materials. Beside this, the role of microbial polymers and biofilms (exopolysaccharides, extracellular polymeric substances) has also been discussed in the formation of probiotic functional foods. In this instance, the microbial biofilm is also used as suitable polymeric compound for encapsulation providing stability, viability, and efficacy. Thus, the review highlights the utilization of diverse prebiotic polymers in synbiotic formulations, along with microbial biofilms, which hold great potential for enhancing gut microbiota activity and improving overall health.
Collapse
Affiliation(s)
- Juhi Chauhan
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Rakesh Kumar Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India.
| |
Collapse
|
13
|
Han X, Song Y, Huang R, Zhu M, Li M, Requena T, Wang H. Anti-Inflammatory and Gut Microbiota Modulation Potentials of Flavonoids Extracted from Passiflora foetida Fruits. Foods 2023; 12:2889. [PMID: 37569158 PMCID: PMC10417441 DOI: 10.3390/foods12152889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
This study aimed to explore the anti-inflammatory and gut microbiota modulation potentials of flavonoid-rich fraction (PFF) extracted from Passiflora foetida fruits. The results showed that PFF markedly reduced the production of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) in LPS-stimulated RAW 264.7 cells. Meanwhile, PFF treatment also effectively decreased the phosphorylation levels of MAPK, PI3K/Akt, and NF-κB signaling-pathway-related proteins (ERK, JNK, p38, Akt, and p65). Moreover, PFF had an impact on microbial composition and metabolites in a four-stage dynamic simulator of human gut microbiota (BFBL gut model). Specifically, PFF exhibited the growth-promoting ability of several beneficial bacteria, including Bifidobacterium, Enterococcus, Lactobacillus, and Roseburia, and short-chain fatty acid (SCFA) generation ability in gut microbiota. In addition, spectroscopic data revealed that PFF mainly contained five flavonoid compounds, which may be bioactive compounds with anti-inflammatory and gut microbiota modulation potentials. Therefore, PFF could be utilized as a natural anti-inflammatory agent or supplement to health products.
Collapse
Affiliation(s)
- Xiangpeng Han
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.H.); (Y.S.); (R.H.); (M.Z.); (M.L.)
- Guangdong Laboratory for Lingnan Mordern Agriculture, Guangzhou 510642, China
| | - Ya Song
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.H.); (Y.S.); (R.H.); (M.Z.); (M.L.)
- Guangdong Laboratory for Lingnan Mordern Agriculture, Guangzhou 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.H.); (Y.S.); (R.H.); (M.Z.); (M.L.)
- Guangdong Laboratory for Lingnan Mordern Agriculture, Guangzhou 510642, China
| | - Minqian Zhu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.H.); (Y.S.); (R.H.); (M.Z.); (M.L.)
- Guangdong Laboratory for Lingnan Mordern Agriculture, Guangzhou 510642, China
| | - Meiying Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.H.); (Y.S.); (R.H.); (M.Z.); (M.L.)
- Guangdong Laboratory for Lingnan Mordern Agriculture, Guangzhou 510642, China
| | - Teresa Requena
- Instituto de Investigación en Ciencias de la Alimentación CIAL (CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.H.); (Y.S.); (R.H.); (M.Z.); (M.L.)
- Guangdong Laboratory for Lingnan Mordern Agriculture, Guangzhou 510642, China
| |
Collapse
|
14
|
Thongphichai W, Pongkittiphan V, Laorpaksa A, Wiwatcharakornkul W, Sukrong S. Antimicrobial Activity against Foodborne Pathogens and Antioxidant Activity of Plant Leaves Traditionally Used as Food Packaging. Foods 2023; 12:2409. [PMID: 37372620 DOI: 10.3390/foods12122409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
In accordance with Thai wisdom, indigenous plant leaves have been used as food packaging to preserve freshness. Many studies have demonstrated that both antioxidant and antimicrobial activities contribute to protecting food from spoilage. Hence, the ethanolic extracts of leaves from selected plants traditionally used as food packaging, including Nelumbo nucifera (1), Cocos nucifera (2), Nypa fruticans (3), Nepenthes mirabilis (4), Dendrocalamus asper (5), Cephalostachyum pergracile (6), Musa balbisiana (7), and Piper sarmentosum (8), were investigated to determine whether they have antioxidant and antimicrobial activities against spoilage microorganisms and foodborne pathogens that might be beneficial for food quality. Extracts 1-4 exhibited high phenolic content at 82.18-115.15 mg GAE/g and high antioxidant capacity on DPPH, FRAP and SRSA assay at 14.71-34.28 μg/mL, 342.92-551.38 μmol Fe2+/g, and 11.19-38.97 μg/mL, respectively, while leaf extracts 5-8 showed lower phenolic content at 34.43-50.08 mg GAE/g and lower antioxidant capacity on DPPH, FRAP, and SRSA at 46.70-142.16 μg/mL, 54.57-191.78 μmol Fe2+/g, and 69.05->120 μg/mL, respectively. Extracts 1-4 possessed antimicrobial activities against food-relevant bacteria, including Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, and Escherichia coli. Only N. mirabilis extract (4) showed antimicrobial activities against Salmonella enterica subsp. enterica serovar Abony and Candida albicans. Extracts 5-8 showed slight antimicrobial activities against B. cereus and E. coli. As the growth and activity of microorganisms are the main cause of food spoilage, N. fruticans (3) was selected for bioassay-guided isolation to obtain 3-O-caffeoyl shikimic acid (I), isoorientin (II) and isovitexin (III), which are responsible for its antimicrobial activity against foodborne pathogens. N. fruticans was identified as a new source of natural antimicrobial compounds I-III, among which 3-O-caffeoyl shikimic acid was proven to show antimicrobial activity for the first time. These findings support the use of leaves for wrapping food and protecting food against oxidation and foodborne pathogens through their antioxidant and antimicrobial activities, respectively. Thus, leaves could be used as a natural packaging material and natural preservative.
Collapse
Affiliation(s)
- Wisuwat Thongphichai
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok 10330, Thailand
| | - Veerachai Pongkittiphan
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok 10330, Thailand
| | - Areerat Laorpaksa
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok 10330, Thailand
| | - Worakorn Wiwatcharakornkul
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suchada Sukrong
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
15
|
Cui T, Lan Y, Lu Y, Yu F, Lin S, Fu Y, Qiu J, Niu G. Isoorientin ameliorates H 2O 2-induced apoptosis and oxidative stress in chondrocytes by regulating MAPK and PI3K/Akt pathways. Aging (Albany NY) 2023; 15:204768. [PMID: 37277114 PMCID: PMC10292868 DOI: 10.18632/aging.204768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/18/2023] [Indexed: 06/07/2023]
Abstract
Osteoarthritis (OA) is a chronic and complicated degenerative disease for which there is currently no effective treatment. Isoorientin (ISO) is a natural plant extract that has antioxidant activity and could be used to treat OA. However, due to a lack of research, it has not been widely used. In this study, we investigated the protective effects and molecular mechanisms of ISO on H2O2-induced chondrocytes, a widely used cell model for OA. Based on RNA-seq and bioinformatics, we discovered that ISO significantly increased the activity of chondrocytes induced by H2O2, which was associated with apoptosis and oxidative stress. Furthermore, the combination of ISO and H2O2 significantly reduced apoptosis and restored mitochondrial membrane potential (MMP), which may be achieved by inhibiting apoptosis and mitogen-activated protein kinase (MAPK) signaling pathways. Moreover, ISO increased superoxide dismutase (SOD), heme oxygenase 1 (HO-1) and quinone oxidoreductase 1 (NQO-1) and reduced malondialdehyde (MDA) levels. Finally, ISO inhibited H2O2-induced intracellular reactive oxygen species (ROS) in chondrocytes by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) and phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signaling pathways. This study establishes a theoretical framework for ISO's ability to inhibit OA in vitro models.
