1
|
Zhang Z, Cheng X, Huang Y, Wang D, Lv X, Chang X. Asymmetric Synthesis and Bioactivity Evaluation of Chiral Oxazoline Skeleton Molecules. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3887-3896. [PMID: 39913168 DOI: 10.1021/acs.jafc.4c08825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The utilization of novel organic synthesis methods is increasingly critical in the development of innovative agrochemicals. In this study, we designed and synthesized a series of chiral oxazoline derivatives using a one-pot method. This method involved first catalyzing the asymmetric aldol addition reaction of oxazolinyl esters with paraformaldehyde, followed by esterification with various pharmacophore-containing carboxylic acids. Unexpectedly, many of the target compounds exhibited promising antifungal and antioomycete activities, with their absolute configurations showing pronounced enantioselective activities. Notably, compound (R)-5c demonstrated significant biological activities against Valsa mali and Phytophthora capsica (EC50 = 1.023 mg/L and EC50 = 0.149 mg/L, respectively), which were markedly superior to its enantiomer (S)-5c (EC50 = 9.565 mg/L and EC50 = 0.924 mg/L, respectively). In vivo experiments confirmed that this compound exhibited both curative and protective effects against V. mali and P. capsici. CLSM and SEM analyses further indicated that compounds 5c had distinct physiological effects on P. capsici hyphae. Moreover, acute toxicity tests in zebrafish (Danio rerio) revealed that compound (R)-5c had significantly lower toxicity compared to the control drugs tebuconazole and dimethomorph. Consequently, this study provides valuable insights for the development of novel chiral oxazoline analogues as potential antifungal and antioomycete agrochemicals.
Collapse
Affiliation(s)
- Zhen Zhang
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiang Cheng
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yuanjian Huang
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Dandan Wang
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xianhai Lv
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230051, China
| | - Xihao Chang
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
2
|
Zeng LQ, Chen Q, Wei G, Chen W, Zhu XL, Yang GF. Comprehensive Overview of the Amide Linker Modification in the Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26027-26039. [PMID: 39540453 DOI: 10.1021/acs.jafc.4c05854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) have become one of the most important classes of agrochemical fungicides. According to the data from FRAC, the resistance risk for SDHIs had reached up to medium and even to high. In general, the chemical structure of SDHIs mainly contained three fragments: an acid core, a hydrophobic tail, and an amide linker, corresponding to three modification directions for each fragment. Among them, amide linker modification (ALM) has become a research hotspot for the design of novel SDHIs fungicides in recent years. We presented here a detailed review on the ALM strategy in the past decade, and some of them had entered the market. According to their chemical structures, ALM strategy were classified into four parts: (1) linked aliphatic chain between amide bond and hydrophobic tail, (2) introducing substituents to replacing hydrogen atom in the amide bond, (3) reverse extending the amide linker, and (4) changed with other bioisosteres. Moreover, the structure-activity relationship and the interaction mechanism of ALM-SDHI with SDH were discussed. This review aims to provide a global perspective on research and development of novel SDHIs, as well as suggestions for food safety management.
Collapse
Affiliation(s)
- Ling-Qiang Zeng
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Qi Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Ge Wei
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Wei Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Xiao-Lei Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang-Fu Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
3
|
Zhou B, Fu J, Zhang Y, Bai R, Wang Y, Yang Y, Li Y, Zhou L. Design, Bioactivity, and Action Mechanism of Pyridinecarbaldehyde Phenylhydrazone Derivatives with Broad-Spectrum Antifungal Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20850-20861. [PMID: 39287063 DOI: 10.1021/acs.jafc.4c04078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Replacing old pesticides with new pesticide varieties has been the main means to solve pesticide resistance. Therefore, it is necessary to research and develop new antifungal agents for plant protection. In this study, a series of pyridinecarbaldehyde phenylhydrazone derivatives were designed and evaluated for their inhibition activity on plant pathogenic fungi to search for novel fungicide candidates. Picolinaldehyde phenylhydrazone (1) and nicotinaldehyde phenylhydrazone (2) were identified as promising antifungal lead scaffolds. The 4-fluorophenylhydrazone derivatives (1a and 2a) of 1 and 2 showed highly effective and broad-spectrum inhibition activity in vitro on 11 phytopathogenic fungi with EC50 values of 0.870-3.26 μg/mL, superior to the positive control carbendazim in most cases. The presence of the 4-fluorine atom on the phenyl showed a remarkable activity enhancement effect. Compound 1a at 300 μg/mL provided almost complete protection against infection of Alternaria solani on tomatoes over the post-treatment 9 days and high safety to germination of plant seeds. Furthermore, 1a showed strong inhibition activity with an IC50 value of 0.506 μg/mL on succinate dehydrogenase in A. solani. Molecular docking showed that both 1a and 2a can well bind to the ubiquinone-binding region of SDH by the conventional hydrogen bond, carbon-hydrogen bond, π-π or π-amide interaction, π-alkyl interaction, X---F (X = N, C, or H) interaction, and van der Waal forces. Meanwhile, scanning and transmission electron analysis displayed that 1a destroyed the morphology of mycelium and the structure of the cell membrane of A. solani. Fluorescent staining analysis revealed that 1a changed the mitochondrial membrane potential and cell membrane permeability. Thus, pyridinecarbaldehyde phenylhydrazone compounds emerged as novel antifungal lead scaffolds, and 1a and 2a can be considered promising candidates for the development of new agricultural fungicides.
Collapse
Affiliation(s)
- Bohang Zhou
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Plant Nematology, Xi'an 710043, Shaanxi, People's Republic of China
| | - Juan Fu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Yuhao Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Ruofei Bai
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Yiwei Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Yiwei Yang
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Plant Nematology, Xi'an 710043, Shaanxi, People's Republic of China
| | - Yingmei Li
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Plant Nematology, Xi'an 710043, Shaanxi, People's Republic of China
| | - Le Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| |
Collapse
|
4
|
Li M, Kong W, Sun S, He X, Li S. Degradation-Risk-Inspired Optimization of the Antifungal Oxazolinyl Aniline Lead by a Fusion of Triazole with Nicotinamide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17599-17607. [PMID: 39046270 DOI: 10.1021/acs.jafc.4c02025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The discovery of readily available and easily modifiable new models is a crucial and practical solution for agrochemical innovation. Antifungal function-oriented fusion of triazole with the prevalidated lead (R)-LE001 affords a novel framework with a broad and enhanced antifungal spectrum. Characterized by the easy accessibility and adjustability of [1,2,4]triazolo[4,3-a]pyridine, modular fine-tuning provided a set of unprecedented leads (e.g., Z23, Z25, Z26, etc.) with superior antifungal potentials than the positive control boscalid. Candidate Z23 exhibited a more promising antifungal activity against Sclerotinia sclerotiorum, Botrytis cinerea, and Phytophthora capsici with EC50 values of 0.7, 0.6, and 0.5 μM, respectively. This candidate could effectively control boscalid-resistant B. cinerea strains and also exhibit good vivo efficacy in controlling gray mold. Noteworthily, both the SDH-inhibition and the efficiency against Oomycete P. capsici are quite distinct from that of the positive control boscalid. A molecular docking simulation also differentiates Z23 from boscalid. These findings highlight the potential of [1,2,4]triazolo[4,3-a]pyridine amide as a novel antifungal model.
