1
|
He Y, Shaoyong W, Chen Y, Li M, Gan Y, Sun L, Liu Y, Wang Y, Jin M. The functions of gut microbiota-mediated bile acid metabolism in intestinal immunity. J Adv Res 2025:S2090-1232(25)00307-8. [PMID: 40354934 DOI: 10.1016/j.jare.2025.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/19/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Bile acids, derived from cholesterol in the liver, consist a steroidal core. Primary bile acids and secondary bile acids metabolized by the gut microbiota make up the bile acid pool, which modulate nuclear hormone receptors to regulate immunity. Disruptions in the crosstalk between bile acids and the gut flora are intimately associated with the development and course of gastrointestinal inflammation. AIM OF REVIEW This review provides an extensive summary of bile acid production, transport and metabolism. It also delves into the impact of bile acid metabolism on the body and explores the involvement of bile acid-microbiota interactions in various disease states. Furthermore, the potential of targeting bile acid signaling as a means to prevent and treat inflammatory bowel disease is proposed. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we primarily address the functions of bile acid-microbiota crosstalk in diseases. Firstly, we summarize bile acid signalling and the factors influencing bile acid metabolism, with highlighting the immune function of microbially conjugated bile acids and the unique roles of different receptors. Subsequently, we emphasize the vital role of bile acids in maintaining a healthy gut microbiota and regulating the intestinal barrier function, energy metabolism and immunity. Finally, we explore differences of bile acid metabolism in different disease states, offering new perspectives on restoring the host's health and the gastrointestinal ecosystem by targeting the gut microbiota-bile acid-bile acid receptor axis.
Collapse
Affiliation(s)
- Yanmin He
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou 310058, China; National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou 310058, China
| | - Weike Shaoyong
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou 310058, China; National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou 310058, China
| | - Yanli Chen
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou 310058, China; National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou 310058, China
| | - Menglin Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yujie Gan
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou 310058, China; National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou 310058, China
| | - Lu Sun
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou 310058, China; National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou 310058, China
| | - Yalin Liu
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou 310058, China; National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou 310058, China
| | - Yizhen Wang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou 310058, China; National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou 310058, China
| | - Mingliang Jin
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou 310058, China; National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou 310058, China.
| |
Collapse
|
2
|
Dong L, Zhang H, Kang Y, Wang F, Bai T, Yang Y. NLRP3 and Gut-Liver Axis: New Possibility for the Treatment of Alcohol-Associated Liver Disease. J Gastroenterol Hepatol 2025; 40:1070-1078. [PMID: 40091479 DOI: 10.1111/jgh.16935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/04/2025] [Accepted: 03/01/2025] [Indexed: 03/19/2025]
Abstract
Alcohol-associated liver disease (ALD) is one of the most prevalent chronic diseases worldwide, with persistently high morbidity and mortality rates. Previous studies have identified NLRP3 inflammasome as a class of receptors of intracellular intrinsic immunity. These receptors can be activated by both intrinsic and extracellular danger signals, leading to the release of downstream pro-inflammatory factors, including interleukin IL-1β and IL-18. These vesicles are critical for maintaining host defense. Concurrently, researchers have identified a close relationship between the microbiome, gut-liver axis, and NLRP3 inflammasome with ALD. Consequently, the present study focus on the structure and activation of the NLRP3 inflammasome, the gut-liver axis, and intestinal microecological regulation, as well as the relationship between bile acid metabolism and the gut-liver axis. The objective of this study is to provide a foundation of knowledge and references for the development of targeted therapeutic interventions of ALD that are informed by the dynamic interplay between the NLRP3 inflammasome and the gut-liver axis.
Collapse
Affiliation(s)
- Lu Dong
- Dalian key Laboratory of Chronic Disease Research Center, Dalian University, Dalian, Liaoning Province, China
| | - Haotian Zhang
- Dalian key Laboratory of Chronic Disease Research Center, Dalian University, Dalian, Liaoning Province, China
| | - Yanyu Kang
- Dalian key Laboratory of Chronic Disease Research Center, Dalian University, Dalian, Liaoning Province, China
| | - Fei Wang
- Dalian key Laboratory of Chronic Disease Research Center, Dalian University, Dalian, Liaoning Province, China
| | - Ting Bai
- Dalian key Laboratory of Chronic Disease Research Center, Dalian University, Dalian, Liaoning Province, China
| | - Yong Yang
- Dalian key Laboratory of Chronic Disease Research Center, Dalian University, Dalian, Liaoning Province, China
| |
Collapse
|
3
|
Du R, Yan S, Yao W, Zhang H, Xue Y, Zhao Y, Cao G, Liu J, Zhang Y, Li X, Bao S, Song Y. Discrepancies in the rumen microbiome, metabolome, and serum metabolome among Hu sheep, East Friesian sheep, and East Friesian × Hu crossbred sheep. Front Microbiol 2025; 16:1498050. [PMID: 40356639 PMCID: PMC12066648 DOI: 10.3389/fmicb.2025.1498050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/21/2025] [Indexed: 05/15/2025] Open
Abstract
Crossbreeding has emerged as a strategy to combine desirable traits from different sheep breeds, with the goal of enhancing productivity, disease resistance, and growth rates. This study compares the immune responses, rumen microbiomes, and serum metabolites of Hu sheep, East Friesian (EF) sheep, and crossbred Hu × EF (DH) sheep to explore the effects of crossbreeding on productivity and disease resistance. Hu sheep exhibited significantly higher lymphocyte counts (p < 0.05) and white blood cell (WBC) counts (p < 0.05) compared to EF and DH sheep, indicating stronger basal immune responses. DH sheep showed superior immune responses, with a higher cluster of differentiation 4+/cluster of differentiation 8+ (CD4+/CD8+) T cell ratio (p < 0.05) compared to EF sheep. Rumen microbiome analysis revealed distinct microbial profiles; DH sheep exhibited higher relative abundances of Prevotella (p < 0.05), which is associated with improved growth and disease resistance. Metabolomic analysis revealed significant differences in bile acid profiles: DH sheep exhibited higher levels of 6-keto lithocholic acid (6-ketoLCA), cholic acid and chenodeoxycholic acid (CDCA), and 3β-hyodeoxycholic acid (3β-HDCA) (p < 0.05), which is associated with improved immune function and gut health. These results indicate that crossbreeding improves immune resilience and metabolic efficiency, which has implications for breeding strategies designed to enhance livestock productivity and disease resistance.
Collapse
Affiliation(s)
- Ruilin Du
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shuo Yan
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wenna Yao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Huimin Zhang
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yue Xue
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yulong Zhao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guifang Cao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jun Liu
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yong Zhang
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xihe Li
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China
| | - Siqin Bao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yongli Song
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
4
|
An L, Gu Y, Zhang Y, Yang D, Liu S, Sun L, Li J, Cui Z. Protein requirements and nutritional metabolic characteristics of yak calves on the Qinghai-Tibetan Plateau. J Dairy Sci 2025; 108:3645-3658. [PMID: 39947599 DOI: 10.3168/jds.2024-25648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/06/2025] [Indexed: 04/20/2025]
Abstract
Understanding the nutritional protein requirements of yak calves is the basis of precise feed formulation. Regulating feed protein can reduce environmental effects, which is particularly crucial for the rearing and management of yak calves. In this study, we used a combination of comparative slaughter, feeding, and digestibility trials to determine the net protein requirements of suckling yak calves. Thirty-five yak male calves with similar weights at 60 d of age were divided into 5 groups: early slaughter (ES) and mid term slaughter (MtS); and ad libitum feeding (AL; also used as the late slaughter group), feeding at 70% of AL rate (R70), and feeding at 40% of AL rate (R40). The ES, MtS, and AL groups were used for comparative slaughter trials, whereas the AL, R70, and R40 groups were used for ad libitum feeding experiments. The results indicated that at different feeding levels, low feeding levels were not conducive to calf growth. For yak calves with BW of ∼40 to 90 kg, the nitrogen digestibility ranged from 49.36% to 59.32%, and the nitrogen retention rate ranged from 36.59% to 48.97%. The net protein requirement for yak calf maintenance is 2.90 g/kgW0.75 × d-1. The equation for the net protein requirement for yak calf growth is net protein requirement for growth (kg) = 0.0540 × EBW0.0833 (kg). Muscle metabolomics results indicated that the protein content in the muscle tissue did not increase with feeding level or BW. With an increase in the feeding level, the nutritional protein level provided by the diet increases, which regulates changes in steroid hormone biosynthesis, ovarian steroidogenesis, cortisol synthesis and secretion, and carbon metabolism, promoting an increase in hormone-like metabolites in the muscle tissue. These data we obtained provide guidance for the efficient rearing of yak calves and provide basic data for further research on the nutritional requirements.
Collapse
Affiliation(s)
- Lele An
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China; Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China; Key Laboratory of Qinghai-Tibetan Plateau Grazing Yak and Tibetan Sheep Animal Nutrition and Forage-Feed, Ministry of Agriculture and Rural Affairs, Xining 810016, China; Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China
| | - Yingchao Gu
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China; Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China; Key Laboratory of Qinghai-Tibetan Plateau Grazing Yak and Tibetan Sheep Animal Nutrition and Forage-Feed, Ministry of Agriculture and Rural Affairs, Xining 810016, China; Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China
| | - Yingnan Zhang
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China; Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China; Key Laboratory of Qinghai-Tibetan Plateau Grazing Yak and Tibetan Sheep Animal Nutrition and Forage-Feed, Ministry of Agriculture and Rural Affairs, Xining 810016, China; Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China
| | - Deyu Yang
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China; Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China; Key Laboratory of Qinghai-Tibetan Plateau Grazing Yak and Tibetan Sheep Animal Nutrition and Forage-Feed, Ministry of Agriculture and Rural Affairs, Xining 810016, China; Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China
| | - Shujie Liu
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China; Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China; Key Laboratory of Qinghai-Tibetan Plateau Grazing Yak and Tibetan Sheep Animal Nutrition and Forage-Feed, Ministry of Agriculture and Rural Affairs, Xining 810016, China; Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China
| | - Lu Sun
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China; Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China; Key Laboratory of Qinghai-Tibetan Plateau Grazing Yak and Tibetan Sheep Animal Nutrition and Forage-Feed, Ministry of Agriculture and Rural Affairs, Xining 810016, China; Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China
| | - Jilan Li
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China; Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China; Key Laboratory of Qinghai-Tibetan Plateau Grazing Yak and Tibetan Sheep Animal Nutrition and Forage-Feed, Ministry of Agriculture and Rural Affairs, Xining 810016, China; Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China.
| | - Zhanhong Cui
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China; Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China; Key Laboratory of Qinghai-Tibetan Plateau Grazing Yak and Tibetan Sheep Animal Nutrition and Forage-Feed, Ministry of Agriculture and Rural Affairs, Xining 810016, China; Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China.
| |
Collapse
|
5
|
Qiang X, Wang X, Liang S, Li S, Lv Y, Zhan J. Long-term effects of Nε-carboxymethyllysine intake on intestinal barrier permeability: Associations with gut microbiota and bile acids. Food Res Int 2025; 201:115543. [PMID: 39849698 DOI: 10.1016/j.foodres.2024.115543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/02/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Advanced glycation end products (AGEs) in processed foods are closely linked to intestinal injury. However, the long-term effects of exposure to free Nɛ-carboxymethyl lysine (CML), a prevalent AGE molecule, on intestinal barrier integrity have been rarely evaluated. This study investigated the temporal effects of CML exposure on intestinal barrier permeability in C57BL/6N mice at diet-related doses over 12, 14, and 16 weeks. No significant changes were observed at 12 weeks, but CML exposure significantly increased intestinal permeability at 14 and 16 weeks, accompanied by elevated serum LPS levels, colonic histological damage, and reduced tight junction protein expression at 16 weeks. CML exposure also altered gut microbiota composition and intestinal bile acid (BA) profiles, specifically reducing TDCA, GDCA, and GCDCA levels. Given the important role of colonic BA receptor signaling in maintaining the intestinal barrier integrity, the impact of CML on BA receptor signaling was assessed. CML exposure significantly downregulated BA receptor TGR5-YAP signaling in mice, while no significant effects were observed in vitro, suggesting that the changes observed in TGR5-YAP signaling in vivo may not result from the direct effects of CML. Spearman's correlation analysis revealed strong associations between altered gut microbiota, BA levels, TGR5-YAP signaling, and intestinal barrier injury. This study highlighted the chronic health risks of long-term CML intake and provided new insights into the links between CML-induced intestinal toxicity, gut microbiota, BA profiles, and BA receptor signaling.
