1
|
Liu J, Li Y, Xu X, Wu Y, Liu Y, Li J, Du G, Chen J, Lv X, Liu L. Multiplexed engineering of cytochrome P450 enzymes for promoting terpenoid synthesis in Saccharomyces cerevisiae cell factories: A review. Biotechnol Adv 2025; 81:108560. [PMID: 40068711 DOI: 10.1016/j.biotechadv.2025.108560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/23/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Terpenoids, also known as isoprenoids, represent the largest and most structurally diverse family of natural products, and their biosynthesis is closely related to cytochrome P450 enzymes (P450s). Given the limitations of direct extraction from natural resources, such as low productivity and environmental concerns, heterologous expression of P450s in microbial cell factories has emerged as a promising, efficient, and sustainable strategy for terpenoid production. The yeast expression system is a preferred selection for terpenoid synthesis because of its inner membrane system, which is required for eukaryotic P450 expression, and the inherent mevalonate pathway providing precursors for terpenoid synthesis. In this review, we discuss the advanced strategies used to enhance the local enzyme concentration and catalytic properties of P450s in Saccharomyces cerevisiae, with a focus on recent developments in metabolic and protein engineering. Expression enhancement and subcellular compartmentalization are specifically employed to increase the local enzyme concentration, whereas cofactor, redox partner, and enzyme engineering are utilized to improve the catalytic efficiency and substrate specificity of P450s. Subsequently, we discuss the application of P450s for the pathway engineering of terpenoid synthesis and whole-cell biotransformation, which are profitable for the industrial application of P450s in S. cerevisiae chassis. Finally, we explore the potential of using computational and artificial intelligence technologies to rationally design and construct high-performance cell factories, which offer promising pathways for future terpenoid biosynthesis.
Collapse
Affiliation(s)
- Jiaheng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China; Food Laboratory of Zhongyuan, Jiangnan University, Wuxi 214122, China
| | - Yangyang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China; Food Laboratory of Zhongyuan, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Liu F, Wang Y, Wang Y, Zhou J, Li J, Chen J, Du G, Zhao X. Efficient synthesis of high-active multi-subunit hemoglobins through balanced expression of globins and robust heme-supply in Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2025; 426:132387. [PMID: 40081771 DOI: 10.1016/j.biortech.2025.132387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
The biosynthesis of multi-subunit hemoglobins that can be used in artificial oxygen carriers, artificial foods and medical diagnostics has become a hot research issue. However, the imbalanced expression of different subunits and insufficient heme-supply limit the efficient production of multi-subunit hemoglobins. After the equalized synthesis of different globins through the regulation at transcriptional and translational levels, the improvement of heme-supply by relieving the feedback inhibition of heme on Hem1p and the enhancement of key rate-limiting enzymes in yeast, a robust platform for the expression of high-active hemoglobins was constructed. The synthesis of hemoglobins with high-activity were achieved, including human hemoglobin (174.2 mg/L, 61.7 % mol heme/mol Hb), porcine hemoglobin (203.9 mg/L, 72.1 % mol heme/mol Hb) and bovine hemoglobin (258.2 mg/L, 64.9 % mol heme/mol Hb). Therefore, the applied strategies can be broadly used in the production of other heteromultimeric and heme-binding proteins.
Collapse
Affiliation(s)
- Fan Liu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Yunpeng Wang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Yijie Wang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Xinrui Zhao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
3
|
Cheng W, Zhi Y, Chen F, Xiao X, Lu H, Li R, Zhu H, Wang Q, Fang X, Xu Z, Deng Z, Liu T, Lu L. Characterization and functional reconstruction of a highly productive germacrene A synthase from Liriodendron chinense. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1927-1937. [PMID: 40011225 PMCID: PMC12120886 DOI: 10.1111/pbi.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/01/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
Plants produce a large array of natural products which play important roles in flavours, fragrances and medicines. However, some high-value plant intermediate metabolites cannot be directly extracted from plants. The tulip tree (Liriodendron chinense) in the Magnoliaceae family is rich in sesquiterpenes. Upon characterizing the functions of 11 Liriodendron chinense terpene synthases, we discovered that LcTPS3 could produce high yields of (+)-germacrene A, which was shown to be a central scaffold in sesquiterpene biosynthesis. This compound can be completely transformed into β-elemene at high temperature, a broad-spectrum antitumor drug widely used in clinical treatment. By expressing LcTPS3 in a precursor-providing Saccharomyces cerevisiae chassis and with the aid of metabolic engineering, the fermentation yield of (+)-germacrene A has been achieved at 14.71 g/L. Site-directed mutagenesis experiments and molecular dynamics simulations revealed that the A280V suppresses the cyclization of substrate by influencing the conformation of the enzyme-substrate. The Y282L facilitates secondary cyclization to produce α-guaiene by shortening the distance between the catalytic residue Y531 and the substrate. These insights underscore the high plasticity of LcTPS3 and suggest that its targeted engineering could unlock the synthesis of a wider array of valuable sesquiterpenes.
Collapse
Affiliation(s)
- Weijia Cheng
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Department of Pharmacy, Renmin HospitalWuhan UniversityWuhanChina
| | - Yao Zhi
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Wuhan Hesheng Technology Co., Ltd.WuhanChina
| | - Fangfang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Xiaochun Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Hui Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Ranjun Li
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Hangzhi Zhu
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Qiuxia Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Xueting Fang
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Zhenni Xu
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Zixin Deng
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Tiangang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Wuhan Hesheng Technology Co., Ltd.WuhanChina
| | - Li Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Hubei Key Laboratory of Urological Diseases, Hubei Clinical Research Center for Laparoscopic/Endoscopic Urologic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
4
|
Harshini P, Varghese R, Pachamuthu K, Ramamoorthy S. Enhanced pigment production from plants and microbes: a genome editing approach. 3 Biotech 2025; 15:129. [PMID: 40255449 PMCID: PMC12003259 DOI: 10.1007/s13205-025-04290-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 03/22/2025] [Indexed: 04/22/2025] Open
Abstract
Pigments are known for their vital roles in the growth and development of plants and microbes. In addition, they are also an imperative component of several industries, including textiles, foods, and pharmaceuticals, owing to their immense colours and therapeutic potential. Conventionally, pigments are obtained from plant resources, and the advent of in-vitro propagation techniques boosted the massive production. However, it could not meet the booming demand, leading to the incorporation of new genetic engineering tools. This review focuses on the role of various genetic engineering techniques in enhancing pigment production in plants and microorganisms. It also critically analyzes the efficacy and bottlenecks of these techniques in augmenting pigment biosynthesis. Furthermore, the use of microbes as pigment biofactories and the prospects in the field of genome editing to augment pigment synthesis are discussed. The limitations in the existing techniques underline the need for advanced genome editing strategies to broaden the mass production of pigments to meet the surging needs.
Collapse
Affiliation(s)
- P. Harshini
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| | - Ressin Varghese
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| | - Kannan Pachamuthu
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| |
Collapse
|
5
|
Lin P, Zhang L, Du G, Chen J, Zhang J, Peng Z. Construction of Saccharomyces cerevisiae Platform Strain for the Biosynthesis of Carotenoids and Apocarotenoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9187-9196. [PMID: 40168627 DOI: 10.1021/acs.jafc.5c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Carotenoids and apocarotenoids, natural compounds with vital biological functions, are now sustainably produced via microbial synthesis as an eco-friendly alternative to inefficient and polluting traditional plant-based extraction methods. In their biosynthesis, β-carotene (BC) plays a crucial role as it is the key intermediate from which different downstream derivatives are formed. Here, we engineered a high-producing Saccharomyces cerevisiae platform strain to produce BC through a combination of systematic metabolic engineering and atmospheric and room temperature plasma mutagenesis. The strain achieved a BC production of 2.09 g/L via fed-batch fermentation in a 5-L bioreactor, the highest yield reported in S. cerevisiae to date. Using this platform strain, we constructed zeaxanthin- and β-ionone-producing strains by introducing key enzyme genes. The engineered strains produced 39.09 mg/L of zeaxanthin and 31.87 mg/L of β-ionone in shake-flask cultures. The engineered BC platform established in this study provides a higher starting point for producing diverse BC derivatives.
Collapse
Affiliation(s)
- Ping Lin
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Linpei Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Juan Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Zheng Peng
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Luo Z, Gao Y, Guo X, Chen Y, Rao Y. Myceliophthora thermophila as promising fungal cell factories for industrial bioproduction: From rational design to industrial applications. BIORESOURCE TECHNOLOGY 2025; 419:132051. [PMID: 39798815 DOI: 10.1016/j.biortech.2025.132051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/28/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Myceliophthora thermophila stands out as a prominent fungal cell factory, garnering growing interest due to its distinctive traits advantageous. Currently, M. thermophila has been developed as an efficient cell factory, producing a variety of products from various raw materials. In this review, we firstly discuss the potential advantages of M. thermophila as a platform for metabolic engineering and industrial applications, with special emphasis on its physiological characteristics, the development of genetic modification techniques and tools, gene expression and regulation strategies. Then, the latest progress in industrial application of M. thermophila as microbial cell factory was systematically summarized, including biochemical synthesis platform, enzyme expression platform, antibody protein and vaccine production platform, bio-organic fertilizer production platform, and efficient enzyme element library. Finally, the current challenges of M. thermophila as a cell factory and its corresponding strategies are proposed, aiming to achieve green biomanufacturing of multiple products with higher efficiency.
Collapse
Affiliation(s)
- Zhengshan Luo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Yue Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Xupeng Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Yilin Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
7
|
Li J, Gong S, Ma Y, Han P, Wang N, Fu Z, Zhang X, Huang X, Yang T, Tong H, Zhao GR, Wu Y, Yuan YJ. Creation of a eukaryotic multiplexed site-specific inversion system and its application for metabolic engineering. Nat Commun 2025; 16:1918. [PMID: 39994248 PMCID: PMC11850598 DOI: 10.1038/s41467-025-57206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
The site-specific recombination system is a versatile tool in genome engineering, enabling controlled DNA inversion or deletion at specific sites to generate genetic diversity. The multiplexed inversion system, which preferentially facilitates inversion at reverse-oriented sites rather than deletion at same-oriented sites, has not been found in eukaryotes. Here, we establish a multiplexed site-specific inversion system, Rci51-5/multi-sfxa101, in yeast. Firstly, we develop a high-throughput screening system based on the on/off transcriptional control of multiple markers by DNA inversion. After two rounds of progressively stringent directed evolution, a mutant Rci51-5 shows an ability of multisite inversion and a ~ 1000-fold increase in total inversion efficiency against the wild-type Rci derived from Salmonella typhimurium. Subsequently, we demonstrate that the Rci51-5/multi-sfxa101 system exhibits significantly lower deletion rate than the Cre/multi-loxP system. Using the synthetic metabolic pathway of β-carotene as an example, we illustrate that the system can effectively facilitate promoter substitution in the metabolic pathway, resulting in a more than 7-fold increase in the yield of β-carotene. In summary, we develop a multiplexed site-specific inversion system in eukaryotes, providing an approach to metabolic engineering and a tool for eukaryotic genome manipulation.