Collapse
Affiliation(s)
- Mengyang Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wenlong Kong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengxin Sun
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiaodan He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengkun Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Chen H, Jiang Z, Tong H, Mai Z, Kong R, Zhang W, Zhang MZ, Chen K, Zhu Y. Discovery of Novel Acethydrazide-Containing Flavonol Derivatives as Potential Antifungal Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17229-17239. [PMID: 39052285 DOI: 10.1021/acs.jafc.4c02654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
In this study, a series of novel hydrazide-containing flavonol derivatives was designed, synthesized, and evaluated for antifungal activity. In the in vitro antifungal assay, most of the target compounds exhibited potent antifungal activity against seven tested phytopathogenic fungi. In particular, compound C32 showed the best antifungal activity against Rhizoctonia solani (EC50 = 0.170 μg/mL), outperforming carbendazim (EC50 = 0.360 μg/mL) and boscalid (EC50 = 1.36 μg/mL). Compound C24 exhibited excellent antifungal activity against Valsa mali, Botrytis cinerea, and Alternaria alternata with EC50 values of 0.590, 0.870, and 1.71 μg/mL, respectively. The in vivo experiments revealed that compounds C32 and C24 were potential novel agricultural antifungals. 3D quantitative structure-activity relationship (3D-QSAR) models were used to analyze the structure-activity relationships of these compounds. The analysis results indicated that introducing appropriate electronegative groups at position 4 of a benzene ring could effectively improve the anti-R. solani activity. In the antifungal mechanism study, scanning electron microscopy and transmission electron microscopy analyses revealed that C32 disrupted the normal growth of hyphae by affecting the structural integrity of the cell membrane and cellular respiration. Furthermore, compound C32 exhibited potent succinate dehydrogenase (SDH) inhibitory activity (IC50 = 8.42 μM), surpassing that of the SDH fungicide boscalid (IC50 = 15.6 μM). The molecular dynamics simulations and docking experiments suggested that compound C32 can occupy the active site and form strong interactions with the key residues of SDH. Our findings have great potential for aiding future research on plant disease control in agriculture.
Collapse
Affiliation(s)
- Hongyi Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zunyun Jiang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - He Tong
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziyun Mai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming-Zhi Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Kong W, Sun S, He X, Wang J, Li S. Multidimensional Optimization of R-LE001 for New Leads with Enhanced Antifungal Profiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14984-14992. [PMID: 38907719 DOI: 10.1021/acs.jafc.4c00782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Scaffold hopping and structural fine-tuning are important strategies for agrochemical innovation. Multidimensional optimization of the prevalidated antifungal lead R-LE001 was conducted via the design, synthesis, and bioevaluation of 53 new compounds differing in either scaffold or substituent. The antifungal structure-activity relationship (SAR) revealed that a number of amides containing 2-(2-oxazolinyl) aniline (NHPhOx) or 2-(2-thiazolinyl) aniline (NHPhthiOx) demonstrated a more promising antifungal effect than both R-LE001 and the positive control boscalid. Specifically, compound 10 (encoded LEX-K01) shows an excellent antifungal effect against Botrytis cinerea with an EC50 value lower than 0.11 μM. This small change leads to a significant improvement (over 1 order of magnitude) in bioactivity compared to that of either R-LE001 (EC50 = 1.41 μM) or boscalid (EC50 = 2.01 μM) and fluxapyroxad (EC50 = 4.35 μM). With much lower resistance factors, LEX-K01 (10) was more efficacious against the two boscalid-resistant strains of B. cinerea TZ01 and NJBH2017. A combination of LEX-K01 (10) and boscalid in a ratio of 1:3 showed synergistic effects against resistant B. cinerea TZ01 and NJBH2017, with SR values of 3.01 and 2.55, respectively. LEX-K01 (10) has a curative efficacy (70.3%) more prominent than that of boscalid (51.2%) in controlling disease caused by B. cinerea. The molecular docking simulation of LEX-K01 (10) with the SDH protein of B. cinerea displayed four hydrogen bonds with amino acid residues TYR144, ARG88, TRP81, and SER84, rationalizing a stronger affinity than boscalid. The scanning electron microscopy (SEM) characteristic revealed that it could cause an obvious collapse of B. cinerea mycelium. This work indicates that LEX-K01 (10) has the potential to be further explored as a new antifungal agent.
Collapse
Affiliation(s)
- Wenlong Kong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengxin Sun
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiaodan He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jinbo Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengkun Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Trienes S, Xu J, Ackermann L. Photoinduced C-H arylation of 1,3-azoles via copper/photoredox dual catalysis. Chem Sci 2024; 15:7293-7299. [PMID: 38756807 PMCID: PMC11095366 DOI: 10.1039/d4sc00393d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
The visible light-induced C-H arylation of azoles has been accomplished by dual-catalytic system with the aid of an inexpensive ligand-free copper(i)-catalyst in combination with a suitable photoredox catalyst. An organic photoredox catalyst, 10-phenylphenothiazine (PTH), was identified as effective, cost-efficient and environmentally-benign alternative to commonly-used, expensive Ir(iii)-based complexes. The method proved applicable for the C-H arylation of various azole derivatives, including oxazoles, benzoxazoles, thiazoles, benzothiazoles as well as more challenging imidazoles and benzimidazoles. Moreover, the derivatization of complex molecules and the gram scale synthesis of the natural product balsoxin reflected the synthetic utility of the developed strategy. Mechanistic studies were indicative of a single electron transfer-based (SET) mechanism with an aryl radical as key intermediate.