Collapse
Affiliation(s)
- Tiehan Cui
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yun Lan
- Department of Stomatology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing 100039, China
| | - Yuying Lu
- Department of Stomatology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing 100039, China
| | - Fei Yu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Suai Lin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yizhe Fu
- Department of Stomatology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing 100039, China
| | - Jiaxuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Guangliang Niu
- Department of Stomatology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing 100039, China
| |
Collapse
|
16
|
Induction, Flavonoids Contents, and Bioactivities Analysis of Hairy Roots and True Roots of Tetrastigma hemsleyanum Diels et Gilg. Molecules 2023; 28:molecules28062686. [PMID: 36985658 PMCID: PMC10053805 DOI: 10.3390/molecules28062686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
The flavonoids in Tetrastigma hemsleyanum Diels et Gilg (T. hemsleyanum) have high medicinal value. However, because of slow growth and harsh ecological environments, T. hemsleyanum is currently an endangered species. In light of this, we present a detailed hairy root induction procedure as a promising alternative to true roots with medicinal value. The percentage of explants induced by Agrobacterium rhizogenes (A. rhizogenes) to produce hairy roots out of the total number of explants infected (induction rate 1) was 95.83 ± 7.22%, and the proportion of hairy roots that contained Rol B fragments among all the hairy roots with or without Rol B fragments (positive rate) was 96.57 ± 1.72%. The transformation was further confirmed by the expression of the GUS protein. A high-productive hairy root line was screened for the comparative profiling of six flavonoids with true roots using high-performance liquid chromatography (HPLC). The contents of (+)-catechin, (−)-epicatechin, neochlorogenic acid, luteolin-6-C-glucoside, and orientin were 692.63 ± 127.24, 163.34 ± 31.86, 45.95 ± 3.46, 209.68 ± 6.03, and 56.82 ± 4.75 μg/g dry weight (DW) of 30-day-old hairy roots, respectively, which were higher than those of 3-year-old true roots. Hairy roots have stronger antioxidant activity than true roots. Overall, the hairy roots of T. hemsleyanum could serve as promising alternative sources for the production of flavonoids with medicinal uses.
Collapse
|
17
|
Korczak M, Pilecki M, Granica S, Gorczynska A, Pawłowska KA, Piwowarski JP. Phytotherapy of mood disorders in the light of microbiota-gut-brain axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154642. [PMID: 36641978 DOI: 10.1016/j.phymed.2023.154642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 11/22/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Clinical research in natural product-based psychopharmacology has revealed a variety of promising herbal medicines that may provide benefit in the treatment of mild mood disorders, however failed to unambiguously indicate pharmacologically active constituents. The emerging role of the microbiota-gut-brain axis opens new possibilities in the search for effective methods of treatment and prevention of mood disorders. PURPOSE Considering the clinically proven effectiveness juxtaposed with inconsistencies regarding the indication of active principles for many medicinal plants applied in the treatment of anxiety and depression, the aim of the review is to look at their therapeutic properties from the perspective of the microbiota-gut-brain axis. METHOD A literature-based survey was performed using Scopus, Pubmed, and Google Scholar databases. The current state of knowledge regarding Hypericum perforatum, Valeriana officinalis, Piper methysticum, Passiflora incarnata, Humulus lupulus, Melissa officinalis, Lavandula officinalis, and Rhodiola rosea in terms of their antimicrobial activity, bioavailability, clinical effectiveness in depression/anxiety and gut microbiota - natural products interaction was summarized and analyzed. RESULTS Recent studies have provided direct and indirect evidence that herbal extracts and isolated compounds are potent modulators of gut microbiota structure. Additionally, some of the formed postbiotic metabolites exert positive effects and ameliorate depression-related behaviors in animal models of mood disorders. The review underlines the gap in research on natural products - gut microbiota interaction in the context of mood disorders. CONCLUSION Modification of microbiota-gut-brain axis by natural products is a plausible explanation of their therapeutic properties. Future studies evaluating the effectiveness of herbal medicine and isolated compounds in treating mild mood disorders should consider the bidirectional interplay between phytoconstituents and the gut microbiota community.
Collapse
Affiliation(s)
- Maciej Korczak
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Pilecki
- Department of Psychiatry, Collegium Medicum, Jagiellonian University, Cracow, Poland
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Gorczynska
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Karolina A Pawłowska
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Jakub P Piwowarski
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
18
|
Lan Y, Ma Z, Chang L, Peng J, Zhang M, Sun Q, Qiao R, Hou X, Ding X, Zhang Q, Peng Q, Dong J, Liu X. Sea buckthorn polysaccharide ameliorates high-fat diet induced mice neuroinflammation and synaptic dysfunction via regulating gut dysbiosis. Int J Biol Macromol 2023; 236:123797. [PMID: 36828095 DOI: 10.1016/j.ijbiomac.2023.123797] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/04/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Currently, definitive treatment for neurodegenerative diseases without side effects has not been developed, therefore, exploring natural polysaccharides with neuroprotection to prevent the occurrences and progressions of cognitive dysfunctions has important significance. The purpose of this study was to investigate the effects of sea buckthorn polysaccharide (SBP) on high-fat diet (HFD) induced mice cognitive dysfunctions and attempted to explore its biological mechanisms. Behavior tests (Y-maze and Barnes maze) suggested that SBP effectively alleviated the HFD induced behavioral disorders, which was in accordance with the inhibition of neuroinflammation via suppressing the NF-κB pathway and amelioration of synaptic dysfunction via upregulating CREB/BDNF/TrkB pathway in mice brain. Furthermore, SBP alleviated the gut barrier impairment, inflammatory responses, and lipopolysaccharide invasion into blood circulation via regulating the gut microbiome structure, especially correcting the reduction of Ileibacterium and increase of Lactobacillus, Dubosiella, Olsenella, Helicobacter, and Ruminiclostridium_9 in HFD mice. Therefore, the reversal effects of SBP on gut dysbiosis might be the important reason for its positive effects on cognitive dysfunction induced by HFD in mice.
Collapse
Affiliation(s)
- Ying Lan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhiyuan Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Lili Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jing Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengqi Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qingyang Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruixue Qiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinglin Hou
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuechao Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiang Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Puredia Limited, Xining, China
| | - Juane Dong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
19
|
Meng X, Wu H, Xiong J, Li Y, Chen L, Gu Q, Li P. Metabolism of eriocitrin in the gut and its regulation on gut microbiota in mice. Front Microbiol 2023; 13:1111200. [PMID: 36713175 PMCID: PMC9877458 DOI: 10.3389/fmicb.2022.1111200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Eriocitrin, found in lemon fruit, has shown a wide range of biological properties. Herein, we investigated the intestinal metabolic profile of eriocitrin in colon, and the regulation of dietary intervention of eriocitrin on gut microbiota. Methods We performed ultra performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS), 16S rDNA gene sequencing and gas chromatography-mass (GC-MS) on colon contents from the eriocitrin group (n=6), and compared them with control participants (n=6). Results A total of 136 flavonoids were found in colon contents, including eriocitrin and its six metabolites (eriodictyol, homoeriodictyol, hesperetin, eriodictyol-3'-O-glucoside, hesperetin-7-O-glucoside and eriodictyol-7-O-(6″-O-galloyl) glucoside). Moreover, dietary intervention of eriocitrin significantly alters the beta diversity of the gut microbiota, the probiotics such as Lachnospiraceae_UCG_006 were significantly enriched, and the production of butyrate, valerate and hexanoate in the colon pool of short-chain fatty acids were significant increased. The spearman's association analysis performed some intestinal bacteria may be involved in the metabolism of eriocitrin. Discussion Collectively, our results preliminarily suggest the metabolism of eriocitrin in the gut, demonstrating alterations of eriocitrin in gut microbiota, which warrants further investigation to determine its potential use in food and biomedical applications.
Collapse
|
20
|
Unique roles in health promotion of dietary flavonoids through gut microbiota regulation: Current understanding and future perspectives. Food Chem 2023; 399:133959. [DOI: 10.1016/j.foodchem.2022.133959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 11/21/2022]
|
21
|
Wang W, Li X, Shi F, Zhang Z, Lv H. Study on the preparation of EGCG-γ-Cyclodextrin inclusion complex and its drug-excipient combined therapeutic effects on the treatment of DSS-induced acute ulcerative colitis in mice. Int J Pharm 2022; 630:122419. [PMID: 36423710 DOI: 10.1016/j.ijpharm.2022.122419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
In this study, γ-cyclodextrins (γ-CD) and epigallocatechin-3-gallate (EGCG) were designed to form an inclusion complex (EGCG-γ-IC) for ulcerative colitis (UC) treatment. The drug-excipient combined therapeutic potential of γ-CD and EGCG was verified, when stability and compliance were also achieved. EGCG-γ-IC effectively inhibited the secretions of NO, TNF-α, and IL-6 and the intracellular ROS in RAW264.7 cells. The effectiveness of EGCG-γ-IC in treating DSS-induced acute UC in mice was observed including improving the histological conditions of the colon, reducing the levels of IL-1β, IL-6, and TNF-α in serum, and restoring MPO, GSH, and sIgA levels in intestinal tissues. Moreover, EGCG-γ-IC had a more prominent effect on regulating bacterial dysbiosis caused by DSS than EGCG and γ-CD alone. Therefore, EGCG-γ-IC designed here displayed UC treating capacity with safety in the long-term application and promised an industrial production potential due to its excellent storage stability.