Collapse
Affiliation(s)
- Jieyi Li
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Simiao Gong
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Yuan Ma
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Peiyan Han
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Nan Wang
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Zongheng Fu
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Xinyi Zhang
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Xinyang Huang
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Tianyu Yang
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Hanze Tong
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Guang-Rong Zhao
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Yi Wu
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China.
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China.
| | - Ying-Jin Yuan
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
8
|
Pereira AA, Yaverino-Gutierrez MA, Monteiro MC, Souza BA, Bachheti RK, Chandel AK. Precision fermentation in the realm of microbial protein production: State-of-the-art and future insights. Food Res Int 2025; 200:115527. [PMID: 39779085 DOI: 10.1016/j.foodres.2024.115527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Food security issues are becoming more pressing due to the world's rapid population expansion and climate change, which also drive up demand for nutrient-dense commodities like meat and cereals. Conventional agricultural practices, which depend on pesticides, fertilizers, and antibiotics, are exacerbating environmental problems, such as antibiotic resistance. Precision fermentation has become a game-changing technique that uses microorganisms to create high-value food ingredients more efficiently and with less negative environmental impact. This method optimizes microbial strains and improves manufacturing processes by utilizing cutting-edge technologies like metabolic engineering and next-generation sequencing. Crucial microorganisms in this technique are filamentous fungi and yeasts, which produce a wide range of products from lipids to proteins. To support microbial growth, an appropriate media formulation is crucial, and downstream processing guarantees the high-quality product recovery. The precise fermentation industry is expanding due to constant advancements and investments, despite obstacles including high production costs and strict regulations. The increased potential of precise fermentation is demonstrated by the commercial trends, which include large investments and the emergence of profitable companies. This review aims to discuss how Precision fermentation has the potential to completely transform the food production industry by providing sustainable alternatives and strengthening the foundation of an increasingly robust and effective food system as well as mentioned the challenges of its implementation.
Collapse
Affiliation(s)
- Alzira Aparecida Pereira
- Renewable Carbon and Biology System (ReCABS) Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12602-810, SP, Brazil
| | - Mario Alberto Yaverino-Gutierrez
- Renewable Carbon and Biology System (ReCABS) Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12602-810, SP, Brazil
| | - Mayara Cortez Monteiro
- Renewable Carbon and Biology System (ReCABS) Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12602-810, SP, Brazil
| | - Brenda Azevedo Souza
- Renewable Carbon and Biology System (ReCABS) Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12602-810, SP, Brazil
| | - Rakesh Kumar Bachheti
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India; Department of Allied Sciences, Graphic Era Hill University, Society Area, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Anuj K Chandel
- Renewable Carbon and Biology System (ReCABS) Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12602-810, SP, Brazil.
| |
Collapse
|
9
|
Chattopadhyay A, Mitra M, Maiti MK. Understanding xylose transport in yeasts. VITAMINS AND HORMONES 2024; 128:243-301. [PMID: 40097252 DOI: 10.1016/bs.vh.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Xylose constitutes the second major sugar fraction of the plant-derived lignocellulosic biomass, which is the most abundantly available and renewable feedstock for microbial fermentations. Hence, comprehensive utilization of xylose is crucial from the perspective of sustainable development of bio-based products, such as fuels, fine chemicals, and high-value compounds. Due to several inherent advantages, various species and strains of yeast are employed to produce these biomolecules. With the advancement of genetic engineering in yeast, lignocellulosic biomass has begun to be commercialized for producing various bioproducts required in the food, fuel, pharmaceutical, chemical, and cosmetics industries. The increasing demands of these bioproducts worldwide lead to a necessity of utilizing xylose efficiently for yeast fermentation strategies together with/replacing glucose for more economic sustainability. However, yeast fermentation processes mostly employ glucose; hence, our understanding of xylose utilization by yeast has not been as scrupulous as it should have been. There has been a remarkable increase in the number of studies conducted on xylose utilization and metabolism in yeasts in the past decade. Our objective in this chapter is to highlight the key advancements and novel approaches in this area and to integrate our understanding of xylose metabolism in yeasts, which can help culminate into commercializing strategies in the future for the development of important bioproducts.
Collapse
Affiliation(s)
- Atrayee Chattopadhyay
- Department of Foundation of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY, United States.
| | - Mohor Mitra
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India; Department of Microbial Pathogenesis & Immunology, Health Science Centre, Texas A&M University, College Station, TX, United States
| | - Mrinal K Maiti
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
10
|
Chi H, Wen S, Wen T, Er L, Lei R, Dai C, Bian G, Shen K, Liu T. Geranylgeraniol: Bio-based platform for teprenone, menaquinone-4, and α-tocotrienol synthesis. BIORESOURCE TECHNOLOGY 2024; 411:131349. [PMID: 39182791 DOI: 10.1016/j.biortech.2024.131349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
By utilizing the conformational selectivity of biosynthesis and the flexibility of chemical synthesis, researchers have formulated metabolic engineering-based semi-synthetic approaches that initiate with the final product's structure and identify key biosynthesis intermediates. Nonetheless, these tailored semi-synthetic routes focused on end-products, neglecting the possibility of biobased intermediates as a platform for derivatization. To address this challenge, this studyproposed a novel strategy resembling chemosynthesis-style divergent exploration to amplify the significance of biobased intermediates, in the case of geranylgeraniol (GGOH). Using the novel bifunctional terpene synthase PTTC066 and systematic metabolic engineering modifications, the engineered yeast straindemonstrated high GGOH production levels (3.32 g/L, 0.039 g/L/h). This platformenabled the semi-synthesis of various pharmaceuticals, including the anti-ulcer drug teprenone, the osteoporosis treatment drug menaquinone-4, and introduced a novel route for synthesizingα-tocotrienol. This study offers a fresh outlook on semi-synthetic approaches, opening avenues for improvements, substitutions, and innovations in industrial production processes.
Collapse
Affiliation(s)
- Haoming Chi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Shun Wen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Tian Wen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Liying Er
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Ru Lei
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Chong Dai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Guangkai Bian
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kun Shen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China; Department of Radiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China; Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China; Wuhan Hesheng Technology Co., Ltd, Wuhan, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
11
|
Lei C, Guo X, Zhang M, Zhou X, Ding N, Ren J, Liu M, Jia C, Wang Y, Zhao J, Dong Z, Lu D. Regulating the metabolic flux of pyruvate dehydrogenase bypass to enhance lipid production in Saccharomyces cerevisiae. Commun Biol 2024; 7:1399. [PMID: 39462103 PMCID: PMC11513081 DOI: 10.1038/s42003-024-07103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
To achieve high efficiency in microbial cell factories, it is crucial to redesign central carbon fluxes to ensure an adequate supply of precursors for producing high-value compounds. In this study, we employed a multi-omics approach to rearrange the central carbon flux of the pyruvate dehydrogenase (PDH) bypass, thereby enhancing the supply of intermediate precursors, specifically acetyl-CoA. This enhancement aimed to improve the biosynthesis of acetyl-CoA-derived compounds, such as terpenoids and fatty acid-derived molecules, in Saccharomyces cerevisiae. Through transcriptomic and lipidomic analyses, we identified ALD4 as a key regulatory gene influencing lipid metabolism. Genetic validation demonstrated that overexpression of the mitochondrial acetaldehyde dehydrogenase (ALDH) gene ALD4 resulted in a 20.1% increase in lipid production. This study provides theoretical support for optimising the performance of S. cerevisiae as a "cell factory" for the production of commercial compounds.
Collapse
Affiliation(s)
- Cairong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaopeng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China.
| | - Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Ding
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junle Ren
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meihan Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Chenglin Jia
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yajuan Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingru Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziyi Dong
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China.
| |
Collapse
|
12
|
Arhar S, Pfaller R, Athenstaedt K, Lins T, Gogg-Fassolter G, Züllig T, Natter K. Retargeting of heterologous enzymes results in improved β-carotene synthesis in Saccharomyces cerevisiae. J Appl Microbiol 2024; 135:lxae224. [PMID: 39215465 DOI: 10.1093/jambio/lxae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/11/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
AIMS Carotenoids are a class of hydrophobic substances that are important as food and feed colorants and as antioxidants. The pathway for β-carotene synthesis has been expressed in various yeast species, albeit with rather low yields and titers. The inefficient conversion of phytoene to lycopene is often regarded as a bottleneck in the pathway. In this study, we aimed at the improvement of β-carotene production in Saccharomyces cerevisiae by specifically engineering the enzymatic reactions producing and converting phytoene. METHODS AND RESULTS We show that phytoene is stored in intracellular lipid droplets, whereas the enzyme responsible for its conversion, phytoene dehydrogenase, CrtI, is located at the endoplasmic reticulum, like the bifunctional enzyme CrtYB that catalyses the reaction before and after CrtI. To improve the accessibility of phytoene for CrtI and to delay its storage in lipid droplets, we tested the relocation of CrtI and CrtYB to mitochondria. However, only the retargeting of CrtYB resulted in an improvement of the β-carotene content, whereas the mitochondrial variant of CrtI was not functional. Surprisingly, a cytosolic variant of this enzyme, which we obtained through the elimination of its carboxy-terminal membrane anchor, caused an increase in β-carotene accumulation. Overexpression of this CrtI variant in an optimized medium resulted in a strain with a β-carotene content of 79 mg g-1 cell dry weight, corresponding to a 76-fold improvement over the starting strain. CONCLUSIONS The retargeting of heterologously expressed pathway enzymes improves β-carotene production in S. cerevisiae, implicating extensive inter-organellar transport phenomena of carotenoid precursors. In addition, strong overexpression of carotenoid biosynthetic enzymes and the optimization of cultivation conditions are required for high contents.