Collapse
Affiliation(s)
- Sven Trienes
- Institut für Organische und Biomolekulare Chemie, Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
- DZHK (German Centre for Cardiovascular Research) Potsdamer Straße 58 10875 Berlin Germany
| | - Jiawei Xu
- Institut für Organische und Biomolekulare Chemie, Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
- DZHK (German Centre for Cardiovascular Research) Potsdamer Straße 58 10875 Berlin Germany
| |
Collapse
|
8
|
Huang Y, Peng X, Chen J, Shu L, Zhang M, Jin J, Jin Z, Chi YR. Discovery of Novel Chiral Indole Derivatives Containing the Oxazoline Moiety as Potential Antiviral Agents for Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6979-6987. [PMID: 38520352 DOI: 10.1021/acs.jafc.4c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Potato virus Y (PVY) is an important plant virus that has spread worldwide, causing significant economic losses. To search for novel structures as potent antiviral agents, a series of chiral indole derivatives containing oxazoline moieties were designed and synthesized and their anti-PVY activities were evaluated. Biological activity tests demonstrated that many chiral compounds exhibited promising anti-PVY activities and that their absolute configurations exhibited obvious distinctions in antiviral bioactivities. Notably, compound (S)-4v displayed excellent curative and protective efficacy against PVY, with EC50 values of 328.6 and 256.1 μg/mL, respectively, which were superior to those of commercial virucide ningnanmycin (NNM, 437.4 and 397.4 μg/mL, respectively). The preliminary antiviral mechanism was investigated to determine the difference in antiviral activity between the two enantiomers of 4v chiral compounds. Molecular docking indicated a stronger binding affinity between the coating proteins of PVY (PVY-CP) and (S)-4v (-6.5 kcal/mol) compared to (R)-4v (-6.2 kcal/mol). Additionally, compound (S)-4v can increase the chlorophyll content and defense-related enzyme activities more effectively than its enantiomer. Therefore, this study provides an important basis for the development of chiral indole derivatives containing oxazoline moieties as novel agricultural chemicals.
Collapse
Affiliation(s)
- Yixian Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Xiaolin Peng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Jinli Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Liangzhen Shu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Meng Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Jiamiao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
9
|
Yang C, Sun S, Li M, Dou M, Li S. Design and Discovery of α-Oximido-arylacetamides as Novel Antifungal Leads. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6702-6710. [PMID: 38484107 DOI: 10.1021/acs.jafc.3c08041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The discovery of novel and easily accessible antifungal compounds is an imperative issue in agrochemical innovation. Our continuing research with the o-aminophenyloxazoline (NHPhOx) scaffold demonstrated the viability of introducing phenylacetamides for identifying novel antifungal leads. An antifungal function-oriented molecular evaluation was conducted for the previously identified lead R-LE008. Fine-tuning of the α-position and scaffold hopping of acid segment and NHPhOx enables α-oximido-arylacetamide as a novel antifungal model. The concomitant function-oriented diversification produces a panel of antifungal leads CN19, CN21b, CN28, and CN31 against Sclerotinia sclerotiorum and Botrytis cinerea. The crucial and multidimensional effect of the configuration of the acquired amides on the antifungal performance is demonstrated specifically by the separable CN21 isomers. The Z-isomer (CN21b), with an EC50 value of 0.97 μM against B. cinerea, is significantly more potent than its E-isomer (CN21a) and the positive control boscalid. More importantly, compound CN21b can efficiently inhibit resistant B. cinerea strains. CN21b demonstrates a better in vivo preventative effect (82.1%) than those of CN21a (48.1%) and boscalid (55.1%) at 100 μM. CN21b showed a distinct binding model from those of the boscalid and CN21a in the molecular docking simulation. A further morphological investigation by scanning electron microscopy revealed the different mycelia shrinkage of B. cinerea treated by CN21 isomers. The easy accessibility and cost-effectiveness demonstrated the practical potential of α-oximido-phenylacetamide containing NHPhOx as a new model for agrochemical innovation.
Collapse
Affiliation(s)
- Chen Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengxin Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Mengyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Menglan Dou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengkun Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
10
|
Kong W, Li N, Lai J, Sun S, Li S. Antifungal Function Oriented Scaffold Hopping for the Discovery of Oxazolyl-oxazoline as a Novel Model against Fusarium graminearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18260-18269. [PMID: 37756692 DOI: 10.1021/acs.jafc.3c04725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Discovery of novel structural models is extremely important in agrochemical innovation. Scaffold hopping was conducted, and 16 kinds of novel models were synthesized and biologically evaluated. Oxazolyl-oxazoline 25 showed a promising in vitro potential against Fusarium graminearum with EC50 value of 18.25 μM, which was 2.4 times more potent than that of carbendazim (EC50 = 43.06 μM). The antifungal structure-activity relationship (SAR) revealed that compound 25am had the most promising antifungal activity against F. graminearum, with an EC50 value of 13.46 μM, which was 3.2 more potent than that of carbendazim. Different from carbendazim, the candidate 25am could form five hydrogen bonds with the amino acid residues in β-tubulin in the molecular docking and could effectively inhibit the carbendazim-resistant F. graminearum strain. Scanning electron microscopy (SEM) revealed that compound 25am induced the mycelia of F. graminearum slight collapse. This work suggests that compound 25am should be prioritized for further evaluation for new antifungal agents.
Collapse
Affiliation(s)
- Wenlong Kong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Nannan Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jixing Lai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengxin Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengkun Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
11
|
Ali Q, Khan AR, Tao S, Rajer FU, Ayaz M, Abro MA, Gu Q, Wu H, Kuptsov V, Kolomiets E, Gao X. Broad-spectrum antagonistic potential of Bacillus spp. volatiles against Rhizoctonia solani and Xanthomonas oryzae pv. oryzae. PHYSIOLOGIA PLANTARUM 2023; 175:e14087. [PMID: 38148207 DOI: 10.1111/ppl.14087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/15/2023] [Accepted: 10/27/2023] [Indexed: 12/28/2023]
Abstract
Rhizoctonia solani and Xanthomonas oryzae pv. oryzae (Xoo) are the two major diseases affecting the quality and quantity of rice production. In the current study, volatile organic compounds (VOCs) of Bacillus spp. were used as green biocontrol agents for plant diseases. In in vitro experiments, Bacillus spp. FZB42, NMTD17, and LLTC93-VOCs displayed strong antimicrobial volatile activity with inhibition rates of 76, 66, and 78% for R. solani and 78, 81, and 76% for Xoo, respectively, compared to control. The synthetic VOCs, namely Pentadecane (PDC), Benzaldehyde (BDH), 1,2-Benz isothiazol-3(2H)-one (1,2-BIT), and mixture (MIX) of VOCs showed high volatile activity with inhibition rates of 86, 86, 89, and 92% against R. solani and 81, 81, 82, and 86%, respectively, against Xoo as compared to control. In addition, the scanning and transmission electron microscopes (SEM and TEM) analyses were performed to examine the effect of Bacillus and synthetic VOC treatments on R. solani and Xoo morphology. The analysis revealed the deformed and irregularized morphology of R. solani mycelia and Xoo cells after VOC treatments. The microscopic analysis showed that the rapid inhibition was due to severe oxidative productions inside the R. solani mycelia and Xoo cells. By using molecular docking, it was determined that the synthetic VOCs entered the active binding site of trehalase and NADH dehydrogenase proteins, causing R. solani and Xoo cells to die prematurely and an accumulation of ROS. In the greenhouse experiment, FZB42, NMTD17, and LLTC93-VOCs significantly reduced the lesions of R. solani 8, 7, and 6 cm, and Xoo 7, 6, and 6 cm, respectively, then control. The synthetic VOCs demonstrated that the PDC, BDH, 1,2-BIT, and MIX-VOCs significantly reduced R. solani lesions on leaves 6, 6, 6, and 5 cm and Xoo 6, 5, 5, and 4 cm, respectively, as compared to control. Furthermore, plant defence-related genes and antioxidant enzymes were upregulated in rice plants. These findings provide novel mechanisms by which Bacillus antimicrobial VOCs control plant diseases.