Collapse
Affiliation(s)
- Weiqin Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 211198 Nanjing, China.
| | - Xuefeng Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 211198 Nanjing, China.
| | - Fanli Shi
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 211198 Nanjing, China.
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China.
| | - Huixia Lv
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 211198 Nanjing, China.
| |
Collapse
|
22
|
Li J, Ma Y, Li X, Wang Y, Huo Z, Lin Y, Li J, Yang H, Zhang Z, Yang P, Zhang C. Fermented Astragalus and its metabolites regulate inflammatory status and gut microbiota to repair intestinal barrier damage in dextran sulfate sodium-induced ulcerative colitis. Front Nutr 2022; 9:1035912. [PMID: 36451737 PMCID: PMC9702530 DOI: 10.3389/fnut.2022.1035912] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/27/2022] [Indexed: 09/20/2023] Open
Abstract
Fermentation represents an efficient biotechnological approach to increase the nutritional and functional potential of traditional Chinese medicine. In this study, Lactobacillus plantarum was used to ferment traditional Chinese medicine Astragalus, the differential metabolites in the fermented Astragalus (FA) were identified by ultra-performance liquid chromatography-Q Exactive hybrid quadrupole-Orbitrap mass spectrometry (UPLC-Q-Exactive-MS), and the ameliorating effect of FA on dextran sulfate sodium (DSS)-induced colitis in mice were further explored. The results showed that 11 differential metabolites such as raffinose, progesterone and uridine were identified in FA, which may help improve the ability of FA to alleviate colitis. Prophylactic FA supplementation effectively improved DAI score, colon length and histopathological lesion in DSS-treated mice. The abnormal activation of the intestinal immune barrier in mice was controlled after FA supplementation, the contents of myeloperoxidase (MPO) and IgE were reduced and the contents of IgA were increased. The intestinal pro-inflammatory factors TNF-α, IL-1β, IL-6, and IL-17 were down-regulated and the anti-inflammatory factors IL-10 and TGF-β were up-regulated, suggesting that FA can intervene in inflammatory status by regulating the balance of Th1/Th2/Th17/Treg related cytokines. In addition, FA supplementation modified the structure of the intestinal microbiota and enriched the abundance of Akkermansia and Alistipes, which were positively associated with the production of short-chain fatty acids. These microbes and their metabolites induced by FA also be involved in maintaining the intestinal mucosal barrier integrity by affecting mucosal immunity. We observed that intestinal tight junction protein and mucous secreting protein ZO-1, occludin, and MUC2 genes expression were more pronounced in mice supplemented with FA compared to unfermented Astragalus, along with modulation of intestinal epithelial cells (IECs) apoptosis, verifying the intestinal mucosal barrier repaired by FA. This study is the first to suggest that FA as a potential modulator can more effectively regulate the inflammatory status and gut microbiota to repair the intestinal barrier damage caused by colitis.
Collapse
Affiliation(s)
- Junxiang Li
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yingchun Ma
- Gansu Institute for Drug Control, Lanzhou, China
| | - Xiaofeng Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yafei Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zeqi Huo
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Yang Lin
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Jiaru Li
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hui Yang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhiming Zhang
- Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Pingrong Yang
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Gansu Institute for Drug Control, Lanzhou, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| |
Collapse
|
23
|
Aspalathus linearis (Rooibos) and Agmatine May Act Synergistically to Beneficially Modulate Intestinal Tight Junction Integrity and Inflammatory Profile. Pharmaceuticals (Basel) 2022; 15:ph15091097. [PMID: 36145318 PMCID: PMC9501288 DOI: 10.3390/ph15091097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022] Open
Abstract
In order to promote gastrointestinal health, significant increases in the prevalence of gastrointestinal disorders should be paralleled by similar surges in therapeutics research. Nutraceutical interventions may play a significant role in patient management. The current study aimed to determine the potential of Aspalathus linearis (rooibos) to prevent gastrointestinal dysregulation resulting from high-dose trace-amine (TA) exposure. Considering the substantial female bias in functional gastrointestinal disorders, and the suggested phytoestrogenicity of rooibos, the study design allowed for a comparison between the effects of an ethanol extract of green rooibos and 17β-estradiol (E2). High levels of ρ-tyramine (TYR) and agmatine (AGM), but not β-phenethylamine (PEA) or tryptamine (TRP), resulted in prostaglandin E2 (PGE2) hypersecretion, increased tight-junction protein (TJP; occludin and ZO-1) secretion and (dissimilarly) disrupted the TJP cellular distribution profile. Modulating benefits of rooibos and E2 were TA-specific. Rooibos pre-treatment generally reduced IL-8 secretion across all TA conditions and prevented PGE2 hypersecretion after exposure to both TYR and AGM, but was only able to normalise TJP levels and the distribution profile in AGM-exposed cells. In contrast, E2 pre-treatment prevented only TYR-associated PGE2 hypersecretion and TJP dysregulation. Together, the data suggest that the antioxidant and anti-inflammatory effects of rooibos, rather than phytoestrogenicity, affect benefits illustrated for rooibos.
Collapse
|
24
|
Yu Y, Pei F, Li Z. Orientin and vitexin attenuate lipopolysaccharide-induced inflammatory responses in RAW264.7 cells: a molecular docking study, biochemical characterization, and mechanism analysis. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Abstract
Flavonoids are natural polyphenol secondary metabolites that are widely produced in planta. Flavonoids are ubiquities in human dietary intake and exhibit a myriad of health benefits. Flavonoids-induced biological activities are strongly influenced by their in situ availability in the human GI tract, as well as the levels of which are modulated by interaction with the gut bacteria. As such, assessing flavonoids–microbiome interactions is considered a key to understand their physiological activities. Here, we review the interaction between the various classes of dietary flavonoids (flavonols, flavones, flavanones, isoflavones, flavan-3-ols and anthocyanins) and gut microbiota. We aim to provide a holistic overview of the nature and identity of flavonoids on diet and highlight how flavonoids chemical structure, metabolism and impact on humans and their microbiomes are interconnected. Emphasis is placed on how flavonoids and their biotransformation products affect gut microbiota population, influence gut homoeostasis and induce measurable physiological changes and biological benefits.
Collapse
|
26
|
Xie RX, Chen JL, Zhou LQ, Fu XJ, Yuan CM, Hu ZX, Huang LJ, Hao XJ, Gu W. Oreocharioside A-G, new acylated C-glycosylflavones from Oreocharis auricula (Gesneriaceae). Fitoterapia 2022; 158:105158. [PMID: 35176424 DOI: 10.1016/j.fitote.2022.105158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/04/2022]
Abstract
Seven new acylated C-glycosylflavones, oreocharioside A-G, together with two known compounds were isolated from the whole plant of Oreocharis auricula. Their structures were characterized by the comprehensive analysis of their NMR, IR, UV, CD spectra and HRESIMS data. All the new compounds were evaluated for the antioxidant and anti-inflammatory activities. The results showed that compounds 1 and 2 had significant DPPH and ABTS radical scavenging activities, with the IC50 values of 0.32-3.20 μg/mL. Compounds 2 and 3 exhibited the higher potency among all the new compounds in reducing TNF-α production.
Collapse
Affiliation(s)
- Rui-Xuan Xie
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; School of pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China
| | - Jun-Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Li-Qiang Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Xian-Jie Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Chun-Mao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Zhan-Xing Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Lie-Jun Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Xiao-Jiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Wei Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China.
| |
Collapse
|
27
|
Xie LK, Xu XJ, Wu X, Wang MJ, Gao CF, Wang DM, Ren SM, Pan YN, Liu XQ. Capsella bursa-pastoris (L.) Medic. extract alleviate cataract development by regulating the mitochondrial apoptotic pathway of the lens epithelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114783. [PMID: 34715300 DOI: 10.1016/j.jep.2021.114783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Capsella bursa-pastoris (L.) Medic. (CBP) is a cruciferous plant valuable in reducing fever, improving eyesight and calming the liver. This herb was recorded in the Compendium of Materia Medica for cataract treatment. AIM OF THE STUDY To determine the effects and mechanism of CBP on cataract prevention and treatment using a selenite cataract model. MATERIALS AND METHODS The main compounds in CBP extract were analyzed by UPLC, 1H-NMR and 13C-NMR spectroscopic techniques. Flavonoids formed a significant proportion of its compounds, thus necessitating an evaluation of their inhibitory effects on the development of cataract using a selenite cataract model. The protective effects of CBP flavonoids (CBPF) against oxidative damage and the modulation of mitochondrial apoptotic pathway were subsequently verified on H2O2-treated SRA01/04 lens epithelial cells. RESULTS CBPF significantly alleviated the development of cataract by decreasing the MDA level and increasing the GSH-Px and SOD levels in the lens. It also inhibited H2O2-induced apoptosis in SRA01/04 cells, increased the expression of Bcl-2 protein and decreased the expressions of Caspase-3 and Bax proteins. CONCLUSION CBPF exerts a significant preventive effect on cataract development by regulating the mitochondrial apoptotic pathway of the lens epithelial cells. It is thus a potent traditional Chinese medicine (TCM) whose application should be further developed for the clinical treatment of cataract.
