1
|
Moravcová M, Siatka T, Krčmová LK, Matoušová K, Mladěnka P. Biological properties of vitamin B 12. Nutr Res Rev 2025; 38:338-370. [PMID: 39376196 DOI: 10.1017/s0954422424000210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Vitamin B12, cobalamin, is indispensable for humans owing to its participation in two biochemical reactions: the conversion of l-methylmalonyl coenzyme A to succinyl coenzyme A, and the formation of methionine by methylation of homocysteine. Eukaryotes, encompassing plants, fungi, animals and humans, do not synthesise vitamin B12, in contrast to prokaryotes. Humans must consume it in their diet. The most important sources include meat, milk and dairy products, fish, shellfish and eggs. Due to this, vegetarians are at risk to develop a vitamin B12 deficiency and it is recommended that they consume fortified food. Vitamin B12 behaves differently to most vitamins of the B complex in several aspects, e.g. it is more stable, has a very specific mechanism of absorption and is stored in large amounts in the organism. This review summarises all its biological aspects (including its structure and natural sources as well as its stability in food, pharmacokinetics and physiological function) as well as causes, symptoms, diagnosis (with a summary of analytical methods for its measurement), prevention and treatment of its deficiency, and its pharmacological use and potential toxicity.
Collapse
Affiliation(s)
- Monika Moravcová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Tomáš Siatka
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
2
|
Yi F, Tao S, Wu H. Bilirubin metabolism in relation to cancer. Front Oncol 2025; 15:1570288. [PMID: 40291905 PMCID: PMC12021636 DOI: 10.3389/fonc.2025.1570288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
Bilirubin, a metabolite of hemoglobin, was long thought to be a harmful waste product, but recent studies have found it to have antioxidant and anti-tumor effects. With the extensive research on the mechanism of malignant tumor development, the antioxidant effect of bilirubin is increasingly becoming a hotspot in anti-cancer research. At present, there are two main views on the relationship between bilirubin and cancer, namely, its pro-cancer and anti-cancer effects, and in recent years, studies on the relationship between bilirubin and cancer have not been systematically summarized, which is not conducive to the further investigation of the role of bilirubin on cancer. To understand the multifaceted role of bilirubin in tumorigenesis as well as to develop more effective and affordable antitumor therapies, this review provides an overview of the effects of bilirubin on tumors in terms of oxidative, inflammatory, and cellular signaling pathways, as well as the resulting therapeutic ideas and approaches.
Collapse
Affiliation(s)
- Fengyun Yi
- Department of Traditional Chinese Medicine, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Siyu Tao
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hongze Wu
- Department of Traditional Chinese Medicine, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
| |
Collapse
|
3
|
Dahmouni S, Bengharbi Z, Benabdelmoumene D, Benamar N, Qadi WSM, Dawoud EAD, Al-Olayan E, Dahimi O, Moreno A, Zainudin MAM, Mediani A. Assessment of the Nutritional Composition, Antimicrobial Potential, Anticoccidial, and Antioxidant Activities of Arthospira platensis in Broilers. BIOLOGY 2025; 14:379. [PMID: 40282245 PMCID: PMC12024823 DOI: 10.3390/biology14040379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/29/2025]
Abstract
This study evaluates the chemical composition, fatty acid profiles, and bioactive properties of ethanolic (SPE), methanolic (SPM), and acetonic (SPA) extracts of Arthrospira platensis. The chemical analysis revealed a high protein content (72.08%), moderate lipid levels (6.49%), and a diverse fatty acid profile, dominated by polyunsaturated fatty acids. Antibacterial testing showed that SPE exhibited the strongest activity against Gram-negative bacteria, including Escherichia coli (ATCC 25922), Enterobacter cloacae (ATCC 49141), Proteus mirabilis (ATCC 25933), Salmonella typhi (ATCC 6539), Salmonella typhimurium (ATCC 14028), Salmonella enteritidis (ATCC 13076), Salmonella gallinarum (ATCC 9184), and Pseudomonas aeruginosa (ATCC 27853). The anticoccidial activity was also significant, with SPE reducing Eimeria sp. oocyst counts in poultry intestines and ceca. Antioxidant activity was highest in SPM, which also had the highest phenolic content. LC-MS/MS profiling of the methanolic extract revealed various bioactive compounds, including phenolic acids, flavonoids, carotenoids, chlorophylls, and phycobiliproteins. These results suggest that A. platensis has great potential as a nutraceutical supplement in poultry farming, offering a sustainable alternative to synthetic additives.
Collapse
Affiliation(s)
- Said Dahmouni
- Laboratory of Applied Animal Physiology, SNV Faculty, University of Mostaganem, Mostaganem 27000, Algeria; (S.D.); (Z.B.); (D.B.); (N.B.); (O.D.)
| | - Zineb Bengharbi
- Laboratory of Applied Animal Physiology, SNV Faculty, University of Mostaganem, Mostaganem 27000, Algeria; (S.D.); (Z.B.); (D.B.); (N.B.); (O.D.)
| | - Djilali Benabdelmoumene
- Laboratory of Applied Animal Physiology, SNV Faculty, University of Mostaganem, Mostaganem 27000, Algeria; (S.D.); (Z.B.); (D.B.); (N.B.); (O.D.)
| | - Nardjess Benamar
- Laboratory of Applied Animal Physiology, SNV Faculty, University of Mostaganem, Mostaganem 27000, Algeria; (S.D.); (Z.B.); (D.B.); (N.B.); (O.D.)
| | - Wasim S. M. Qadi
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia;
| | | | - Ebtesam Al-Olayan
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Omar Dahimi
- Laboratory of Applied Animal Physiology, SNV Faculty, University of Mostaganem, Mostaganem 27000, Algeria; (S.D.); (Z.B.); (D.B.); (N.B.); (O.D.)
| | - Andres Moreno
- Facultad de CC y TT Químicas, Universidad de Castilla-La Mancha, 13001 Ciudad Real, Spain;
| | - Mohd Asraf Mohd Zainudin
- Faculty of Chemical Engineering & Technology, UniCITI Alam Campus, Universiti Malaysia Perlis (UniMAP), Sungai Chuchuh, Padang Besar 02100, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia;
| |
Collapse
|
4
|
Suzuki-Nagata S, Mase N, Kozuka T, Ng JC, Suzuki T. Effect of ultrafine CO2 bubbles on Euglena gracilis Z growth with CO2 gas bubble size and chlorophyll content. Biosci Biotechnol Biochem 2025; 89:638-648. [PMID: 39741394 DOI: 10.1093/bbb/zbae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/23/2024] [Indexed: 01/03/2025]
Abstract
Microalgae have been explored as a viable alternative food source. Among them, Euglena gracilis stands out as a promising single-cell algae. However, the challenge lies in developing more efficient and cost-effective methods for industrial mass production of E. gracilis under controlled culture conditions. Our research aimed to address this by investigating the role of nanotechnology in using fine to ultra-fine bubble CO2 (FB-CO2)-ranging from micrometer to nanometer size-as feeding material to promote cell harvest of E. gracilis Z in autotrophic culture conditions. Our findings suggest that feeding E. gracilis Z with FB-CO2 increased cell growth and chlorophyll content in autotrophic culture conditions. The promotion effect can be attributed to the provision of non-ionized carbon dioxide to the photosynthetic system, which was further enhanced by the dispersion of FB-CO2 in the culture media under acidic conditions.