Collapse
Affiliation(s)
- Xin Qiang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China
| | - Xiaoyuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China
| | - Shumin Liang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China
| | - Shaogang Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China
| | - Yinchuan Lv
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China
| | - Jing Zhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
6
|
Ma Y, Yang H, Wang X, Huang Y, Li Y, Pan G. Bile acids as signaling molecules in inflammatory bowel disease: Implications for treatment strategies. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118968. [PMID: 39427739 DOI: 10.1016/j.jep.2024.118968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/21/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory bowel disease (IBD) is a globally increasing disease. Despite continuous efforts, the clinical application of treatment drugs has not achieved satisfactory success and faces limitations such as adverse drug reactions. Numerous investigations have found that the pathogenesis of IBD is connected with disturbances in bile acid circulation and metabolism. Traditional Chinese medicine targeting bile acids (BAs) has shown significant therapeutic effects and advantages in treating inflammatory bowel disease. AIM OF THIS REVIEW IThis article reviews the role of bile acids and their receptors in IBD, as well as research progress on IBD therapeutic drugs based on bile acids. It explores bile acid metabolism and its interaction with the intestinal microbiota, summarizes clinical drugs for treating IBD including single herbal medicine, traditional herbal prescriptions, and analyzes the mechanisms of action in treating IBD. MATERIALS AND METHODS IThe electronic databases such as PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI) have been utilized to retrieve relevant literature up to January 2024, using keywords "bile acid", "bile acid receptor", "inflammatory bowel disease", "intestinal microbiota" and "targeted drugs". RESULTS IImbalance in bile acid levels can lead to intestinal inflammation, while IBD can disrupt the balance of microbes, result in alterations in the bile acid pool's composition and amount. This change can damage of intestinal mucosa healing ability. Bile acids are vital for keeping the gut barrier function intact, regulating gene expression, managing metabolic equilibrium, and influencing the properties and roles of the gut's microbial community. Consequently, focusing on bile acids could offer a potential treatment strategy for IBD. CONCLUSION IIBD can induce intestinal homeostasis imbalance and changes in BA pool, leading to fluctuations in levels of relevant metabolic enzymes, transporters, and nuclear receptors. Therefore, by regulating the balance of BA and key signaling molecules of bile acids, we can treat IBD. Traditional Chinese medicine has great potential and promising prospects in treating IBD. We should focus on the characteristics and advantages of Chinese medicine, promote the development and clinical application of innovative Chinese medicine, and ultimately make Chinese medicine targeting bile acids the mainstream treatment for IBD.
Collapse
Affiliation(s)
- Yueyue Ma
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China
| | - Haoze Yang
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China
| | - Xiaoming Wang
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, PR China
| | - Yuhong Li
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China.
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, PR China.
| |
Collapse
|
7
|
Mansouri P, Mansouri P, Behmard E, Najafipour S, Kouhpayeh A, Farjadfar A. Novel targets for mucosal healing in inflammatory bowel disease therapy. Int Immunopharmacol 2025; 144:113544. [PMID: 39571265 DOI: 10.1016/j.intimp.2024.113544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 12/15/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic condition affecting the gastrointestinal tract, primarily manifesting as ulcerative colitis (UC) or Crohn's disease (CD). Both inflammation and disruption of the intestinal epithelial barrier are key factors in IBD pathogenesis. Substantial evidence has revealed a significant association between aberrant immune responses and impairment of the intestinal epithelial barrier in IBD pathogenesis. The components of the intestinal epithelium, particularly goblet cells and Paneth cells, are crucial to gut homeostasis, as they secrete mucin, antimicrobial peptides (AMPs), and cytokines. Furthermore, impairment of epithelial integrity, which is regulated by tight junctions, is a hallmark of IBD pathology. While common treatments for IBD, such as anti-inflammatory drugs, target various signaling pathways with varying efficacies, therapeutic approaches focused on mucosal and epithelial barrier healing have been largely neglected. Moreover, high costs, side effects, and insufficient or inconsistent therapeutic outcomes remain major drawbacks of conventional anti-IBD drugs. Recent studies on epithelial barrier regeneration and permeability reduction have introduced promising therapeutic targets, including farnesoid X receptor (FXR), urokinase-type plasminogen activator (uPA)-urokinase-type plasminogen activator receptor (uPAR) interaction, fecal microbiota transplantation (FMT), and insulin receptor (INSR). Notably, the simultaneous targeting of intestinal inflammation and promotion of epithelial barrier healing shows promise for efficient IBD treatment. Future research should explore targeted therapies and combination treatments, including natural remedies, microbiota colonization, stem cell approaches, and computer-aided drug design. It is also crucial to focus on accurate prognosis and developing a thorough understanding of IBD development mechanisms.
Collapse
Affiliation(s)
- Pardis Mansouri
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Pegah Mansouri
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran; Zarrin Avaye Kowsar Salamat (ZAX Company), Fasa, Iran
| | - Sohrab Najafipour
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran; Zarrin Avaye Kowsar Salamat (ZAX Company), Fasa, Iran
| | - Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran; Zarrin Avaye Kowsar Salamat (ZAX Company), Fasa, Iran.
| | - Akbar Farjadfar
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran; Zarrin Avaye Kowsar Salamat (ZAX Company), Fasa, Iran.
| |
Collapse
|
8
|
Wang Y, Yu J, Chen B, Jin W, Wang M, Chen X, Jian M, Sun L, Piao C. Bile acids as a key target: traditional Chinese medicine for precision management of insulin resistance in type 2 diabetes mellitus through the gut microbiota-bile acids axis. Front Endocrinol (Lausanne) 2024; 15:1481270. [PMID: 39720247 PMCID: PMC11666381 DOI: 10.3389/fendo.2024.1481270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease caused by insulin resistance (IR) and insufficient insulin secretion. Its characteristic pathophysiological processes involve the interaction of multiple mechanisms. In recent years, globally, the prevalence of T2DM has shown a sharp rise due to profound changes in socio-economic structure, the persistent influence of environmental factors, and the complex role of genetic background. It is worth noting that most T2DM patients show significant IR, which further exacerbates the difficulty of disease progression and prevention. In the process of extensively exploring the pathogenesis of T2DM, the dynamic equilibrium of gut microbes and its diverse metabolic activities have increasingly emphasized its central role in the pathophysiological process of T2DM. Bile acids (BAs) metabolism, as a crucial link between gut microbes and the development of T2DM, not only precisely regulates lipid absorption and metabolism but also profoundly influences glucose homeostasis and energy balance through intricate signaling pathways, thus playing a pivotal role in IR progression in T2DM. This review aims to delve into the specific mechanism through which BAs contribute to the development of IR in T2DM, especially emphasizing how gut microbes mediate the metabolic transformation of BAs based on current traditional Chinese medicine research. Ultimately, it seeks to offer new insights into the prevention and treatment of T2DM. Diet, genetics, and the environment intricately sculpt the gut microbiota and BAs metabolism, influencing T2DM-IR. The research has illuminated the significant impact of single herbal medicine, TCM formulae, and external therapeutic methods such as electroacupuncture on the BAs pool through perturbations in gut microbiota structure. This interaction affects glucose and lipid metabolism as well as insulin sensitivity. Additionally, multiple pathways including BA-FXR-SHP, BA-FXR-FGFR15/19, BA-FXR-NLRP3, BA-TGR5-GLP-1, BAs-TGR5/FXR signaling pathways have been identified through which the BAs pool significantly alter blood glucose levels and improve IR. These findings offer novel approaches for enhancing IR and managing metabolic disorders among patients with T2DM.
Collapse
Affiliation(s)
- Yu Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jing Yu
- Department of Endocrinology, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Binqin Chen
- Applicants with Equivalent Academic Qualifications for Master Degree, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Shenzhen Hospital (Futian), Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wenqi Jin
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Meili Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xuenan Chen
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mengqiong Jian
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Chunli Piao
- Shenzhen Hospital (Futian), Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
9
|
Xiao X, Cui T, Qin S, Wang T, Liu J, Sa L, Wu Y, Zhong Y, Yang C. Beneficial effects of Lactobacillus plantarum on growth performance, immune status, antioxidant function and intestinal microbiota in broilers. Poult Sci 2024; 103:104280. [PMID: 39305612 PMCID: PMC11437764 DOI: 10.1016/j.psj.2024.104280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Lactobacillus plantarum (L. plantarum) has been globally regarded as antibiotic alternative in animal farming in the past few years. However, the potential function of L. plantarum in broilers has not been systemically explored. In this study, a total of 560 one-day-old yellow-feathered broilers were randomly divided into 3 groups, fed with basal diet and drank with L. plantarum HJZW08 (LP) at the concentration of 0 (CON), 1000 × 10^5 (LP1000), and 2000 × 10^5 CFU/L (LP2000) for 70 d. Results showed that the body weight (BW), average daily gain (ADG), average daily feed intake (ADFI), immunoglobulin A (IgA), IgY, and anti-inflammatory interleukin 10 (IL-10) were markedly improved (P < 0.05), while the levels of pro-inflammatory IL-2, IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) in serum were decreased (P < 0.05) in the LP2000 group comparing with the CON group. Besides, LP treatment groups prominently increased the levels and activities of antioxidant enzymes and decreased the content of malondialdehyde (MDA). Additionally, the levels of isobutyric acid in the LP1000 and LP2000 groups and isovaleric acid in the LP2000 group were significantly improved. More importantly, the α-diversity and microbial structure of intestinal microbiota were pronounced altered by LP supplementation. The results showed that only the relative abundance of Actinobacteriota was significantly increased in the LP2000 group, while 6 kinds of bacteria on genus level were significantly changed. For further validation, linear discriminant analysis with effect size (LEfSe) plots revealed that 8 amplicon sequence variants (ASVs) were predominant in the CON group, while Bacteroides and other beneficial species such as Lactimicrobium massiliense (ASV4 and ASV36), Intestinimonas butyriciproducens (ASV71), and Barnesiella viscericola (ASV152 and ASV571) were enriched in the LP groups. Taken together, dietary supplementation with LP obviously enhanced the immune status, antioxidant capacity, and stabilized the cecal microbiota and SCFAs, contributing to the improvement of growth performance of broilers. Our study laid good foundation for the application of probiotic Lactobacillus in animal industry in the future.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Vegamax Biotechnology Co. Ltd., Anji, 313300, Huzhou, China
| | - Tiantian Cui
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Songke Qin
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Tao Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co. Ltd., Anji, 313300, Huzhou, China
| | - Lihan Sa
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Yanping Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Vegamax Biotechnology Co. Ltd., Anji, 313300, Huzhou, China
| | - Yifan Zhong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China.
| |
Collapse
|
10
|
Yang D, Lv G, Wu Y, Guo W, Wang Y, Hu J, Li N, Zheng F, Dai Y, Pi Z, Yue H. Licorice-regulated gut-joint axis for alleviating collagen-induced rheumatoid arthritis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156203. [PMID: 39510013 DOI: 10.1016/j.phymed.2024.156203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is partially affected by the integrity of the intestinal barrier. Licorice (GC), a medicinal and food-related herb, exhibits potent anti-inflammatory activity; however, studies on its mechanisms of action in RA are limited. METHOD Using a bovine type-II collagen-induced arthritis rat model, this study examined how GC influences the gut-joint axis to decrease RA. The Th17/Treg cell ratios in the blood, colon, and joints were also measured. Metabolomics and 16S rRNA sequencing were applied to explore the effects of variations in gut flora and metabolites. RESULTS The arthropathological slices, inflammation markers, and joint inflammation index scores in the GC treatment group significantly differed from those in the CIA group. Studies on the effect of GC on the gut-joint axis showed changes in the levels of lipopolysaccharide and diamine oxidase, both directly associated with intestinal permeability. ZO-1, occludin, and claudin-1, three intestinal tight-junction proteins, may express themselves more when exposed to GC. By maintaining an appropriate Th17/Treg cell ratio in the blood, colon, and joints, GC may reduce impaired to the intestinal barrier. An imbalance in the intestinal microenvironment, caused by modifications in gut flora and endogenous substances, can damage the intestinal barrier. GC may modify the relative abundances of Papillibacter, Clostridium, Eubacterium, Helicobacter, Provotella, and Barnesiella during RA treatment by repairing the intestinal barrier. The metabolic differences were mainly related to primary bile acid biosynthesis, pyrimidine metabolism, steroid biosynthesis, biotin metabolism, and sphingolipid metabolism. A fecal microbiota transplantation experiment confirmed the involvement of the gut microbiota and its metabolites in GC-mediated RA therapy. CONCLUSION The results demonstrated that GC repairs the intestinal barrier and adjusts the gut-joint axis to manage immunological imbalance in RA.
Collapse
Affiliation(s)
- Di Yang
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Guangfu Lv
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Yongxi Wu
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Wentao Guo
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Yuchen Wang
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Jiannan Hu
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Nian Li
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Fei Zheng
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Yulin Dai
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Zifeng Pi
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China.
| | - Hao Yue
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China.
| |
Collapse
|
11
|
Liu Z, Wang H, Ma K, Li Q, Wu Y, Qi X, Song J, Wang C, Ma Y, Li T. Supplementation with Chinese herbal preparations protect the gut-liver axis of Hu sheep, promotes gut-liver circulation, regulates intestinal flora and immunity. Front Immunol 2024; 15:1454334. [PMID: 39606237 PMCID: PMC11599181 DOI: 10.3389/fimmu.2024.1454334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
The gut-liver axis in ruminants can explain nutrient regulation, the gut-liver cycle, and immune function in ruminant biology through the gut microbe-gut metabolite-liver metabolite relationship. to investigate the effects of herbal feed additives on the gut-liver axis of Hu sheep. In this study, a broadly targeted UPLC-MS/MS metabolomics approach and 16s sequencing of gut microorganisms were used to detect, identify and quantify changes in ileal microorganisms, liver metabolites and ileal metabolites following the addition of Chinese herbal preparations. The addition of a 0.5% herbal feed additive increased ileal IgA, IgG and complement C3 levels. The addition of Chinese herbal preparations can increase the abundance of Firmicutes, Actinobacteriota, Bacteroidota, at the portal level of the ileum, increase the metabolism of organic matter and its derivatives, bile acids, amino acids and their metabolites, coenzymes, and vitamins in the liver and ileum, enhance nutrient absorption and waste metabolism, accelerate liver metabolism, promote gut-liver circulation, and improve ileal and liver immunity. This study provides a theoretical basis for understanding the effects of herbal feed additives on the gut-liver axis in ruminants.