Collapse
Affiliation(s)
- Liang-Kun Xie
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Xia-Jing Xu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Xiao Wu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Meng-Jiao Wang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Cheng-Feng Gao
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Dong-Mei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Shu-Meng Ren
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Ying-Ni Pan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Xiao-Qiu Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
28
|
Wang X, Liu F, Cui Y, Yin Y, Li S, Li X. Apple Polyphenols Extracts Ameliorate High Carbohydrate Diet-Induced Body Weight Gain by Regulating the Gut Microbiota and Appetite. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:196-210. [PMID: 34935369 DOI: 10.1021/acs.jafc.1c07258] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To investigate the potential contribution of appetite regulation and modulation of gut microbiota to the ameliorated effects of apple polyphenols extracts (APE) on high carbohydrate diet (HCD)-induced body weight (BW) gain, we conducted this study. One hundred C57BL/6 male mice were randomly divided into seven groups and fed with the following diets for 12 weeks: chow diet (CON), HCD (HCD), high fructose and sucrose diet (HSCD), and HCD and HSCD with 125 or 500 mg/kg·day APE gavage. Compared to the CON group, the BW of mice in the HCD and HSCD groups increased significantly. HSCD induced a more significant weight gain in the white adipose tissue (WAT) and liver than HCD, accompanied by severe impairment of glucose tolerance and a larger diameter of adipocytes. On the other hand, by decreasing food intake, APE significantly reduced BW via mechanisms, including decreased weights of the WAT and liver, amelioration of glucose tolerance, and amplification of WAT browning by upregulating the mRNA levels of Ucp-1 and Cidea. Moreover, APE promoted transcription and secretion of GLP-1, with the increased expression of gut anorexigenic hormone peptides Ffar 2/3 in the colon and anorectic neuropeptide gene expression of Pomc, Cart, and Mc4r in the hypothalamus, causing increased satiety. Additionally, APE significantly increased Verrucomicrobia colonization and the relative abundance of Akkermansia. APE potentially ameliorates high simple carbohydrate diet-induced body weight gain by mechanisms related to gut microbiota regulation and appetite inhibition.
Collapse
Affiliation(s)
- Xinjing Wang
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Fang Liu
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Yuan Cui
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Yan Yin
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Shilan Li
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Xinli Li
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
29
|
Zhang Z, Tan X, Sun X, Wei J, Li QX, Wu Z. Isoorientin Affects Markers of Alzheimer's Disease via Effects on the Oral and Gut Microbiota in APP/PS1 Mice. J Nutr 2022; 152:140-152. [PMID: 34636875 DOI: 10.1093/jn/nxab328] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 09/10/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND There is growing evidence of strong associations between the pathogenesis of Alzheimer's disease (AD) and dysbiotic oral and gut microbiota. Recent studies demonstrated that isoorientin (ISO) is anti-inflammatory and alleviates markers of AD, which were hypothesized to be mediated by the oral and gut microbiota. OBJECTIVES We studied the effects of oral administration of ISO on AD-related markers and the oral and gut microbiota in mice. METHODS Eight-month-old amyloid precursor protein/presenilin-1 (AP) transgenic male mice were randomly allocated to 3 groups of 15 mice each: vehicle (AP) alone or with a low dose of ISO (AP + ISO-L; 25 mg/kg) or a high dose of ISO (AP + ISO-H; 50 mg/kg). Age-matched wild-type (WT) C57BL/6 male littermates were used as controls. The 4 groups were treated intragastrically with ISO or sterilized ultrapure water for 2 months. AD-related markers in the brain, serum, colon, and liver were analyzed with immunohistochemical and histochemical staining, Western blotting, and ELISA. Oral and gut microbiotas were analyzed using 16S ribosomal RNA gene sequencing. RESULTS The high-dose ISO treatment significantly decreased amyloid beta 42-positive deposition by 38.1% and 45.2% in the cortex and hippocampus, respectively, of AP mice (P < 0.05). Compared with the AP group, both ISO treatments reduced brain phospho-Tau, phosphor-p65, phosphor-inhibitor of NF-κB, and brain and serum LPS and TNF-α by 17.9%-72.5% and increased brain and serum IL-4 and IL-10 by 130%-210% in the AP + ISO-L and AP + ISO-H groups (P < 0.05). Abundances of 26, 25, and 23 microbial taxa in oral, fecal and cecal samples, respectively, were increased in both the AP + ISO-L and AP + ISO-H groups relative to the AP group [linear discriminant analysis (LDA) >3.0; P < 0.05]. Gram-negative bacteria, Alteromonas, Campylobacterales, and uncultured Bacteroidales bacterium were positively correlated (rho = 0.28-0.59; P < 0.05) with the LPS levels and responses of inflammatory cytokines. CONCLUSIONS The microbiota-gut-brain axis is a potential mechanism by which ISO reduces AD-related markers in AP mice.
Collapse
Affiliation(s)
- Zhongbao Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaoqin Tan
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaorong Sun
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jianhua Wei
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Zhongyi Wu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
30
|
Muller CJF, Joubert E, Chellan N, Miura Y, Yagasaki K. New Insights into the Efficacy of Aspalathin and Other Related Phytochemicals in Type 2 Diabetes-A Review. Int J Mol Sci 2021; 23:ijms23010356. [PMID: 35008779 PMCID: PMC8745648 DOI: 10.3390/ijms23010356] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
In the pursuit of bioactive phytochemicals as a therapeutic strategy to manage metabolic risk factors for type 2 diabetes (T2D), aspalathin, C-glucosyl dihydrochalcone from rooibos (Aspalathus linearis), has received much attention, along with its C-glucosyl flavone derivatives and phlorizin, the apple O-glucosyl dihydrochalcone well-known for its antidiabetic properties. We provided context for dietary exposure by highlighting dietary sources, compound stability during processing, bioavailability and microbial biotransformation. The review covered the role of these compounds in attenuating insulin resistance and enhancing glucose metabolism, alleviating gut dysbiosis and associated oxidative stress and inflammation, and hyperuricemia associated with T2D, focusing largely on the literature of the past 5 years. A key focus of this review was on emerging targets in the management of T2D, as highlighted in the recent literature, including enhancing of the insulin receptor and insulin receptor substrate 1 signaling via protein tyrosine phosphatase inhibition, increasing glycolysis with suppression of gluconeogenesis by sirtuin modulation, and reducing renal glucose reabsorption via sodium-glucose co-transporter 2. We conclude that biotransformation in the gut is most likely responsible for enhancing therapeutic effects observed for the C-glycosyl parent compounds, including aspalathin, and that these compounds and their derivatives have the potential to regulate multiple factors associated with the development and progression of T2D.
Collapse
Affiliation(s)
- Christo J. F. Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (MRC), Tygerberg 7505, South Africa; (C.J.F.M.); (N.C.)
- Centre for Cardiometabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Elizabeth Joubert
- Plant Bioactives Group, Post-Harvest & Agro-Processing Technologies, Agricultural Research Council, Infruitec-Nietvoorbij, Stellenbosch 7599, South Africa;
- Department of Food Science, Stellenbosch University, Matieland 7602, South Africa
| | - Nireshni Chellan
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (MRC), Tygerberg 7505, South Africa; (C.J.F.M.); (N.C.)