Collapse
Affiliation(s)
- Shino Suzuki-Nagata
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu, Shizuoka, Japan
| | - Nobuyuki Mase
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu, Shizuoka, Japan
| | - Tomoki Kozuka
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu, Shizuoka, Japan
| | - Jack C Ng
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia
| | - Tetsuya Suzuki
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
5
|
Yu C, Zheng J, Zhang Y, Hu Y, Luo W, Zhang J, Yu J, Liu J, Nixon PJ, Zhou W, Shao S. Towards sustainable spirulina farming: Enhancing productivity and biosafety with a salinity-biostimulants strategy. BIORESOURCE TECHNOLOGY 2025; 419:132043. [PMID: 39778684 DOI: 10.1016/j.biortech.2025.132043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/23/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Arthrospira platensis (spirulina) is pivotal to the global microalgae industry, valued for its nutritional and bioactive properties. However, its sustainable production is challenged by freshwater scarcity and biological contaminants. This study introduces a salinity-biostimulants strategy to adapt a freshwater spirulina strain, CBD05, to near-seawater salinity (3 %). Exogenous glycine betaine (GB) and nitric oxide (NO), typical salinity enhancers, improved biomass productivity (0.36 g L-1 d-1), C-phycocyanin (C-PC) yield (83 mg L-1 d-1), and the economic output-to-input ratio was significantly enhanced. Metabolomic analysis linked salt tolerance to elevated amino acid accumulation, protein synthesis, and glycolysis, while transcriptional evidence highlighted enhanced carbon fixation and nitrogen assimilation towards C-PC synthesis upon addition of GB and NO. This strategy also demonstrated high resistance to Microcystis aeruginosa, a common contaminant in open systems. It provides a sustainable and cost-effective approach for industry-oriented spirulina production in freshwater-limited regions.
Collapse
Affiliation(s)
- Chunli Yu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Jiahui Zheng
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Yuqin Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Yao Hu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Wei Luo
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Jing Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Jianfeng Yu
- Nanchang University-Imperial College London Joint Laboratory on Photosynthesis and Low Carbon Biotechnology, Nanchang University, Nanchang, China; Department of Life Sciences, Imperial College London, London, UK
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, China; Nanchang University-Imperial College London Joint Laboratory on Photosynthesis and Low Carbon Biotechnology, Nanchang University, Nanchang, China
| | - Peter J Nixon
- Nanchang University-Imperial College London Joint Laboratory on Photosynthesis and Low Carbon Biotechnology, Nanchang University, Nanchang, China; Department of Life Sciences, Imperial College London, London, UK
| | - Wenguang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, China; Nanchang University-Imperial College London Joint Laboratory on Photosynthesis and Low Carbon Biotechnology, Nanchang University, Nanchang, China.
| | - Shengxi Shao
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, China; Nanchang University-Imperial College London Joint Laboratory on Photosynthesis and Low Carbon Biotechnology, Nanchang University, Nanchang, China.
| |
Collapse
|
6
|
Song Y, Hu Z, Liu S, Luo S, He R, Yang X, Li S, Yang X, An Y, Lu Y. Utilization of Microalgae and Duckweed as Sustainable Protein Sources for Food and Feed: Nutritional Potential and Functional Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4466-4482. [PMID: 39879156 PMCID: PMC11869299 DOI: 10.1021/acs.jafc.4c11610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Aquatic biomass, particularly microalgae and duckweed, presents a promising and sustainable alternative source of plant-based protein and bioactive compounds for food and feed applications. This review highlights the nutritional potential of these aquatic species, focusing on their high protein content, rapid growth rates, and adaptability to nonarable environments. Microalgae, such as Chlorella and Arthrospira spp., and duckweed, such as Lemna minor, are evaluated for their functional food applications, including their roles as protein supplements, bioactive components, antioxidants, and emulsifiers in food formulations. The study also examines their environmental benefits, including wastewater bioremediation, nutrient recycling, and greenhouse gas mitigation, which contribute to a more sustainable agricultural system. Technological advancements in the cultivation, harvesting, and processing of microalgae and duckweed are discussed to enhance their scalability and economic feasibility in food and feed production. The findings suggest that integrating microalgae and duckweed into agricultural and food systems can significantly improve food security, nutritional outcomes, and sustainability. Future research should focus on optimizing cultivation efficiencies, advancing protein extraction techniques, and expanding the applications of aquatic biomass in various food products.
Collapse
Affiliation(s)
- Yingjie Song
- Institute
of Nanfan and Seed Industry, Guangdong Academy
of Sciences, Guangzhou 510220, People's
Republic of China
| | - Zhangli Hu
- College
of Life Sciences and Oceanography, Shenzhen
University, Shenzhen 518060, People's
Republic of China
| | - Sizhao Liu
- Guangxi
Subtropical Crops Research Institute, Guangxi
Academy of Agricultural Sciences, Nanning 530010, People's Republic of China
| | - Shasha Luo
- Institute
of Nanfan and Seed Industry, Guangdong Academy
of Sciences, Guangzhou 510220, People's
Republic of China
| | - Ruimin He
- Institute
of Nanfan and Seed Industry, Guangdong Academy
of Sciences, Guangzhou 510220, People's
Republic of China
| | - Xinyan Yang
- Institute
of Nanfan and Seed Industry, Guangdong Academy
of Sciences, Guangzhou 510220, People's
Republic of China
| | - Shuang Li
- Institute
of Nanfan and Seed Industry, Guangdong Academy
of Sciences, Guangzhou 510220, People's
Republic of China
| | - Xuewei Yang
- College
of Life Sciences and Oceanography, Shenzhen
University, Shenzhen 518060, People's
Republic of China
| | - Yuxing An
- Institute
of Nanfan and Seed Industry, Guangdong Academy
of Sciences, Guangzhou 510220, People's
Republic of China
| | - Yinglin Lu
- Institute
of Nanfan and Seed Industry, Guangdong Academy
of Sciences, Guangzhou 510220, People's
Republic of China
| |
Collapse
|
7
|
Jacuinde-Ruíz JC, González-Hernández JC. Exploring the biotechnological applications of Spirulina maxima: a comprehensive review. BRAZ J BIOL 2025; 84:e287134. [PMID: 39936795 DOI: 10.1590/1519-6984.287134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/27/2024] [Indexed: 02/13/2025] Open
Abstract
The Spirulina maxima algae is a phototrophic, multicellular, filamentous cyanobacteria of greenish blue tones, without ramifications and is characterized mainly by its helical form, thickness of approximately 3 to 12 µm and length of 500 µm; its development depends on factors such as temperature, light intensity, pH, aeration speed, carbon dioxide concentration, carbon source, nitrogen source which determine its chemical composition, which is composed of proteins, carbohydrates, lipids, minerals, and vitamins; due to this, it is widely used in industries such as food, pharmaceutical, cosmetics, and energy to obtain different products of great value. This S. maxima review addresses morphological characteristics, growth factors, growth methods, and metabolites of biotechnological interest and biotechnological applications for the S. maxima microalgae. A brief review of the enzyme production capacity of S. maxima and other microalgae is also presented, in addition to mentioning some areas of opportunity to study these and the economic viability of implementing a biorefinery with an integrated approach for the production of biomass and metabolites of biotechnological relevance based on the control of growth variables and the productive and economic efficiency of the process is discussed.
Collapse
Affiliation(s)
- J C Jacuinde-Ruíz
- Tecnológico Nacional de México, Instituto Tecnológico de Morelia, Morelia, Michoacán, México
- Consejo Nacional de Humanidades Ciencias y Tecnologías - CONAHCYT, Ciudad de México, México
| | - J C González-Hernández
- Tecnológico Nacional de México, Instituto Tecnológico de Morelia, Morelia, Michoacán, México
| |
Collapse
|
8
|
García-Martínez Y, Razo-Estrada AC, Pérez-Pastén-Borja R, Galván-Colorado C, Chamorro-Cevallos G, Chanona-Pérez JJ, López-Canales OA, Islas-Flores H, Pérez-Gutiérrez S, Cordero-Martínez J, Cristóbal-Luna JM. Protective Effects of Phycobiliproteins from Arthrospira maxima (Spirulina) Against Cyclophosphamide-Induced Embryotoxicity and Genotoxicity in Pregnant CD1 Mice. Pharmaceuticals (Basel) 2025; 18:101. [PMID: 39861163 PMCID: PMC11769200 DOI: 10.3390/ph18010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: In recent years the global incidence of cancer during pregnancy is rising, occurring in 1 out of every 1000 pregnancies. In this regard, the most used chemotherapy drugs to treat cancer are alkylating agents such as cyclophosphamide (Cp). Despite its great efficacy, has been associated with the production of oxidative stress and DNA damage, leading to embryotoxicity, genotoxicity, and teratogenicity in the developing conceptus. Therefore, this study aimed to investigate the protective role of phycobiliproteins (PBP) derived from Arthrospira maxima (spirulina) in reducing Cp-induced embryotoxicity and genotoxicity in pregnant CD1 mice. Methods: Pregnant CD1 mice were divided into five groups: control, Cp 20 mg/kg, and three doses of PBP (50, 100, and 200 mg/kg) + Cp co-treatment. PBP were administered orally from day 6 to 10.5 dpc, followed by a single intraperitoneal dose of Cp on 10.5 dpc. Embryos were collected at 12.5 dpc to assess morphological development and vascular alterations, while maternal DNA damage was evaluated using micronucleus assays and antioxidant enzyme activity in maternal plasma. Results: PBP exhibited a dose-dependent protective effect against Cp-induced damage. The 200 mg/kg PBP dose significantly reduced developmental abnormalities, micronucleated polychromatic erythrocytes, and oxidative stress, (as evidenced by increased SOD and GPx activity). Conclusions: Phycobiliproteins from Arthrospira maxima (spirulina) effectively reduced Cp-induced morphological and vascular alterations in embryos and genotoxicity in pregnant mice. These findings highlight their potential as a complementary therapy to mitigate teratogenic risks during chemotherapy. Further research is needed to optimize dosing and explore clinical applications.