Collapse
Affiliation(s)
- Simon Arhar
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria
| | - Rupert Pfaller
- Wacker Chemie AG, Consortium für elektrochemische Industrie, Zielstattstraße 20, 81379 München, Germany
| | - Karin Athenstaedt
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria
| | - Thomas Lins
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria
| | - Gabriela Gogg-Fassolter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria
| | - Thomas Züllig
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria
| | - Klaus Natter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria
| |
Collapse
|
13
|
Song Y, Liu H, Quax WJ, Zhang Z, Chen Y, Yang P, Cui Y, Shi Q, Xie X. Application of valencene and prospects for its production in engineered microorganisms. Front Microbiol 2024; 15:1444099. [PMID: 39171255 PMCID: PMC11335630 DOI: 10.3389/fmicb.2024.1444099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Valencene, a sesquiterpene with the odor of sweet and fresh citrus, is widely used in the food, beverage, flavor and fragrance industry. Valencene is traditionally obtained from citrus fruits, which possess low concentrations of this compound. In the past decades, the great market demand for valencene has attracted considerable attention from researchers to develop novel microbial cell factories for more efficient and sustainable production modes. This review initially discusses the biosynthesis of valencene in plants, and summarizes the current knowledge of the key enzyme valencene synthase in detail. In particular, we highlight the heterologous production of valencene in different hosts including bacteria, fungi, microalgae and plants, and focus on describing the engineering strategies used to improve valencene production. Finally, we propose potential engineering directions aiming to further increase the production of valencene in microorganisms.
Collapse
Affiliation(s)
- Yafeng Song
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huizhong Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Zhiqing Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yiwen Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ping Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yinhua Cui
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingshan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
14
|
Fordjour E, Liu CL, Yang Y, Bai Z. Recent advances in lycopene and germacrene a biosynthesis and their role as antineoplastic drugs. World J Microbiol Biotechnol 2024; 40:254. [PMID: 38916754 DOI: 10.1007/s11274-024-04057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
Sesquiterpenes and tetraterpenes are classes of plant-derived natural products with antineoplastic effects. While plant extraction of the sesquiterpene, germacrene A, and the tetraterpene, lycopene suffers supply chain deficits and poor yields, chemical synthesis has difficulties in separating stereoisomers. This review highlights cutting-edge developments in producing germacrene A and lycopene from microbial cell factories. We then summarize the antineoplastic properties of β-elemene (a thermal product from germacrene A), sesquiterpene lactones (metabolic products from germacrene A), and lycopene. We also elaborate on strategies to optimize microbial-based germacrene A and lycopene production.
Collapse
Affiliation(s)
- Eric Fordjour
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu , 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Chun-Li Liu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu , 214122, China.
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Yankun Yang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu , 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhonghu Bai
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu , 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
15
|
Tang M, Xu X, Liu Y, Li J, Du G, Lv X, Liu L. Combinatorial Metabolic Engineering for Improving Betulinic Acid Biosynthesis in Saccharomyces cerevisiae. ACS Synth Biol 2024; 13:1798-1808. [PMID: 38748665 DOI: 10.1021/acssynbio.4c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Betulinic acid (BA) is a lupane-type triterpenoid with potent anticancer and anti-HIV activities. Its great potential in clinical applications necessitates the development of an efficient strategy for BA synthesis. This study attempted to achieve efficient BA biosynthesis in Saccharomyces cerevisiae using systematic metabolic engineering strategies. First, a de novo BA biosynthesis pathway in S. cerevisiae was constructed, which yielded a titer of 14.01 ± 0.21 mg/L. Then, by enhancing the BA synthesis pathway and dynamic inhibition of the competitive pathway, a greater proportion of the metabolic flow was directed toward BA synthesis, achieving a titer of 88.07 ± 5.83 mg/L. Next, acetyl-CoA and NADPH supply was enhanced, which increased the BA titer to 166.43 ± 1.83 mg/L. Finally, another BA synthesis pathway in the peroxisome was constructed. Dual regulation of the peroxisome and cytoplasmic metabolism increased the BA titer to 210.88 ± 4.76 mg/L. Following fed-batch fermentation process modification, the BA titer reached 682.29 ± 8.16 mg/L. Overall, this work offers a guide for building microbial cell factories that are capable of producing terpenoids with efficiency.
Collapse
Affiliation(s)
- Mei Tang
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Institute of Future Food and Technology, JITRI, Yixing 214200, China
| |
Collapse
|
16
|
Yamada R, Yamamoto C, Sakaguchi R, Matsumoto T, Ogino H. Development of a metabolic engineering technology to simultaneously suppress the expression of multiple genes in yeast and application in carotenoid production. World J Microbiol Biotechnol 2024; 40:227. [PMID: 38822932 DOI: 10.1007/s11274-024-04034-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
In yeast metabolic engineering, there is a need for technologies that simultaneously suppress and regulate the expression of multiple genes and improve the production of target chemicals. In this study, we aimed to develop a novel technology that simultaneously suppresses the expression of multiple genes by combining RNA interference with global metabolic engineering strategy. Furthermore, using β-carotene as the target chemical, we attempted to improve its production by using the technology. First, we developed a technology to suppress the expression of the target genes with various strengths using RNA interference. Using this technology, total carotenoid production was successfully improved by suppressing the expression of a single gene out of 10 candidate genes. Then, using this technology, RNA interference strain targeting 10 candidate genes for simultaneous suppression was constructed. The total carotenoid production of the constructed RNA interference strain was 1.7 times compared with the parental strain. In the constructed strain, the expression of eight out of the 10 candidate genes was suppressed. We developed a novel technology that can simultaneously suppress the expression of multiple genes at various intensities and succeeded in improving carotenoid production in yeast. Because this technology can suppress the expression of any gene, even essential genes, using only gene sequence information, it is considered a useful technology that can suppress the formation of by-products during the production of various target chemicals by yeast.
Collapse
Affiliation(s)
- Ryosuke Yamada
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| | - Chihiro Yamamoto
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Rumi Sakaguchi
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Takuya Matsumoto
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
17
|
Han T, Miao G. Strategies, Achievements, and Potential Challenges of Plant and Microbial Chassis in the Biosynthesis of Plant Secondary Metabolites. Molecules 2024; 29:2106. [PMID: 38731602 PMCID: PMC11085123 DOI: 10.3390/molecules29092106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Diverse secondary metabolites in plants, with their rich biological activities, have long been important sources for human medicine, food additives, pesticides, etc. However, the large-scale cultivation of host plants consumes land resources and is susceptible to pest and disease problems. Additionally, the multi-step and demanding nature of chemical synthesis adds to production costs, limiting their widespread application. In vitro cultivation and the metabolic engineering of plants have significantly enhanced the synthesis of secondary metabolites with successful industrial production cases. As synthetic biology advances, more research is focusing on heterologous synthesis using microorganisms. This review provides a comprehensive comparison between these two chassis, evaluating their performance in the synthesis of various types of secondary metabolites from the perspectives of yield and strategies. It also discusses the challenges they face and offers insights into future efforts and directions.
Collapse
Affiliation(s)
- Taotao Han
- Department of Bioengineering, Huainan Normal University, Huainan 232038, China;
| | - Guopeng Miao
- Department of Bioengineering, Huainan Normal University, Huainan 232038, China;
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan 232038, China
| |
Collapse
|
18
|
Kumari M, Checker VG, Kathpalia R, Srivastava V, Singh IK, Singh A. Metabolic engineering for enhanced terpenoid production: Leveraging new horizons with an old technique. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108511. [PMID: 38593484 DOI: 10.1016/j.plaphy.2024.108511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/06/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Terpenoids are a vast class of plant specialized metabolites (PSMs) manufactured by plants and are involved in their interactions with environment. In addition, they add health benefits to human nutrition and are widely used as pharmaceutically active compounds. However, native plants produce a limited amount of terpenes restricting metabolite yield of terpene-related metabolites. Exponential growth in the plant metabolome data and the requirement of alternative approaches for producing the desired amount of terpenoids, has redirected plant biotechnology research to plant metabolic engineering, which requires in-depth knowledge and precise expertise about dynamic plant metabolic pathways and cellular physiology. Metabolic engineering is an assuring tool for enhancing the concentration of terpenes by adopting specific strategies such as overexpression of the key genes associated with the biosynthesis of targeted metabolites, controlling the modulation of transcription factors, downregulation of competitive pathways (RNAi), co-expression of the biosynthetic pathway genes in heterologous system and other combinatorial approaches. Microorganisms, fast-growing host plants (such as Nicotiana benthamiana), and cell suspension/callus cultures have provided better means for producing valuable terpenoids. Manipulation in the biosynthetic pathways responsible for synthesis of terpenoids can provide opportunities to enhance the content of desired terpenoids and open up new avenues to enhance their production. This review deliberates the worth of metabolic engineering in medicinal plants to resolve issues associated with terpenoid production at a commercial scale. However, to bring the revolution through metabolic engineering, further implementation of genome editing, elucidation of metabolic pathways using omics approaches, system biology approaches, and synthetic biology tactics are essentially needed.