Collapse
Affiliation(s)
- Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| | - Abdur Rashid Khan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| | - Sheng Tao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| | - Faheem Uddin Rajer
- Department of Plant Pathology, Faculty of Crop Protection, Sindh Agriculture University, Pakistan
| | - Muhammad Ayaz
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| | - Manzoor Ali Abro
- Department of Plant Pathology, Faculty of Crop Protection, Sindh Agriculture University, Pakistan
| | - Qin Gu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| | - Huijun Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| | - Vladislav Kuptsov
- State Scientific Production Association "Chemical synthesis and biotechnology", Institute of Microbiology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Emilia Kolomiets
- State Scientific Production Association "Chemical synthesis and biotechnology", Institute of Microbiology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Xuewen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
12
|
Yang C, Sun S, Li W, Mao Y, Wang Q, Duan Y, Csuk R, Li S. Bioactivity-Guided Subtraction of MIQOX for Easily Available Isoquinoline Hydrazides as Novel Antifungal Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11341-11349. [PMID: 37462275 DOI: 10.1021/acs.jafc.3c02096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The discovery of novel and easily available leads provides a convincing solution to agrochemical innovation. A bioassay-guided scaffold subtraction of the previous "Chem-Bio Model" isoquinoline-3-oxazoline MIQOX was conducted for identifying the easily available isoquinoline-3-hydrazide as a novel antifungal scaffold. The special and practical potential of this model was demonstrated by a phenotypic antifungal bioassay, molecular docking, and cross-resistance evaluation. A panel of antifungal leads (LW2, LW3, and LW11) was acquired, showing much better antifungal performance than the positive controls. Specifically, compound LW3 exhibited a broad antifungal spectrum holding EC50 values as low as 0.54, 0.09, 1.52, and 2.65 mg/L against B. cinerea, R. solani, S. sclerotiorum , and F. graminearum, respectively. It demonstrated a curative efficacy better than that of boscalid in controlling the plant disease caused by B. cinerea. The candidate LW3 did not show cross-resistance to the extensively used succinate dehydrogenase inhibitor (SDHI) fungicides and can efficiently inhibit resistant B. cinerea strains. The molecular docking of compound LW3 is quite different from that of the positive controls boscalid and fluopyram. This progress highlights the practicality of isoquinoline hydrazide as a novel model in fungicide innovation.
Collapse
Affiliation(s)
- Chen Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengxin Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wei Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China
| | - Yushuai Mao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China
| | - Qiao Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China
| | - Yabing Duan
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, Halle (Saale) D-06120, Germany
| | - Shengkun Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
13
|
Jiang W, Zhang T, Wang J, Cheng W, Lu T, Yan Y, Tang X. Design, Synthesis, Inhibitory Activity, and Molecular Modeling of Novel Pyrazole-Furan/Thiophene Carboxamide Hybrids as Potential Fungicides Targeting Succinate Dehydrogenase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:729-738. [PMID: 36562616 DOI: 10.1021/acs.jafc.2c05054] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To discover new fungicides targeting succinate dehydrogenase (SDH), 36 new furan/thiophene carboxamides containing 4,5-dihydropyrazole rings were designed, synthesized, and characterized. The crystal structure of compound 5l was determined with the X-ray diffraction (XRD) of single crystals. The antifungal activity of these compounds was studied against Botrytis cinerea, Pyricularia oryzae, Erysiphe graminis, Physalospora piricola, and Penicillium digitatum. Bioassay results were that most compounds had obvious inhibitory activity at 20 μg/mL. Compounds 5j, 5k, and 5l possessed outstanding inhibitory activity against B. cinerea. Their EC50 values were 0.540, 0.676, and 0.392 μg/mL, respectively. They owned better effects than fluxapyroxad (EC50 = 0.791 μg/mL). In the meantime, the inhibitory activity of 16 compounds was evaluated against SDH. It turned out that these compounds displayed excellent activity. The IC50 values of compounds 5j, 5k, and 5l reached 0.738, 0.873, and 0.506 μg/mL, respectively, whereas the IC50 value of fluxapyroxad was 1.031 μg/mL. The results of molecular dynamics (MD) simulation showed that compound 5l possessed a stronger affinity to SDH than fluxapyroxad.
Collapse
Affiliation(s)
- Wenjing Jiang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Tingting Zhang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Jingwen Wang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Wei Cheng
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Tong Lu
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Yingkun Yan
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Xiaorong Tang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| |
Collapse
|
14
|
Luo B, Ning Y. Comprehensive Overview of Carboxamide Derivatives as Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:957-975. [PMID: 35041423 DOI: 10.1021/acs.jafc.1c06654] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Up to now, a total of 24 succinate dehydrogenase inhibitors (SDHIs) fungicides have been commercialized, and SDHIs fungicides were also one of the most active fungicides developed in recent years. Carboxamide derivatives represented an important class of SDHIs with broad spectrum of antifungal activities. In this review, the development of carboxamide derivatives as SDHIs with great significances were summarized. In addition, the structure-activity relationships (SARs) of antifungal activities of carboxamide derivatives as SDHIs was also summarized based on the analysis of the structures of the commercial SDHIs and lead compounds. Moreover, the cause of resistance of SDHIs and some solutions were also introduced. Finally, the development trend of SDHIs fungicides was prospected. We hope this review will give a guide for the development of novel SDHIs fungicides in the future.
Collapse
Affiliation(s)
- Bo Luo
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Yuli Ning
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| |
Collapse
|
15
|
Dai JK, Dan WJ, Wan JB. Natural and synthetic β-carboline as a privileged antifungal scaffolds. Eur J Med Chem 2021; 229:114057. [PMID: 34954591 DOI: 10.1016/j.ejmech.2021.114057] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 01/04/2023]
Abstract
The discovery of antifungal agents with novel structure, broad-spectrum, low toxicity, and high efficiency has been the focus of medicinal chemists. Over the past decades, β-carboline scaffold has attracted extensive attention in the scientific community due to its potent and diverse biological activities with nine successfully marketed β-carboline-based drugs. In this review, we summarized the current states and advances in the antifungal activity of natural and synthetic β-carbolines. Additionally, the structure-activity relationships and their antifungal mechanisms targeting biofilm, cell wall, cell membrane, and fungal intracellular targets were also systematically discussed. In summary, β-carbolines have the great potential to develop new efficient scaffolds to combat fungal infections.