Collapse
Affiliation(s)
- Yuliana García-Martínez
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Mexico City C.P. 07738, Mexico; (Y.G.-M.); (A.C.R.-E.); (R.P.-P.-B.); (C.G.-C.); (G.C.-C.)
| | - Amparo Celene Razo-Estrada
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Mexico City C.P. 07738, Mexico; (Y.G.-M.); (A.C.R.-E.); (R.P.-P.-B.); (C.G.-C.); (G.C.-C.)
| | - Ricardo Pérez-Pastén-Borja
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Mexico City C.P. 07738, Mexico; (Y.G.-M.); (A.C.R.-E.); (R.P.-P.-B.); (C.G.-C.); (G.C.-C.)
| | - Candelaria Galván-Colorado
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Mexico City C.P. 07738, Mexico; (Y.G.-M.); (A.C.R.-E.); (R.P.-P.-B.); (C.G.-C.); (G.C.-C.)
| | - Germán Chamorro-Cevallos
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Mexico City C.P. 07738, Mexico; (Y.G.-M.); (A.C.R.-E.); (R.P.-P.-B.); (C.G.-C.); (G.C.-C.)
| | - José Jorge Chanona-Pérez
- Laboratorio de Micro y Nanobiotecnología, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Mexico City C.P. 07738, Mexico;
| | - Oscar Alberto López-Canales
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City C.P. 04510, Mexico;
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, Toluca C.P. 50120, Mexico;
| | - Salud Pérez-Gutiérrez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Del. Coyoacán, Mexico City C.P. 04960, Mexico;
| | - Joaquín Cordero-Martínez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City C.P. 11340, Mexico
| | - José Melesio Cristóbal-Luna
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Mexico City C.P. 07738, Mexico; (Y.G.-M.); (A.C.R.-E.); (R.P.-P.-B.); (C.G.-C.); (G.C.-C.)
| |
Collapse
|
9
|
Jia X, Cui H, Qin S, Ren J, Zhang Z, An Q, Zhang N, Yang J, Yang Y, Fan G, Pan S. Characterizing and decoding the key odor compounds of Spirulina platensis at different processing stages by sensomics. Food Chem 2024; 461:140944. [PMID: 39182338 DOI: 10.1016/j.foodchem.2024.140944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Processing is an indispensable technology in the preparation of Spirulina platensis (S. platensis). The key odorants in liquids, muds, and powders from S. platensis (NM and GZ) were characterized. A total of 90 odorants were identified and 41 odorants were sniffed with the flavor dilution (FD) factors ranging from 1 to 729. Among them, nonanal, decanal, d-limonene, β-cyclocitral, and β-ionone with FD factors ≥1 were detected in S. platensis during the whole processing stages. In addition, heptanal, (E, E)-2,4-nonadienal, trans-4,5-epoxy-(E)-2-decenal, 1-hepten-3-one, isophorone, 3-ethyl-2,5-dimethylpyrazine, and α-ionone exhibited higher odor activity values in powders; β-myrcene, methional, and S-methyl methanethiosulphonate were key odorants in muds; while trans-3-penten-2-ol was key odorant in liquids. Besides, the GZ-mud presented stronger earthy and fishy odor than NM-mud. S. platensis powders have the stronger grassy odor, roasted odor, and marine odor than S. platensis muds. Overall, drying process promotes the formation of aldehydes, heterocyclic compounds, and terpenoids.
Collapse
Affiliation(s)
- Xiao Jia
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongli Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Jingnan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhifeng Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi An
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Nawei Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Yongfeng Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Manzoor MF, Riaz S, Verma DK, Waseem M, Goksen G, Ali A, Zeng XA. Nutraceutical tablets: Manufacturing processes, quality assurance, and effects on human health. Food Res Int 2024; 197:115197. [PMID: 39593282 DOI: 10.1016/j.foodres.2024.115197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/17/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
Consumers are increasingly focused on food products' nutritional content and health aspects. Nutraceutical tablets containing nutritional supplements have seen remarkable progress and are well-known for their precise dosage, which can improve consumer health by increasing the intake of bioactive compounds and vital nutrients. Oral nutraceuticals are frequently used to enhance consumer well-being, with around 80% of products being in solid form. This manuscript aims to thoroughly analyze and summarize the gathered literature using various search engines to investigate key trends in the market, the components involved, and the functional impact of nutraceutical tablets. Furthermore, the manuscript explores various nutraceutical tablets such as chewable tablets, gelling capsules, vitamin tablets, spirulina tablets, and bran tablets. A perspective is provided on multiple production and manufacturing methods of nutraceutical tablets, along with comparing these processes. Following this, evaluating quality characteristics and enforcing quality assurance procedures have been emphasized. The manuscript discussed the physiological breakdown of ingestible nutraceutical tablets in the human body and the possible toxic effects of the components found in these tablets. Furthermore, the focus is on producing nutraceutical tablets in a more environmentally friendly manner, tackling sustainability issues, offering solutions, and delving into potential opportunities. This manuscript will create a significant platform for people from the research, scientific, and industrial fields seeking novel and inventive projects.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Sakhawat Riaz
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science, Anhui Agriculture University, Hefei, China
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Muhammad Waseem
- Department of Food Science & Technology, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100, Mersin, Turkey
| | - Anwar Ali
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 St., 02-776 Warsaw, Poland
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
11
|
Stefanutti D, Serva L, Berlanda M, Bonsembiante F, Gabai G, Franceschinis E, Cavazzoni M, Morelli G, Ricci R. Effect of a weight loss diet with or without Spirulina supplementation on serum lipids and antioxidant capacity of overweight dogs. Sci Rep 2024; 14:29293. [PMID: 39592737 PMCID: PMC11599939 DOI: 10.1038/s41598-024-80843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity is a major health issue in dogs associated with disturbances in lipid metabolism and oxidative stress. Spirulina has been shown to have hypolipidemic and antioxidant effects in various animal species. No such data regarding dogs are available, however. The present study aimed to investigate the effect of a therapeutic high-protein, high-fiber weight loss diet, with or without Spirulina supplementation, on biochemical parameters of overweight dogs, with particular reference to serum lipids and plasma antioxidant capacity. Thirty-two dogs completed a double-blind randomized placebo-controlled trial in which they received either Spirulina (S) or placebo (P) tablets in a body weight-dependent amount for 12 weeks; at the same time, both groups were fed the same calorie-restricted diet. Dogs were weighed weekly and calorie restriction was adjusted accordingly to ensure a 1% body weight loss per week. Blood samples were collected at baseline (T0), after 6 weeks (T1), and after 12 weeks (T2). No difference in body weight loss (S: -11.9 ± 0.8%, P: -10.6 ± 0.8%, p = 0.229) was detected between groups at T2. After 6 weeks and an average weight loss of around 6% (S: -6.7 ± 0.6%, P: -5.9 ± 0.6, p = 0.276), significant reductions of serum total cholesterol, glucose, alkaline phosphatase, paraxonase-1 (all p < 0.0001) and gamma-glutamyltransferase (p < 0.018) were observed in both groups, regardless of supplementation. Plasma antioxidant capacity increased significantly in both groups at T2 (p = 0.0003). Serum triglycerides decreased significantly from T0 to T1 in the Spirulina group (p < 0.0001) but not in the placebo group (p = 0.28); as for the difference between groups, a non-significant trend (p = 0.098) was detected. A significantly higher percentage of dogs (p = 0.028) in the Spirulina group achieved a serum triglycerides reduction > 15% compared to baseline at T1 and > 30% at T2. A treatment effect (p = 0.0416) was found for bilirubin, which decreased only in the Spirulina group. In conclusion, a weight loss of around 6% achieved with a high-protein, high-fiber hypocaloric diet is sufficient to induce significant positive metabolic effects and improve lipid, glucose, and liver enzyme values. Plasma antioxidant capacity was tested in dogs undergoing a weight loss program for the first time, demonstrating that overweight individuals are in a deficient status and that a weight loss of around 10% is able to restore values comparable to those of healthy individuals. The results of this study suggest that Spirulina may manifest a hypotriglyceridemic effect in dogs, even if further research is needed to infer causation. The role Spirulina that supplementation plays in bilirubin metabolism and its related beneficial effect is also worth exploring.