Collapse
Affiliation(s)
- Megha Kumari
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India; Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India
| | | | - Renu Kathpalia
- Department of Botany, Kirori Mal College, University of Delhi, Delhi, 110007, India
| | - Vikas Srivastava
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, 181143, India
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Archana Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India; Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India; Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, Delhi, India.
| |
Collapse
|
19
|
Wang S, Meng D, Feng M, Li C, Wang Y. Efficient Plant Triterpenoids Synthesis in Saccharomyces cerevisiae: from Mechanisms to Engineering Strategies. ACS Synth Biol 2024; 13:1059-1076. [PMID: 38546129 DOI: 10.1021/acssynbio.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Triterpenoids possess a range of biological activities and are extensively utilized in the pharmaceutical, food, cosmetic, and chemical industries. Traditionally, they are acquired through chemical synthesis and plant extraction. However, these methods have drawbacks, including high energy consumption, environmental pollution, and being time-consuming. Recently, the de novo synthesis of triterpenoids in microbial cell factories has been achieved. This represents a promising and environmentally friendly alternative to traditional supply methods. Saccharomyces cerevisiae, known for its robustness, safety, and ample precursor supply, stands out as an ideal candidate for triterpenoid biosynthesis. However, challenges persist in industrial production and economic feasibility of triterpenoid biosynthesis. Consequently, metabolic engineering approaches have been applied to improve the triterpenoid yield, leading to substantial progress. This review explores triterpenoids biosynthesis mechanisms in S. cerevisiae and strategies for efficient production. Finally, the review also discusses current challenges and proposes potential solutions, offering insights for future engineering.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Dong Meng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Meilin Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chun Li
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
20
|
Bai X, Wang S, Zhang Q, Hu Y, Zhou J, Men L, Li D, Ma J, Wei Q, Xu M, Yin X, Hu T. Reprogramming the Metabolism of Yeast for High-Level Production of Miltiradiene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8704-8714. [PMID: 38572931 DOI: 10.1021/acs.jafc.4c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Miltiradiene serves as a crucial precursor in the synthesis of various high-value abietane-type diterpenes, exhibiting diverse pharmacological activities. Previous efforts to enhance miltiradiene production have primarily focused on the mevalonate acetate (MVA) pathway. However, limited emphasis has been placed on optimizing the supply of acetyl-CoA and NADPH. In this study, we constructed a platform yeast strain for miltiradiene production by reinforcing the biosynthetic pathway of geranylgeranyl diphosphate (GGPP) and acetyl-CoA, and addressing the imbalance between the supply and demand of the redox cofactor NADPH within the cytoplasm, resulting in an increase in miltiradiene yield to 1.31 g/L. Furthermore, we conducted modifications to the miltiradiene synthase fusion protein tSmKSL1-CfTPS1. Finally, the comprehensive engineering strategies and protein modification strategies culminated in 1.43 g/L miltiradiene in the engineered yeast under shake flask culture conditions. Overall, our work established efficient yeast cell factories for miltiradiene production, providing a foothold for heterologous biosynthesis of abietane-type diterpenes.
Collapse
Affiliation(s)
- Xue Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Shuling Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Qin Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuhan Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiawei Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lianhui Men
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Dengyu Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Jing Ma
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Qiuhui Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Mengdie Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaopu Yin
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Tianyuan Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
21
|
Yang E, Yao Y, Su H, Sun Z, Gao SS, Sureram S, Kittakoop P, Fan K, Pan Y, Xu X, Sun ZH, Ma G, Liu G. Two Cytochrome P450 Enzymes Form the Tricyclic Nested Skeleton of Meroterpenoids by Sequential Oxidative Reactions. J Am Chem Soc 2024. [PMID: 38602511 DOI: 10.1021/jacs.4c01943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Meroterpenoid clavilactones feature a unique benzo-fused ten-membered carbocyclic ring unit with an α,β-epoxy-γ-lactone moiety, forming an intriguing 10/5/3 tricyclic nested skeleton. These compounds are good inhibitors of the tyrosine kinase, attracting a lot of chemical synthesis studies. However, the natural enzymes involved in the formation of the 10/5/3 tricyclic nested skeleton remain unexplored. Here, we identified a gene cluster responsible for the biosynthesis of clavilactone A in the basidiomycetous fungus Clitocybe clavipes. We showed that a key cytochrome P450 monooxygenase ClaR catalyzes the diradical coupling reaction between the intramolecular hydroquinone and allyl moieties to form the benzo-fused ten-membered carbocyclic ring unit, followed by the P450 ClaT that exquisitely and stereoselectively assembles the α,β-epoxy-γ-lactone moiety in clavilactone biosynthesis. ClaR unprecedentedly acts as a macrocyclase to catalyze the oxidative cyclization of the isopentenyl to the nonterpenoid moieties to form the benzo-fused macrocycle, and a multifunctional P450 ClaT catalyzes a ten-electron oxidation to accomplish the biosynthesis of the 10/5/3 tricyclic nested skeleton in clavilactones. Our findings establish the foundation for the efficient production of clavilactones using synthetic biology approaches and provide the mechanistic insights into the macrocycle formation in the biosynthesis of fungal meroterpenoids.
Collapse
Affiliation(s)
- Erlan Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College,Beijing 100193, P.R. China
| | - Yongpeng Yao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Hao Su
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P.R. China
| | - Zhaocui Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College,Beijing 100193, P.R. China
| | - Shu-Shan Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P.R. China
| | - Sanya Sureram
- Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | - Prasat Kittakoop
- Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
- Chulabhorn Graduate Institute, Laksi, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Xudong Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College,Beijing 100193, P.R. China
| | - Zhong-Hao Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College,Beijing 100193, P.R. China
| | - Guoxu Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College,Beijing 100193, P.R. China
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
22
|
Chen R, Wang J, Xu J, Nie S, Chen C, Li Y, Li Y, He J, Li W, Wen M, Qiao J. Heterologous Biosynthesis of Kauralexin A1 in Saccharomyces cerevisiae through Metabolic and Enzyme Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7308-7317. [PMID: 38529564 DOI: 10.1021/acs.jafc.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Kauralexin A1 (KA1) is a key intermediate of the kauralexin A series metabolites of maize phytoalexins. However, their application is severely limited by their low abundance in maize. In this study, an efficient biosynthetic pathway was constructed to produce KA1 in Saccharomyces cerevisiae. Also, metabolic and enzyme engineering strategies were applied to construct the high-titer strains, such as chassis modification, screening synthases, the colocalization of enzymes, and multiple genomic integrations. First, the KA1 precursor ent-kaurene was synthesized using the efficient diterpene synthase GfCPS/KS from Fusarium fujikuroi, and optimized to reach 244.36 mg/L in shake flasks, which displayed a 200-fold increase compared to the initial strain. Then, the KA1 was produced under the catalysis of ZmCYP71Z18 from Zea mays and SmCPR1 from Salvia miltiorrhiza, and the titer was further improved by integrating the fusion protein into the genome. Finally, an ent-kaurene titer of 763.23 mg/L and a KA1 titer of 42.22 mg/L were achieved through a single-stage fed-batch fermentation in a 5 L bioreactor. This is the first report of the heterologous biosynthesis of maize diterpene phytoalexins in S. cerevisiae, which lays a foundation for further pathway reconstruction and biosynthesis of the kauralexin A series maize phytoalexins.
Collapse
Affiliation(s)
- Ruiqi Chen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Jingru Wang
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
- School of life science, Liaoning University, Shenyang 110036, China
| | - Junsong Xu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Shengxin Nie
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Chen Chen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Yukun Li
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Yanni Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jianwei He
- School of life science, Liaoning University, Shenyang 110036, China
| | - Weiguo Li
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Mingzhang Wen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| |
Collapse
|
23
|
Xu W, Liu M, Li H, Chen J, Zhou J. De Novo Synthesis of Chrysin in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6481-6490. [PMID: 38481145 DOI: 10.1021/acs.jafc.3c09820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Chrysin, a flavonoid, has been found to have been widely used in the health food field. But at present, chrysin production is hindered by the low availability of precursors and the lack of catalytic enzymes with high activity. Therefore, ZmPAL was initially screened to synthesize trans-cinnamic acid with high catalytic activity and specificity. To enhance the supply of precursors, the shikimic acid and chorismic acid pathway genes were overexpressed. Besides, the expression of the intracellular and mitochondrial carbon metabolism genes CIT, MAC1/3, CTP1, YHM2, RtME, and MDH was enhanced to increase the intracellular acetyl-CoA content. Chrysin was synthesized through a novel gene combination of ScCPR-EbFNSI-1 and PcFNSI. Finally, de novo synthesis of chrysin was achieved, reaching 41.9 mg/L, which is the highest reported concentration to date. In summary, we identified efficient enzymes for chrysin production and increased it by regulating acetyl-CoA metabolism in mitochondria and the cytoplasm, laying a foundation for future large-scale production.
Collapse
Affiliation(s)
- Weiqi Xu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Mengsu Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Hongbiao Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
24
|
Qin Z, Liu M, Ren X, Zeng W, Luo Z, Zhou J. De Novo Biosynthesis of Lutein in Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5348-5357. [PMID: 38412053 DOI: 10.1021/acs.jafc.3c09080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Lutein is a high-value tetraterpenoid carotenoid that is widely used in feed, cosmetics, food, and drugs. Microbial synthesis of lutein is an important method for green and sustainable production, serving as an alternative to plant extraction methods. However, an inadequate precursor supply and low catalytic efficiency of key pathway enzymes are the main reasons for the low efficacy of microbial synthesis of lutein. In this study, some strategies, such as enhancing the MVA pathway and localizing α-carotene synthase OluLCY within the subcellular organelles in Yarrowia lipolytica, were adopted to enhance the synthesis of precursor α-carotene, which resulted in a 10.50-fold increase in α-carotene titer, reaching 38.50 mg/L. Subsequently, by improving hydroxylase activity with truncated N-terminal transport peptide and locating hydroxylases to subcellular organelles, the final strain L9 producing 75.25 mg/L lutein was obtained. Eventually, a lutein titer of 675.40 mg/L (6.13 mg/g DCW) was achieved in a 5 L bioreactor by adding the antioxidant 2,6-ditert-butyl-4-methylphenol. This study realizes de novo synthesis of lutein in Y. lipolytica for the first time and achieves the highest lutein titer reported so far.
Collapse
Affiliation(s)
- Zhilei Qin
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Mengsu Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xuefeng Ren
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zhengshan Luo
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
25
|
Lind AC, David F, Siewers V. Evaluation and comparison of colorimetric outputs for yeast-based biosensors in laboratory and point-of-use settings. FEMS Microbiol Lett 2024; 371:fnae034. [PMID: 38782713 PMCID: PMC11166083 DOI: 10.1093/femsle/fnae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024] Open
Abstract
Recent research has shown the potential of yeast-based biosensors (YBBs) for point-of-use detection of pathogens and target molecules in saliva, blood, and urine samples. The choice of output can greatly affect the sensitivity, dynamic range, detection time, and ease-of-use of a sensor. For visual detection without the need for additional reagents or machinery, colorimetric outputs have shown great potential. Here, we evaluated the inducible generation of prodeoxyviolacein and proviolacein as colorimetric YBB outputs and benchmarked these against lycopene. The outputs were induced via the yeast mating pathway and were compared on agar plates, in liquid culture, and on paper slips. We found that all three outputs produced comparable pigment intensity on agar plates, making them applicable for bioengineering settings. In liquid media and on paper slips, lycopene resulted in a higher intensity pigment and a decreased time-of-detection.