- Centre for Cardiometabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Yutaka Miura
- Division of Applied Biological Chemistry, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| | - Kazumi Yagasaki
- Division of Applied Biological Chemistry, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
- Correspondence:
| |
Collapse
|
31
|
Wu T, Wang X, Xiong H, Deng Z, Peng X, Xiao L, Jiang L, Sun Y. Bioactives and their metabolites from Tetrastigma hemsleyanum leaves ameliorate DSS-induced colitis via protecting the intestinal barrier, mitigating oxidative stress and regulating the gut microbiota. Food Funct 2021; 12:11760-11776. [PMID: 34747421 DOI: 10.1039/d1fo02588k] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tetrastigma hemsleyanum, a precious edible and medicinal plant in China, has attracted extensive research attention in recent years due to its high traditional value for the treatment of various diseases. In vitro digestion and colonic fermentation models were established to evaluate the stability of Tetrastigma hemsleyanum leaves (THL) phenolics by the HPLC-QqQ-MS/MS method. The total phenolic and flavonoid contents were degraded during digestion and fermentation. 3-caffeoylquinic acid, 5-caffeoylquinic acid, orientin and (iso)vitexin were metabolized by digestive enzymes and the gut microbiota, and absorbed in the form of glycosides and smaller phenolic acids for hepatic metabolism. The protective effects of THL on dextran sodium sulfate (DSS)-induced colitis in mice and potential mechanisms were explored. The results showed that THL supplementation increased the body weight and colon length, and the expression levels of tight junction proteins including occludin, claudin-1 and ZO-1 were up-regulated by THL. The secretions of pro-inflammatory cytokines containing IL-1β, IL-6 and TNF-α were significantly suppressed, whereas the content of anti-inflammatory cytokine IL-10 was promoted in the THL treated group. In addition, THL treatment activated the nuclear transfer of Nrf2, improved the expression of SOD, CAT, HO-1, NQO1 and GCLC, and decreased the content of MPO and MDA. It is worth noting that THL treatment significantly increased the content of short-chain fatty acids (SCFAs), increased the abundance of Ruminococcaceae, and decreased the abundance of Verrucomicrobia which is positively correlated with pro-inflammatory cytokines. These results indicated that THL effectively inhibited DSS-induced colitis by maintaining the intestinal epithelial barrier, mitigated oxidative stress through regulating the Keap1/Nrf2 signaling pathway and regulated the imbalance of the intestinal flora structure.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Xiaoya Wang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Xin Peng
- Ningbo Research Institute of Zhejiang University, Ningbo 315100, Zhejiang, China
| | - Lihua Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Li Jiang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| |
Collapse
|
32
|
Liu X, Sun R, Li Z, Xiao R, Lv P, Sun X, Olson MA, Gong Y. Luteolin alleviates non-alcoholic fatty liver disease in rats via restoration of intestinal mucosal barrier damage and microbiota imbalance involving in gut-liver axis. Arch Biochem Biophys 2021; 711:109019. [PMID: 34478730 DOI: 10.1016/j.abb.2021.109019] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is demonstrated to be closely related to the disorder of gut microbiota and the intestinal mucosal barrier. Luteolin is a natural flavonoid with various activities. We aimed to investigate whether Luteolin can alleviate NAFLD and its possible mechanism involving the gut-liver axis. A rat NAFLD model was established by feeding a high-fat diet (HFD), and Luteolin was administered intragastrically. The effects of Luteolin on liver biochemical parameters, intestinal histopathology and integrity, gut microbiota, lipopolysaccharides (LPS), inflammatory cytokines, and the Toll-like receptor 4 (TLR4) signaling pathway were evaluated. We found that Luteolin restored the expression of the tight junction proteins in the intestine and ameliorated the increase permeability of the intestinal mucosa to Fluorescein isothiocyanate-dextran (FD4) caused by a high-fat diet, thus enhancing the function of the intestinal barrier. In addition, Luteolin inhibited the TLR4 signaling pathway in the liver, thereby reducing the secretion of pro-inflammatory factors and alleviating NAFLD. 16S rRNA gene sequencing revealed that Luteolin intervention significantly altered the composition of the gut microbiota in NAFLD rats and increased the richness of gut microbiota. Luteolin alleviates NAFLD in rats via restoration and repair of the damaged intestinal mucosal barrier and microbiota imbalance.
Collapse
Affiliation(s)
- Xia Liu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Runzhou Sun
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Zhaozhen Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Ruixin Xiao
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Pengfei Lv
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Xiangrong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mark A Olson
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China; Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China.
| |
Collapse
|
33
|
Shen CY, Hao YF, Hao ZX, Liu Q, Zhang L, Jiang CP, Jiang JG. Flavonoids from Rosa davurica Pall. fruits prevent high-fat diet-induced obesity and liver injury via modulation of the gut microbiota in mice. Food Funct 2021; 12:10097-10106. [PMID: 34522931 DOI: 10.1039/d1fo01373d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rosa davurica Pall. (RDP) fruits are popularly consumed as beverages and healthy food in China because of their various beneficial activities. In particular, flavonoids are one of the major active ingredients of RDP fruits with predominant pharmacological effects. However, the anti-obesity activities of flavonoids from RDP fruits and their regulation effect on the gut microbiota have not been determined. In the present study, the flavonoid-rich extracts (RDPF) were isolated from RDP fruits and their anti-obesity effects were investigated using a high-fat diet (HFD)-induced obese mouse model. The results showed that RDPF intervention significantly inhibited the body weight, liver weight, kidney weight and epididymal adipose tissue weight of HFD-fed mice without affecting the calorie intake. Plasma lipid levels were also significantly lowered by RDPF treatment. Histological examination showed that RDPF supplementation partially recovered HFD-induced hepatic steatosis in the liver. RDPF also prevented oxidative injury of the liver, as evidenced by the altered superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) levels. The expression levels of CCAAT/enhancer binding protein α (C/EBPα), sterol regulatory element binding protein-1C (SREBP-1C), fatty acid synthase (FAS), acyl-coenzyme A oxidase 1 (ACOX1), peroxisome proliferator-activated receptor (PPARα) and CAT mRNA in the livers of mice were also regulated by RDPF administration. 16S rRNA gene sequence data further indicated that RDPF addition increased the microbial diversity and reshaped the community composition. Intriguingly, RDPF intervention did not exhibit inhibitory tendency toward the ratio of Firmicutes to Bacteroidetes, but markedly decreased the relative abundance of Erysipelotrichaceae. This study provided novel insights into the application of RDPF in the food industry.
Collapse
Affiliation(s)
- Chun-Yan Shen
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China. .,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yun-Fang Hao
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| | - Zhan-Xi Hao
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Lu Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cui-Ping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
34
|
Li C, Wang N, Zheng G, Yang L. Oral Administration of Resveratrol-Selenium-Peptide Nanocomposites Alleviates Alzheimer's Disease-like Pathogenesis by Inhibiting Aβ Aggregation and Regulating Gut Microbiota. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46406-46420. [PMID: 34569225 DOI: 10.1021/acsami.1c14818] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease associated with amyloid-β (Aβ) deposition, leading to neurotoxicity (oxidative stress and neuroinflammation) and gut microbiota imbalance. Resveratrol (Res) has neuroprotective properties, but its bioavailability in vivo is very low. Herein, we developed a small Res-selenium-peptide nanocomposite to enable the application of Res for eliminating Aβ aggregate-induced neurotoxicity and mitigating gut microbiota disorder in aluminum chloride (AlCl3) and d-galactose(d-gal)-induced AD model mice. Res functional selenium nanoparticles (Res@SeNPs) (8 ± 0.34 nm) were prepared first, after which the surface of Res@SeNPs was decorated with a blood-brain barrier transport peptide (TGN peptide) to generate Res-selenium-peptide nanocomposites (TGN-Res@SeNPs) (14 ± 0.12 nm). Oral administration of TGN-Res@SeNPs improves cognitive disorder through (1) interacting with Aβ and decreasing Aβ aggregation, effectively inhibiting Aβ deposition in the hippocampus; (2) decreasing Aβ-induced reactive oxygen species (ROS) and increasing activity of antioxidation enzymes in PC12 cells and in vivo; (3) down-regulating Aβ-induced neuroinflammation via the nuclear factor kappa B/mitogen-activated protein kinase/Akt signal pathway in BV-2 cells and in vivo; and (4) alleviating gut microbiota disorder, particularly with respect to oxidative stress and inflammatory-related bacteria such as Alistipes, Helicobacter, Rikenella, Desulfovibrio, and Faecalibaculum. Thus, we anticipate that Res-selenium-peptide nanocomposites will offer a new potential strategy for the treatment of AD.
Collapse
Affiliation(s)
- Changjiang Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Licong Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
35
|
Li Y, Li J, Xu F, Liu G, Pang B, Liao N, Li H, Shi J. Gut microbiota as a potential target for developing anti-fatigue foods. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34592876 DOI: 10.1080/10408398.2021.1983768] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fatigue has many negative effects on human health. As such, it is desirable to develop anti-fatigue foods and understand the mechanisms of their action. Based on a comprehensive review of the literature, this article discusses the important roles of gut microbiota in fatigue and anti-fatigue. Studies have shown that an increase in pathogenic bacteria and a decrease in beneficial bacteria co-exist when fatigue is present in both rodents and humans, whereas changes in gut microbiota were reported after intervention with anti-fatigue foods. The roles of gut microbiota in the activities of anti-fatigue foods can also be explained in the causes and the effects of fatigue. Among the causes of fatigue, the accumulation of lactic acid, decrease of energy, and reduction of central nervous system function were related to gut microbiota metabolism. Among the harmful effects of fatigue, oxidative stress, inflammation, and intestinal barrier dysfunction were related to gut microbiota dysbiosis. Furthermore, gut microbiota, together with anti-fatigue foods, can inhibit pathogen growth, convert foods into highly anti-oxidative or anti-inflammatory products, produce short-chain fatty acids, maintain intestinal barrier integrity, inhibit intestinal inflammation, and stimulate the production of neurotransmitters that regulate the central nervous system. Therefore, it is believed that gut microbiota play important roles in the activities of anti-fatigue foods and may provide new insights on the development of anti-fatigue foods.