Collapse
Affiliation(s)
- Jiang-Kun Dai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China; College of Veterinary Medicine, Northwest A&F University, Shaanxi, China; School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Wen-Jia Dan
- School of Life Science and Technology, Weifang Medical University, Shandong, China.
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
16
|
Soto M, Estevez-Braun A, Amesty Á, Kluepfel J, Restrepo S, Diaz K, Espinoza L, Olea AF, Taborga L. Synthesis and Fungicidal Activity of Hydrated Geranylated Phenols against Botrytis cinerea. Molecules 2021; 26:6815. [PMID: 34833907 PMCID: PMC8620067 DOI: 10.3390/molecules26226815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Botrytis cinerea is a ubiquitous fungus that affects hundreds of plants, resulting in economic losses to the horticulture and fruit industry. The search for new antifungal agents is a matter of current interest. Thus, in this work a series of geranylated phenols in which the side alkyl chain has been hydrated have been synthesized, and their activity against B. cinerea has been evaluated. The coupling of phenol and geraniol has been accomplished under microwave irradiation obtaining the highest reaction yields in the shortest reaction times. Hydration of the side chain was carried out in dioxane with p-toluenesulfonic acid polymer-bound as the catalyst. All synthesized compounds were tested against B. cinerea using the growth inhibition assay and EC50 values were determined. The results show that activity depends on the number and nature of functional groups in the phenol ring and hydration degree of the geranyl chain. The most active compound is 1,4-dihydroquinone with one hydroxyl group attached at the end of the alkyl chain. Results from a molecular docking study suggest that hydroxyl groups in the phenol ring and alkyl chain are important in the binding of compounds to the active site, and that the experimental antifungal activity correlates with the number of H-bond that can be formed in the binding site.
Collapse
Affiliation(s)
- Mauricio Soto
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España No. 1680, Valparaíso 2340000, Chile; (M.S.); (S.R.); (K.D.); (L.E.)
- Instituto Universitario de Bio-Orgánica Antonio González (CIBICAN), Departamento de Química Orgánica, Universidad de La Laguna, Av. Astrofísico Fco, Sánchez 2, 38206 La Laguna, Spain; (A.E.-B.); (Á.A.)
| | - Ana Estevez-Braun
- Instituto Universitario de Bio-Orgánica Antonio González (CIBICAN), Departamento de Química Orgánica, Universidad de La Laguna, Av. Astrofísico Fco, Sánchez 2, 38206 La Laguna, Spain; (A.E.-B.); (Á.A.)
| | - Ángel Amesty
- Instituto Universitario de Bio-Orgánica Antonio González (CIBICAN), Departamento de Química Orgánica, Universidad de La Laguna, Av. Astrofísico Fco, Sánchez 2, 38206 La Laguna, Spain; (A.E.-B.); (Á.A.)
| | - Julia Kluepfel
- Department of Chemistry, Technical University of Munich, Lichtenberg Str. 4, 85748 Garching, Germany;
| | - Susana Restrepo
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España No. 1680, Valparaíso 2340000, Chile; (M.S.); (S.R.); (K.D.); (L.E.)
| | - Katy Diaz
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España No. 1680, Valparaíso 2340000, Chile; (M.S.); (S.R.); (K.D.); (L.E.)
| | - Luis Espinoza
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España No. 1680, Valparaíso 2340000, Chile; (M.S.); (S.R.); (K.D.); (L.E.)
| | - Andrés F. Olea
- Grupo de Química y Bioquímica Aplicada en Biotecnología, Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, Santiago 8900000, Chile
| | - Lautaro Taborga
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España No. 1680, Valparaíso 2340000, Chile; (M.S.); (S.R.); (K.D.); (L.E.)
| |
Collapse
|
17
|
Wang X, Hu N, Kong W, Song B, Li S. Facile and divergent optimization of chromazonarol enabled the identification of simplified drimane meroterpenoids as novel pharmaceutical leads. Eur J Med Chem 2021; 227:113912. [PMID: 34653771 DOI: 10.1016/j.ejmech.2021.113912] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/22/2022]
Abstract
The diversity of drimane hydroquinones was significantly expanded by the facile construction of (+)-chromazonarol relevant natural products, isomers, and analogues for the discovery of new pharmaceutical leads. The structure-activity relationship of (+)-chromazonarol relevant (non)-natural products was delineated via the synergistic interaction of the programmable synthesis and bioactivity-guided screening. The first divergent derivatization of (+)-chromazonarol demonstrated that the phenolic hydroxyl group is one inviolable requirement for antifungal effect. Pinpoint modification of (+)-yahazunol manifested the position of hydroxyl group was crucial for both antifungal and antitumor activities. (+)-Albaconol, (+)-neoalbaconol, and two (+)-yahazunol isomers (24 and 25) proved to be the novel pharmaceutical leads. The probable macromolecular targets were estimated to deliver new information about the biological potentials resident in (+)-yahazunol relevant products. This work also featured the first synthesis of (+)-albaconol and (+)-neoalbaconol, the first biological exploration of (+)-dictyvaric acid and improved preparation of (+)-8-epi-puupehedione and a promising pelorol analogue.
Collapse
Affiliation(s)
- Xia Wang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China; Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing, 210095, China
| | - Nvdan Hu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Wenlong Kong
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Baoan Song
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Shengkun Li
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China; Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing, 210095, China.
| |
Collapse
|
18
|
Cheng X, Wang W, Wang Y, Xia D, Yin F, Liu Q, Luo H, Li M, Zhang C, Cao H, Lv X. Novel Pyrazolo[3,4- d]pyrimidin-4-one Derivatives as Potential Antifungal Agents: Design, Synthesis, and Biological Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11395-11405. [PMID: 34523907 DOI: 10.1021/acs.jafc.1c02454] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant pathogenic fungi seriously threaten agricultural production. There is an urgent need to develop novel fungicides with low toxicity and high efficiency. In this study, we designed and synthesized 44 pyrazolo[3,4-d]pyrimidin-4-one derivatives and evaluated them for their fungicidal activities. The bioassay data revealed that most of the target compounds possessed moderate to high in vitro antifungal activities. Especially compound g22 exhibited remarkable antifungal activity against Sclerotinia sclerotiorum with an EC50 value of 1.25 mg/L, close to that of commercial fungicide boscalid (EC50 = 0.96 mg/L) and fluopyram (EC50 = 1.91 mg/L). Moreover, compound g22 possessed prominent protective activity against S. sclerotiorum in vivo for 24 h (95.23%) and 48 h (93.78%), comparable to positive control boscalid (24 h (96.63%); 48 h (93.23%)). Subsequent studies indicated that compound g22 may impede the growth and reproduction of S. sclerotiorum by affecting the morphology of mycelium, destroying cell membrane integrity, and increasing cell membrane permeability. In addition, the application of compound g22 did not injure the growth or reproduction of Italian bees. This study revealed that compound g22 is expected to be developed for efficient and safe agricultural fungicides.