Collapse
Affiliation(s)
- Andrea Clausen Lind
- Department of Life Sciences, Chalmers University of Technology, 412 58 Gothenburg, Sweden
| | - Florian David
- Department of Life Sciences, Chalmers University of Technology, 412 58 Gothenburg, Sweden
| | - Verena Siewers
- Department of Life Sciences, Chalmers University of Technology, 412 58 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
26
|
Huang G, Li J, Lin J, Duan C, Yan G. Multi-modular metabolic engineering and efflux engineering for enhanced lycopene production in recombinant Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2024; 51:kuae015. [PMID: 38621758 PMCID: PMC11074996 DOI: 10.1093/jimb/kuae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/13/2024] [Indexed: 04/17/2024]
Abstract
Lycopene has been widely used in the food industry and medical field due to its antioxidant, anti-cancer, and anti-inflammatory properties. However, achieving efficient manufacture of lycopene using chassis cells on an industrial scale remains a major challenge. Herein, we attempted to integrate multiple metabolic engineering strategies to establish an efficient and balanced lycopene biosynthetic system in Saccharomyces cerevisiae. First, the lycopene synthesis pathway was modularized to sequentially enhance the metabolic flux of the mevalonate pathway, the acetyl-CoA supply module, and lycopene exogenous enzymatic module. The modular operation enabled the efficient conversion of acetyl-CoA to downstream pathway of lycopene synthesis, resulting in a 3.1-fold increase of lycopene yield. Second, we introduced acetate as an exogenous carbon source and utilized an acetate-repressible promoter to replace the natural ERG9 promoter. This approach not only enhanced the supply of acetyl-CoA but also concurrently diminished the flux toward the competitive ergosterol pathway. As a result, a further 42.3% increase in lycopene production was observed. Third, we optimized NADPH supply and mitigated cytotoxicity by overexpressing ABC transporters to promote lycopene efflux. The obtained strain YLY-PDR11 showed a 12.7-fold increase in extracellular lycopene level compared to the control strain. Finally, the total lycopene yield reached 343.7 mg/L, which was 4.3 times higher than that of the initial strain YLY-04. Our results demonstrate that combining multi-modular metabolic engineering with efflux engineering is an effective approach to improve the production of lycopene. This strategy can also be applied to the overproduction of other desirable isoprenoid compounds with similar synthesis and storage patterns in S. cerevisiae. ONE-SENTENCE SUMMARY In this research, lycopene production in yeast was markedly enhanced by integrating a multi-modular approach, acetate signaling-based down-regulation of competitive pathways, and an efflux optimization strategy.
Collapse
Affiliation(s)
- Guangxi Huang
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Jiarong Li
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Jingyuan Lin
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Changqing Duan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Guoliang Yan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- Key Laboratory of Food Bioengineering (China National Light Industry), China Agricultural University, Beijing 100083, China
| |
Collapse
|
27
|
Ding YK, Ning Y, Xin D, Fu YJ. Dual cytoplasmic-peroxisomal compartmentalization engineering and multiple metabolic engineering strategies for high yield non-psychoactive cannabinoid in Saccharomyces cerevisiae. Biotechnol J 2024; 19:e2300590. [PMID: 38375558 DOI: 10.1002/biot.202300590] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 02/21/2024]
Abstract
CBG (Cannabigerol), a nonpsychoactive cannabinoid, has garnered attention due to its extensive antimicrobial and anti-inflammatory properties. However, the natural content of CBG in Cannabis sativa L. is minimal. In this study, we developed an engineered cell factory for CBG production using Saccharomyces cerevisiae. We introduced the CBGA biosynthetic pathway into S. cerevisiae and employed several strategies to enhance CBGA production. These strategies included dynamically inhibiting the competitive bypass of key metabolic pathways regulated by Erg20p. Additionally, we implemented a dual cytoplasmic-peroxisomal compartmentalization approach to further increase CBGA production. Furthermore, we ensured efficient CBGA production by optimizing NADPH and acetyl-CoA pools. Ultimately, our engineered strain achieved a CBG titer of 138 mg L-1 through fed-batch fermentation in a 5 L bioreactor, facilitated by microwave decarboxylation extraction. These findings underscore the significant potential of yeast cell factories for achieving higher yields in cannabinoid production.
Collapse
Affiliation(s)
- Yun-Kun Ding
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Yuan Ning
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Di Xin
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Yu-Jie Fu
- College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
28
|
Bureau JA, Oliva ME, Dong Y, Ignea C. Engineering yeast for the production of plant terpenoids using synthetic biology approaches. Nat Prod Rep 2023; 40:1822-1848. [PMID: 37523210 DOI: 10.1039/d3np00005b] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Covering: 2011-2022The low amounts of terpenoids produced in plants and the difficulty in synthesizing these complex structures have stimulated the production of terpenoid compounds in microbial hosts by metabolic engineering and synthetic biology approaches. Advances in engineering yeast for terpenoid production will be covered in this review focusing on four directions: (1) manipulation of host metabolism, (2) rewiring and reconstructing metabolic pathways, (3) engineering the catalytic activity, substrate selectivity and product specificity of biosynthetic enzymes, and (4) localizing terpenoid production via enzymatic fusions and scaffolds, or subcellular compartmentalization.
Collapse
Affiliation(s)
| | | | - Yueming Dong
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0C3, Canada.
| | - Codruta Ignea
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0C3, Canada.
| |
Collapse
|
29
|
Su B, Deng MR, Zhu H. Advances in the Discovery and Engineering of Gene Targets for Carotenoid Biosynthesis in Recombinant Strains. Biomolecules 2023; 13:1747. [PMID: 38136618 PMCID: PMC10742120 DOI: 10.3390/biom13121747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Carotenoids are naturally occurring pigments that are abundant in the natural world. Due to their excellent antioxidant attributes, carotenoids are widely utilized in various industries, including the food, pharmaceutical, cosmetic industries, and others. Plants, algae, and microorganisms are presently the main sources for acquiring natural carotenoids. However, due to the swift progress in metabolic engineering and synthetic biology, along with the continuous and thorough investigation of carotenoid biosynthetic pathways, recombinant strains have emerged as promising candidates to produce carotenoids. The identification and manipulation of gene targets that influence the accumulation of the desired products is a crucial challenge in the construction and metabolic regulation of recombinant strains. In this review, we provide an overview of the carotenoid biosynthetic pathway, followed by a summary of the methodologies employed in the discovery of gene targets associated with carotenoid production. Furthermore, we focus on discussing the gene targets that have shown potential to enhance carotenoid production. To facilitate future research, we categorize these gene targets based on their capacity to attain elevated levels of carotenoid production.
Collapse
Affiliation(s)
| | - Ming-Rong Deng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| |
Collapse
|
30
|
Luo Z, Shi JT, Chen XL, Chen J, Liu F, Wei LJ, Hua Q. Iterative gene integration mediated by 26S rDNA and non-homologous end joining for the efficient production of lycopene in Yarrowia lipolytica. BIORESOUR BIOPROCESS 2023; 10:83. [PMID: 38647953 PMCID: PMC10992032 DOI: 10.1186/s40643-023-00697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/23/2023] [Indexed: 04/25/2024] Open
Abstract
Because of its potent antioxidant effects, lycopene has been used in various industries including, but not limited to, food, medical, and cosmetic industries. Yarrowia lipolytica, a non-conventional yeast species, is a promising chassis due to its natural mevalonate (MVA) pathway, abundant precursor acetyl coenzyme A content, and oleaginous properties. Several gene editing tools have been developed for Y. lipolytica along with engineering strategies for tetraterpenoid production. In this study, we engineered Y. lipolytica following multi-level strategies for efficient lycopene accumulation. We first evaluated the performance of the key lycopene biosynthetic genes crtE, crtB, and crtI, expressed via ribosomal DNA (rDNA) mediated multicopy random integration in the HMG1- and GGS1-overexpressing background strain. Further improvement in lycopene production was achieved by overexpressing the key genes for MVA synthesis via non-homologous end joining (NHEJ) mediated multi-round iterative transformation. Efficient strategies in the MVA and lipid synthesis pathways were combined to improve lycopene production with a yield of 430.5 mg/L. This strain produced 121 mg/g dry cell weight of lycopene in a 5-L fed-batch fermentation system. Our findings demonstrated iterative gene integration mediated by 26S rDNA and NHEJ for the efficient production of lycopene in Y. lipolytica. These strategies can be applied to induce Y. lipolytica to produce other tetraterpenoids.
Collapse
Affiliation(s)
- Zhen Luo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Jiang-Ting Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Xin-Liang Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Jun Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
31
|
Zhang X, Chen S, Lin Y, Li W, Wang D, Ruan S, Yang Y, Liang S. Metabolic Engineering of Pichia pastoris for High-Level Production of Lycopene. ACS Synth Biol 2023; 12:2961-2972. [PMID: 37782893 DOI: 10.1021/acssynbio.3c00294] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Lycopene is widely used in cosmetics, food, and nutritional supplements. Microbial production of lycopene has been intensively studied. However, few metabolic engineering studies on Pichia pastoris have been aimed at achieving high-yield lycopene production. In this study, the CRISPR/Cpf1-based gene repression system was developed and the gene editing system was optimized, which were applied to improve lycopene production successfully. In addition, the sterol regulatory element-binding protein SREBP (Sre) was used for the regulation of lipid metabolic pathways to promote lycopene overproduction in P. pastoris for the first time. The final engineered strain produced lycopene at 7.24 g/L and 75.48 mg/g DCW in fed-batch fermentation, representing the highest lycopene yield in P. pastoris reported to date. These findings provide effective strategies for extended metabolic engineering assisted by the CRISPR/Cpf1 system and new insights into metabolic engineering through transcriptional regulation of related metabolic pathways to enhance carotenoid production in P. pastoris.