Collapse
Affiliation(s)
- Yinghui Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Junjun Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Fengqin Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Guanwen Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Huixin Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
36
|
Gu N, Liu S, Qiu C, Zhao L, Pei J. Biosynthesis of 3'-O-methylisoorientin from luteolin by selecting O-methylation/C-glycosylation motif. Enzyme Microb Technol 2021; 150:109862. [PMID: 34489021 DOI: 10.1016/j.enzmictec.2021.109862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 11/26/2022]
Abstract
Glycosylation and methylation of flavonoids are the main types of structural modifications and can endow flavonoids with greater stability, bioactivity, and bioavailability. In this study, five types of O-methyltransferases were screened for producing O-methylated luteolin, and the biosynthesis strategy of 3'-O-methylisoorientin from luteolin was determined. To improve the production of 3'-O-methylluteolin, the S-adenosyl-l-methionine synthesis pathway was reconstructed in the recombinant strain by introducing S-adenosyl-l-methionine synthetase genes. After optimizing the conversion conditions, maximal 3'-O-methylluteolin production reached 641 ± 25 mg/L with a corresponding molar conversion of 76.5 %, which was the highest titer of methylated flavonoids reported to date in Escherichia coli. 3'-O-Methylluteolin (127 mg) was prepared from 250 mL of the broth by silica gel column chromatography and preparative HPLC with a yield of 79.4 %. Subsequently, we used the biocatalytic cascade of Gentiana triflora C-glycosyltransferase (Gt6CGT) and Glycine max sucrose synthase (GmSUS) to biosynthesize 3'-O-methylisoorientin from 3'-O-methylluteolin in vitro. By optimizing the coupled reaction conditions and using the fed-batch operation, maximal 3'-O-methylisoorientin production reached 226 ± 8 mg/L with a corresponding molar conversion of 98 %. Therefore, this study provides an efficient method for the production of novel 3'-O-methylisoorientin and the biosynthesis strategy for methylated C-glycosylation flavonoids by selective O-methylation/C-glycosylation motif on flavonoids.
Collapse
Affiliation(s)
- Na Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, China
| | - Simin Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, China
| | - Cong Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, China.
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, China.
| |
Collapse
|
37
|
Cudrania tricuspidata Combined with Lacticaseibacillus rhamnosus Modulate Gut Microbiota and Alleviate Obesity-Associated Metabolic Parameters in Obese Mice. Microorganisms 2021; 9:microorganisms9091908. [PMID: 34576802 PMCID: PMC8468176 DOI: 10.3390/microorganisms9091908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 01/09/2023] Open
Abstract
The aim of the presented study was to investigate the synbiotic effects of L. rhamnosus 4B15 and C. tricuspidata extract administration on the gut microbiota and obesity-associated metabolic parameters in diet-induced obese mice. Thirty-one 6-week-old male C57BL/N6 mice were divided into five diet groups: normal diet (ND, n = 7) group; high-fat diet (HFD, n = 6) group; probiotic (PRO, n = 5) group; prebiotic (PRE, n = 7) group; and synbiotic (SYN, n = 6) group. After 10 weeks, the percent of fat mass, serum triglyceride, and ALT levels were significantly reduced in SYN-fed obese mice, compared with other treatments. SYN treatment also modulated the abundance of Desulfovibrio, Dorea, Adlercreutzia, Allobaculum, Coprococcus, unclassified Clostridiaceae, Lactobacillus, Helicobacter, Flexispira, Odoribacter, Ruminococcus, unclassified Erysipelotrichaceae, and unclassified Desulfovibrionaceae. These taxa showed a strong correlation with obesity-associated indices. Lastly, the SYN-supplemented diet upregulated metabolic pathways known to improve metabolic health. Further investigations are needed to understand the mechanisms driving the synbiotic effect of C. tricuspidata and L. rhamnosus 4B15.
Collapse
|
38
|
González A, Casado J, Lanas Á. Fighting the Antibiotic Crisis: Flavonoids as Promising Antibacterial Drugs Against Helicobacter pylori Infection. Front Cell Infect Microbiol 2021; 11:709749. [PMID: 34354964 PMCID: PMC8329489 DOI: 10.3389/fcimb.2021.709749] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Over half of the world’s population is estimated to be infected with Helicobacter pylori. Chronic infection with this microbial class I carcinogen is considered the most important risk factor for developing gastric cancer. The increasing antimicrobial resistance to first-line antibiotics mainly causes the failure of current eradication therapies, inducing refractory infections. The alarming increase in multidrug resistance in H. pylori isolates worldwide is already beginning to limit the efficacy of existing treatments. Consequently, the World Health Organization (WHO) has included H. pylori in its list of “priority pathogens” for which new antibiotics are urgently needed. Novel strategies must be followed to fight this antibiotic crisis, including properly exploiting the proven therapeutic potential of medicinal plants and plant-derived phytochemicals. In this mini-review, we overview the impressive properties of naturally occurring flavonoids as effective antimicrobial agents against H. pylori, which support the use of these plant-derived bioactive compounds as promising drug candidates for inclusion in novel and personalized combinatory therapies against H. pylori infection.
Collapse
Affiliation(s)
- Andrés González
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain.,Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain.,Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Javier Casado
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain.,Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - Ángel Lanas
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain.,Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain.,Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain.,Digestive Diseases Service, University Clinic Hospital Lozano Blesa, Zaragoza, Spain
| |
Collapse
|
39
|
Duan R, Guan X, Huang K, Zhang Y, Li S, Xia J, Shen M. Flavonoids from Whole-Grain Oat Alleviated High-Fat Diet-Induced Hyperlipidemia via Regulating Bile Acid Metabolism and Gut Microbiota in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7629-7640. [PMID: 34213907 DOI: 10.1021/acs.jafc.1c01813] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A high-fat diet (HFD) causes hyperlipidemia, which worsens disturbances in bile acid (BA) metabolism and gut microbiota. This study aimed to investigate the regulation of flavonoids from whole-grain oat (FO) on BA metabolism and gut microbiota in HFD-induced hyperlipidemic mice. The experiment results showed that FO improved serum lipid profiles and decreased body weight and lipid deposition in HFD-fed mice. Through real-time qualitative polymerase chain reaction (RT-qPCR) and Western blot assays, by up-regulating the expression of PPARα, CPT-1, CYP7A1, FXR, TGR5, NTCP, and BSTP, and down-regulating those of SREBP-1c, FAS, and ASBT, FO suppressed lipogenesis, promoted lipolysis and BA synthesis, and efflux to faeces via the FXR pathway. 16s rRNA sequencing revealed that FO significantly increased Akkermansia and significantly decreased Lachnoclostridium, Blautia, Colidextribacter, and Desulfovibrio. Spearman's correlation analysis showed that these bacteria were strongly correlated with hyperlipidemia-related parameters. Therefore, our results indicated that FO possessed an antihyperlipidemic effect via regulating the gut-liver axis, i.e., BA metabolism and gut microbiota.
Collapse
Affiliation(s)
- Ruiqian Duan
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiao Guan
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Kai Huang
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yu Zhang
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sen Li
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ji'an Xia
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Meng Shen
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
40
|
Qiu C, Wang H, Zhao L, Pei J. Orientin and vitexin production by a one-pot enzymatic cascade of a glycosyltransferase and sucrose synthase. Bioorg Chem 2021; 112:104926. [PMID: 33930665 DOI: 10.1016/j.bioorg.2021.104926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/31/2021] [Accepted: 04/18/2021] [Indexed: 12/18/2022]
Abstract
Orientin and vitexin, important components of bamboo-leaf extracts, are C-glycosylflavones which exhibit a number of interesting biological properties. In this work, we developed an efficient biocatalytic cascade for orientin and vitexin production consisting of Trollius chinensis C-glycosyltransferase (TcCGT) and Glycine max sucrose synthase (GmSUS). In order to relieve the bottleneck of the biocatalytic cascade, the biocatalytic efficiency, reaction condition compatibilities and the ratio of the enzymes were determined. We found that the specific activity of TcCGT was significantly influenced by enzyme dose and Triton X-100 or Tween 20 (0.2%). Co-culture of BL21-TcCGT-Co and BL21-GmSUS-Co affected the catalytic efficiency of TcCGT and GmSUS, and the maximum orientin production rate reached 47 μM/min at the inoculation ratio of 9:1. The optimal pH and temperature for the biocatalytic cascade were pH 7.5 and 30 °C, respectively. Moreover, the high dose of the enzymes can improve the tolerance of biocatalytic cascade to substrate inhibition in the one-pot reaction. By using a fed-batch strategy, maximal titers of orientin and vitexin reached 7090 mg/L with a corresponding molar conversion of 98.7% and 5050 mg/L with a corresponding molar conversion of 97.3%, respectively, which is the highest titer reported to date. Therefore, the method described herein for efficient production of orientin and vitexin by modulating catalytic efficiencies of enzymes can be widely used for the C-glycosylation of flavonoids.