Collapse
Affiliation(s)
- Zilong Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Huihui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Keyan Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Qiao Li
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Yi Wu
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Xingcai Qi
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Juanjuan Song
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Chunhui Wang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
12
|
Wang H, Guo Y, Han W, Liang M, Xiao X, Jiang X, Yu W. Tauroursodeoxycholic Acid Improves Nonalcoholic Fatty Liver Disease by Regulating Gut Microbiota and Bile Acid Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20194-20210. [PMID: 39193771 DOI: 10.1021/acs.jafc.4c04630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Tauroursodeoxycholic acid (TUDCA) is a synthetic bile salt that has demonstrated efficacy in the management of hepatobiliary disorders. However, its specific mechanism of action in preventing and treating nonalcoholic fatty liver disease (NAFLD) remains incompletely understood. This research revealed that TUDCA treatment can reduce obesity and hepatic lipid buildup, enhance intestinal barrier function and microbial balance, and increase the presence of Allobaculum and Bifidobacterium in NAFLD mouse models. TUDCA can influence the activity of farnesoid X receptor (FXR) and cholesterol 7α-hydroxylase (CYP7A1), resulting in higher hepatic bile acid levels and increased expression of sodium taurocholate cotransporting polypeptide (NTCP), leading to elevated concentrations of liver-bound bile acids in mice. Furthermore, TUDCA can inhibit the expression of FXR and fatty acid transport protein 5 (FATP5), thereby reducing fatty acid absorption and hepatic lipid accumulation. This investigation provides new insights into the potential of TUDCA for preventing and treating NAFLD.
Collapse
Affiliation(s)
- Huan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yi Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Weiting Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Meng Liang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiao Xiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiaowen Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Wenhui Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory for Prevention and Treatment of Common Animal Diseases in Heilongjiang Province General Universities, Harbin 150030, China
| |
Collapse
|
13
|
Guo X, Xu J, Lu X, Zheng X, Chen X, Sun Z, Shen B, Tang H, Duan Y, Zhou Z, Feng X, Chen Y, Wang J, Pang J, Jiang Q, Huang B, Gu N, Li J. Chenodeoxycholic Acid-Modified Polyethyleneimine Nano-Composites Deliver Low-Density Lipoprotein Receptor Genes for Lipid-Lowering Therapy by Targeting the Liver. Adv Healthc Mater 2024; 13:e2400254. [PMID: 38857027 DOI: 10.1002/adhm.202400254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Lipid-lowering drugs, especially statins, are extensively utilized in clinical settings for the prevention of hyperlipidemia. Nevertheless, prolonged usage of current lipid-lowering medications is associated with significant adverse reactions. Therefore, it is imperative to develop novel therapeutic agents for lipid-lowering therapy. In this study, a chenodeoxycholic acid and lactobionic acid double-modified polyethyleneimine (PDL) nanocomposite as a gene delivery vehicle for lipid-lowering therapy by targeting the liver, are synthesized. Results from the in vitro experiments demonstrate that PDL exhibits superior transfection efficiency compared to polyethyleneimine in alpha mouse liver 12 (AML12) cells and effectively carries plasmids. Moreover, PDL can be internalized by AML12 cells and rapidly escape lysosomal entrapment. Intravenous administration of cyanine5.5 (Cy5.5)-conjugated PDL nanocomposites reveals their preferential accumulation in the liver compared to polyethyleneimine counterparts. Systemic delivery of low-density lipoprotein receptor plasmid-loaded PDL nanocomposites into mice leads to reduced levels of low-density lipoprotein cholesterol (LDL-C) and triglycerides (TC) in the bloodstream without any observed adverse effects on mouse health or well-being. Collectively, these findings suggest that low-density lipoprotein receptor plasmid-loaded PDL nanocomposites hold promise as potential therapeutics for lipid-lowering therapy.
Collapse
Affiliation(s)
- Xiaotang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Jiming Xu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Xiyuan Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Xiaoyan Zheng
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Xi Chen
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210029, P. R. China
- Department of Ophthalmology, Northern Jiangsu People's Hospital, Yangzhou, 225001, P. R. China
| | - Zhenning Sun
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Beilei Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Hao Tang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yiman Duan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Zhengwei Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Xu Feng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Junjie Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Jing Pang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Bin Huang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Ning Gu
- Medical School, Nanjing University, Nanjing, 210093, P. R. China
| | - Juxue Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210029, P. R. China
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, P. R. China
| |
Collapse
|
14
|
Jia H, Dong N. Effects of bile acid metabolism on intestinal health of livestock and poultry. J Anim Physiol Anim Nutr (Berl) 2024; 108:1258-1269. [PMID: 38649786 DOI: 10.1111/jpn.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/27/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Bile acids are synthesised in the liver and are essential amphiphilic steroids for maintaining the balance of cholesterol and energy metabolism in livestock and poultry. They can be used as novel feed additives to promote fat utilisation in the diet and the absorption of fat-soluble substances in the feed to improve livestock performance and enhance carcass quality. With the development of understanding of intestinal health, the balance of bile acid metabolism is closely related to the composition and growth of livestock intestinal microbiota, inflammatory response, and metabolic diseases. This paper systematically reviews the effects of bile acid metabolism on gut health and gut microbiology in livestock. In addition, our paper summarised the role of bile acid metabolism in performance and disease control.
Collapse
Affiliation(s)
- Hongpeng Jia
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
15
|
O'Guinn ML, Handler DA, Hsieh JJ, Mallicote MU, Feliciano K, Gayer CP. FXR deletion attenuates intestinal barrier dysfunction in murine acute intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 2024; 327:G175-G187. [PMID: 38860296 PMCID: PMC11427094 DOI: 10.1152/ajpgi.00063.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Accumulating literature suggests that the farnesoid-X receptor (FXR), a nuclear bile acid receptor best known for its role in bile acid homeostasis, is also a potent context-dependent regulator of inflammation. FXR may thus be relevant to several intestinal disease states including inflammatory bowel disease, necrotizing enterocolitis, and sepsis. In this study, we tested the effects of FXR deletion on acute murine intestinal inflammation. We found that FXR knockout (KO) mice were protected from intestinal injury and barrier dysfunction induced by lipopolysaccharide (LPS) injection, dithizone (DI)/Klebsiella, and cecal ligation/puncture models. In the LPS model, RNA sequencing and qPCR analysis showed that this protection correlated with substantial reduction in LPS-induced proinflammatory gene expression, including lower tissue levels of Il1a, Il1b, and Tnf. Examining functional effects on the epithelium, we found that LPS-induced tight junctional disruption as assessed by internalization of ZO-1 and occludin was ameliorated in FXR KO animals. Taken together, these data suggest a role for FXR in the intestinal barrier during inflammatory injury.NEW & NOTEWORTHY Intestinal barrier failure is a hallmark in gut-origin sepsis. We demonstrate that the intestinal barriers of farnesoid-X receptor (FXR) knockout (KO) animals are protected from inflammatory insult using multiple models of acute intestinal inflammation. This protection is due to decreased inflammatory cytokine production and maintenance of tight junctional architecture seen within the KO animals. This is the first report of FXR deletion being protective to the intestinal barrier.
Collapse
Affiliation(s)
- MaKayla L O'Guinn
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States
- Division of Pediatric Surgery, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, United States
| | - David A Handler
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States
- Division of Pediatric Surgery, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, United States
| | - Jonathan J Hsieh
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, California, United States
- Department of Biochemistry and Molecular Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, United States
| | - Michael U Mallicote
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States
- Division of Pediatric Surgery, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, United States
- Department of Biochemistry and Molecular Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, United States
| | - Karina Feliciano
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States
- Division of Pediatric Surgery, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, United States
| | - Christopher P Gayer
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States
- Division of Pediatric Surgery, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, United States
- Department of Biochemistry and Molecular Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, United States
| |
Collapse
|
16
|
Ding C, Wang Z, Dou X, Yang Q, Ning Y, Kao S, Sang X, Hao M, Wang K, Peng M, Zhang S, Han X, Cao G. Farnesoid X receptor: From Structure to Function and Its Pharmacology in Liver Fibrosis. Aging Dis 2024; 15:1508-1536. [PMID: 37815898 PMCID: PMC11272191 DOI: 10.14336/ad.2023.0830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/30/2023] [Indexed: 10/12/2023] Open
Abstract
The farnesoid X receptor (FXR), a ligand-activated transcription factor, plays a crucial role in regulating bile acid metabolism within the enterohepatic circulation. Beyond its involvement in metabolic disorders and immune imbalances affecting various tissues, FXR is implicated in microbiota modulation, gut-to-brain communication, and liver disease. The liver, as a pivotal metabolic and detoxification organ, is susceptible to damage from factors such as alcohol, viruses, drugs, and high-fat diets. Chronic or recurrent liver injury can culminate in liver fibrosis, which, if left untreated, may progress to cirrhosis and even liver cancer, posing significant health risks. However, therapeutic options for liver fibrosis remain limited in terms of FDA-approved drugs. Recent insights into the structure of FXR, coupled with animal and clinical investigations, have shed light on its potential pharmacological role in hepatic fibrosis. Progress has been achieved in both fundamental research and clinical applications. This review critically examines recent advancements in FXR research, highlighting challenges and potential mechanisms underlying its role in liver fibrosis treatment.
Collapse
Affiliation(s)
- Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Zeping Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xinyue Dou
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yan Ning
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shi Kao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shuosheng Zhang
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China.
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| |
Collapse
|
17
|
Hou L, Wang H, Yan M, Cai Y, Zheng R, Ma Y, Tang W, Jiang W. Obeticholic acid attenuates the intestinal barrier disruption in a rat model of short bowel syndrome. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167221. [PMID: 38718845 DOI: 10.1016/j.bbadis.2024.167221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Short bowel syndrome (SBS) features nutrients malabsorption and impaired intestinal barrier. Patients with SBS are prone to sepsis, intestinal flora dysbiosis and intestinal failure associated liver disease. Protecting intestinal barrier and preventing complications are potential strategies for SBS treatment. This study aims to investigate the effects of farnesoid X receptor (FXR) agonist, obeticholic acid (OCA), have on intestinal barrier and ecological environment in SBS. METHODS AND RESULTS Through testing the small intestine and serum samples of patients with SBS, impaired intestinal barrier was verified, as evidenced by reduced expressions of intestinal tight junction proteins (TJPs), increased levels of apoptosis and epithelial cell damage. The intestinal expressions of FXR and related downstream molecules were decreased in SBS patients. Then, global FXR activator OCA was used to further dissect the potential role of the FXR in a rat model of SBS. Low expressions of FXR-related molecules were observed on the small intestine of SBS rats, along with increased proinflammatory factors and damaged barrier function. Furthermore, SBS rats possessed significantly decreased body weight and elevated death rate. Supplementation with OCA mitigated the damaged intestinal barrier and increased proinflammatory factors in SBS rats, accompanied by activated FXR-related molecules. Using 16S rDNA sequencing, the regulatory role of OCA on gut microbiota in SBS rats was witnessed. LPS stimulation to Caco-2 cells induced apoptosis and overexpression of proinflammatory factors in vitro. OCA incubation of LPS-pretreated Caco-2 cells activated FXR-related molecules, increased the expressions of TJPs, ameliorated apoptosis and inhibited overexpression of proinflammatory factors. CONCLUSIONS OCA supplementation could effectively ameliorate the intestinal barrier disruption and inhibit overexpression of proinflammatory factors in a rat model of SBS and LPS-pretreated Caco-2 cells. As a selective activator of FXR, OCA might realize its protective function through FXR activation.
Collapse
Affiliation(s)
- Li Hou
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China; Department of Surgical Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanfei Wang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Meng Yan
- Department of Pediatrics, Huai'an Maternal and Child Health Care Center, Huai'an, China
| | - Yaoyao Cai
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ruifei Zheng
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yujun Ma
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Weiwei Jiang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
18
|
Yang J, Qin K, Wang Q, Yang X. Deciphering the nutritional strategies for polysaccharides effects on intestinal barrier in broilers: Selectively promote microbial ecosystems. Int J Biol Macromol 2024; 264:130677. [PMID: 38458298 DOI: 10.1016/j.ijbiomac.2024.130677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
The gut microbiota, a complex and dynamic microbial ecosystem, plays a crucial role in regulating the intestinal barrier. Polysaccharide foraging is specifically dedicated to establishing and maintaining microbial communities, contributing to the shaping of the intestinal ecosystem and ultimately enhancing the integrity of the intestinal barrier. The utilization and regulation of individual polysaccharides often rely on distinct gut-colonizing bacteria. The products of their metabolism not only benefit the formation of the ecosystem but also facilitate cross-feeding partnerships. In this review, we elucidate the mechanisms by which specific bacteria degrade polysaccharides, and how polysaccharide metabolism shapes the microbial ecosystem through cross-feeding. Furthermore, we explore how selectively promoting microbial ecosystems and their metabolites contributes to improvements in the integrity of the intestinal barrier.
Collapse
Affiliation(s)
- Jiantao Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Kailong Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qianggang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
19
|
Hao Z, Ding X, Wang J. Effects of gut bacteria and their metabolites on gut health of animals. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:223-252. [PMID: 38763528 DOI: 10.1016/bs.aambs.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The intestine tract is a vital site for the body to acquire nutrients, serving as the largest immune organ. Intestinal health is crucial for maintaining a normal physiological state. Abundant microorganisms reside in the intestine, colonized in a symbiotic manner. These microorganisms can generate various metabolites that influence host physiological activities. Microbial metabolites serve as signaling molecules or metabolic substrates in the intestine, and some intestinal microorganisms act as probiotics and promote intestinal health. Researches on host, probiotics, microbial metabolites and their interactions are ongoing. This study reviews the effects of gut bacteria and their metabolites on intestinal health to provide useful references for animal husbandry.