Collapse
Affiliation(s)
- Xinying Zhang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shuting Chen
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wenjie Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Denggang Wang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shupeng Ruan
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yuxin Yang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shuli Liang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
32
|
Du B, Sun M, Hui W, Xie C, Xu X. Recent Advances on Key Enzymes of Microbial Origin in the Lycopene Biosynthesis Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12927-12942. [PMID: 37609695 DOI: 10.1021/acs.jafc.3c03942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Lycopene is a common carotenoid found mainly in ripe red fruits and vegetables that is widely used in the food industry due to its characteristic color and health benefits. Microbial synthesis of lycopene is gradually replacing the traditional methods of plant extraction and chemical synthesis as a more economical and productive manufacturing strategy. The biosynthesis of lycopene is a typical multienzyme cascade reaction, and it is important to understand the characteristics of each key enzyme involved and how they are regulated. In this paper, the catalytic characteristics of the key enzymes involved in the lycopene biosynthesis pathway and related studies are first discussed in detail. Then, the strategies applied to the key enzymes of lycopene synthesis, including fusion proteins, enzyme screening, combinatorial engineering, CRISPR/Cas9-based gene editing, DNA assembly, and scaffolding technologies are purposefully illustrated and compared in terms of both traditional and emerging multienzyme regulatory strategies. Finally, future developments and regulatory options for multienzyme synthesis of lycopene and similar secondary metabolites are also discussed.
Collapse
Affiliation(s)
- Bangmian Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu Province, China
| | - Mengjuan Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu Province, China
| | - Wenyang Hui
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu Province, China
| | - Chengjia Xie
- School of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, Jiangsu Province, China
| | - Xian Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu Province, China
| |
Collapse
|
33
|
Wang S, Zhan C, Nie S, Tian D, Lu J, Wen M, Qiao J, Zhu H, Caiyin Q. Enzyme and Metabolic Engineering Strategies for Biosynthesis of α-Farnesene in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12452-12461. [PMID: 37574876 DOI: 10.1021/acs.jafc.3c03677] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
α-Farnesene, a type of acyclic sesquiterpene, is an important raw material in agriculture, aircraft fuel, and the chemical industry. In this study, we constructed an efficient α-farnesene-producing yeast cell factory by combining enzyme and metabolic engineering strategies. First, we screened different plants for α-farnesene synthase (AFS) with the best activity and found that AFS from Camellia sinensis (CsAFS) exhibited the most efficient α-farnesene production in Saccharomyces cerevisiae 4741. Second, the metabolic flux of the mevalonate pathway was increased to improve the supply of the precursor farnesyl pyrophosphate. Third, inducing site-directed mutagenesis in CsAFS, the CsAFSW281C variant was obtained, which considerably increased α-farnesene production. Fourth, the N-terminal serine-lysine-isoleucine-lysine (SKIK) tag was introduced to construct the SKIK∼CsAFSW281C variant, which further increased α-farnesene production to 2.8 g/L in shake-flask cultures. Finally, the α-farnesene titer of 28.3 g/L in S. cerevisiae was obtained by fed-batch fermentation in a 5 L bioreactor.
Collapse
Affiliation(s)
- Shengli Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Chuanling Zhan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Shengxin Nie
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Daoguang Tian
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Juane Lu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Mingzhang Wen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Hongji Zhu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
| | - Qinggele Caiyin
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
34
|
Madhavan A, Arun KB, Alex D, Anoopkumar AN, Emmanual S, Chaturvedi P, Varjani S, Tiwari A, Kumar V, Reshmy R, Awasthi MK, Binod P, Aneesh EM, Sindhu R. Microbial production of nutraceuticals: Metabolic engineering interventions in phenolic compounds, poly unsaturated fatty acids and carotenoids synthesis. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2092-2104. [PMID: 37273565 PMCID: PMC10232702 DOI: 10.1007/s13197-022-05482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/20/2022] [Accepted: 05/07/2022] [Indexed: 06/06/2023]
Abstract
Nutraceuticals have attained substantial attention due to their health-boosting or disease-prevention characteristics. Growing awareness about the potential of nutraceuticals for the prevention and management of diseases affecting human has led to an increase in the market value of nutraceuticals in several billion dollars. Nevertheless, limitations in supply and isolation complications from plants, animals or fungi, limit the large-scale production of nutraceuticals. Microbial engineering at metabolic level has been proved as an environment friendly substitute for the chemical synthesis of nutraceuticals. Extensively used microbial systems such as E. coli and S. cerevisiae have been modified as versatile cell factories for the synthesis of diverse nutraceuticals. This review describes current interventions in metabolic engineering for synthesising some of the therapeutically important nutraceuticals (phenolic compounds, polyunsaturated fatty acids and carotenoids). We focus on the interventions in enhancing product yield through engineering at gene level or pathway level.
Collapse
Affiliation(s)
- Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014 India
| | - K. B. Arun
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014 India
| | - Deepthy Alex
- Department of Biotechnology, Mar Ivanios College, Trivandrum, Kerala 695015 India
| | - A. N. Anoopkumar
- Department of Zoology, Centre for Research in Emerging Tropical Diseases (CRET‑D), University of Calicut, Malappuram, Kerala India
| | - Shibitha Emmanual
- Department of Zoology, St. Joseph’s College, Thrissur, Kerala 680121 India
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow, 226001 India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Paryavaran Bhavan, CHH Road, Sector 10 A, Gandhinagar, Gujarat 382010 India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Noida, 201301 India
| | - Vinod Kumar
- Fermentation Technology Division, CSIR- Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, J & K 180001 India
| | - R. Reshmy
- Department of Science and Humanities, Providence College of Engineering, Chengannur, Kerala 689122 India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695019 India
| | - Embalil Mathachan Aneesh
- Department of Zoology, Centre for Research in Emerging Tropical Diseases (CRET‑D), University of Calicut, Malappuram, Kerala India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam, Kerala 691505 India
| |
Collapse
|
35
|
Xu S, Zhang X, Zhang Y, Li Q, Ji L, Cheng H. Concomitant Production of Erythritol and β-Carotene by Engineered Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37466300 DOI: 10.1021/acs.jafc.3c03033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
While the expansion of the erythritol production industry has resulted in unprecedented production of yeast cells, it also suffers from a lack of effective utilization. β-Carotene is a value-added compound that can be synthesized by engineered Yarrowia lipolytica. Here, we first evaluated the production performance of erythritol-producing yeast strains under two different morphologies and then successfully constructed a chassis with yeast-like morphology by deleting Mhy1 and Cla4 genes. Subsequently, β-carotene synthesis pathway genes, CarRA and CarB from Blakeslea trispora, were introduced to construct the β-carotene and erythritol coproducing Y. lipolytica strain ylmcc. The rate-limiting genes GGS1 and tHMG1 were overexpressed to increase the β-carotene yield by 45.32-fold compared with the strain ylmcc. However, increased β-carotene accumulation led to prolonged fermentation time; therefore, transporter engineering through overexpression of YTH1 and YTH3 genes was used to alleviate fermentation delays. Using batch fermentation in a 3 L bioreactor, this engineered Y. lipolytica strain produced erythritol with production, yield, and productivity values of 171 g/L, 0.56 g/g glucose, and 2.38 g/(L·h), respectively, with a concomitant β-carotene yield of 47.36 ± 0.06 mg/g DCW. The approach presented here improves the value of erythritol-producing cells and offers a low-cost technique to obtain hydrophobic terpenoids.
Collapse
Affiliation(s)
- Shuo Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyi Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Li
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liyun Ji
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
36
|
Guo J, Sun X, Yuan Y, Chen Q, Ou Z, Deng Z, Ma T, Liu T. Metabolic Engineering of Saccharomyces cerevisiae for Vitamin B5 Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7408-7417. [PMID: 37154424 DOI: 10.1021/acs.jafc.3c01082] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Vitamin B5, also called d-pantothenic acid, is an essential vitamin in the human body and is widely used in pharmaceuticals, nutritional supplements, food, and cosmetics. However, few studies have investigated the microbial production of d-pantothenic acid, especially in Saccharomyces cerevisiae. By employing a systematic optimization strategy, we screened seven key genes in d-pantothenic acid biosynthesis from diverse species, including bacteria, yeast, fungi, algae, plants, animals, etc., and constructed an efficient heterologous d-pantothenic acid pathway in S. cerevisiae. By adjusting the copy number of the pathway modules, knocking out the endogenous bypass gene, balancing NADPH utilization, and regulating the GAL inducible system, a high-yield d-pantothenic acid-producing strain, DPA171, which can regulate gene expression using glucose, was constructed. By optimizing fed-batch fermentation, DPA171 produced 4.1 g/L d-pantothenic acid, which is the highest titer in S. cerevisiae to date. This study provides guidance for the development of vitamin B5 microbial cell factories.
Collapse
Affiliation(s)
- Jiaxuan Guo
- Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xixi Sun
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yujie Yuan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qitong Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zutian Ou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zixin Deng
- Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Microbial Metabolism, Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Tian Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tiangang Liu
- Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Microbial Metabolism, Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
- Hesheng Tech, Co., Ltd., Wuhan 430073, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
37
|
Zhang X, Wang X, Zhang Y, Wang F, Zhang C, Li X. Development of isopentenyl phosphate kinases and their application in terpenoid biosynthesis. Biotechnol Adv 2023; 64:108124. [PMID: 36863457 DOI: 10.1016/j.biotechadv.2023.108124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
As the largest class of natural products, terpenoids (>90,000) have multiple biological activities and a wide range of applications (e.g., pharmaceutical, agricultural, personal care and food industries). Therefore, the sustainable production of terpenoids by microorganisms is of great interest. Microbial terpenoid production depends on two common building blocks: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In addition to the natural biosynthetic pathways, mevalonate and methyl-D-erythritol-4-phosphate pathways, IPP and DMAPP can be produced through the conversion of isopentenyl phosphate and dimethylallyl monophosphate by isopentenyl phosphate kinases (IPKs), offering an alternative route for terpenoid biosynthesis. This review summarizes the properties and functions of various IPKs, novel IPP/DMAPP synthesis pathways involving IPKs, and their applications in terpenoid biosynthesis. Furthermore, we have discussed strategies to exploit novel pathways and unleash their potential for terpenoid biosynthesis.