Collapse
Affiliation(s)
- Davide Stefanutti
- Department of Animal Medicine, Production and Health, University of Padova, 35020, Legnaro, PD, Italy.
| | - Lorenzo Serva
- Department of Animal Medicine, Production and Health, University of Padova, 35020, Legnaro, PD, Italy
| | - Michele Berlanda
- Department of Animal Medicine, Production and Health, University of Padova, 35020, Legnaro, PD, Italy
| | - Federico Bonsembiante
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro, PD, Italy
| | - Gianfranco Gabai
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro, PD, Italy
| | - Erica Franceschinis
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Padova, Italy
| | | | - Giada Morelli
- Department of Animal Medicine, Production and Health, University of Padova, 35020, Legnaro, PD, Italy
| | - Rebecca Ricci
- Department of Animal Medicine, Production and Health, University of Padova, 35020, Legnaro, PD, Italy
- Vetekipp S.R.L, Via Della Croce Rossa 112, 35129, Padova, Italy
| |
Collapse
|
12
|
Lestingi A, Alagawany M, Di Cerbo A, Crescenzo G, Zizzadoro C. Spirulina (Arthrospira platensis) Used as Functional Feed Supplement or Alternative Protein Source: A Review of the Effects of Different Dietary Inclusion Levels on Production Performance, Health Status, and Meat Quality of Broiler Chickens. Life (Basel) 2024; 14:1537. [PMID: 39768246 PMCID: PMC11679488 DOI: 10.3390/life14121537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
The broiler industry is pivotal in meeting the growing global demand for highly nutritious animal protein foods. Hence, there is a continuous interest in identifying novel, alternative, and even unconventional feed resources that could help sustainably support chicken meat production and quality. In this view, the microalga Spirulina (Arthrospira, formerly Spirulina, platensis), due to its unique chemical composition and some ecological advantages offered by its cultivation over traditional agriculture, has attracted great attention in the poultry sector for potential application in broiler diets, either as a functional supplement or a replacer of conventional protein sources such as soybean meal. The studies conducted so far seem to have confirmed many of the initial expectations regarding the advantages that may derive from dietary Spirulina supplementation, documenting its capacity to positively influence the intestinal and general health status of broiler chickens, leading to improved or preserved productive performance (under normal or challenging conditions, respectively), as well as to increased disease resistance and survivability. Furthermore, dietary Spirulina supplementation has been shown to induce positive changes in some important traits of broiler meat quality. However, at present, the inclusion of Spirulina in broiler diet, especially but not solely in relation to the use as an alternative protein source, presents several technical and economic limitations. To increase the overall awareness around the actual usefulness and practical usability of Spirulina as a novel natural component of the broiler diet, this review paper seeks to provide a comprehensive and integrated presentation of what is currently known about this topic, highlighting critical issues that are still pending and would require further research efforts.
Collapse
Affiliation(s)
- Antonia Lestingi
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (A.L.); (G.C.); (C.Z.)
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig 44519, Egypt;
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Giuseppe Crescenzo
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (A.L.); (G.C.); (C.Z.)
| | - Claudia Zizzadoro
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (A.L.); (G.C.); (C.Z.)
| |
Collapse
|
13
|
Fernandes EA, Martins CF, Sales JR, Carvalho DFP, Prates JAM, Lordelo MM, Martins LL, Raymundo A, Almeida AM. Impact of a 15% spirulina (Limnospira platensis) dietary inclusion on productive performance and meat traits in naked neck and fully feathered slow-growing broiler strains. Poult Sci 2024; 103:104106. [PMID: 39159573 PMCID: PMC11381824 DOI: 10.1016/j.psj.2024.104106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 08/21/2024] Open
Abstract
Global population is rising, leading to higher demand for meat and concerns on environmental and economic impacts of conventional feedstuffs that corn and soybean meal have. Recently there has been a shift towards more sustainable feedstuffs such as Spirulina (Limnospira platensis) due to its nutritional value and ability to be produced locally. Consumer awareness prompts shifts towards free range poultry production but presents environmental challenges due to climate change. The naked neck (Na) gene, which reduces feather coverage, and enhances growth under adverse conditions offers a possible solution for improved welfare and efficiency. This study aims to investigate the impact of a diet with 15% Spirulina inclusion on growth performance, carcass traits, and meat quality of two slow-growth broiler strains: naked neck (NN) and fully feathered (FF). Forty, 1-day-old male broilers, 20 per strain, were randomly assigned to either a control or a diet containing 15% Spirulina, housed individually in cages and fed ad libitum for 84 d. Growth, carcass, and meat traits were evaluated. Results indicated that animals fed a control diet generally outperformed those fed a Spirulina diet in final body weight (BW), average daily gain (ADG), feed intake (FI), and feed conversion rate (FCR) (P < 0.001). Additionally, Spirulina incorporation led to an increase in the length of the gastrointestinal tract and digesta viscosity in the duodenum plus jejunum (P < 0.05). Although there were no significant differences in breast muscle yield between dietary groups, SP-fed broilers had higher yellowness (*b) values in meat (P < 0.05). Except for the decrease in water holding capacity (WHC) observed in the NN group animals (P < 0.05), there were no significant differences between the strains for the remaining meat quality traits (P > 0.05). The 15% Spirulina inclusion increased the concentrations of n-3 polyunsaturated fatty acids (PUFA) (P < 0.0001) in breast meat and decreased (P < 0.0001) nutritional ratios. Overall, under thermoneutral conditions, animals from the NN strain showed negative effects on growth parameters. Spirulina inclusion improved certain aspects of breast meat quality, particularly fatty acid profiles.
Collapse
Affiliation(s)
- E A Fernandes
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - C F Martins
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - J R Sales
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - D F P Carvalho
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - J A M Prates
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; AL4AnimalS - Laboratório Associado para Ciência Animal e Veterinária, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - M M Lordelo
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - L L Martins
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - A Raymundo
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - A M Almeida
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| |
Collapse
|
14
|
Tyowua AT, Harbottle D, Binks BP. 3D printing of Pickering emulsions, Pickering foams and capillary suspensions - A review of stabilization, rheology and applications. Adv Colloid Interface Sci 2024; 332:103274. [PMID: 39159542 DOI: 10.1016/j.cis.2024.103274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Pickering emulsions and foams as well as capillary suspensions are becoming increasingly more popular as inks for 3D printing. However, a lack of understanding of the bulk rheological properties needed for their application in 3D printing is potentially stifling growth in the area, hence the timeliness of this review. Herein, we review the stability and bulk rheology of these materials as well as the applications of their 3D-printed products. By highlighting how the bulk rheology is tuned, and specifically the inks storage modulus, yield stress and critical balance between the two, we present a rheological performance map showing regions where good prints and slumps are observed thus providing clear guidance for future ink formulations. To further advance this field, we also suggest standard experimental protocols for characterizing the bulk rheology of the three types of ink: capillary suspension, Pickering emulsion and Pickering foam for 3D printing by direct ink writing.