Collapse
Affiliation(s)
- Zhuang Hao
- College of Animal Science and Technology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, Jiangsu, P.R. China
| | - Xuedong Ding
- College of Animal Science and Technology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, Jiangsu, P.R. China
| | - Jing Wang
- College of Animal Science and Technology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, Jiangsu, P.R. China.
| |
Collapse
|
20
|
Zheng X, Xu X, Liu M, Yang J, Yuan M, Sun C, Zhou Q, Chen J, Liu B. Bile acid and short chain fatty acid metabolism of gut microbiota mediate high-fat diet induced intestinal barrier damage in Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109376. [PMID: 38218421 DOI: 10.1016/j.fsi.2024.109376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
The limited tolerance of crustacean tissue physiology to a high-fat diet has captured the attention of researchers. Yet, investigations into the physiological response mechanisms of the crustacean intestinal barrier system to a high-fat diet are progressing slowly. Elucidating potential physiological mechanisms and determining the precise regulatory targets would be of great physiological and nutritional significance. This study established a high-fat diet-induced intestinal barrier damage model in Macrobrachium rosenbergii, and systematically investigated the functions of gut microbiota and its functional metabolites. The study achieved this by monitoring phenotypic indicators, conducting 16S rDNA sequencing, targeted metabolomics, and in vitro anaerobic fermentation of intestinal contents. Feeding prawns with control and high-fat diets for 8 weeks, the lipid level of 7 % in the CON diet and 12 % in the HF diet. Results showed that high-fat intake impaired the intestinal epithelial cells, intestinal barrier structure, and permeability of M. rosenbergii, activated the tight junction signaling pathway inhibiting factor NF-κB transcription factor Relish/myosin light chain kinase (MLCK), and suppressed the expression of downstream tight junction proteins zona occludens protein 1 (ZO-1) and Claudin. High-fat intake resulted in a significant increase in abundance of Aeromonas, Enterobacter, and Clostridium sensu stricto 3 genera, while Lactobacillus, Lactococcus, Bacteroides, and Ruminococcaceae UCG-010 genera were significantly decreased. Targeted metabolomics results of bile acids and short-chain fatty acids in intestinal contents and in vitro anaerobic fermentation products showed a marked rise in the abundance of DCA, 12-KetoLCA, 7,12-diketoLCA, and Isovaleric acid, and a significant reduction in the abundance of HDCA, CDCA, and Acetate in the HF group. Pearson correlation analysis revealed a substantial correlation between various genera (Clostridium sensu stricto 3, Lactobacillus, Bacteroides) and secondary metabolites (DCA, HDCA, 12-KetoLCA, Acetate), and the latter was significantly correlated with intestinal barrier function related genes (Relish, ZO-1, MLCK, vitamin D receptor, and ecdysone receptor). These findings indicate that gut microorganisms and their specific bile acids and short-chain fatty acid secondary metabolites play a crucial role in the process of high-fat-induced intestinal barrier damage of M. rosenbergii. Moreover, identifying and targeting these factors could facilitate precise regulation of high-fat nutrition for crustaceans.
Collapse
Affiliation(s)
- Xiaochuan Zheng
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Xiaodi Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jie Yang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Meng Yuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Cunxin Sun
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Qunlan Zhou
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jianming Chen
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China.
| | - Bo Liu
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.
| |
Collapse
|
21
|
Tang F, Deng M, Xu C, Yang R, Ji X, Hao M, Wang Y, Tian M, Geng Y, Miao J. Unraveling the microbial puzzle: exploring the intricate role of gut microbiota in endometriosis pathogenesis. Front Cell Infect Microbiol 2024; 14:1328419. [PMID: 38435309 PMCID: PMC10904627 DOI: 10.3389/fcimb.2024.1328419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Endometriosis (EMs) is a prevalent gynecological disorder characterized by the growth of uterine tissue outside the uterine cavity, causing debilitating symptoms and infertility. Despite its prevalence, the exact mechanisms behind EMs development remain incompletely understood. This article presents a comprehensive overview of the relationship between gut microbiota imbalance and EMs pathogenesis. Recent research indicates that gut microbiota plays a pivotal role in various aspects of EMs, including immune regulation, generation of inflammatory factors, angiopoietin release, hormonal regulation, and endotoxin production. Dysbiosis of gut microbiota can disrupt immune responses, leading to inflammation and impaired immune clearance of endometrial fragments, resulting in the development of endometriotic lesions. The dysregulated microbiota can contribute to the release of lipopolysaccharide (LPS), triggering chronic inflammation and promoting ectopic endometrial adhesion, invasion, and angiogenesis. Furthermore, gut microbiota involvement in estrogen metabolism affects estrogen levels, which are directly related to EMs development. The review also highlights the potential of gut microbiota as a diagnostic tool and therapeutic target for EMs. Interventions such as fecal microbiota transplantation (FMT) and the use of gut microbiota preparations have demonstrated promising effects in reducing EMs symptoms. Despite the progress made, further research is needed to unravel the intricate interactions between gut microbiota and EMs, paving the way for more effective prevention and treatment strategies for this challenging condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jinwei Miao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
22
|
Yin C, Wen X, Dang G, Zhong R, Meng Q, Feng X, Liu L, Wu S, He J, Chen L, Zhang H. Modulation of pectin on intestinal barrier function via changes in microbial functional potential and bile acid metabolism. J Nutr Biochem 2024; 124:109491. [PMID: 37865382 DOI: 10.1016/j.jnutbio.2023.109491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/25/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Weaning is one of the major factors that cause stress and intestinal infection in infants and in young animals due to an immature intestine and not fully developed immune functions. Pectin (PEC), a prebiotic polysaccharide, has attracted considerable attention in intestinal epithelial signaling and function via modulation of the microbial community. A total of 16 weaned piglets (21-d-old) were randomly assigned into two groups: control group and PEC group. Supplementation of 5% pectin improved intestinal mucosal barrier function by modulating the composition of the bile acid pool in piglets. Specifically, piglets in PEC group had less serum D-lactate content and alkaline phosphatase activity. In the ileum, dietary pectin increased the number of crypt PAS/AB-positive goblet cells and the mRNA expressions of MUC2, ZO-1, and Occludin. Piglets in PEC group displayed a decreased abundance of Enterococcus (2.71 vs. 65.92%), but the abundances of Lactobacillus (30.80 vs. 7.93%), Streptococcus (21.41 vs. 14.81%), and Clostridium_sensu_stricto_1 (28.34 vs. 0.01%) were increased. Elevated concentrations of bile acids especially hyocholic acid species (HCAs) including HCA, HDCA, and THDCA were also observed. Besides, correlation analysis revealed that dietary pectin supplementation may have beneficial effects through stimulation of the crosstalk between gut microbes and bile acid synthesis within the enterohepatic circulation. Thus, dietary pectin supplementation exhibited a further positive effect on the healthy growth and development of weaned piglets. These findings suggest pectin supplementation as the prebiotic is beneficial for gut health and improvement of weaned stress via regulating microbiota and bile acid metabolism.
Collapse
Affiliation(s)
- Chang Yin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiaobin Wen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Guoqi Dang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qingshi Meng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiaohui Feng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Shusong Wu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, P. R. China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, P. R. China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
23
|
Zhu M, Lin C, Niu K, Liu Y, Zeng W, Wang R, Guo X, Zhai Z. Bile Acid Metabolic Profiles and Their Correlation with Intestinal Epithelial Cell Proliferation and Barrier Integrity in Suckling Piglets. Animals (Basel) 2024; 14:287. [PMID: 38254456 PMCID: PMC10812516 DOI: 10.3390/ani14020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Bile acids (BAs) are crucial for maintaining intestinal epithelial homeostasis. However, the metabolic changes in BAs and the communication between intestinal epithelial cells (IECs) in infants after birth remain unclear. This study aims to elucidate the BA profiles of newborn piglets (NPs) and suckling piglets (SPs), and to investigate their regulatory effects on IEC proliferation and barrier integrity, as well as the potential underlying mechanisms. In this study, compared with NPs, there were significant increases in serum triglycerides, total cholesterol, glucose, and albumin levels for SPs. The total serum BA content in SPs exhibited an obvious increase. Moreover, the expression of BA synthase cytochrome P450 27A1 (CYP27A1) was increased, and the ileal BA receptor Takeda G-coupled protein receptor 5 (TGR5) and proliferation marker Ki-67 were upregulated and showed a strong positive correlation through a Spearman correlation analysis, whereas the expression of farnesoid X receptor (FXR) and occludin was markedly downregulated in SPs and also revealed a strong positive correlation. These findings indicate that the increased synthesis and metabolism of BAs may upregulate TGR5 and downregulate FXR to promote IEC proliferation and influence barrier function; this offers a fresh perspective and evidence for the role of BAs and BA receptors in regulating intestinal development in neonatal pigs.
Collapse
Affiliation(s)
- Min Zhu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China;
| | - Chong Lin
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang 330096, China; (C.L.); (K.N.); (Y.L.); (W.Z.); (R.W.); (X.G.)
| | - Kaimin Niu
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang 330096, China; (C.L.); (K.N.); (Y.L.); (W.Z.); (R.W.); (X.G.)
| | - Yichun Liu
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang 330096, China; (C.L.); (K.N.); (Y.L.); (W.Z.); (R.W.); (X.G.)
| | - Weirong Zeng
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang 330096, China; (C.L.); (K.N.); (Y.L.); (W.Z.); (R.W.); (X.G.)
| | - Ruxia Wang
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang 330096, China; (C.L.); (K.N.); (Y.L.); (W.Z.); (R.W.); (X.G.)
| | - Xiongchang Guo
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang 330096, China; (C.L.); (K.N.); (Y.L.); (W.Z.); (R.W.); (X.G.)
| | - Zhenya Zhai
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang 330096, China; (C.L.); (K.N.); (Y.L.); (W.Z.); (R.W.); (X.G.)
| |
Collapse
|
24
|
Iwaki M, Kessoku T, Tanaka K, Ozaki A, Kasai Y, Kobayashi T, Nogami A, Honda Y, Ogawa Y, Imajo K, Usuda H, Wada K, Kobayashi N, Saito S, Nakajima A, Yoneda M. Combined, elobixibat, and colestyramine reduced cholesterol toxicity in a mouse model of metabolic dysfunction-associated steatotic liver disease. Hepatol Commun 2023; 7:e0285. [PMID: 37902528 PMCID: PMC10617934 DOI: 10.1097/hc9.0000000000000285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/04/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Cholesterol levels and bile acid metabolism are important drivers of metabolic dysfunction-associated steatohepatitis (MASH) progression. Using a mouse model, we investigated the mechanism by which cholesterol exacerbates MASH and the effect of colestyramine (a bile acid adsorption resin) and elobixibat (an apical sodium-dependent bile acid transporter inhibitor) concomitant administration on bile acid adsorption and MASH status. METHODS Mice were fed a high-fat high-fructose diet with varying concentrations of cholesterol to determine changes in fatty liver according to liver status, water intake, defecation status, insulin resistance, bile acid levels, intestinal permeability, atherosclerosis (in apolipoprotein E knockout mice), and carcinogenesis (in diethylnitrosamine mice). Using small interfering ribonucleic acid (siRNA), we evaluated the effect of sterol regulatory element binding protein 1c (SREBP1c) knockdown on triglyceride synthesis and fatty liver status following the administration of elobixibat (group E), colestyramine (group C), or both (group EC). RESULTS We found greater reductions in serum alanine aminotransferase levels, serum lipid parameters, serum primary bile acid concentrations, hepatic lipid levels, and fibrosis area in EC group than in the monotherapy groups. Increased intestinal permeability and watery diarrhea caused by elobixibat were completely ameliorated in group EC. Group EC showed reduced plaque formation rates in the entire aorta and aortic valve of the atherosclerosis model, and reduced tumor counts and tumor burden in the carcinogenesis model. CONCLUSIONS Excessive free cholesterol in the liver can promote fatty liver disease. Herein, combination therapy with EC effectively reduced free cholesterol levels in MASH model mice. Our study provides strong evidence for combination therapy as an effective treatment for MASH.
Collapse
Affiliation(s)
- Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takaomi Kessoku
- Department of Palliative Medicine, International University Health and Welfare, Narita Hospital, Narita, Japan
| | - Kosuke Tanaka
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Anna Ozaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuki Kasai
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Asako Nogami
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasushi Honda
- Department of Internal Medicine, Asakura Hospital, Konan-ku, Yokohama, Japan
| | - Yuji Ogawa
- Department of Gastroenterology, National Hospital Organization Yokohama Medical Center, Totsuka-ku, Yokohama, Japan
| | - Kento Imajo
- Department of Gastroenterology, Shinyurigaoka General Hospital, Kawasaki, Japan
| | - Haruki Usuda
- Department of Pharmacology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Koichiro Wada
- Department of Pharmacology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Noritoshi Kobayashi
- Department of Oncology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
25
|
Yang Y, Hsiao YC, Liu CW, Lu K. The Role of the Nuclear Receptor FXR in Arsenic-Induced Glucose Intolerance in Mice. TOXICS 2023; 11:833. [PMID: 37888683 PMCID: PMC10611046 DOI: 10.3390/toxics11100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Inorganic arsenic in drinking water is prioritized as a top environmental contaminant by the World Health Organization, with over 230 million people potentially being exposed. Arsenic toxicity has been well documented and is associated with a plethora of human diseases, including diabetes, as established in numerous animal and epidemiological studies. Our previous study revealed that arsenic exposure leads to the inhibition of nuclear receptors, including LXR/RXR. To this end, FXR is a nuclear receptor central to glucose and lipid metabolism. However, limited studies are available for understanding arsenic exposure-FXR interactions. Herein, we report that FXR knockout mice developed more profound glucose intolerance than wild-type mice upon arsenic exposure, supporting the regulatory role of FXR in arsenic-induced glucose intolerance. We further exposed mice to arsenic and tested if GW4064, a FXR agonist, could improve glucose intolerance and dysregulation of hepatic proteins and serum metabolites. Our data showed arsenic-induced glucose intolerance was remarkably diminished by GW4064, accompanied by a significant ratio of alleviation of dysregulation in hepatic proteins (83%) and annotated serum metabolites (58%). In particular, hepatic proteins "rescued" from arsenic toxicity by GW4064 featured members of glucose and lipid utilization. For instance, the expression of PCK1, a candidate gene for diabetes and obesity that facilitates gluconeogenesis, was repressed under arsenic exposure in the liver, but revived with the GW4064 supplement. Together, our comprehensive dataset indicates FXR plays a key role and may serve as a potential therapeutic for arsenic-induced metabolic disorders.