Collapse
Affiliation(s)
- Xiang Cheng
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Wei Wang
- School of Science, Anhui Agricultural University, Hefei 230036, China
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Yunxiao Wang
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Dongguo Xia
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Fang Yin
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Qiaoyun Liu
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Huisheng Luo
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Meng Li
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Chengqi Zhang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haiqun Cao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xianhai Lv
- School of Science, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
19
|
Wang M, Du Y, Ling C, Yang Z, Jiang B, Duan H, An J, Li X, Yang X. Design, synthesis and antifungal/anti-oomycete activity of pyrazolyl oxime ethers as novel potential succinate dehydrogenase inhibitors. PEST MANAGEMENT SCIENCE 2021; 77:3910-3920. [PMID: 33871901 DOI: 10.1002/ps.6418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/04/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Succinate dehydrogenase inhibitors (SDHIs) play an increasingly important role in controlling plant diseases. However, the similar structures of SDHIs result in rapid development of cross-resistance development and a clear bottleneck of poor activity against oomycetes, therefore the need to seek new SDHI fungicides with novel structures is urgent. RESULTS Innovative pyrazolyl oxime ethers were designed by replacing amide with oxime ether based on the succinate dehydrogenase (SDH) structure, and 19 pairs of Z- and E-isomers were efficiently prepared for the discovery of SDHI compounds with a novel bridge. Their biological activities against four fungi and two oomycetes were evaluated, and substantial differences were observed between the Z- and E- isomers of the title compounds. Furthermore, most of these compounds exhibited remarkable activities against Rhizoctonia solani with EC50 values of less than 10 mg L-1 in vitro, and bioassay in vivo further confirmed that E-I-6 exhibited good protective efficacy (76.12%) at 200 mg L-1 . In addition, Z-I-12 provided better activity against the oomycetes Pythium aphanidermatum and Phytophthora capsici (EC50 = 1.56 and 0.93 mg L-1 ) than those of boscalid. Moreover, E-I-12 exhibited excellent SDH inhibition (IC50 = 0.21 mg L-1 ) thanks to its good binding ability to the SDH by hydrogen-bonding interactions, π-cation interaction and hydrophobic interactions. CONCLUSION Novel pyrazolyl oxime ethers have the potential as SDHI compounds for future development, and the strategy of replacing an amide bond with oxime ether may offer an alternative option in SDHI fungicide discovery.
Collapse
Affiliation(s)
- Minlong Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Ying Du
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Chen Ling
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Zhaokai Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Biaobiao Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Jie An
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Xinghai Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xinling Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Wang X, Wang M, Han L, Jin F, Jiao J, Chen M, Yang C, Xue W. Novel Pyrazole-4-acetohydrazide Derivatives Potentially Targeting Fungal Succinate Dehydrogenase: Design, Synthesis, Three-Dimensional Quantitative Structure-Activity Relationship, and Molecular Docking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9557-9570. [PMID: 34382800 DOI: 10.1021/acs.jafc.1c03399] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) have emerged in fungicide markets as one of the fastest-growing categories that are widely applied in agricultural production for crop protection. Currently, the structural modification focusing on the flexible amide link of SDHI molecules is being gradually identified as one of the innovative strategies for developing novel highly efficient and broad-spectrum fungicides. Based on the above structural features, a series of pyrazole-4-acetohydrazide derivatives potentially targeting fungal SDH were constructed and evaluated for their antifungal effects against Rhizoctonia solani, Fusarium graminearum, and Botrytis cinerea. Strikingly, the in vitro EC50 values of constructed pyrazole-4-acetohydrazides 6w against R. solani, 6c against F. graminearum, and 6f against B. cinerea were, respectively, determined as 0.27, 1.94, and 1.93 μg/mL, which were obviously superior to that of boscalid against R. solani (0.94 μg/mL), fluopyram against F. graminearum (9.37 μg/mL), and B. cinerea (1.94 μg/mL). Concurrently, the effects of the substituent steric, electrostatic, hydrophobic, and hydrogen-bond fields on structure-activity relationships were elaborated by the reliable comparative molecular field analysis and comparative molecular similarity index analysis models. Subsequently, the practical value of pyrazole-4-acetohydrazide derivative 6w as a potential SDHI was ascertained by the relative surveys on the in vivo anti-R. solani preventative efficacy, inhibitory effects against fungal SDH, and molecular docking studies. The present results provide an indispensable complement for the structural optimization of antifungal leads potentially targeting SDH.
Collapse
Affiliation(s)
- Xiaobin Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Mengqi Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Han
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Jin
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Jiao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunlong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xue
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
21
|
Dan W, Gao J, Li L, Xu Y, Wang J, Dai J. Cellular and non-target metabolomics approaches to understand the antifungal activity of methylaervine against Fusarium solani. Bioorg Med Chem Lett 2021; 43:128068. [PMID: 33915256 DOI: 10.1016/j.bmcl.2021.128068] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/15/2022]
Abstract
Botanical fungicides are promising replacements for pure chemical synthetic pesticides in agriculture and organic food production. Methylaervine with good physicochemical properties exhibited effective activity against F. solani (EC50 = 10.56 µM) better than the positive control thiophanate-methyl (EC50 = 27.94 µM). The activity changes of malondialdehyde (MDA), catalase (CAT) and superoxide dismutase (SOD) showed that methylaervine could significantly induce lipid peroxidation and activate the antioxidant enzymes. According to the metabolomics analysis, fifty-one differential metabolites and two major antifungal-related pathways covering tricarboxylic acid (TCA) cycle and steroid biosynthesis were identified. Moreover, the disturbance for TCA cycle was validated by the activity changes of dehydrogenase (MDH) and succinate dehydrogenase (SDH) as well as docking simulation. Homology modeling and docking study revealed that hydrogen bonds and hydrophobic interactions played a vital role in methylaervine-protein stability. This study provided new insight into the antifungal activity of methylaervine, which is important for the development of novel botanical fungicides based on methylaervine.