Collapse
Affiliation(s)
- Cong Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, China
| | - Huan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, China.
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, China.
| |
Collapse
|
41
|
Co-Encapsulated Synbiotics and Immobilized Probiotics in Human Health and Gut Microbiota Modulation. Foods 2021; 10:foods10061297. [PMID: 34200108 PMCID: PMC8230215 DOI: 10.3390/foods10061297] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Growing interest in the development of innovative functional products as ideal carriers for synbiotics, e.g., nutrient bars, yogurt, chocolate, juice, ice cream, and cheese, to ensure the daily intake of probiotics and prebiotics, which are needed to maintain a healthy gut microbiota and overall well-being, is undeniable and inevitable. This review focuses on the modern approaches that are currently being developed to modulate the gut microbiota, with an emphasis on the health benefits mediated by co-encapsulated synbiotics and immobilized probiotics. The impact of processing, storage, and simulated gastrointestinal conditions on the viability and bioactivity of probiotics together with prebiotics such as omega-3 polyunsaturated fatty acids, phytochemicals, and dietary fibers using various delivery systems are considered. Despite the proven biological properties of synbiotics, research in this area needs to be focused on the proper selection of probiotic strains, their prebiotic counterparts, and delivery systems to avoid suppression of their synergistic or complementary effect on human health. Future directions should lead to the development of functional food products containing stable synbiotics tailored for different age groups or specifically designed to fulfill the needs of adjuvant therapy.
Collapse
|
42
|
Yang FW, Fang B, Pang GF, Zhang M, Ren FZ. Triazophos and its metabolite diethyl phosphate have different effects on endocrine hormones and gut health in rats. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:566-576. [PMID: 34038317 DOI: 10.1080/03601234.2021.1922042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organophosphorus pesticide (OP) residues present in food can be metabolized into diethylphosphate (DEP) in vivo. Epidemiological studies of OPs have usually focused on these metabolites, while animal studies mainly assessed the OPs. Here, we compared the health risks of a frequently detected OP, triazophos (TAP), and its major metabolite, DEP, in rats. Levels of serum lipids and, sex hormones were measured using immunoassay kits. Gut hormones and inflammatory cytokines were assessed using a multiplexing kit, and the gut microbiota was evaluated by 16S rRNA gene sequencing. After a 24-week exposure period, both TAP and DEP significantly decreased serum levels of triglycerides, cholesterol, low-density lipoprotein cholesterol, and IL-6 (p < 0.05). However, DEP exposure had a stronger effect on serum estradiol (p < 0.05) than TAP, whereas only TAP inhibited the secretion of gut hormones. Both TAP and DEP enriched the pathogenic genera Oscillibacter, Peptococcus and Paraprevotella in the gut, and TAP also enriched enteritis-related genera Roseburia and Oscillibacter, which may affect the secretion of gut hormones. These findings indicate that the use of dialkyl phosphates as markers of OPs to examine the correlations of OP exposure with diseases may only provide partial information, especially for diseases related to gut health and the endocrine system.
Collapse
Affiliation(s)
- Fang-Wei Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Bing Fang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Guo-Fang Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ming Zhang
- School of Food Science and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Fa-Zheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, and Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing, China
| |
Collapse
|
43
|
Li F, Wang L, Cai Y, Luo Y, Shi X. Safety assessment of desaminotyrosine: Acute, subchronic oral toxicity, and its effects on intestinal microbiota in rats. Toxicol Appl Pharmacol 2021; 417:115464. [PMID: 33636197 DOI: 10.1016/j.taap.2021.115464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 11/30/2022]
Abstract
In this work, the acute and subchronic toxicities of desaminotyrosine (DAT) by oral administration in SD rats and its effects on the intestinal microflora were investigated. The acute toxicity test showed that DAT is a low-toxic substance with a LD50 of 3129 mg/kg. The subchronic toxicity test showed that DAT has no toxicity at a low dose (125 mg/kg/day). However, DAT exhibited obvious toxicities to food intake, liver, kidney, and lung at higher dose (250 mg/kg/day and 500 mg/kg/day). DAT inhibited the food intake of rats in a dose-dependent manner. Serum biochemical analysis showed that DAT can increase the serum glucose level of rats. Fecal microbiota analysis showed that DAT treatment can significantly change the intestinal microflora of rats, the dose of 125 mg/kg/day has the most significant effect on the diversity of intestinal microbiota. In daily application, the side effects caused by DAT might be gastrointestinal irritation, weight loss, liver or kidney injury, and blood sugar elevation. Based on our study, the no-observed-adverse-effect level (NOAEL) of DAT is 125 mg/kg BW/day for rats.
Collapse
Affiliation(s)
- Feng Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Institute of Pharmaceutical Biotechnology and Bioengineering, Fuzhou University, Fuzhou, Fujian 350108, China; Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Liping Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Institute of Pharmaceutical Biotechnology and Bioengineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yilei Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Institute of Pharmaceutical Biotechnology and Bioengineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yihuo Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Institute of Pharmaceutical Biotechnology and Bioengineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Institute of Pharmaceutical Biotechnology and Bioengineering, Fuzhou University, Fuzhou, Fujian 350108, China; Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
44
|
Zhang Q, Yue S, Wang W, Chen Y, Zhao C, Song Y, Yan D, Zhang L, Tang Y. Potential Role of Gut Microbiota in Traditional Chinese Medicine against COVID-19. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:785-803. [PMID: 33853498 DOI: 10.1142/s0192415x21500373] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The coronavirus disease 2019 (COVID-19) spreads and rages around the world and threatens human life. It is disappointing that there are no specific drugs until now. The combination of traditional Chinese medicine (TCM) and western medication seems to be the current more effective treatment strategy for COVID-19 patients in China. In this review, we mainly discussed the relationship between COVID-19 and gut microbiota (GM), as well as the possible impact of TCM combined with western medication on GM in the treatment of COVID-19 patients, aiming to provide references for the possible role of GM in TCM against COVID-19. The available data suggest that GM dysbiosis did occur in COVID-19 patients, and the intervention of GM could ameliorate the clinical condition of COVID-19 patients. In addition, TCMs (e.g., Jinhua Qinggan granule, Lianhua Qingwen capsule, Qingfei Paidu decoction, Shufeng Jiedu capsule, Qingjin Jianghuo decoction, Toujie Quwen granules, and MaxingShigan) have been proven to be safe and effective for the treatment of COVID-19 in Chinese clinic. Among them, Ephedra sinica, Glycyrrhiza uralensis, Bupleurum chinense, Lonicera japonica,Scutellaria baicalensi, and Astragalus membranaceus are common herbs and have a certain regulation on GM, immunity, and angiotensin converting enzyme 2 (ACE2). Notably, Qingfei Paidu decoction and MaxingShigan have been demonstrated to modulate GM. Finally, the hypothesis of GM-mediated TCM treatment of COVID-19 is proposed, and more clinical trials and basic experiments need to be initiated to confirm this hypothesis.