Collapse
Affiliation(s)
- Andrew T Tyowua
- Applied Colloid Science and Cosmeceutical Group, Department of Chemistry, Benue State University, PMB, 102119, Makurdi, Nigeria; School of Chemical Engineering, University of Birmingham, Edgbaston. B15 2TT. UK.
| | - David Harbottle
- School of Chemical and Process Engineering, University of Leeds, Leeds. LS2 9JT. UK
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull. HU6 7RX. UK
| |
Collapse
|
15
|
Sinetova MA, Kupriyanova EV, Los DA. Spirulina/Arthrospira/Limnospira-Three Names of the Single Organism. Foods 2024; 13:2762. [PMID: 39272527 PMCID: PMC11395459 DOI: 10.3390/foods13172762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Recent advances in research techniques have enabled rapid progress in the study of spirulina, an ancient edible cyanobacteria. Nowadays, spirulina species are classified into three genera: Spirulina, Arthrospira, and Limnospira. The latter now refers to industrially manufactured spirulina strains. Whole-genome sequencing revealed gene clusters involved in metabolite production, and the physiology of spirulina. Omics technologies demonstrated the absence of hazardous compounds in spirulina cells, confirming the safety of this biomass as a food product. Spirulina is a good source of different chemicals used in food manufacturing, food supplements, and pharmaceuticals. Spirulina's enrichment with inherent biologically active substances makes it a potential supplier of natural products for dietary and pharmaceutical applications. Spirulina is also a prospective component of both terrestrial and space-based life support systems. Here, we review current breakthroughs in spirulina research and clarify fallacies that can be found in both professional literature and public media.
Collapse
Affiliation(s)
- Maria A Sinetova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Elena V Kupriyanova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Dmitry A Los
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| |
Collapse
|
16
|
Zhang T, Liu D, Zhang Y, Chen L, Zhang W, Sun T. Biomedical engineering utilizing living photosynthetic cyanobacteria and microalgae: Current status and future prospects. Mater Today Bio 2024; 27:101154. [PMID: 39113912 PMCID: PMC11304071 DOI: 10.1016/j.mtbio.2024.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Cyanobacteria are the only prokaryotes capable of performing oxygenic photosynthesis on Earth. Besides their traditional roles serving as primary producers, cyanobacteria also synthesize abundant secondary metabolites including carotenoids, alkaloids, peptides, which have been reported to possess medicinal potentials. More importantly, the advancement of synthetic biology technology has further expanded their potential biomedical applications especially using living/engineered cyanobacteria, providing promising and attractive strategies for future disease treatments. To improve the understanding and to facilitate future applications, this review aims to discuss the current status and future prospects of cyanobacterial-based biomedical engineering. Firstly, specific properties of cyanobacteria related with biomedical applications like their natural products of bioactive compounds and heavy metal adsorption were concluded. Subsequently, based on these properties of cyanobacteria, we discussed the progress of their applications in various disease models like hypoxia microenvironment alleviation, wound healing, drug delivery, and so on. Finally, the future prospects including further exploration of cyanobacteria secondary metabolites, the integration of bioactive compounds synthesized by cyanobacteria in situ with medical diagnosis and treatment, and the optimization of in vivo application were critically presented. The review will promote the studies related with cyanobacteria-based biomedical engineering and its practical application in clinical trials in the future.
Collapse
Affiliation(s)
- Tong Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Dailin Liu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Yingying Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
17
|
Ruszkowska M, Tańska M, Miedzianka J, Kowalczewski PŁ. Field Cricket ( Gryllus bimaculatus) and Spirulina ( Arthrospira platensis) Powders as Environmentally Friendly Protein Enrichment Ingredients in Corn Snacks. Foods 2024; 13:2390. [PMID: 39123581 PMCID: PMC11311995 DOI: 10.3390/foods13152390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Unconventional protein sources are currently extensively studied as food ingredients. This study aimed to evaluate the effect of 1.5% and 3% field cricket powder (GB) and 2-8% of its mixture (1:1) with spirulina powder (S) on the nutritional value, physicochemical properties, and sensory characteristics of corn extrudates. Additionally, 2% baking powder (BP) was added to assess its impact on the properties of the enriched extrudates. The results showed that both GB and GB + S improved nutritional value, with protein content increasing by up to 46% and higher levels of essential amino acids, particularly leucine and valine. However, these ingredients decreased the expansion ratio (by up to 15%), colour lightness (by up to 30%), and yellowness (by up to 47%) and increased the hardness (by up to 25%) of the corn extrudates. The S addition positively influenced product storage stability but decreased its sensory acceptance, especially aroma and taste. The BP addition mitigated the negative effects of higher GB and GB + S concentrations, particularly on sensory characteristics. In conclusion, incorporating up to 6% of the GB + S mixture provides a higher protein content with only minor changes to the product's characteristics compared to GB. Ratings exceeding 4.2 points indicate the good acceptability of these snacks.
Collapse
Affiliation(s)
- Millena Ruszkowska
- Department of Quality Management, Faculty of Management and Quality Science, Gdynia Maritime University, 81-225 Gdynia, Poland
| | - Małgorzata Tańska
- Department of Food Plant Chemistry and Processing, University of Warmia and Mazury in Olsztyn, 10-726 Olsztyn, Poland;
| | - Joanna Miedzianka
- Department of Food Storage and Technology, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | | |
Collapse
|
18
|
De Bhowmick G, Plouviez M, Reis MG, Guieysse B, Everett DW, Agnew MP, Maclean P, Thum C. Evaluation of Extraction Techniques for Recovery of Microalgal Lipids under Different Growth Conditions. ACS OMEGA 2024; 9:27976-27986. [PMID: 38973871 PMCID: PMC11223222 DOI: 10.1021/acsomega.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
Microalgal lipids contain a wide array of liposoluble bioactive compounds, but lipid extraction remains a critical limitation for their commercial use. An accelerated solvent extraction (ASE) was used to extract lipids from Chlamydomonas reinhardtii, Arthrospira platensis (Spirulina), and Chlorella vulgaris grown under either standard or nitrogen depletion conditions. Under standard growth conditions, ASE using methanol:chloroform (2:1), methyl tert-butyl ether (MTBE):methanol:water, and ethanol at 100 °C resulted in the highest recovery of total lipids (352 ± 30, 410 ± 32, and 127 ± 15 mg/g biomass from C. reinhardtii, C. vulgaris, and A. platensis, respectively). Similarly, the highest total lipid and triacylglycerols (TAGs) recovery from biomass cultivated under nitrogen depletion conditions was found at 100 °C using methanol:chloroform, for C. reinhardtii (total, 550 ± 21; TAG, 205 ± 2 mg/g biomass) and for C. vulgaris (total, 612 ± 29 mg/g; TAG, 253 ± 7 mg/g biomass). ASE with MTBE:methanol:water at 100 °C yielded similar TAG recovery for C. reinhardtii (159 ± 6 mg/g) and C. vulgaris (200 ± 4 mg/g). Thus, MTBE:methanol:water is suggested as an alternative substitute to replace hazardous solvent mixtures for TAGs extraction with a much lower environmental impact. The extracted microalgal TAGs were rich in palmitic (C16:0), stearic (C18:0), oleic (C18:1,9), linoleic (C18:2n6), and α-linolenic (C18:3n3) acids. Under nitrogen depletion conditions, increased palmitic acid (C16:0) recovery up to 2-fold was recorded from the biomasses of C. reinhardtii and C. vulgaris. This study demonstrates a clear linkage between the extraction conditions applied and total lipid and TAG recovery.