Collapse
Affiliation(s)
- Wenjia Dan
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Jixiang Gao
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Luqi Li
- Life Science Research Core Services, Northwest A&F University, Shaanxi, China
| | - Yingmeng Xu
- Shandong Changyi Zaohu Salt Chemical Co, Ltd, Shandong, China
| | - Junru Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Shaanxi, China
| | - Jiangkun Dai
- School of Life Science and Technology, Weifang Medical University, Shandong, China; College of Veterinary Medicine, Northwest A&F University, Shaanxi, China.
| |
Collapse
|
22
|
Design, synthesis and fungicidal activity of pyrazole-thiazole carboxamide derivatives. Mol Divers 2021; 26:205-214. [PMID: 33792811 DOI: 10.1007/s11030-020-10177-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/11/2020] [Indexed: 10/21/2022]
Abstract
Twenty-one novel pyrazole-thiazole carboxamide derivatives were rationally designed and synthesized. Bioassay results indicated that 6d (EC50 = 5.11 μg/mL) and 6j (EC50 = 8.14 μg/mL) exhibited better in vitro activities than fluxapyroxad (EC50 = 11.93 μg/mL) and thifluzamide (EC50 = 22.12 μg/mL) against Rhizoctonia cerealis. Particularly, compound 6j showed promising in vivo protective activity against Rhizoctonia solani and Puccinia sorghi Schw. with 80% and 90% inhibition at 10 μg/mL, respectively. Our studies found that pyrazole-thiazole is a promising fungicide lead deserving for further derivation.
Collapse
|
23
|
Design, synthesis and fungicidal activity of 3,4-dichloroisothiazolocoumarin-containing strobilurins. Mol Divers 2021; 26:951-961. [PMID: 33782814 DOI: 10.1007/s11030-021-10207-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/06/2021] [Indexed: 10/21/2022]
Abstract
Twenty-one novel 3,4-dichloroisothiazolocoumarin-containing strobilurins were rationally designed and synthesized. Preliminary bioassay showed that compounds 7c, 7h and 7l exhibited over 80% inhibitory rate against Sclerotinia sclerotiorum at 50 μg/mL, 7c exhibited good activity against S. sclerotiorum with median effective concentration (EC50) of 4.08 μg/mL, while the positive control coumoxystrobin showed EC50 of 1.00 μg/mL. In addition, 7d showed better fungicidal activity with a lower EC50 value of 7.65 μg/mL against Botrytis cinerea than that of positive control trifloxystrobin with its EC50 value of 21.96 μg/mL. This study indicated that 3,4-dichloroisothiazolocoumarin-containing strobilurin was a promising fungicide lead deserved for further study.
Collapse
|
24
|
Wang X, Wang A, Qiu L, Chen M, Lu A, Li G, Yang C, Xue W. Expedient Discovery for Novel Antifungal Leads Targeting Succinate Dehydrogenase: Pyrazole-4-formylhydrazide Derivatives Bearing a Diphenyl Ether Fragment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14426-14437. [PMID: 33216530 DOI: 10.1021/acs.jafc.0c03736] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The pyrazole-4-carboxamide scaffold containing a flexible amide chain has emerged as the molecular skeleton of highly efficient agricultural fungicides targeting succinate dehydrogenase (SDH). Based on the above vital structural features of succinate dehydrogenase inhibitors (SDHI), three types of novel pyrazole-4-formylhydrazine derivatives bearing a diphenyl ether moiety were rationally conceived under the guidance of a virtual docking comparison between bioactive molecules and SDH. Consistent with the virtual verification results of a molecular docking comparison, the in vitro antifungal bioassays indicated that the skeleton structure of title compounds should be optimized as an N'-(4-phenoxyphenyl)-1H-pyrazole-4-carbohydrazide scaffold. Strikingly, N'-(4-phenoxyphenyl)-1H-pyrazole-4-carbohydrazide derivatives 11o against Rhizoctonia solani, 11m against Fusarium graminearum, and 11g against Botrytis cinerea exhibited excellent antifungal effects, with corresponding EC50 values of 0.14, 0.27, and 0.52 μg/mL, which were obviously better than carbendazim against R. solani (0.34 μg/mL) and F. graminearum (0.57 μg/mL) as well as penthiopyrad against B. cinerea (0.83 μg/mL). The relative studies on an in vivo bioassay against R. solani, bioactive evaluation against SDH, and molecular docking were further explored to ascertain the practical value of compound 11o as a potential fungicide targeting SDH. The present work provided a non-negligible complement for the structural optimization of antifungal leads targeting SDH.
Collapse
Affiliation(s)
- Xiaobin Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - An Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingling Qiu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Aimin Lu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunlong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xue
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
25
|
Liang P, Shen S, Xu Q, Wang S, Jin S, Lu H, Dong Y, Zhang J. Design, synthesis biological activity, and docking of novel fluopyram derivatives containing guanidine group. Bioorg Med Chem 2020; 29:115846. [PMID: 33191087 DOI: 10.1016/j.bmc.2020.115846] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/11/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023]
Abstract
Succinate dehydrogenase (SDH), a crucial bridge enzyme between the respiratory electron transfer chain and tricarboxylic acid (or Krebs) cycle, has been identified as an ideal target for the development of effective fungicide. In this study, a series of 24 novel SDH inhibitors (SDHIs) were designed, synthesized, and characterized by 1H NMR, 13C NMR, and HRMS. In vitro fungicidal activity experiments, most of the compounds exhibited broad-spectrum antifungal activities against five plant pathogenic fungi. Compounds 9j and 9k showed excellent activities against Pythium aphanidermatum with EC50 values of 9.93 mg/L and 10.50 mg/L, respectively, which were superior to the lead compound Fluopyram with an EC50 value of 19.10 mg/L. Furthermore, the toxicity of these compounds was also tested against Meloidogyne incognita J2 nematodes. The results indicated that compound 9x exhibited moderate nematicidal activity (LC50/48 h = 71.02 mg/L). Molecular docking showed that novel guanidine amide of 9j formed hydrogen bonds with crucial residues, which was crucial to the binding of an inhibitor and SDH. This present work indicates that these derivatives may serve as novel potential fungicides targeting SDH.