Collapse
Affiliation(s)
| | | | | | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
26
|
Kovacevic B, Jones M, Wagle SR, Ionescu CM, Foster T, Đanić M, Mikov M, Mooranian A, Al-Salami H. Influence of poly-L-ornithine-bile acid nano hydrogels on cellular bioactivity and potential pharmacological applications. Ther Deliv 2023. [PMID: 37667908 DOI: 10.4155/tde-2023-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
Aim: Cellular bioactivity and pathophysiological changes associated with chronic disorders are considered pivotal detrimental factors when developing novel formulations for biomedical applications. Methods: This paper investigates the use of bile acids and synthetic polypeptide poly-L-ornithine (PLO) in formulations and their impacts on a variety of cell lines, with a particular focus on their cellular bioactivity. Results: The hepatic cell line was the most negatively affected by the presence of PLO, while the muscle and beta-pancreatic cell lines did not show as profound of a negative impact of PLO on cellular viability. PLO was the least disruptive regarding mitochondrial function for muscle and beta cells. Conclusion: The addition of bile acids generally decreased mitochondrial respiration and altered bioenergetic parameters in all cell lines.
Collapse
Affiliation(s)
- Bozica Kovacevic
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Melissa Jones
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Susbin Raj Wagle
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Thomas Foster
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Maja Đanić
- Department of Pharmacology, Toxicology & Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, 21101, Serbia
| | - Momir Mikov
- Department of Pharmacology, Toxicology & Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, 21101, Serbia
| | - Armin Mooranian
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, 9016, New Zealand
| | - Hani Al-Salami
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
- Medical School, University of Western Australia, Perth, 6000, Australia
| |
Collapse
|
27
|
Yu Q, Yu F, Li Q, Zhang J, Peng Y, Wang X, Li T, Yin N, Sun G, Ouyang H, Chen Y, Mine Y, Tsao R, Zhang H. Anthocyanin-Rich Butterfly Pea Flower Extract Ameliorating Low-Grade Inflammation in a High-Fat-Diet and Lipopolysaccharide-Induced Mouse Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11941-11956. [PMID: 37526116 DOI: 10.1021/acs.jafc.3c02696] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
This study aimed to explore the enhancive effects of butterfly pea flower (BF) extracts on metabolic and immune homeostasis in a low-grade inflammation mouse model. The BF extract was found to contain mainly anthocyanins among other flavonoids. BF supplementation alleviated metabolic endotoxemia by lowering the plasma glucose, lipopolysaccharide (LPS), and tumor necrosis factor-α (TNF-α) levels and restored lipid metabolism and the balance between Treg and Th17 cells, thereby inhibiting the dysfunctional liver and abdominal white adipose tissues. BF extract increased the tight junction protein expression and reduced the expression of proinflammatory cytokines, therefore sustaining the colonic mucosa structure. Furthermore, BF extracts reshaped the gut microbiota structure characterized by significantly promoted SCFA-producing gut microbiota such as Akkermansia and Butyricicoccaceae. Additionally, BF extracts enhanced fecal primary bile acid (BA) levels and modulated bile acid signaling in the liver and ileum to facilitate BA synthesis for the restoration of lipid metabolism. In summary, anthocyanin-enriched BF extracts alleviated the profound negative dietary alterations and helped maintain the metabolic health by modulating the various aspects of the gut microenvironment and enhancing hepatic bile acid synthesis.
Collapse
Affiliation(s)
- Qinqin Yu
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Fengyao Yu
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Qiong Li
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jie Zhang
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - You Peng
- Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang 332005, China
| | - Xiaoya Wang
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Tao Li
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Ning Yin
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Genlin Sun
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Hui Ouyang
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Yuhuan Chen
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Rong Tsao
- Guelph Food Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Hua Zhang
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
28
|
Yin C, Zhong R, Zhang W, Liu L, Chen L, Zhang H. The Potential of Bile Acids as Biomarkers for Metabolic Disorders. Int J Mol Sci 2023; 24:12123. [PMID: 37569498 PMCID: PMC10418921 DOI: 10.3390/ijms241512123] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/15/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Bile acids (BAs) are well known to facilitate the absorption of dietary fat and fat-soluble molecules. These unique steroids also function by binding to the ubiquitous cell membranes and nuclear receptors. As chemical signals in gut-liver axis, the presence of metabolic disorders such as nonalcoholic fatty liver disease (NAFLD), type 2 diabetes mellitus (T2DM), and even tumors have been reported to be closely related to abnormal levels of BAs in the blood and fecal metabolites of patients. Thus, the gut microbiota interacting with BAs and altering BA metabolism are critical in the pathogenesis of numerous chronic diseases. This review intends to summarize the mechanistic links between metabolic disorders and BAs in gut-liver axis, and such stage-specific BA perturbation patterns may provide clues for developing new auxiliary diagnostic means.
Collapse
Affiliation(s)
| | | | | | | | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (R.Z.)
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (R.Z.)
| |
Collapse
|
29
|
Long XQ, Liu MZ, Liu ZH, Xia LZ, Lu SP, Xu XP, Wu MH. Bile acids and their receptors: Potential therapeutic targets in inflammatory bowel disease. World J Gastroenterol 2023; 29:4252-4270. [PMID: 37545642 PMCID: PMC10401658 DOI: 10.3748/wjg.v29.i27.4252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/19/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023] Open
Abstract
Chronic and recurrent inflammatory disorders of the gastrointestinal tract caused by a complex interplay between genetics and intestinal dysbiosis are called inflammatory bowel disease. As a result of the interaction between the liver and the gut microbiota, bile acids are an atypical class of steroids produced in mammals and traditionally known for their function in food absorption. With the development of genomics and metabolomics, more and more data suggest that the pathophysiological mechanisms of inflammatory bowel disease are regulated by bile acids and their receptors. Bile acids operate as signalling molecules by activating a variety of bile acid receptors that impact intestinal flora, epithelial barrier function, and intestinal immunology. Inflammatory bowel disease can be treated in new ways by using these potential molecules. This paper mainly discusses the increasing function of bile acids and their receptors in inflammatory bowel disease and their prospective therapeutic applications. In addition, we explore bile acid metabolism and the interaction of bile acids and the gut microbiota.
Collapse
Affiliation(s)
- Xiong-Quan Long
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Ming-Zhu Liu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Zi-Hao Liu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Lv-Zhou Xia
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Shi-Peng Lu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Xiao-Ping Xu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Ming-Hao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| |
Collapse
|
30
|
Shi L, Jin L, Huang W. Bile Acids, Intestinal Barrier Dysfunction, and Related Diseases. Cells 2023; 12:1888. [PMID: 37508557 PMCID: PMC10377837 DOI: 10.3390/cells12141888] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The intestinal barrier is a precisely regulated semi-permeable physiological structure that absorbs nutrients and protects the internal environment from infiltration of pathological molecules and microorganisms. Bile acids are small molecules synthesized from cholesterol in the liver, secreted into the duodenum, and transformed to secondary or tertiary bile acids by the gut microbiota. Bile acids interact with bile acid receptors (BARs) or gut microbiota, which plays a key role in maintaining the homeostasis of the intestinal barrier. In this review, we summarize and discuss the recent studies on bile acid disorder associated with intestinal barrier dysfunction and related diseases. We focus on the roles of bile acids, BARs, and gut microbiota in triggering intestinal barrier dysfunction. Insights for the future prevention and treatment of intestinal barrier dysfunction and related diseases are provided.
Collapse
Affiliation(s)
- Linsen Shi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Lihua Jin
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biomedical Science, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
31
|
Lu Z, Jiang X, Yi Q, Xiong J, Han Q, Liang Q. Metal-Polyphenol Network-Mediated Protein Encapsulation Strategy Facilitating the Separation of Proteins and Metabolites in Biospecimens. Anal Chem 2023; 95:581-586. [PMID: 36583571 DOI: 10.1021/acs.analchem.2c03070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Access to both protein and metabolite biomarker information in biospecimens from trace samples remains a significant challenge, and it is necessary to separate proteins and metabolites before analysis. In this work, the Fe3O4@SiO2@Proteins@Metal-polyphenol network (MPN) was successfully constructed and applied to separate metabolites and proteins. Tannic acid (TA) and Cu2+ were involved in the synthesis of MPN because of rapid degradation and maintaining the assay performance of proteins. There are a variety of interactions between TA and proteins, including hydrogen-bonding, hydrophobic, and ionic interactions. Moreover, benefiting from the small molecule permeability and surface adherence of MPN, proteins were encapsulated and immobilized on the surface of substrates with the growth of MPN. At the same time, endogenous metabolites remained dispersed in the supernatant. In the model sample and real biospecimen cases, the protein biomarkers (e.g., carcinoembryonic antigen and alanine aminotransferase) were encapsulated on the surface of Fe3O4@SiO2, which allowed the isolation of proteins from the original matrix, as well as release and analysis in a short time. Meanwhile, the metabolites in the produced supernatant were analyzed by LC-MS/MS. By the self-assembly and disassembly of MPN, the group differences of proteins and metabolites between physiological and pathological biospecimens are correctly characterized without multisampling. Overall, an MPN-mediated separation strategy of biomarkers was proposed, and MPN facilitated a "two birds with one stone" approach, where the proteins were encapsulated and immobilized in the precipitation while endogenous metabolites distributed in the produced supernatant, opening a new chapter in the application of MPNs.
Collapse
Affiliation(s)
- Zenghui Lu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and System Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Xue Jiang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and System Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Qi Yi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and System Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Jialiang Xiong
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and System Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Qiang Han
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and System Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and System Biology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
32
|
Liu S, Li J, Kang W, Li Y, Ge L, Liu D, Liu Y, Huang K. Aflatoxin B1 Induces Intestinal Barrier Dysfunction by Regulating the FXR-Mediated MLCK Signaling Pathway in Mice and in IPEC-J2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:867-876. [PMID: 36579420 DOI: 10.1021/acs.jafc.2c06931] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Aflatoxin B1 (AFB1) is a widespread mycotoxin in food and feed. Although the liver is the main target organ of AFB1, the intestine is the first exposure organ to AFB1. However, the mechanism by which AFB1 induced intestinal barrier dysfunction via regulating the farnesoid X receptor (FXR)-mediated myosin light chain kinase (MLCK) signaling pathway has rarely been studied. In vivo, AFB1 exposure significantly decreased the small intestine length and increased the intestinal permeability. Meanwhile, AFB1 exposure markedly suppressed the protein expressions of FXR, ZO-1, occludin, and claudin-1 and enhanced the protein expression of MLCK. In vitro, AFB1 exposure induced intestinal barrier dysfunction by the elevation in the FITC-Dextran 4 kDa flux and inhibition in the transepithelial electrical resistance in a dose-dependent manner. In addition, AFB1 exposure downregulated the mRNA and protein expressions of FXR, ZO-1, occludin, and claudin-1, redistributed the ZO-1 protein, and enhanced the protein expressions of MLCK and p-MLC. However, fexaramine (Fex, FXR agonist) pretreatment markedly reversed the AFB1-induced FXR activity reduction, MLCK protein activation, and intestinal barrier impairment in vitro and in vivo. Moreover, pretreatment with the inhibition of MLCK with ML-7 significantly alleviated the AFB1-induced intestinal barrier dysfunction and tight junction disruption in vitro. In conclusion, AFB1 induced intestinal barrier impairment via regulating the FXR-mediated MLCK signaling pathway in vitro and in vivo and provided novel insights to prevent mycotoxin poisoning in the intestine.
Collapse
Affiliation(s)
- Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Jinyan Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Weili Kang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Lei Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| |
Collapse
|
33
|
Bile acids and their receptors in regulation of gut health and diseases. Prog Lipid Res 2023; 89:101210. [PMID: 36577494 DOI: 10.1016/j.plipres.2022.101210] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/26/2022]
Abstract
It is well established that bile acids play important roles in lipid metabolism. In recent decades, bile acids have also been shown to function as signaling molecules via interacting with various receptors. Bile acids circulate continuously through the enterohepatic circulation and go through microbial transformation by gut microbes, and thus bile acids metabolism has profound effects on the liver and intestinal tissues as well as the gut microbiota. Farnesoid X receptor and G protein-coupled bile acid receptor 1 are two pivotal bile acid receptors that highly expressed in the intestinal tissues, and they have emerged as pivotal regulators in bile acids metabolism, innate immunity and inflammatory responses. There is considerable interest in manipulating the metabolism of bile acids and the expression of bile acid receptors as this may be a promising strategy to regulate intestinal health and disease. This review aims to summarize the roles of bile acids and their receptors in regulation of gut health and diseases.