Collapse
Affiliation(s)
- Goldy De Bhowmick
- AgResearch
Ltd., Te Ohu Rangahau Kai, Palmerston North, 4474 New Zealand
| | - Maxence Plouviez
- School
of Engineering and Advanced Technology, Massey University, Private
Bag 11 222, Palmerston North, 4442 New Zealand
| | - Mariza Gomes Reis
- AgResearch
Ltd., Te Ohu Rangahau Kai, Palmerston North, 4474 New Zealand
| | - Benoit Guieysse
- School
of Engineering and Advanced Technology, Massey University, Private
Bag 11 222, Palmerston North, 4442 New Zealand
| | - David W. Everett
- AgResearch
Ltd., Te Ohu Rangahau Kai, Palmerston North, 4474 New Zealand
- Riddet
Institute, Private Bag
11 222, Palmerston North 4442, New Zealand
| | - Michael P. Agnew
- AgResearch
Ltd., Te Ohu Rangahau Kai, Palmerston North, 4474 New Zealand
| | - Paul Maclean
- AgResearch
Ltd., Grasslands Campus, Palmerston North 4442, New Zealand
| | - Caroline Thum
- AgResearch
Ltd., Te Ohu Rangahau Kai, Palmerston North, 4474 New Zealand
| |
Collapse
|
19
|
Spínola MP, Costa MM, Prates JAM. Analysing the Impact of Spirulina Intake Levels on Performance Parameters, Blood Health Markers and Carcass Traits of Broiler Chickens. Animals (Basel) 2024; 14:1964. [PMID: 38998076 PMCID: PMC11240424 DOI: 10.3390/ani14131964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
This systematic review examines the impact of varying Spirulina (Limnospira platensis) intake levels on broiler chickens, focusing on growth performance, blood health markers and carcass traits. The data revealed cumulative Spirulina intakes from 3.13 g to 521 g per bird (total feed consumed multiplied by its proportion in the diet) establish a cubic relationship between dosage and growth outcomes. Initial benefits peak and diminish with increased intake, with the optimal threshold for growth performance identified at 45 g per bird. Lower intakes between 14 g and 29 g per bird enhance blood health markers, improving lipid profiles and antioxidant capacity. Similarly, cumulative intakes of 14 g to 37 g per bird optimise meat quality, resulting in better dressing percentages, breast and thigh yields and meat tenderness while minimizing undesirable traits like abdominal fat and cooking loss. These findings underscore the importance of precisely calibrated Spirulina supplementation strategies to maximise growth, health and meat quality benefits while avoiding adverse effects at higher doses. Future research should focus on identifying optimal dosage and duration, assessing long-term implications, elucidating mechanisms of action and ensuring safety and regulatory compliance. Comparative studies with other feed additives could further establish Spirulina's effectiveness and economic viability in poultry production.
Collapse
Affiliation(s)
- Maria P Spínola
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Mónica M Costa
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - José A M Prates
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
| |
Collapse
|
20
|
McDonnell B, Parlindungan E, Vasiliauskaite E, Bottacini F, Coughlan K, Krishnaswami LP, Sassen T, Lugli GA, Ventura M, Mastroleo F, Mahony J, van Sinderen D. Viromic and Metagenomic Analyses of Commercial Spirulina Fermentations Reveal Remarkable Microbial Diversity. Viruses 2024; 16:1039. [PMID: 39066202 PMCID: PMC11281685 DOI: 10.3390/v16071039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Commercially produced cyanobacteria preparations sold under the name spirulina are widely consumed, due to their traditional use as a nutrient-rich foodstuff and subsequent marketing as a superfood. Despite their popularity, the microbial composition of ponds used to cultivate these bacteria is understudied. A total of 19 pond samples were obtained from small-scale spirulina farms and subjected to metagenome and/or virome sequencing, and the results were analysed. A remarkable level of prokaryotic and viral diversity was found to be present in the ponds, with Limnospira sp. and Arthrospira sp. sometimes being notably scarce. A detailed breakdown of prokaryotic and viral components of 15 samples is presented. Twenty putative Limnospira sp.-infecting bacteriophage contigs were identified, though no correlation between the performance of these cultures and the presence of phages was found. The high diversity of these samples prevented the identification of clear trends in sample performance over time, between ponds or when comparing successful and failed fermentations.
Collapse
Affiliation(s)
- Brian McDonnell
- School of Microbiology, University College Cork, T12 Y337 Cork, Ireland; (B.M.); (E.V.); (K.C.); (L.P.K.); (J.M.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Elvina Parlindungan
- School of Microbiology, University College Cork, T12 Y337 Cork, Ireland; (B.M.); (E.V.); (K.C.); (L.P.K.); (J.M.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Erika Vasiliauskaite
- School of Microbiology, University College Cork, T12 Y337 Cork, Ireland; (B.M.); (E.V.); (K.C.); (L.P.K.); (J.M.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
- Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
| | - Keith Coughlan
- School of Microbiology, University College Cork, T12 Y337 Cork, Ireland; (B.M.); (E.V.); (K.C.); (L.P.K.); (J.M.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Lakshmi Priyadarshini Krishnaswami
- School of Microbiology, University College Cork, T12 Y337 Cork, Ireland; (B.M.); (E.V.); (K.C.); (L.P.K.); (J.M.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Tom Sassen
- School of Microbiology, University College Cork, T12 Y337 Cork, Ireland; (B.M.); (E.V.); (K.C.); (L.P.K.); (J.M.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
- Microbiology Unit, Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium;
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (G.A.L.); (M.V.)
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, 43124 Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (G.A.L.); (M.V.)
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, 43124 Parma, Italy
| | - Felice Mastroleo
- Microbiology Unit, Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium;
| | - Jennifer Mahony
- School of Microbiology, University College Cork, T12 Y337 Cork, Ireland; (B.M.); (E.V.); (K.C.); (L.P.K.); (J.M.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, T12 Y337 Cork, Ireland; (B.M.); (E.V.); (K.C.); (L.P.K.); (J.M.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| |
Collapse
|
21
|
Chalermthai B, Nootong K, Olsen BD, Assabumrungrat S, Charoensuppanimit P. Cradle-to-gate life cycle assessment of Spirulina bioplastic produced via plasticization with glycerol. ENVIRONMENTAL RESEARCH 2024; 251:118622. [PMID: 38442816 DOI: 10.1016/j.envres.2024.118622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/07/2024]
Abstract
Bioplastics have been used as alternatives to conventional petroleum-based plastics to lessen the burdens on marine and terrestrial environments due to their non-biodegradability and toxicity. However, recent studies have shown that not all bioplastics may be environmentally friendly. Microalgae, such as Spirulina that do not require arable land, have been identified as a potential bioplastic source. In this study, cradle-to-gate life cycle assessment (LCA) was carried out in openLCA program using the Agribalyse database, to evaluate the environmental impacts of Spirulina bioplastic, formed from plasticization of Spirulina powder with glycerol. Two processes were created for the inventories of (i) Spirulina powder and (ii) Spirulina bioplastic, where the output of the former served as an input for the latter. The extruded bioplastic sheets were food-grade and could be used as edible packaging materials. The bioplastic was also compared to conventional plastics and it was found that the energy consumption was 3.83 ± 0.26 MJ/kg-bioplastic, which was 12% and 22% higher than that of LDPE and PVC plastic films, respectively. The impacts on the environment showed that the chemical growth medium (Zarrouk medium) and electricity were the main contributors in most of the categories. Compared to the PVC and LDPE films, the Spirulina bioplastic's impacts on the aquatic ecosystems were 2-3 times higher. The global warming potential of the Spirulina bioplastic was 1.99 ± 0.014 kg CO2 eq, which was 23% and 47% lower than that of LDPE and PVC films, respectively. Sensitivity analysis was carried out by changing the electricity source and using alternative growth media. Except for the case of switching to solar energy, the results for other cases did not differ significantly from the base case scenario. Future studies were suggested to identify different greener alternatives to the growth medium as well as different energy mixes for more environmentally benign solutions.
Collapse
Affiliation(s)
- Bushra Chalermthai
- Bio-Circular-Green-Economy Technology & Engineering Center (BCGeTEC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; Control and Systems Engineering Research Laboratory, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kasidit Nootong
- Bio-Circular-Green-Economy Technology & Engineering Center (BCGeTEC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, United States
| | - Suttichai Assabumrungrat
- Bio-Circular-Green-Economy Technology & Engineering Center (BCGeTEC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pongtorn Charoensuppanimit
- Bio-Circular-Green-Economy Technology & Engineering Center (BCGeTEC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; Control and Systems Engineering Research Laboratory, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
22
|
Liu H, Yu S, Liu B, Xiang S, Jiang M, Yang F, Tan W, Zhou J, Xiao M, Li X, Richardson JJ, Lin W, Zhou J. Space-Efficient 3D Microalgae Farming with Optimized Resource Utilization for Regenerative Food. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401172. [PMID: 38483347 DOI: 10.1002/adma.202401172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Photosynthetic microalgae produce valuable metabolites and are a source of sustainable food that supports life without compromising arable land. However, the light self-shading, excessive water supply, and insufficient space utilization in microalgae farming have limited its potential in the inland areas most in need of regenerative food solutions. Herein, this work develops a 3D polysaccharide-based hydrogel scaffold for vertically farming microalgae without needing liquid media. This liquid-free strategy is compatible with diverse microalgal species and enables the design of living microalgal frameworks with customizable architectures that enhance light and water utilization. This approach significantly increases microalgae yield per unit water consumption, with an 8.8-fold increase compared to traditional methods. Furthermore, the dehydrated hydrogels demonstrate a reduced size and weight (≈70% reduction), but readily recover their vitality upon rehydration. Importantly, valuable natural products can be produced in this system including proteins, carbohydrates, lipids, and carotenoids. This study streamlines microalgae regenerative farming for low-carbon biomanufacturing by minimizing light self-shading, relieving water supply, and reducing physical footprints, and democratizing access to efficient aquatic food production.