Collapse
Affiliation(s)
- Xinyi Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xun Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
38
|
Xu S, Gao S, An Y. Research progress of engineering microbial cell factories for pigment production. Biotechnol Adv 2023; 65:108150. [PMID: 37044266 DOI: 10.1016/j.biotechadv.2023.108150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/14/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
Pigments are widely used in people's daily life, such as food additives, cosmetics, pharmaceuticals, textiles, etc. In recent years, the natural pigments produced by microorganisms have attracted increased attention because these processes cannot be affected by seasons like the plant extraction methods, and can also avoid the environmental pollution problems caused by chemical synthesis. Synthetic biology and metabolic engineering have been used to construct and optimize metabolic pathways for production of natural pigments in cellular factories. Building microbial cell factories for synthesis of natural pigments has many advantages, including well-defined genetic background of the strains, high-density and rapid culture of cells, etc. Until now, the technical means about engineering microbial cell factories for pigment production and metabolic regulation processes have not been systematically analyzed and summarized. Therefore, the studies about construction, modification and regulation of synthetic pathways for microbial synthesis of pigments in recent years have been reviewed, aiming to provide an up-to-date summary of engineering strategies for microbial synthesis of natural pigments including carotenoids, melanins, riboflavins, azomycetes and quinones. This review should provide new ideas for further improving microbial production of natural pigments in the future.
Collapse
Affiliation(s)
- Shumin Xu
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China; College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Song Gao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yingfeng An
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China; College of Food Science, Shenyang Agricultural University, Shenyang, China; Shenyang Key Laboratory of Microbial Resources Mining and Molecular Breeding, Shenyang, China; Liaoning Provincial Key Laboratory of Agricultural Biotechnology, Shenyang, China.
| |
Collapse
|
39
|
Wang YH, Zhang RR, Yin Y, Tan GF, Wang GL, Liu H, Zhuang J, Zhang J, Zhuang FY, Xiong AS. Advances in engineering the production of the natural red pigment lycopene: A systematic review from a biotechnology perspective. J Adv Res 2023; 46:31-47. [PMID: 35753652 PMCID: PMC10105081 DOI: 10.1016/j.jare.2022.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Lycopene is a natural red compound with potent antioxidant activity that can be utilized both as pigment and as a raw material in functional food, and so possesses good commercial prospects. The biosynthetic pathway has already been documented, which provides the foundation for lycopene production using biotechnology. AIM OF REVIEW Although lycopene production has begun to take shape, there is still an urgent need to alleviate the yield of lycopene. Progress in this area can provide useful reference for metabolic engineering of lycopene production utilizing multiple approaches. KEY SCIENTIFIC CONCEPTS OF REVIEW Using conventional microbial fermentation approaches, biotechnologists have enhanced the yield of lycopene by selecting suitable host strains, utilizing various additives, and optimizing culture conditions. With the development of modern biotechnology, genetic engineering, protein engineering, and metabolic engineering have been applied for lycopene production. Extraction from natural plants is the main way for lycopene production at present. Based on the molecular mechanism of lycopene accumulation, the production of lycopene by plant bioreactor through genetic engineering has a good prospect. Here we summarized common strategies for optimizing lycopene production engineering from a biotechnology perspective, which are mainly carried out by microbial cultivation. We reviewed the challenges and limitations of this approach, summarized the critical aspects, and provided suggestions with the aim of potential future breakthroughs for lycopene production in plants.
Collapse
Affiliation(s)
- Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Rong-Rong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yue Yin
- National Wolfberry Engineering Research Center, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia 750002, China
| | - Guo-Fei Tan
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550025, China
| | - Guang-Long Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jing Zhuang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jian Zhang
- College of Agriculture, Jilin Agricultural University, Changchun, Jilin 130118, China; Department of Biology, University of British Columbia, Okanagan, Kelowna, Canada
| | - Fei-Yun Zhuang
- Institute of Vegetable and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
40
|
Jin K, Shi X, Liu J, Yu W, Liu Y, Li J, Du G, Lv X, Liu L. Combinatorial metabolic engineering enables the efficient production of ursolic acid and oleanolic acid in Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2023; 374:128819. [PMID: 36868430 DOI: 10.1016/j.biortech.2023.128819] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Ursolic acid (UA) and oleanolic acid (OA) have been demonstrated to have promising therapeutic potential as anticancer and bacteriostasis agents. Herein, via the heterologous expression and optimization of CrAS, CrAO, and AtCPR1, the de novo syntheses of UA and OA were achieved with titers of 7.4 and 3.0 mg/L, respectively. Subsequently, metabolic flux was redirected by increasing the cytosolic acetyl-CoA level and tuning the copy numbers of ERG1 and CrAS, thereby affording 483.4 mg/L UA and 163.8 mg/L OA. Furthermore, the lipid droplet compartmentalization of CrAO and AtCPR1 alongside the strengthening of the NADPH regeneration system increased the UA and OA titers to 692.3 and 253.4 mg/L in a shake flask and to 1132.9 and 433.9 mg/L in a 3-L fermenter, which is the highest UA titer reported to date. Overall, this study provides a reference for constructing microbial cell factories that can efficiently synthesize terpenoids.
Collapse
Affiliation(s)
- Ke Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xun Shi
- Haoxiangni Health Food Co., Ltd, Xinzheng 451100, China
| | - Jiaheng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Wenwen Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Food Laboratory of Zhongyuan, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
41
|
Liu J, Wang X, Jin K, Liu Y, Li J, Du G, Lv X, Liu L. In Silico Prediction and Mining of Exporters for Secretory Bioproduction of Terpenoids in Saccharomyces cerevisiae. ACS Synth Biol 2023; 12:863-876. [PMID: 36867848 DOI: 10.1021/acssynbio.2c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Terpenoids are the largest class of natural products, and their bioproduction by engineered cell factories receives high attention. However, excessive intracellular accumulation is one of the bottlenecks that limit the further improvement of the yield of terpenoid products. Therefore, it is important to mine exporters to achieve the secretory production of terpenoids. This study proposed a framework for the in silico prediction and mining of terpenoid exporters in Saccharomyces cerevisiae. Through the process of "mining-docking-construction-validation", we found that Pdr5 of ATP-binding cassette (ABC) transporters and Osh3 of oxysterol-binding homology (Osh) proteins can promote squalene efflux. Squalene secretion of the strain overexpressing Pdr5 and Osh3 increased to 141.1 times that of the control strain. Besides squalene, ABC exporters also can promote the secretion of β-carotene and retinal. Molecular dynamics simulation results revealed that before exporter conformations transitioned to the "outward-open" states, the substrates might have bound to the tunnels and prepared for rapid efflux. Overall, this study provides a terpenoid exporter prediction and mining framework that may be generally used to identify exporters of other terpenoids.
Collapse
Affiliation(s)
- Jiaheng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xinglong Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Ke Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
42
|
Multi-Level Optimization and Strategies in Microbial Biotransformation of Nature Products. Molecules 2023; 28:molecules28062619. [PMID: 36985591 PMCID: PMC10051863 DOI: 10.3390/molecules28062619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
Continuously growing demand for natural products with pharmacological activities has promoted the development of microbial transformation techniques, thereby facilitating the efficient production of natural products and the mining of new active compounds. Furthermore, due to the shortcomings and defects of microbial transformation, it is an important scientific issue of social and economic value to improve and optimize microbial transformation technology in increasing the yield and activity of transformed products. In this review, the aspects regarding the optimization of fermentation and the cross-disciplinary strategy, leading to the microbial transformation of increased levels of the high-efficiency process from natural products of a plant or microbial origin, were discussed. Additionally, due to the increasing craving for targeted and efficient methods for detecting transformed metabolites, analytical methods based on multiomics were also discussed. Such strategies can be well exploited and applied to the production of more efficient and more natural products from microbial resources.
Collapse
|
43
|
Zhou K, Yu C, Liang N, Xiao W, Wang Y, Yao M, Yuan Y. Adaptive Evolution and Metabolic Engineering Boost Lycopene Production in Saccharomyces cerevisiae via Enhanced Precursors Supply and Utilization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3821-3831. [PMID: 36802623 DOI: 10.1021/acs.jafc.2c08579] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Lycopene is a red carotenoid with remarkable antioxidant activity, which has been widely used in food, cosmetics, medicine, and other industries. Production of lycopene in Saccharomyces cerevisiae provides an economic and sustainable means. Many efforts have been done in recent years, but the titer of lycopene seems to reach a ceiling. Enhancing the supply and utilization of farnesyl diphosphate (FPP) is generally regarded as an efficient strategy for terpenoid production. Herein, an integrated strategy by means of atmospheric and room-temperature plasma (ARTP) mutagenesis combined with H2O2-induced adaptive laboratory evolution (ALE) was proposed to improve the supply of upstream metabolic flux toward FPP. Enhancing the expression of CrtE and introducing an engineered CrtI mutant (Y160F&N576S) increased the utilization of FPP toward lycopene. Consequently, the titer of lycopene in the strain harboring the Ura3 marker was increased by 60% to 703 mg/L (89.3 mg/g DCW) at the shake-flask level. Eventually, the highest reported titer of 8.15 g/L of lycopene in S. cerevisiae was achieved in a 7 L bioreactor. The study highlights an effective strategy that the synergistic complementarity of metabolic engineering and adaptive evolution facilitates natural product synthesis.
Collapse
Affiliation(s)
- Kui Zhou
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chao Yu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- CABIO Biotech (Wuhan) Co., Ltd, Wuhan 430075, China
| | - Nan Liang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
44
|
Luo G, Lin Y, Chen S, Xiao R, Zhang J, Li C, Sinskey AJ, Ye L, Liang S. Overproduction of Patchoulol in Metabolically Engineered Komagataella phaffii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2049-2058. [PMID: 36681940 DOI: 10.1021/acs.jafc.2c08228] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Patchoulol, a plant-derived sesquiterpene compound, is widely used in perfumes, cosmetics, and pharmaceuticals. Microbial production provides a promising alternative approach for the efficient and sustainable production of patchoulol. However, there are no systematic engineering studies on Komagataella phaffii aimed at achieving high-yield patchoulol production. Herein, by fusion overexpression of FPP synthase and patchoulol synthase (ERG20LPTS), increasing the precursor supply, adjusting the copy number of ERG20LPTS and PTS, and combined with adding auxiliary carbon source and methanol concentration optimization, we constructed a high-yield patchoulol-producing strain P6H53, which produced 149.64 mg/L patchoulol in shake-flask fermentation with methanol as the substrate. In fed-batch fermentation, strain P6H53 achieved the highest production (2.47 g/L, 21.48 mg/g DCW, and 283.25 mg/L/d) to date in a 5 L fermenter. This study will lay a good foundation for the development of K. phaffii as a promising chassis microbial cell for the synthesis of patchoulol and other sesquiterpenes with methanol as the carbon source.