Collapse
|
34
|
Calzadilla N, Comiskey SM, Dudeja PK, Saksena S, Gill RK, Alrefai WA. Bile acids as inflammatory mediators and modulators of intestinal permeability. Front Immunol 2022; 13:1021924. [PMID: 36569849 PMCID: PMC9768584 DOI: 10.3389/fimmu.2022.1021924] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/26/2022] [Indexed: 12/12/2022] Open
Abstract
Bile acids are critical for the digestion and absorption of lipids and fat-soluble vitamins; however, evidence continues to emerge supporting additional roles for bile acids as signaling molecules. After they are synthesized from cholesterol in the liver, primary bile acids are modified into secondary bile acids by gut flora contributing to a diverse pool and making the composition of bile acids highly sensitive to alterations in gut microbiota. Disturbances in bile acid homeostasis have been observed in patients with Inflammatory Bowel Diseases (IBD). In fact, a decrease in secondary bile acids was shown to occur because of IBD-associated dysbiosis. Further, the increase in luminal bile acids due to malabsorption in Crohn's ileitis and ileal resection has been implicated in the induction of diarrhea and the exacerbation of inflammation. A causal link between bile acid signaling and intestinal inflammation has been recently suggested. With respect to potential mechanisms related to bile acids and IBD, several studies have provided strong evidence for direct effects of bile acids on intestinal permeability in porcine and rodent models as well as in humans. Interestingly, different bile acids were shown to exert distinct effects on the inflammatory response and intestinal permeability that require careful consideration. Such findings revealed a potential effect for changes in the relative abundance of different bile acids on the induction of inflammation by bile acids and the development of IBD. This review summarizes current knowledge about the roles for bile acids as inflammatory mediators and modulators of intestinal permeability mainly in the context of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Nathan Calzadilla
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
- Department of Bioengineering, University of Illinois, Chicago, IL, United States
| | - Shane M. Comiskey
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
| | - Pradeep K. Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Seema Saksena
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Ravinder K. Gill
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
| | - Waddah A. Alrefai
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL, United States
| |
Collapse
|
35
|
Xu L, Li Y, Wei Z, Bai R, Gao G, Sun W, Jiang X, Wang J, Li X, Pi Y. Chenodeoxycholic Acid (CDCA) Promoted Intestinal Epithelial Cell Proliferation by Regulating Cell Cycle Progression and Mitochondrial Biogenesis in IPEC-J2 Cells. Antioxidants (Basel) 2022; 11:antiox11112285. [PMID: 36421471 PMCID: PMC9687205 DOI: 10.3390/antiox11112285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Chenodeoxycholic acid (CDCA), a primary bile acid (BA), has been demonstrated to play an important role as a signaling molecule in various physiological functions. However, the role of CDCA in regulating intestinal epithelial cell (IEC) function remains largely unknown. Herein, porcine intestinal epithelial cells (IPEC-J2) were used as an in vitro model to investigate the effects of CDCA on IEC proliferation and explore the underlying mechanisms. IPEC-J2 cells were treated with CDCA, and flow cytometry and transcriptome analysis were adopted to investigate the effects and potential molecular mechanisms of CDCA on the proliferation of IECs. Our results indicated that adding 50 μmol/L of CDCA in the media significantly increased the proliferation of IPEC-J2 cells. In addition, CDCA treatment also hindered cell apoptosis, increased the proportion of G0/G1 phase cells in the cell cycle progression, reduced intracellular ROS, and MDA levels, and increased mitochondrial membrane potential, antioxidation enzyme activity (T-AOC and CAT), and intracellular ATP level (p < 0.05). RNA-seq results showed that CDCA significantly upregulated the expression of genes related to cell cycle progression (Cyclin-dependent kinase 1 (CDK1), cyclin G2 (CCNG2), cell-cycle progression gene 1 (CCPG1), Bcl-2 interacting protein 5 (BNIP5), etc.) and downregulated the expression of genes related to mitochondrial biogenesis (ND1, ND2, COX3, ATP6, etc.). Further KEGG pathway enrichment analysis showed that CDCA significantly enriched the signaling pathways of DNA replication, cell cycle, and p53. Collectively, this study demonstrated that CDCA could promote IPEC-J2 proliferation by regulating cell cycle progression and mitochondrial function. These findings provide a new strategy for promoting the intestinal health of pigs by regulating intestinal BA metabolism.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zixi Wei
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rong Bai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Business Economics, Wageningen University, 6700 EW Wageningen, The Netherlands
| | - Ge Gao
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (X.L.); (Y.P.); Tel.: +86-010-82108134 (X.L.)
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (X.L.); (Y.P.); Tel.: +86-010-82108134 (X.L.)
| |
Collapse
|
36
|
Ruan D, Wu S, Fouad AM, Zhu Y, Huang W, Chen Z, Gou Z, Wang Y, Han Y, Yan S, Zheng C, Jiang S. Curcumin alleviates LPS-induced intestinal homeostatic imbalance through reshaping gut microbiota structure and regulating group 3 innate lymphoid cells in chickens. Food Funct 2022; 13:11811-11824. [PMID: 36306140 DOI: 10.1039/d2fo02598a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Gastrointestinal dysfunction is associated with a disturbance of immune homeostasis, changes in the intestinal microbiome, alteration of the composition of the bile acid pool, and dynamic imbalance of group 3 innate lymphoid cells (ILC3s). Curcumin (CUR), a polyphenolic compound isolated from turmeric, has been known to attenuate intestinal inflammation in potential therapies for gastrointestinal diseases. It was hypothesized that CUR could target the gut microbiome to modulate bile acid (BA) metabolism and the function of ILC3s in ameliorating lipopolysaccharide (LPS)-induced imbalance of intestinal homeostasis in chickens. Seven hundred and twenty 1-day-old crossbred chickens were randomly divided into four treatments, namely CON_saline (basal diet + saline control), CUR_saline (basal diet + 300 mg kg-1 curcumin + saline), CON_LPS (basal diet + LPS), and CUR_LPS (basal diet + 300 mg kg-1 curcumin + LPS), each consisting of 6 replicates of 30 birds. On days 14, 17, and 21, the chickens in the CON_LPS and CUR_LPS treatments were intraperitoneally injected with LPS at 0.5 mg per kg BW. Dietary CUR supplementation significantly decreased LPS-induced suppression of growth performance and injury to the intestinal tight junctions and decreased the vulnerability to LPS-induced acute inflammatory response by inhibiting pro-inflammatory (interleukin-1β and tumor necrosis factor-α) cytokines. CUR reshaped the cecal microbial community and BA metabolism, contributing to regulation of the intestinal mucosal immunity by promoting the anti-inflammatory (interleukin 10, IL-10) cytokines and enhancing the concentrations of primary and secondary BA metabolites (chenodexycholic acid, lithocholic acid). LPS decreased farnesoid X receptor (FXR) and G protein-coupled receptor class C group 5 member A synthesis, which was reversed by CUR administration, along with an increase in interleukin 22 (IL-22) production from ILC3s. Dietary supplementation of CUR increased the prevalence of Butyricicoccus and Enterococcus and enhanced the tricarboxylic acid cycle of intestinal epithelial cells. In addition, curcumin supplementation significantly increased sirtuin 1 and sirtuin 5 transcription and protein expression, which contributes to regulating mitochondrial metabolic and oxidative stress responses to alleviate LPS-induced enteritis. Our findings demonstrated that curcumin played a pivotal role in regulating the structure of the intestinal microbiome for health promotion and the treatment of intestinal dysbiosis. The beneficial effects of CUR may be attributed to the modulation of the BA-FXR pathway and inhibition of inflammation that induces IL-22 secretion by ILC3s in the intestinal lamina propria.
Collapse
Affiliation(s)
- Dong Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| | - Shaowen Wu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ahmed Mohamed Fouad
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhilong Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| | - Zhongyong Gou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| | - Yibing Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| | - Yongquan Han
- Guangzhou Cohoo Biotechnology Co., Ltd, Guangzhou 510663, China
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chuntian Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| | - Shouqun Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| |
Collapse
|
37
|
Yu J, Zheng C, Zheng J, Duan G, Guo Q, Zhang P, Wan M, Duan Y. Development of Intestinal Injury and Restoration of Weaned Piglets under Chronic Immune Stress. Antioxidants (Basel) 2022; 11:antiox11112215. [PMID: 36358587 PMCID: PMC9686571 DOI: 10.3390/antiox11112215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
This study aimed to investigate the effects of lipopolysaccharide (LPS)-induced chronic immune stress on intestinal morphology and function, immune system, oxidative status, and mitochondrial function in piglets. Fifty healthy Duroc × Landrace × Yorkshire piglets (21 ± 2 days old, barrow, 6.98 ± 0.14 kg body weight) were selected and randomly allotted to five groups, which were slaughtered at 0 (0 group), 1, 5, 9, and 15 d of LPS injection. The results showed that compared with the piglets without LPS injection, LPS injection significantly impaired the intestinal morphology and permeability at 1, 5, and 9 d, as manifested by the increased serum lactic acid and decreased ratio of villus height to crypt depth (p < 0.05). Moreover, intestinal inflammation and oxidative and mitochondrial injury were caused at 1 d, as manifested by upregulated IL-6 mRNA expression, increased malondialdehyde content, and impaired mitochondrial morphology (p < 0.05). However, these parameters were restored to levels identical to 0 group at 9~15 d, accompanied by significantly increased antioxidant capacity, enhanced protein expression of CD3+ and CD68+, and upregulated mRNA abundance of genes related to mitochondrial biogenesis and functions (p < 0.05). Collectively, these results suggest that the intestinal injury of piglets caused by chronic immune stress could be self-repaired.
Collapse
Affiliation(s)
- Jiayi Yu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Changbing Zheng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jie Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Geyan Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qiuping Guo
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| | - Peiwen Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Mengliao Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- Correspondence: ; Tel.: +86-0731-8461-9767
| |
Collapse
|
38
|
Tang K, Kong D, Peng Y, Guo J, Zhong Y, Yu H, Mai Z, Chen Y, Chen Y, Cui T, Duan S, Li T, Liu N, Zhang D, Ding Y, Huang J. Ginsenoside Rc attenuates DSS-induced ulcerative colitis, intestinal inflammatory, and barrier function by activating the farnesoid X receptor. Front Pharmacol 2022; 13:1000444. [PMID: 36386150 PMCID: PMC9649634 DOI: 10.3389/fphar.2022.1000444] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/26/2022] [Indexed: 08/03/2023] Open
Abstract
Objectives: Farnesoid X receptor (FXR) activation is involved in ameliorating inflammatory bowel disease (IBD), such as ulcerative colitis (UC), and inflammatory regulation may be involved in its mechanism. Ginsenoside Rc (Rc) is a major component of Panax ginseng, and it plays an excellent role in the anti-inflammatory processes. Our aim is to explore the alleviative effect of Rc on dextran sulfate sodium (DSS)-induced inflammation and deficiencies in barrier function based on FXR signaling. Materials and Methods: In vitro, we treated human intestinal epithelial cell lines (LS174T) with LPS to explore the anti-inflammatory effect of Rc supplementation. In vivo, a DSS-induced IBD mice model was established, and the changes in inflammatory and barrier function in colons after Rc treatment were measured using the disease activity index (DAI), hematoxylin and eosin (H&E) staining, immunofluorescence, ELISA, and qPCR. Molecular docking analysis, luciferase reporter gene assay, and qPCR were then used to analyze the binding targets of Rc. DSS-induced FXR-knockout (FXR-/-) mice were used for further validation. Results: Rc significantly recovered the abnormal levels of inflammation indexes (TNF-α, IL-6, IL-1β, and NF-KB) induced by LPS in LS174T. DSS-induced C57BL/6 mice exhibited a significantly decreased body weight and elevated DAI, as well as a decrease in colon weight and length. Increased inflammatory markers (TNF-α, IL-6, IL-1β, ICAM1, NF-KB, F4/80, and CD11b displayed an increased expression) and damaged barrier function (Claudin-1, occludin, and ZO-1 displayed a decreased expression) were observed in DSS-induced C57BL/6 mice. Nevertheless, supplementation with Rc mitigated the increased inflammatory and damaged barrier function associated with DSS. Further evaluation revealed an activation of FXR signaling in Rc-treated LS174T, with FXR, BSEP, and SHP found to be upregulated. Furthermore, molecular docking indicated that there is a clear interaction between Rc and FXR, while Rc activated transcriptional expression of FXR in luciferase reporter gene assay. However, these reversal abilities of Rc were not observed in DSS-induced FXR-/- mice. Conclusion: Our findings suggest that Rc may ameliorate inflammation and barrier function in the intestine, which in turn leads to the attenuation of DSS-induced UC, in which Rc may potentially activate FXR signaling to protect the intestines from DSS-induced injury.
Collapse
Affiliation(s)
- Kaijia Tang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danli Kong
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yuan Peng
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jingyi Guo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yadi Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haibing Yu
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Zhenhua Mai
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanling Chen
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingjian Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianqi Cui
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siwei Duan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Naihua Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dong Zhang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuanlin Ding
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jiawen Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
39
|
Fallon CM, Smyth JS, Quach A, Lajczak-McGinley N, O’Toole A, Barrett KE, Sheridan H, Keely SJ. Pentacyclic triterpenes modulate farnesoid X receptor expression in colonic epithelial cells: implications for colonic secretory function. J Biol Chem 2022; 298:102569. [PMID: 36209824 PMCID: PMC9663526 DOI: 10.1016/j.jbc.2022.102569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
The nuclear bile acid receptor, farnesoid X receptor (FXR), is an important regulator of intestinal and metabolic function. Previous studies suggest that pentacyclic triterpenes (PCTs), a class of plant-derived bioactive phytochemical, can modulate FXR activity and may therefore offer therapeutic benefits. Here, we investigated the effects of a prototypical PCT, hederagenin (HG), on FXR expression, activity, and antisecretory actions in colonic epithelial cells. T84 cells and murine enteroid-derived monolayers were employed to assess HG effects on FXR expression and activity in colonic epithelia. We measured mRNA levels by qRT-PCR and protein by ELISA and immunoblotting. Transepithelial Cl− secretion was assessed as changes in short circuit current in Ussing chambers. We determined HG treatment (5–10 μM) alone did not induce FXR activation but significantly increased expression of the receptor, both in T84 cells and murine enteroid-derived monolayers. This effect was accompanied by enhanced FXR activity, as assessed by FGF-15/19 induction in response to the synthetic, GW4064, or natural FXR agonist, chenodeoxycholic acid. Effects of HG on FXR expression and activity were mimicked by another PCT, oleanolic acid. Furthermore, we found FXR-induced downregulation of cystic fibrosis transmembrane conductance regulator Cl− channels and inhibition of transepithelial Cl− secretion were enhanced in HG-treated cells. These data demonstrate that dietary PCTs have the capacity to modulate FXR expression, activity, and antisecretory actions in colonic epithelial cells. Based on these data, we propose that plants rich in PCTs, or extracts thereof, have excellent potential for development as a new class of “FXR-targeted nutraceuticals”.