Collapse
Affiliation(s)
- Hai Liu
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Siqin Yu
- Department of Energy Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shuhong Xiang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Minwen Jiang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Fan Yang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Weiwei Tan
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Jianfei Zhou
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
- Research Institute of Leather and Footwear Industry of Wenzhou, Wenzhou, 325000, China
| | - Ming Xiao
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaojie Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Joseph J Richardson
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Wei Lin
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Jiajing Zhou
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
- Research Institute of Leather and Footwear Industry of Wenzhou, Wenzhou, 325000, China
| |
Collapse
|
23
|
Moll TO, Klemek ML, Farber SA. Directly Measuring Atherogenic Lipoprotein Kinetics in Zebrafish with the Photoconvertible LipoTimer Reporter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596423. [PMID: 38853962 PMCID: PMC11160697 DOI: 10.1101/2024.05.29.596423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Lipoprotein kinetics are a crucial factor in understanding lipoprotein metabolism since a prolonged time in circulation can contribute to the atherogenic character of apolipoprotein-B (ApoB)-containing lipoproteins (B-lps). Here, we report a method to directly measure lipoprotein kinetics in live developing animals. We developed a zebrafish geneticly encoded reporter, LipoTimer, in which endogenous ApoBb.1 is fused to the photoconvertible fluorophore Dendra2 which shift its emission profile from green to red upon UV exposure. By quantifying the red population of ApoB-Dendra2 over time, we found that B-lp turnover in wild-type larvae becomes faster as development proceeds. Mutants with impaired B-lp uptake or lipolysis present with increased B-lp levels and half-life. In contrast, mutants with impaired B-lp triglyceride loading display slightly fewer and smaller-B-lps, which have a significantly shorter B-lp half-life. Further, we showed that chronic high-cholesterol feeding is associated with a longer B-lp half-life in wild-type juveniles but does not lead to changes in B-lp half-life in lipolysis deficient apoC2 mutants. These data support the hypothesis that B-lp lipolysis is suppressed by the flood of intestinal-derived B-lps that follow a high-fat meal.
Collapse
Affiliation(s)
- Tabea O.C. Moll
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | - Steven A. Farber
- Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
24
|
Athiyappan KD, Chaudhuri R, Balasubramanian P. Enhancing phycocyanin yield from Spirulina sp. under salt stress using various extraction methods. Arch Microbiol 2024; 206:258. [PMID: 38735006 DOI: 10.1007/s00203-024-03968-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024]
Abstract
Phycocyanin, a blue-coloured pigment, predominantly found and derived from Spirulina sp., has gained researchers' interest due to its vibrant hues and other attractive properties like antioxidant and anti-microbial. However, the lack of reliable and sustainable phycocyanin extraction strategies without compromising the quality has hindered the scaling up of its production processes for commercial purposes. Here in this study, phycocyanin was extracted from wet and dry biomass Spirulina sp., using three different physical cell disruption methods (ultrasonication, homogenization, and freeze-thaw cycles) combined with two different buffers (phosphate buffer and acetate buffer) and water (as control). The result showed that the freeze-thaw method combined with acetate buffer produced the highest yield (25.013 ± 2.572 mg/100 mg) with a purity ratio of 0.806 ± 0.079. Furthermore, when subjected to 30% w/v salt stress, 1.9 times higher phycocyanin yield with a purity ratio of 1.402 ± 0.609 was achieved using the previously optimized extraction method.
Collapse
Affiliation(s)
- Kerthika Devi Athiyappan
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Rayanee Chaudhuri
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Paramasivan Balasubramanian
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India.
| |
Collapse
|
25
|
Drobac Backović D, Tokodi N. Cyanotoxins in food: Exposure assessment and health impact. Food Res Int 2024; 184:114271. [PMID: 38609248 DOI: 10.1016/j.foodres.2024.114271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
The intricate nature of cyanotoxin exposure through food reveals a complex web of risks and uncertainties in our dietary choices. With the aim of starting to unravel this intricate nexus, a comprehensive review of 111 papers from the past two decades investigating cyanotoxin contamination in food was undertaken. It revealed a widespread occurrence of cyanotoxins in diverse food sources across 31 countries. Notably, 68% of the studies reported microcystin concentrations exceeding established Tolerable Daily Intake levels. Cyanotoxins were detected in muscles of many fish species, and while herbivorous fish exhibited the highest recorded concentration, omnivorous species displayed a higher propensity for cyanotoxin accumulation, exemplified by Oreochromis niloticus. Beyond fish, crustaceans and bivalves emerged as potent cyanotoxin accumulators. Gaps persist regarding contamination of terrestrial and exotic animals and their products, necessitating further exploration. Plant contamination under natural conditions remains underreported, yet evidence underscores irrigation-driven cyanotoxin accumulation, particularly affecting leafy vegetables. Finally, cyanobacterial-based food supplements often harbored cyanotoxins (57 % of samples were positive) warranting heightened scrutiny, especially for Aphanizomenon flos-aquae-based products. Uncertainties surround precise concentrations due to methodological variations (chemical and biochemical) and extraction limitations, along with the enigmatic fate of toxins during storage, processing, and digestion. Nonetheless, potential health consequences of cyanotoxin exposure via contaminated food include gastrointestinal and neurological disorders, organ damage (e.g. liver, kidneys, muscles), and even elevated cancer risks. While microcystins received significant attention, knowledge gaps persist regarding other cyanotoxins' accumulation, exposure, and effects, as well as combined exposure via multiple pathways. Intriguing and complex, cyanotoxin exposure through food beckons further research for our safer and healthier diets.
Collapse
Affiliation(s)
- Damjana Drobac Backović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia
| | - Nada Tokodi
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia; Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Laboratory of Metabolomics, Gronostajowa 7, Krakow 30387, Poland.
| |
Collapse
|
26
|
Liu Q, Chen T, Chen L, Zhao R, Ye X, Wang X, Wu D, Hu J. High Internal Phase Emulsions Stabilized with Ultrasound-Modified Spirulina Protein for Curcumin Delivery. Foods 2024; 13:1324. [PMID: 38731694 PMCID: PMC11083376 DOI: 10.3390/foods13091324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Spirulina protein (SP) is recognized as a nutritious edible microbial protein and holds potential as a natural emulsifier. Due to the inherent challenges SP faces in stabilizing high internal phase emulsions (HIPEs), ultrasonic techniques were utilized for modification. Noticeable alterations in the structural and functional properties of SP were observed following ultrasonic treatment at various power levels (0, 100, 300, and 500 W). Ultrasound treatment disrupted non-covalent interactions within the protein polymer structure, leading to the unfolding of molecular structures and the exposure of hydrophobic groups. Importantly, the particle size of SP was reduced the most at an ultrasonic power of 300 W, and the three-phase contact angle reached its peak at 84.3°. The HIPEs stabilized by SP modified with 300 W ultrasonication have high apparent viscosity and modulus values and strong storage stability under different environmental conditions. Additionally, the encapsulation of curcumin in HIPEs led to improved retention of curcumin across various settings. The bioavailability increased to 35.36, which is 2.8 times higher than the pure oil. These findings suggest that ultrasound-modified SP is a promising emulsifier for HIPEs, and is expected to encapsulate hydrophobic nutrients such as curcumin more effectively.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (Q.L.); (T.C.); (L.C.); (X.Y.); (X.W.); (D.W.)