Collapse
Affiliation(s)
- Peibo Liang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Shengqiang Shen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Qingbo Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Simin Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Shuhui Jin
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Huizhe Lu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Yanhong Dong
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Jianjun Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China.
| |
Collapse
|
26
|
Yang J, Zhao Y, Wan J, Jiang M, Jin H, Tao K, Hou T. Synthesis and Biological Evaluation of Novel Benodanil-Heterocyclic Carboxamide Hybrids as a Potential Succinate Dehydrogenase Inhibitors. Molecules 2020; 25:molecules25184291. [PMID: 32962104 PMCID: PMC7570671 DOI: 10.3390/molecules25184291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022] Open
Abstract
In order to discover new antifungal agents, twenty novel benodanil-heterocyclic carboxamide hybrids were designed, synthesized, and characterized by 1H NMR and HRMS. In vitro, their antifungal activities against four phytopathogenic fungi were evaluated, as well as some of the target compounds at 50 mg/L demonstrated significant antifungal activities against Rhizoctonia solani. Especially, compounds 17 (EC50 = 6.32 mg/L) and 18 (EC50 = 6.06 mg/L) exhibited good antifungal activities against R. solani and were superior to the lead fungicide benodanil (a succinate dehydrogenase inhibitor, SDHI) (EC50 = 6.38 mg/L). Furthermore, scanning electron microscopy images showed that the mycelia on treated media with the addition of compound 17 grew abnormally as compared with the negative control with tenuous, wizened, and overlapping colonies, and compounds 17 (IC50 = 52.58 mg/L) and 18 (IC50 = 56.86 mg/L) showed better inhibition abilities against succinate dehydrogenase (SDH) than benodanil (IC50 = 62.02 mg/L). Molecular docking revealed that compound 17 fit in the gap composed of subunit B, C, and D of SDH. Furthermore, it was shown that the main interaction, one hydrogen bond interaction, was observed between compound 17 and the residue C/Trp-73. These studies suggested that compound 17 could act as a potential fungicide to be used for further optimization.
Collapse
Affiliation(s)
| | | | | | | | - Hong Jin
- Correspondence: ; Tel.: +86-28-85415611
| | | | | |
Collapse
|
27
|
Shi J, Ding M, Luo N, Wan S, Li P, Li J, Bao X. Design, Synthesis, Crystal Structure, and Antimicrobial Evaluation of 6-Fluoroquinazolinylpiperidinyl-Containing 1,2,4-Triazole Mannich Base Derivatives against Phytopathogenic Bacteria and Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9613-9623. [PMID: 32786823 DOI: 10.1021/acs.jafc.0c01365] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A total of 20 1,2,4-triazole Mannich base derivatives bearing the 6-fluoroquinazolinylpiperidinyl moiety were designed, synthesized, and evaluated as antimicrobial agents against phytopathogenic bacteria and fungi according to the molecular hybridization strategy. Of note, the structure of target compound 4h was clearly confirmed through single-crystal X-ray diffraction analysis. The turbidimetric assays indicated that some compounds exhibited excellent antibacterial efficacies in vitro against Xanthomonas oryzae pv. oryzae (Xoo). For example, compounds 4c, 4f, 4j, and 7j had EC50 values of 23.6, 18.8, 23.4, and 24.3 μg/mL, respectively, which were far superior to that of agrobactericide bismerthiazol (EC50 = 92.4 μg/mL). In particular, compound 4f demonstrated a potent anti-Xoo activity approximately five times more active than that of bismerthiazol. Moreover, in vivo assays showed the excellent protective and curative activities of compound 4f against rice bacterial blight, having the potential as an alternative bactericide for controlling Xoo. The structure-activity relationship analysis showed a good pesticide-likeness concerning compound 4f, following Tice's criteria. The anti-Xoo mechanism of compound 4f was preliminarily explored by scanning electron microscopy measurements in living bacteria. Finally, several compounds also exhibited good antifungal activities in vitro against Gibberella zeae at 50 μg/mL. In short, the presented work showed the potential of 6-fluoroquinazolinylpiperidinyl-containing 1,2,4-triazole Mannich base derivatives as effective bactericides for controlling Xoo.
Collapse
Affiliation(s)
- Jun Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Muhan Ding
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Na Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Suran Wan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Peijia Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Junhong Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Xiaoping Bao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
28
|
Dos Santos JD, Fugisaki LRDO, Medina RP, Scorzoni L, Alves MDS, de Barros PP, Ribeiro FC, Fuchs BB, Mylonakis E, Silva DHS, Junqueira JC. Streptococcus mutans Secreted Products Inhibit Candida albicans Induced Oral Candidiasis. Front Microbiol 2020; 11:1605. [PMID: 32760375 PMCID: PMC7374982 DOI: 10.3389/fmicb.2020.01605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/19/2020] [Indexed: 12/24/2022] Open
Abstract
In the oral cavity, Candida species form mixed biofilms with Streptococcus mutans, a pathogenic bacterium that can secrete quorum sensing molecules with antifungal activity. In this study, we extracted and fractioned culture filtrate of S. mutans, seeking antifungal agents capable of inhibiting the biofilms, filamentation, and candidiasis by Candida albicans. Active S. mutans UA159 supernatant filtrate components were extracted via liquid-liquid partition and fractionated on a C-18 silica column to resolve S. mutans fraction 1 (SM-F1) and fraction 2 (SM-F2). We found anti-biofilm activity for both SM-F1 and SM-F2 in a dose dependent manner and fungal growth was reduced by 2.59 and 5.98 log for SM-F1 and SM-F2, respectively. The SM-F1 and SM-F2 fractions were also capable of reducing C. albicans filamentation, however statistically significant differences were only observed for the SM-F2 (p = 0.004). SM-F2 efficacy to inhibit C. albicans was confirmed by its capacity to downregulate filamentation genes CPH1, EFG1, HWP1, and UME6. Using Galleria mellonella as an invertebrate infection model, therapeutic treatment with SM-F2 prolonged larvae survival. Examination of the antifungal capacity was extended to a murine model of oral candidiasis that exhibited a reduction in C. albicans colonization (CFU/mL) in the oral cavity when treated with SM-F1 (2.46 log) and SM-F2 (2.34 log) compared to the control (3.25 log). Although both SM-F1 and SM-F2 fractions decreased candidiasis in mice, only SM-F2 exhibited significant quantitative differences compared to the non-treated group for macroscopic lesions, hyphae invasion, tissue lesions, and inflammatory infiltrate. Taken together, these results indicate that the SM-F2 fraction contains antifungal components, providing a promising resource in the discovery of new inhibitors for oral candidiasis.
Collapse
Affiliation(s)
- Jéssica Diane Dos Santos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Luciana Ruano de Oliveira Fugisaki
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Rebeca Previate Medina
- Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Mariana de Sá Alves
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Felipe Camargo Ribeiro
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Dulce Helena Siqueira Silva
- Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| |
Collapse
|
29
|
Lai J, Li W, Wei S, Li S. Natural carbolines inspired the discovery of chiral CarOx ligands for asymmetric synthesis and antifungal leads. Org Chem Front 2020. [DOI: 10.1039/d0qo00519c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Natural carboline-inspired novel chiral β-CarOx ligands were designed and synthesized for asymmetric synthesis and discovery of antifungal leads.
Collapse
Affiliation(s)
- Jixing Lai
- College of Plant Protection
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Wei Li
- College of Plant Protection
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Sanyue Wei
- College of Plant Protection
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Shengkun Li
- College of Plant Protection
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application
- Nanjing Agricultural University
- Nanjing 210095
- China
| |
Collapse
|