Collapse
|
40
|
Li Y, Wang K, Ding J, Sun S, Ni Z, Yu C. Influence of the gut microbiota on endometriosis: Potential role of chenodeoxycholic acid and its derivatives. Front Pharmacol 2022; 13:954684. [PMID: 36071850 PMCID: PMC9442031 DOI: 10.3389/fphar.2022.954684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022] Open
Abstract
The gut microbiota (GM) has received extensive attention in recent years, and its key role in the establishment and maintenance of health and in the development of diseases has been confirmed. A strong correlation between the GM and the progression of endometriosis (EMS) has been observed in emerging research. Alterations in the composition and function of the GM have been described in many studies on EMS. In contrast, the GM in the environment of EMS, especially the GM metabolites, such as bile acids and short-chain fatty acids that are related to the pathogenesis of EMS, can promote disease progression. Chenodeoxycholic acid (CDCA), as one of the primary bile acids produced in the liver, is metabolized by various enzymes derived from the GM and is critically important in maintaining intestinal homeostasis and regulating lipid and carbohydrate metabolism and innate immunity. Given that the complexity of CDCA as a signalling molecule and the interaction between the GM and EMS have not been clarified, the role of the CDCA and GM in EMS should be understood from a novel perspective. However, few articles on the relationship between CDCA and EMS have been reviewed. Therefore, we review the available and possible potential links between CDCA, the GM and EMS and put forward the hypothesis that CDCA and its derivative obeticholic acid can improve the symptoms of EMS through the GM.
Collapse
Affiliation(s)
- Yangshuo Li
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Kaili Wang
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jie Ding
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shuai Sun
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhexin Ni
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
- *Correspondence: Zhexin Ni, ; Chaoqin Yu,
| | - Chaoqin Yu
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- *Correspondence: Zhexin Ni, ; Chaoqin Yu,
| |
Collapse
|
41
|
Li X, Yao X, Zhang X, Dong X, Chi S, Tan B, Zhang S, Xie S. Effects of dietary chenodeoxycholic acid supplementation in a low fishmeal diet on growth performance, lipid metabolism, autophagy and intestinal health of Pacific white shrimp, Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2022; 127:1088-1099. [PMID: 35872336 DOI: 10.1016/j.fsi.2022.07.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/26/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
An 8-week feeding trial was conducted to evaluate the effects of chenodeoxycholic acid (CDCA) on growth performance, body composition, lipid metabolism, and intestinal health of juvenile white shrimp, Litopenaeus vannamei fed a low fishmeal diet. Four practical diets were formulated: HFM (25% fishmeal), LFM (15% fishmeal), LB1 (LFM + 0.04% CDCA), LB2 (LFM + 0.08% CDCA). Each diet was assigned to four tanks with forty shrimp (initial weight 0.33 ± 0.03 g) per tank. The results indicated that the growth performance of shrimp were similar between the four groups; the crude lipid content of shrimp fed the LB2 diet was significantly lower than those fed the HFM diet (P < 0.05). The lipase activity content in hepatopancreatic were significantly higher in the two CDCA supplemented groups than that in LFM group; the contents of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol in hemolymph were significantly lower in LFM group, LB1 group and LB2 group than that in HFM group (P < 0.05). The shrimp fed LB1 diet was significantly decreased the intestinal expression levels of tube than those fed in HFM diet; the intestinal gene expression of imd and toll were significantly lower in LB2 group than those in HFM group (P < 0.05). The results of hepatopancreas gene expression suggest that shrimp fed the LFM diet showed significantly upregulated expression levels of sterol regulatory element-binding protein (srebp), acetyl-CoA carboxylase (acc), and carnitine palmitoyltransferase 1 (cpt-1) than those fed the HFM diet; shrimp fed the LB1 diet showed significantly upregulated expression levels of srebp, acc, and AMP-activated protein kinase (ampk) than those fed the HFM diet; shrimp fed the LB2 diet had higher expression levels of srebp, acc, and cpt-1 than those fed the HFM diet (P < 0.05). In the hepatopancreas, the shrimp fed the LFM diet shown significantly up-regulated the expression levels of beclin1 compared to those fed HFM diet; the expression levels of autophagy-related protein13 (atg3), autophagy-related protein 12 (atg12) of in shrimp fed the LB1 diet were significantly higher than those fed the HFM diet; and the expression levels of autophagy-related protein13 (atg13), beclin1, atg3, atg12, autophagy-related protein 9 (atg9) of shrimp fed LB2 diet were significantly higher than those fed the HFM diet (P < 0.05). The atg3 in intestine of shrimp fed the LB2 diet were significantly higher than those fed the HFM diet (P < 0.05). Intestinal mucous fold were damaged, hepatic tubules were disorganized and B cells appeared to be swollen in LFM group. The fold height and width of shrimp fed the diets supplemented with CDCA increased significantly than those fed the LFM diet (P < 0.05), the hepatic tubules were neatly arranged, and R cells increased. In conclusion, supplementary CDCA in a low fishmeal diet promoted lipid metabolism, enhanced autophagy of shrimp, also improved the health of the intestine and hepatopancreas.
Collapse
Affiliation(s)
- Xiaoyue Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Xinzhou Yao
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Xinchen Zhang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Xiaohui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524088, PR China
| | - Shuyan Chi
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524088, PR China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524088, PR China
| | - Shuang Zhang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524088, PR China.
| | - Shiwei Xie
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524088, PR China; Guangdong Provincial Key Lab of Aquatic Animals Disease Control and Healthy Culture, Zhanjiang, 524088, PR China.
| |
Collapse
|
42
|
Talwar C, Singh V, Kommagani R. The Gut Microbiota: A Double Edge Sword in Endometriosis. Biol Reprod 2022; 107:881-901. [PMID: 35878972 PMCID: PMC9562115 DOI: 10.1093/biolre/ioac147] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/14/2022] Open
Abstract
Endometriosis that afflicts 1 in 10 women of reproductive age is characterized by growth of endometrial tissue in the extra-uterine sites and encompasses metabolic-, immunologic- and endocrine-disruption. Importantly, several comorbidities are associated with endometriosis, especially autoimmune disorders such as inflammatory bowel disease. Primarily thought of as a condition arising from retrograde menstruation, emerging evidence uncovered a functional link between the gut microbiota and endometriosis. Specifically, recent findings revealed altered gut microbiota profiles in endometriosis and in turn this altered microbiota appears to be causal in the disease progression, implying a bi-directional crosstalk. In this review, we discuss the complex etiology and pathogenesis of endometriosis emphasizing on this recently recognized role of gut microbiome. We review the gut microbiome structure and functions and its complex network of interactions with the host for maintenance of homeostasis that is crucial for disease prevention. We highlight the underlying mechanisms on how some bacteria promotes disease progression and others protects against endometriosis. Further, we highlight the areas that require future emphases in the gut microbiome-endometriosis nexus and the potential microbiome-based therapies for amelioration of endometriosis.
Collapse
Affiliation(s)
- Chandni Talwar
- Department of Pathology and Immunology, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vertika Singh
- Department of Pathology and Immunology, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ramakrishna Kommagani
- Department of Pathology and Immunology, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
43
|
Di Vincenzo F, Puca P, Lopetuso LR, Petito V, Masi L, Bartocci B, Murgiano M, De Felice M, Petronio L, Gasbarrini A, Scaldaferri F. Bile Acid-Related Regulation of Mucosal Inflammation and Intestinal Motility: From Pathogenesis to Therapeutic Application in IBD and Microscopic Colitis. Nutrients 2022; 14:nu14132664. [PMID: 35807844 PMCID: PMC9268369 DOI: 10.3390/nu14132664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) and microscopic colitis are chronic immune-mediated inflammatory disorders that affect the gastroenterological tract and arise from a complex interaction between the host’s genetic risk factors, environmental factors, and gut microbiota dysbiosis. The precise mechanistic pathways interlinking the intestinal mucosa homeostasis, the immunological tolerance, and the gut microbiota are still crucial topics for research. We decided to deeply analyze the role of bile acids in these complex interactions and their metabolism in the modulation of gut microbiota, and thus intestinal mucosa inflammation. Recent metabolomics studies revealed a significant defect in bile acid metabolism in IBD patients, with an increase in primary bile acids and a reduction in secondary bile acids. In this review, we explore the evidence linking bile acid metabolites with the immunological pathways involved in IBD pathogenesis, including apoptosis and inflammasome activation. Furthermore, we summarize the principal etiopathogenetic mechanisms of different types of bile acid-induced diarrhea (BAD) and its main novel diagnostic approaches. Finally, we discuss the role of bile acid in current and possible future state-of-the-art therapeutic strategies for both IBD and BAD.
Collapse
Affiliation(s)
- Federica Di Vincenzo
- IBD Unit—UOS Malattie Infiammatorie Croniche Intestinali, CEMAD, Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, L. Go A. Gemelli 8, 00168 Rome, Italy; (P.P.); (L.R.L.); (V.P.); (L.M.); (A.G.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, L. Go F. Vito 1, 00168 Rome, Italy; (B.B.); (M.M.); (M.D.F.); (L.P.)
- Correspondence:
| | - Pierluigi Puca
- IBD Unit—UOS Malattie Infiammatorie Croniche Intestinali, CEMAD, Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, L. Go A. Gemelli 8, 00168 Rome, Italy; (P.P.); (L.R.L.); (V.P.); (L.M.); (A.G.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, L. Go F. Vito 1, 00168 Rome, Italy; (B.B.); (M.M.); (M.D.F.); (L.P.)
| | - Loris Riccardo Lopetuso
- IBD Unit—UOS Malattie Infiammatorie Croniche Intestinali, CEMAD, Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, L. Go A. Gemelli 8, 00168 Rome, Italy; (P.P.); (L.R.L.); (V.P.); (L.M.); (A.G.); (F.S.)
| | - Valentina Petito
- IBD Unit—UOS Malattie Infiammatorie Croniche Intestinali, CEMAD, Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, L. Go A. Gemelli 8, 00168 Rome, Italy; (P.P.); (L.R.L.); (V.P.); (L.M.); (A.G.); (F.S.)
| | - Letizia Masi
- IBD Unit—UOS Malattie Infiammatorie Croniche Intestinali, CEMAD, Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, L. Go A. Gemelli 8, 00168 Rome, Italy; (P.P.); (L.R.L.); (V.P.); (L.M.); (A.G.); (F.S.)
| | - Bianca Bartocci
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, L. Go F. Vito 1, 00168 Rome, Italy; (B.B.); (M.M.); (M.D.F.); (L.P.)
| | - Marco Murgiano
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, L. Go F. Vito 1, 00168 Rome, Italy; (B.B.); (M.M.); (M.D.F.); (L.P.)
| | - Margherita De Felice
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, L. Go F. Vito 1, 00168 Rome, Italy; (B.B.); (M.M.); (M.D.F.); (L.P.)
| | - Lorenzo Petronio
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, L. Go F. Vito 1, 00168 Rome, Italy; (B.B.); (M.M.); (M.D.F.); (L.P.)
| | - Antonio Gasbarrini
- IBD Unit—UOS Malattie Infiammatorie Croniche Intestinali, CEMAD, Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, L. Go A. Gemelli 8, 00168 Rome, Italy; (P.P.); (L.R.L.); (V.P.); (L.M.); (A.G.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, L. Go F. Vito 1, 00168 Rome, Italy; (B.B.); (M.M.); (M.D.F.); (L.P.)
| | - Franco Scaldaferri
- IBD Unit—UOS Malattie Infiammatorie Croniche Intestinali, CEMAD, Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, L. Go A. Gemelli 8, 00168 Rome, Italy; (P.P.); (L.R.L.); (V.P.); (L.M.); (A.G.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, L. Go F. Vito 1, 00168 Rome, Italy; (B.B.); (M.M.); (M.D.F.); (L.P.)
| |
Collapse
|
44
|
Song M, Zhang F, Fu Y, Yi X, Feng S, Liu Z, Deng D, Yang Q, Yu M, Zhu C, Zhu X, Wang L, Gao P, Shu G, Ma X, Jiang Q, Wang S. Tauroursodeoxycholic acid (TUDCA) improves intestinal barrier function associated with TGR5-MLCK pathway and the alteration of serum metabolites and gut bacteria in weaned piglets. J Anim Sci Biotechnol 2022; 13:73. [PMID: 35672805 PMCID: PMC9175448 DOI: 10.1186/s40104-022-00713-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/01/2022] [Indexed: 12/04/2022] Open
Abstract
Background Tauroursodeoxycholic acid (TUDCA), a hydrophilic bile acid, is the main medicinal component of bear bile and is commonly used to treat a variety of hepatobiliary diseases. Meanwhile, TUDCA has been shown to modulate the intestinal barrier function and alleviate DSS-induced colitis in mice. However, the effect of TUDCA on the intestinal barrier of weaned piglets remains largely unclear. Methods The weaned piglets and porcine IPEC-J2 intestinal epithelial cells were used to investigate the effects of TUDCA on intestinal barrier function in weaned piglets and explore the possible underlying mechanisms. In vivo, 72 healthy weaned piglets were randomly allocated into 2 groups according to their gender and body weight, and piglets were fed the basal diet with 0 (control, CON) and 200 mg/kg TUDCA for 30 d, respectively. Three female and three male piglets reflecting the average bodyweight were slaughtered in each group and samples were collected. In vitro, IPEC-J2 cells were subjected to 100 μmol/L TUDCA to explore the possible underlying mechanisms. Results Our results demonstrated that dietary TUDCA supplementation significantly reduced the diarrhea incidence of weaned piglets, possibly attributing to the TUDCA-enhanced intestinal barrier function and immunity. In addition, TUDCA supplementation altered serum metabolites and the relative abundance of certain gut bacteria, which might contribute to the improved intestinal barrier function. Furthermore, the in-vitro results showed that TUDCA improved the E. coli-induced epithelial barrier impairment of IPEC-J2 cells and increased Takeda G-coupled protein receptor 5 (TGR5) protein expression. However, knockdown of TGR5 and inhibition of myosin light chain kinase (MLCK) pathway abolished the TUDCA-improved epithelial barrier impairment in E. coli-treated IPEC-J2 cells, indicating the involvement of TGR5-MLCK in this process. Conclusions These findings showed that TUDCA improved intestinal barrier function associated with TGR5-MLCK pathway and the alteration of serum metabolites and gut bacteria in weaned piglets, suggesting the potential application of TUDCA in improving gut health in piglet production.