Collapse
Affiliation(s)
- Qiao Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese, Medicine for TCM Compatibility, State Key Laboratory of Research and Development of Characteristic, Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, P. R. China
| | - Shijun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese, Medicine for TCM Compatibility, State Key Laboratory of Research and Development of Characteristic, Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, P. R. China
| | - Wenxiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese, Medicine for TCM Compatibility, State Key Laboratory of Research and Development of Characteristic, Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, P. R. China
| | - Yanyan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese, Medicine for TCM Compatibility, State Key Laboratory of Research and Development of Characteristic, Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, P. R. China
| | - Chongbo Zhao
- Key Laboratory of Shaanxi Administration of Traditional Chinese, Medicine for TCM Compatibility, State Key Laboratory of Research and Development of Characteristic, Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, P. R. China
| | - Yijun Song
- Key Laboratory of Shaanxi Administration of Traditional Chinese, Medicine for TCM Compatibility, State Key Laboratory of Research and Development of Characteristic, Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, P. R. China
| | - Dan Yan
- Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Li Zhang
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu Province, P. R. China
| | - Yuping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese, Medicine for TCM Compatibility, State Key Laboratory of Research and Development of Characteristic, Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, P. R. China
| |
Collapse
|
45
|
Wang X, He S, Yuan L, Deng H, Zhang Z. Synthesis, Structure Characterization, and Antioxidant and Antibacterial Activity Study of Iso-orientin-Zinc Complex. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3952-3964. [PMID: 33764779 DOI: 10.1021/acs.jafc.0c06337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Flavonoid-metal complexes possess more effective functional properties than flavonoids. However, the research of iso-orientin (Iso)-metal complex has rarely been reported. In this study, Iso-zinc complex (Iso-Zn, [Zn3(C21H14O11)2]·4H2O) had been synthesized and characterized. From the UV-vis spectra and IR spectra, the 4-carbonyl group in the C-ring of Iso was involved in the metal chelation besides A-ring and B-ring hydroxyl group. Thermal gravimetric analysis and the water contact angle test showed that Iso-Zn had higher thermal stability and better hydrophilicity than Iso, respectively. The radical scavenger and antibacterial potencies of Iso-Zn were significantly stronger than those of Iso. Furthermore, Iso-Zn showed lower erythrocytes hemolysis ratio and cytotoxicity. The present study demonstrated that Iso-Zn exhibited better water solubility, antioxidative and antibacterial activities, and lower cytotoxicity and provided a theoretical basis for expanding the utilization scope of Iso through enhancing its hydrophilicity.
Collapse
Affiliation(s)
- Xiao Wang
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Shenyuan He
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Li Yuan
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Hong Deng
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Zhong Zhang
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| |
Collapse
|
46
|
|
47
|
Daily JW, Kang S, Park S. Protection against Alzheimer's disease by luteolin: Role of brain glucose regulation, anti-inflammatory activity, and the gut microbiota-liver-brain axis. Biofactors 2021; 47:218-231. [PMID: 33347668 DOI: 10.1002/biof.1703] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/03/2020] [Indexed: 12/26/2022]
Abstract
Luteolin is a widely distributed flavone herbs and vegetables. It has anti-oxidant and anti-inflammatory activities and improves glucose metabolism by potentiating insulin sensitivity and improving β-cell function and mass. Alzheimer's disease (AD) is induced by the deposition of amyloid-beta (Aβ) in the hippocampus and the formation of neurotoxic Aβ plaques. The Aβ deposition is associated with increased formation of Aβ from amyloid precursor protein by up-regulation of β-secretase and β-site amyloid precursor protein-cleaving enzyme 1 (BACE1). Furthermore, Aβ accumulation is increased by brain insulin resistance. The impairment of insulin/IGF-1 signaling mainly in the hippocampus and brain insulin resistance is connected to signals originating in the liver and gut microbiota, known as the gut microbiota-liver-brain axis. This indicates that the changes in the production of short-chain fatty acids by the gut microbiota and pro-inflammatory cytokines can alter insulin resistance in the liver and brain. Luteolin is detected in the brain tissues after passing through the blood-brain barrier, where it can directly influence neuroinflammation and brain insulin resistance and modulate Aβ deposition. Luteolin (10-70 mg/kg bw for rodents) can modulate the systemic and brain insulin resistance, and it suppresses AD development directly, and it influences Aβ deposition by activation of the gut microbiota-liver-brain axis. In this review, we evaluate the potential of luteolin to mitigate two potential causes of AD, neuroinflammatory processes, and disruption of glucose metabolism in the brain. This review suggests that luteolin intake can enhance brain insulin resistance and neuroinflammation, directly and indirectly, to protect against the development of Alzheimer's-like disease, and the gut microbiota-liver-brain axis is mainly involved in the indirect pathway. However, most studies have been conducted in animal studies, and human clinical trials are needed.
Collapse
Affiliation(s)
- James W Daily
- Department of R&D, Daily Manufacturing Inc, Rockwell, North Carolina, USA
| | - Suna Kang
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, South Korea
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, South Korea
| |
Collapse
|
48
|
Advances in Pharmacological Actions and Mechanisms of Flavonoids from Traditional Chinese Medicine in Treating Chronic Obstructive Pulmonary Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:8871105. [PMID: 33488753 PMCID: PMC7790571 DOI: 10.1155/2020/8871105] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/21/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common respiratory disease with high morbidity and mortality. The conventional therapies remain palliative and have various undesired effects. Flavonoids from traditional Chinese medicine (TCM) have been proved to exert protective effects on COPD. This review aims to illuminate the poly-pharmacological properties of flavonoids in treating COPD based on laboratory evidences and clinical data and points out possible molecular mechanisms. Animal/laboratory studies and randomised clinical trials about administration of flavonoids from TCM for treating COPD from January 2010 to October 2020 were identified and collected, with the following terms: chronic obstructive pulmonary disease or chronic respiratory disease or inflammatory lung disease, and flavonoid or nature product or traditional Chinese medicine. Pharmacokinetic studies and external application treatment were excluded. A total of 15 flavonoid compounds were listed. Flavonoids could inhibit inflammation, oxidative stress, and cellular senescence, restore corticosteroid sensitivity, improve pulmonary histology, and boost pulmonary function through regulating multiple targets and signaling pathways, which manifest that flavonoids are a group of promising natural products for COPD. Nevertheless, most studies remain in the research phase of animal testing, and further clinical applications should be carried out.
Collapse
|
49
|
Zhang L, Chen X, Wang H, Huang H, Li M, Yao L, Ma S, Zhong Z, Yang H, Wang H. "Adjusting Internal Organs and Dredging Channel" Electroacupuncture Ameliorates Insulin Resistance in Type 2 Diabetes Mellitus by Regulating the Intestinal Flora and Inhibiting Inflammation. Diabetes Metab Syndr Obes 2021; 14:2595-2607. [PMID: 34135611 PMCID: PMC8200173 DOI: 10.2147/dmso.s306861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Traditional Chinese acupuncture has been demonstrated to be beneficial for treatment of type 2 diabetes mellitus (T2DM). The mechanism of acupuncture on T2DM is crucial for their biological activity as well as their usefulness as tools in biology and medicine. However, its mechanism is poorly understood. METHODS In an effort to explore the mechanism, eight db/db mice (a type of spontaneous T2DM mouse) were treated with adjusting internal organs and dredging channel electroacupuncture (AODCEA) for 2 weeks. Another eight db/db mice were fed as T2DM group (T2DMG), and eight db/m mice were set as normal control group (NCG). Lipopolysaccharide (LPS), interleukin-6 (IL-6), and diabetes-related indicators, such as fasting blood glucose (FBG) and triglyceride (TG), were detected by enzyme-linked immune sorbent assay (ELISA). The V4 region of 16S rRNA gene was analyzed by Illumina sequencing to evaluate the effect of AODCEA on intestinal flora. The amount of short-chain fatty acids (SCFAs) in the feces were determined by gas chromatography-mass spectrometry (GC-MS). RESULTS Our results indicate that AODCEA treatment can reduce diabetes-related indicators. We observed the increased probiotics such as Blautia and Lactobacillus and decreased opportunist pathogens (Alistipes, Helicobacter, Prevotella) by AODCEA interventions. Importantly, the total amount of SCFAs in the feces of T2DM mice was promoted by AODCEA. Finally, obviously alleviated systemic inflammation was exhibited through AODCEA treatment by detection of lipopolysaccharide (LPS) and interleukin-6 (IL-6) in serum. CONCLUSION AODCEA can reshape the structure of intestinal flora, which can increase intestinal SCFAs, affect the circulating LPS level, and reduce the inflammatory response.
Collapse
Affiliation(s)
- Liying Zhang
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, People’s Republic of China
| | - Xinhua Chen
- Department of Acupuncture and Moxibustion, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, 130021, People’s Republic of China
| | - Haili Wang
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, People’s Republic of China
| | - Haipeng Huang
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, People’s Republic of China
| | - Mengyuan Li
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, People’s Republic of China
| | - Lin Yao
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, People’s Republic of China
| | - Shiqi Ma
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, People’s Republic of China
| | - Zhen Zhong
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, People’s Republic of China
| | - Hongmei Yang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Jilin, 130117, People’s Republic of China
- Correspondence: Hongmei Yang; Hongfeng Wang Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, People’s Republic of ChinaTel/Fax +86 431 86763992 Email
| | - Hongfeng Wang
- Northeast Asia Institute of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, 130117, People's Republic of China
- Hongfeng Wang Northeast Asia Institute of Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, People's Republic of ChinaTel/Fax +86 431 89912521 Email
| |
Collapse
|
50
|
Review on the potential application of non-phenolic compounds from native Latin American food byproducts in inflammatory bowel diseases. Food Res Int 2021; 139:109796. [DOI: 10.1016/j.foodres.2020.109796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022]
|