Collapse
Affiliation(s)
- Guangjuan Luo
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Shuting Chen
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Ruiming Xiao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jiaxin Zhang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Cheng Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Anthony J Sinskey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lei Ye
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, P. R. China
| | - Shuli Liang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
45
|
Xue J, Zhou J, Li J, Du G, Chen J, Wang M, Zhao X. Systematic engineering of Saccharomyces cerevisiae for efficient synthesis of hemoglobins and myoglobins. BIORESOURCE TECHNOLOGY 2023; 370:128556. [PMID: 36586429 DOI: 10.1016/j.biortech.2022.128556] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 05/26/2023]
Abstract
Hemoglobin (Hb) and myoglobin (Mb) are kinds of heme-binding proteins that play crucial physiological roles in different organisms. With rapid application development in food processing and biocatalysis, the requirement of biosynthetic Hb and Mb is increasing. However, the production of Hb and Mb is limited by the lower expressional level of globins and insufficient or improper heme supply. After selecting an inducible strategy for the expression of globins, removing the spatial barrier during heme synthesis, increasing the synthesis of 5-aminolevulinate and moderately enhancing heme synthetic rate-limiting steps, the microbial synthesis of bovine and porcine Hb was firstly achieved. Furthermore, an engineered Saccharomyces cerevisiae obtained a higher titer of soybean (108.2 ± 3.5 mg/L) and clover (13.7 ± 0.5 mg/L) Hb and bovine (68.9 ± 1.6 mg/L) and porcine (85.9 ± 5.0 mg/L) Mb. Therefore, this systematic engineering strategy will be useful to produce other hemoproteins or hemoenzymes with high activities.
Collapse
Affiliation(s)
- Jike Xue
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Miao Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xinrui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
46
|
Watcharawipas A, Runguphan W. Red yeasts and their carotenogenic enzymes for microbial carotenoid production. FEMS Yeast Res 2023; 23:6895548. [PMID: 36513367 DOI: 10.1093/femsyr/foac063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Carotenoids are C40 isoprene-based compounds with significant commercial interests that harbor diverse bioactivities. Prominent examples of carotenoids are beta-carotene, a precursor to vitamin A essential for proper eye health, and lycopene and astaxanthin, powerful antioxidants implicated in preventing cancers and atherosclerosis. Due to their benefits to human health, the market value for carotenoids is rapidly increasing and is projected to reach USD 1.7 billion by 2025. However, their production now relies on chemical synthesis and extraction from plants that pose risks to food management and numerous biological safety issues. Thus, carotenoid production from microbes is considered a promising strategy for achieving a healthy society with more sustainability. Red yeast is a heterogeneous group of basidiomycetous fungi capable of producing carotenoids. It is a critical source of microbial carotenoids from low-cost substrates. Carotenogenic enzymes from red yeasts have also been highly efficient, invaluable biological resources for biotechnological applications. In this minireview, we focus on red yeast as a promising source for microbial carotenoids, strain engineering strategies for improving carotenoid production in red yeasts, and potential applications of carotenogenic enzymes from red yeasts in conventional and nonconventional yeasts.
Collapse
Affiliation(s)
- Akaraphol Watcharawipas
- Department of Microbiology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Weerawat Runguphan
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
47
|
Yang X, Wang D, Hong J. Carotenoid production from nondetoxified xylose mother liquid or corncob hydrolysate with engineered Kluyveromyces marxianus. BIORESOURCE TECHNOLOGY 2022; 364:128080. [PMID: 36216283 DOI: 10.1016/j.biortech.2022.128080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Carotenoids are widely utilized in the food, pharmaceutical and nutraceutical industries. Here, Kluyveromyces marxianus was engineered to overproduce carotenoids from corncob hydrolysate or xylose mother liquid (XML, a byproduct of commercial xylose purification). First, the toxicity of fat-soluble carotenoids to cells was reduced by employing xylose inducible promoters using with a two-temperature strategy to separate cell growth and product accumulation. Then, through further engineering and optimization of the carotenoid biosynthesis pathway, 1506.7 mg/L lycopene, 988.5 mg/L β-carotene or 142.9 mg/L astaxanthin were produced with glucose and xylose by K. marxianus. Finally, 397.7 mg/L and 279.7 mg/L lycopene, 297.3 mg/L and 108.8 mg/L β-carotene, and 86.4 mg/L and 56.8 mg/L astaxanthin were produced with nonsterilized andnondetoxified XML or corncob hydrolysate after nitrogen source optimization. To our knowledge, the produced amounts of lycopene, β-carotene and astaxanthin from lignocellulose biomass by yeast in this study were higher than those in previous reports.
Collapse
Affiliation(s)
- Xiaoxue Yang
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Dongmei Wang
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, Anhui, China; Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230027, Anhui, China.
| |
Collapse
|
48
|
Zhang Y, Cao X, Wang J, Tang F. Enhancement of linalool production in Saccharomyces cerevisiae by utilizing isopentenol utilization pathway. Microb Cell Fact 2022; 21:212. [PMID: 36243714 PMCID: PMC9571491 DOI: 10.1186/s12934-022-01934-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Linalool is a monoterpenoid, also a vital silvichemical with commercial applications in cosmetics, flavoring ingredients, and medicines. Regulation of mevalonate (MVA) pathway metabolic flux is a common strategy to engineer Saccharomyces cerevisiae for efficient linalool production. However, metabolic regulation of the MVA pathway is complex and involves competition for central carbon metabolism, resulting in limited contents of target metabolites. RESULTS In this study, first, a truncated linalool synthase (t26AaLS1) from Actinidia arguta was selected for the production of linalool in S. cerevisiae. To simplify the complexity of the metabolic regulation of the MVA pathway and increase the flux of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), we introduced the two-step isopentenyl utilization pathway (IUP) into S. cerevisiae, which could produce large amounts of IPP/DMAPP. Further, the S. cerevisiae IDI1 (ecoding isopentenyl diphosphate delta-isomerase) and ERG20F96W-N127W (encoding farnesyl diphosphate synthase) genes were integrated into the yeast genome, combined with the strategies of copy number variation of the t26AaLS1 and ERG20F96W-N127W genes to increase the metabolic flux of the downstream IPP, as well as optimization of isoprenol and prenol concentrations, resulting in a 4.8-fold increase in the linalool titer. Eventually, under the optimization of carbon sources and Mg2+ addition, a maximum linalool titer of 142.88 mg/L was obtained in the two-phase extractive shake flask fermentation. CONCLUSIONS The results show that the efficient synthesis of linalool in S. cerevisiae could be achieved through a two-step pathway, gene expression adjustment, and optimization of culture conditions. The study may provide a valuable reference for the other monoterpenoid production in S. cerevisiae.
Collapse
Affiliation(s)
- Yaoyao Zhang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Beijing, 100102, Chaoyang District, China
| | - Xianshuang Cao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Beijing, 100102, Chaoyang District, China
| | - Jin Wang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Beijing, 100102, Chaoyang District, China
| | - Feng Tang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Beijing, 100102, Chaoyang District, China.
| |
Collapse
|
49
|
Ramírez Rojas AA, Swidah R, Schindler D. Microbes of traditional fermentation processes as synthetic biology chassis to tackle future food challenges. Front Bioeng Biotechnol 2022; 10:982975. [PMID: 36185425 PMCID: PMC9523148 DOI: 10.3389/fbioe.2022.982975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
Microbial diversity is magnificent and essential to almost all life on Earth. Microbes are an essential part of every human, allowing us to utilize otherwise inaccessible resources. It is no surprise that humans started, initially unconsciously, domesticating microbes for food production: one may call this microbial domestication 1.0. Sourdough bread is just one of the miracles performed by microbial fermentation, allowing extraction of more nutrients from flour and at the same time creating a fluffy and delicious loaf. There are a broad range of products the production of which requires fermentation such as chocolate, cheese, coffee and vinegar. Eventually, with the rise of microscopy, humans became aware of microbial life. Today our knowledge and technological advances allow us to genetically engineer microbes - one may call this microbial domestication 2.0. Synthetic biology and microbial chassis adaptation allow us to tackle current and future food challenges. One of the most apparent challenges is the limited space on Earth available for agriculture and its major tolls on the environment through use of pesticides and the replacement of ecosystems with monocultures. Further challenges include transport and packaging, exacerbated by the 24/7 on-demand mentality of many customers. Synthetic biology already tackles multiple food challenges and will be able to tackle many future food challenges. In this perspective article, we highlight recent microbial synthetic biology research to address future food challenges. We further give a perspective on how synthetic biology tools may teach old microbes new tricks, and what standardized microbial domestication could look like.
Collapse
|
50
|
Jing Y, Wang Y, Zhou D, Wang J, Li J, Sun J, Feng Y, Xin F, Zhang W. Advances in the synthesis of three typical tetraterpenoids including β-carotene, lycopene and astaxanthin. Biotechnol Adv 2022; 61:108033. [PMID: 36096404 DOI: 10.1016/j.biotechadv.2022.108033] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022]
Abstract
Carotenoids are natural pigments that widely exist in nature. Due to their excellent antioxidant, anticancer and anti-inflammatory properties, carotenoids are commonly used in food, medicine, cosmetic and other fields. At present, natural carotenoids are mainly extracted from plants, algae and microorganisms. With the rapid development of metabolic engineering and molecular biology as well as the continuous in-depth study of carotenoids synthesis pathways, industrial microorganisms have showed promising applications in the synthesis of carotenoids. In this review, we introduced the properties of several carotenoids and their biosynthetic metabolism process. Then, the microorganisms synthesizing carotenoids through the natural and non-natural pathways and the extraction methods of carotenoids were summarized and compared. Meanwhile, the influence of substrates on the carotenoids production was also listed. The methods and strategies for achieving high carotenoid production are categorized to help with future research.
Collapse
Affiliation(s)
- Yiwen Jing
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yanxia Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, PR China
| | - Dawei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jingnan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jiawen Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jingxiang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yifan Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| |
Collapse
|