Collapse
|
45
|
Wang G, Wang H, Jin Y, Xiao Z, Umar Yaqoob M, Lin Y, Chen H, Wang M. Galactooligosaccharides as a protective agent for intestinal barrier and its regulatory functions for intestinal microbiota. Food Res Int 2022; 155:111003. [DOI: 10.1016/j.foodres.2022.111003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/21/2021] [Accepted: 01/08/2022] [Indexed: 11/04/2022]
|
46
|
Yin C, Xia B, Tang S, Cao A, Liu L, Zhong R, Chen L, Zhang H. The Effect of Exogenous Bile Acids on Antioxidant Status and Gut Microbiota in Heat-Stressed Broiler Chickens. Front Nutr 2021; 8:747136. [PMID: 34901107 PMCID: PMC8652638 DOI: 10.3389/fnut.2021.747136] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Bile acids are critical for lipid absorption, however, their new roles in maintaining or regulating systemic metabolism are irreplaceable. The negative impacts of heat stress (HS) on growth performance, lipid metabolism, and antioxidant status have been reported, but it remains unknown whether the bile acids (BA) composition of broiler chickens can be affected by HS. Therefore, this study aimed to investigate the modulating effects of the environment (HS) and whether dietary BA supplementation can benefit heat-stressed broiler chickens. A total of 216 Arbor Acres broilers were selected with a bodyweight approach average and treated with thermal neutral (TN), HS (32°C), or HS-BA (200 mg/kg BA supplementation) from 21 to 42 days. The results showed that an increase in average daily gain (P < 0.05) while GSH-Px activities (P < 0.05) in both serum and liver were restored to the normal range were observed in the HS-BA group. HS caused a drop in the primary BA (P = 0.084, 38.46%) and Tauro-conjugated BA (33.49%) in the ileum, meanwhile, the secondary BA in the liver and cecum were lower by 36.88 and 39.45% respectively. Notably, results were consistent that SBA levels were significantly increased in the serum (3-fold, P = 0.0003) and the ileum (24.89-fold, P < 0.0001). Among them, TUDCA levels (P < 0.01) were included. Besides, BA supplementation indeed increased significantly TUDCA (P = 0.0154) and THDCA (P = 0.0003) levels in the liver, while ileal TDCA (P = 0.0307), TLCA (P = 0.0453), HDCA (P = 0.0018), and THDCA (P = 0.0002) levels were also increased. Intestinal morphology of ileum was observed by hematoxylin and eosin (H&E) staining, birds fed with BA supplementation reduced (P = 0.0431) crypt depth, and the ratio of villous height to crypt depth trended higher (P = 0.0539) under the heat exposure. Quantitative RT-PCR showed that dietary supplementation with BA resulted in upregulation of FXR (P = 0.0369), ASBT (P = 0.0154), and Keap-1 (P = 0.0104) while downregulation of iNOS (P = 0.0399) expression in ileum. Moreover, 16S rRNA gene sequencing analysis and relevance networks revealed that HS-derived changes in gut microbiota and BA metabolites of broilers may affect their resistance to HS. Thus, BA supplementation can benefit broiler chickens during high ambient temperatures, serving as a new nutritional strategy against heat stress.
Collapse
Affiliation(s)
- Chang Yin
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Bing Xia
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Shanlong Tang
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Aizhi Cao
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,Shandong Longchang Animal Health Care Co., Ltd., Jinan, China
| | - Lei Liu
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ruqing Zhong
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Liang Chen
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hongfu Zhang
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
47
|
Anderson KM, Gayer CP. The Pathophysiology of Farnesoid X Receptor (FXR) in the GI Tract: Inflammation, Barrier Function and Innate Immunity. Cells 2021; 10:cells10113206. [PMID: 34831429 PMCID: PMC8624027 DOI: 10.3390/cells10113206] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
The Farnesoid-X Receptor, FXR, is a nuclear bile acid receptor. Its originally described function is in bile acid synthesis and regulation within the liver. More recently, however, FXR has been increasingly appreciated for its breadth of function and expression across multiple organ systems, including the intestine. While FXR’s role within the liver continues to be investigated, increasing literature indicates that FXR has important roles in responding to inflammation, maintaining intestinal epithelial barrier function, and regulating immunity within the gastrointestinal (GI) tract. Given the complicated and multi-factorial nature of intestinal barrier dysfunction, it is not surprising that FXR’s role appears equally complicated and not without conflicting data in different model systems. Recent work has suggested translational applications of FXR modulation in GI pathology; however, a better understanding of FXR physiology is necessary for these treatments to gain widespread use in human disease. This review aims to discuss current scientific work on the role of FXR within the GI tract, specifically in its role in intestinal inflammation, barrier function, and immune response, while also exploring areas of controversy.
Collapse
Affiliation(s)
- Kemp M. Anderson
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Division of Pediatric Surgery, Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Christopher P. Gayer
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Division of Pediatric Surgery, Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
- Correspondence: ; Tel.: +1-323-361-4974
| |
Collapse
|
48
|
Yang C, Wan M, Xu D, Pan D, Xia H, Yang L, Sun G. Flaxseed Powder Attenuates Non-Alcoholic Steatohepatitis via Modulation of Gut Microbiota and Bile Acid Metabolism through Gut-Liver Axis. Int J Mol Sci 2021; 22:10858. [PMID: 34639207 PMCID: PMC8509295 DOI: 10.3390/ijms221910858] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is gradually becoming one of the most common and health-endangering diseases; therefore, it is very important to prevent the occurrence of NASH and prevent simple non-alcoholic fatty liver (NAFL) from further developing into NASH. We fed mice a high-fat diet (HFD, 60% fat) for 14 weeks to induce NAFL and then fed different doses of flaxseed powder (low (10%), middle (20%), and high (30%)) to the mice for 28 weeks. After the animal experiment, we analyzed fecal bile acid (BA) profiles of the HFD mice, flaxseed-fed (FLA-fed) mice, and control mice with a normal diet (10% fat) using a targeted metabolomics approach, and we analyzed the gut microbiota at the same time. We also investigated the mechanistic role of BAs in NASH and identified whether the altered BAs strongly bind to colonic FXR or TGR5. In the present study, we found that 28-week FLA treatment notably alleviated NASH development in NAFL model mice fed with an HFD, and the beneficial effects may be attributed to the regulation of and improvement in the gut flora- and microbiota-related BAs, which then activate the intestinal FXR-FGF15 and TGR5-NF-κB pathways. Our data indicate that FLA might be a promising functional food for preventing NASH through regulating microbiomes and BAs.
Collapse
Affiliation(s)
- Chao Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (C.Y.); (M.W.); (D.X.); (D.P.); (H.X.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Min Wan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (C.Y.); (M.W.); (D.X.); (D.P.); (H.X.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Dengfeng Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (C.Y.); (M.W.); (D.X.); (D.P.); (H.X.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (C.Y.); (M.W.); (D.X.); (D.P.); (H.X.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (C.Y.); (M.W.); (D.X.); (D.P.); (H.X.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (C.Y.); (M.W.); (D.X.); (D.P.); (H.X.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (C.Y.); (M.W.); (D.X.); (D.P.); (H.X.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
49
|
Zhai Z, Niu KM, Liu Y, Lin C, Wu X. The Gut Microbiota-Bile Acids-TGR5 Axis Mediates Eucommia ulmoides Leaf Extract Alleviation of Injury to Colonic Epithelium Integrity. Front Microbiol 2021; 12:727681. [PMID: 34489916 PMCID: PMC8416499 DOI: 10.3389/fmicb.2021.727681] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Eucommia ulmoides leaves (EL) are rich in phenolic acids and flavonoids, showing enhancing intestinal health effects. The intestinal microbiota-bile acid axis plays important roles in the occurrence and recovery of inflammatory bowel disease (IBD). However, whether EL extract (ELE) has regulatory effects on the intestinal microbiota, bile acid metabolism, and IBD is still unclear. To fill this gap, 2% dextran sulfate sodium (DSS)-induced mild IBD in a C57BL/6J mouse model that was treated with 200 or 400 mg/kg (intake dose/body weight) ELE was used. Oral ELE supplementation alleviated DSS-induced shortening of colon and colonic epithelial injury. Compared with the DSS group, ELE supplementation significantly decreased Toll-like receptor 4 (TLR4) and interlukin-6 (IL-6) and increased occludin and claudin-1 mRNA expression level in the colon (p < 0.05). Combined 16S rRNA gene sequencing and targeted metabolomic analyses demonstrated that ELE significantly improved the diversity and richness of the intestinal microbiota, decreased the abundance of Bacteroidaceae, and increased Akkermansiaceae and Ruminococcaceae abundance (p < 0.05) compared with DSS-induced IBD mice. Moreover, ELE significantly increased the serum contents of deoxycholic acid (DCA) and tauroursodeoxycholic acid (TUDCA), which were highly positively correlated with Akkermansia and unidentified_Ruminococccaceae relative to the DSS group. We then found that ELE increased Takeda G-protein coupled receptor 5 (TGR5), claudin-1, and occludin mRNA expression levels in the colon. In the Caco-2 cell model, we confirmed that activation of TGR5 improved the reduction in transepithelial electoral resistance (TEER) and decreased the permeability of FITC-dextran on monolayer cells induced by LPS (p < 0.05). siRNA interference assays showed that the decrease in TGR5 expression led to the decrease in TEER, an increase in FITC-dextran permeability, and a decrease in claudin-1 protein expression in Caco-2 cells. In summary, ELE alleviated IBD by influencing the intestinal microbiota structure and composition of bile acids, which in turn activated the colonic TGR5 gene expression in the colon and promoted the expression of tight junction proteins. These findings provide new insight for using ELE as a functional food with adjuvant therapeutic effects in IBD.
Collapse
Affiliation(s)
- Zhenya Zhai
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, China.,CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
| | - Kai-Min Niu
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, China.,CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
| | - Yichun Liu
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, China.,College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Chong Lin
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, China.,College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xin Wu
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, China.,CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
50
|
Dong S, Zhu M, Wang K, Zhao X, Hu L, Jing W, Lu H, Wang S. Dihydromyricetin improves DSS-induced colitis in mice via modulation of fecal-bacteria-related bile acid metabolism. Pharmacol Res 2021; 171:105767. [PMID: 34273490 DOI: 10.1016/j.phrs.2021.105767] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 11/20/2022]
Abstract
Recent studies show that the nutraceutical supplement dihydromyricetin (DHM) can alleviate IBD in murine models by downregulating the inflammatory pathways. However, the molecular mechanistic link between the therapeutic efficiency of DHM, gut microbiota, and the metabolism of microbial BAs remains elusive. In this study, we explored the improvement of DHM on the dysregulated gut microbiota of mice with dextran sulfate sodium (DSS)-induced colitis. We found that DHM could markedly improve colitis symptoms, gut barrier disruption, and colonic inflammation in DSS-treated mice. In addition, bacterial 16S rDNA sequencing assay demonstrated that DHM could alleviate gut dysbiosis in mice with colitis. Furthermore, antibiotic-mediated depletion of the gut microflora and fecal microbiome transplantation (FMT) demonstrated that the therapeutic efficiency of DHM was closely associated with gut microbiota. BA-targeted metabolomics analysis revealed that DHM restored the metabolism of microbial BAs in the gastrointestinal tract during the development of colitis. DHM significantly enriched the proportion of the beneficial Lactobacillus and Akkermansia genera, which were correlated with increased gastrointestinal levels of unconjugated BAs involving chenodeoxycholic acid and lithocholic acid, enabling the BAs to activate specific receptors, such as FXR and TGR5, and maintaining intestinal integrity. Taken together, DHM could alleviate DSS-induced colitis in mice by restoring the dysregulated gut microbiota and BA metabolism, leading to improvements in intestinal barrier function and colonic inflammation. Increased microbiota-BAs-FXR/TGR5 signaling may be the potential targets of DHM in colitis. Therefore, our findings provide novel insights into the development of novel DHM-derived drugs for the management of IBD.
Collapse
Affiliation(s)
- Sijing Dong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Min Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Ke Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoye Zhao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Longlong Hu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; Laboratory for Functional Metabolomics Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanghui Jing
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China.
| | - Haitao Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; Laboratory for Functional Metabolomics Science, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| |
Collapse
|