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Chen
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (Q.L.); (T.C.); (L.C.); (X.Y.); (X.W.); (D.W.)
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lihang Chen
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (Q.L.); (T.C.); (L.C.); (X.Y.); (X.W.); (D.W.)
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Runan Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Ximei Ye
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (Q.L.); (T.C.); (L.C.); (X.Y.); (X.W.); (D.W.)
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xinchuang Wang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (Q.L.); (T.C.); (L.C.); (X.Y.); (X.W.); (D.W.)
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (Q.L.); (T.C.); (L.C.); (X.Y.); (X.W.); (D.W.)
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (Q.L.); (T.C.); (L.C.); (X.Y.); (X.W.); (D.W.)
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
27
|
Paraskevopoulou A, Kaloudis T, Hiskia A, Steinhaus M, Dimotikali D, Triantis TM. Volatile Profiling of Spirulina Food Supplements. Foods 2024; 13:1257. [PMID: 38672929 PMCID: PMC11049305 DOI: 10.3390/foods13081257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Spirulina, a cyanobacterium widely used as a food supplement due to its high nutrient value, contains volatile organic compounds (VOCs). It is crucial to assess the presence of VOCs in commercial spirulina products, as they could influence sensory quality, various processes, and technological aspects. In this study, the volatile profiles of seventeen commercial spirulina food supplements were determined using headspace solid-phase microextraction (HS-SPME), coupled with gas chromatography-mass spectrometry (GC-MS). The identification of volatile compounds was achieved using a workflow that combined data processing with software tools and reference databases, as well as retention indices (RI) and elution order data. A total of 128 VOCs were identified as belonging to chemical groups of alkanes (47.2%), ketones (25.7%), aldehydes (10.9%), alcohols (8.4%), furans (3.7%), alkenes (1.8%), esters (1.1%), pyrazines (0.8%), and other compounds (0.4%). Major volatiles among all samples were hydrocarbons, especially heptadecane and heptadec-8-ene, followed by ketones (i.e., 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-3-buten-2-one, β-ionone, 2,2,6-trimethylcyclohexan-1-one), aldehydes (i.e., hexanal), and the alcohol oct-1-en-3-ol. Several volatiles were found in spirulina dietary supplements for the first time, including 6,10-dimethylundeca-5,9-dien-2-one (geranylacetone), 6,10,14-trimethylpentadecan-2-one, hept-2-enal, octanal, nonanal, oct-2-en-1-ol, heptan-1-ol, nonan-1-ol, tetradec-9-en-1-ol, 4,4-dimethylcyclohex-2-en-1-ol, 2,6-diethylpyrazine, and 1-(2,5-dimethylfuran-3-yl) ethanone. The methodology used for VOC analysis ensured high accuracy, reliability, and confidence in compound identification. Results reveal a wide variety of volatiles in commercial spirulina products, with numerous newly discovered compounds, prompting further research on sensory quality and production methods.
Collapse
Affiliation(s)
- Aikaterina Paraskevopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str., Agia Paraskevi, 15341 Athens, Greece; (A.P.); (T.K.); (A.H.)
- School of Chemical Engineering, National Technical University of Athens, Iroon Politechniou 9, Zografou, 15780 Athens, Greece;
| | - Triantafyllos Kaloudis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str., Agia Paraskevi, 15341 Athens, Greece; (A.P.); (T.K.); (A.H.)
- Department of Water Quality Control, Athens Water Supply and Sewerage Company (EYDAP SA), 156 Oropou Str., 11146 Athens, Greece
| | - Anastasia Hiskia
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str., Agia Paraskevi, 15341 Athens, Greece; (A.P.); (T.K.); (A.H.)
| | - Martin Steinhaus
- Leibniz Institute for Food Systems Biology at the Technical University of Munich (Leibniz-LSB@TUM), Lise-Meitner-Straße 34, 85354 Freising, Germany;
| | - Dimitra Dimotikali
- School of Chemical Engineering, National Technical University of Athens, Iroon Politechniou 9, Zografou, 15780 Athens, Greece;
| | - Theodoros M. Triantis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str., Agia Paraskevi, 15341 Athens, Greece; (A.P.); (T.K.); (A.H.)
| |
Collapse
|
28
|
Spínola MP, Costa MM, Prates JAM. Effect of Cumulative Spirulina Intake on Broiler Meat Quality, Nutritional and Health-Related Attributes. Foods 2024; 13:799. [PMID: 38472912 PMCID: PMC10931167 DOI: 10.3390/foods13050799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
This work aimed to assess how different cumulative levels of Spirulina (Arthrospira platensis) intake influence individual broiler meat quality parameters, nutritional value and health-related traits. The data analysed showed varying cumulative Spirulina intake levels, ranging from 3.46 to 521 g/bird, with large changes in meat traits. The key findings indicate that Spirulina intake significantly enhances meat colour, primarily due to its rich carotenoid content. However, this enhancement shows a saturation effect at higher intake levels, where additional Spirulina does not further improve the colour. Regarding the meat nutritional profile, Spirulina increases beneficial n - 3 polyunsaturated fatty acids and reduces lipid oxidation. These effects on meat, however, are not linear and become more complex at higher microalga intake levels. Regarding meat sensory attributes, moderate Spirulina levels positively influence flavour and texture. Still, higher levels may lead to changes not universally preferred by meat consumers, highlighting the need for balanced Spirulina inclusion in diets. Optimal Spirulina cumulative intake levels must be identified to balance meat's nutritional benefits with consumer preferences. Additionally, ensuring Spirulina's purity and adherence to regulatory standards is essential for consumer safety and market access. These findings provide valuable insights for poultry nutritionists and the food industry, emphasising the necessity of a balanced approach to Spirulina's incorporation in poultry diets.
Collapse
Affiliation(s)
- Maria P. Spínola
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.P.S.); (M.M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Mónica M. Costa
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.P.S.); (M.M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - José A. M. Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.P.S.); (M.M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
29
|
Çelekli A, Özbal B, Bozkurt H. Challenges in Functional Food Products with the Incorporation of Some Microalgae. Foods 2024; 13:725. [PMID: 38472838 DOI: 10.3390/foods13050725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/07/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Much attention has been given to the use of microalgae to produce functional foods that have valuable bioactive chemicals, including essential amino acids, polyunsaturated fatty acids, vitamins, carotenoids, fiber, and minerals. Microalgal biomasses are increasingly being used to improve the nutritional values of foods because of their unique nutrient compositions that are beneficial to human health. Their protein content and amino acid composition are the most important components. The microalgal biomass used in the therapeutic supplement industry is dominated by bio-compounds like astaxanthin, β-carotene, polyunsaturated fatty acids like eicosapentaenoic acid and docosahexaenoic acid, and polysaccharides such as β-glucan. The popularity of microalgal supplements is growing because of the health benefits of their bioactive substances. Moreover, some microalgae, such as Dunaliella, Arthrospira (Spirulina), Chlorella, and Haematococcus, are commonly used microalgal species in functional food production. The incorporation of microalgal biomass leads not only to enhanced nutritional value but also to improved sensory quality of food products without altering their cooking or textural characteristics. Microalgae, because of their eco-friendly potential, have emerged as one of the most promising and novel sources of new functional foods. This study reviews some recent and relevant works, as well as the current challenges for future research, using different methods of chemical modification in foods with the addition of a few commercial algae to allow their use in nutritional and sensory areas. It can be concluded that the production of functional foods through the use of microalgae in foods has become an important issue.
Collapse
Affiliation(s)
- Abuzer Çelekli
- Department of Biology, Faculty of Art and Science, Gaziantep University, 27310 Gaziantep, Turkey
| | - Buket Özbal
- Department of Biology, Faculty of Art and Science, Gaziantep University, 27310 Gaziantep, Turkey
| | - Hüseyin Bozkurt
- Department of Food Engineering, Faculty of Engineering, University of Gaziantep, 27310 Gaziantep, Turkey
| |
Collapse
|
30
|
Buecker S, Gibis M, Bartmann L, Bussler S, Weiss J. Improving the colloidal stability of pectin-phycocyanin complexes by increasing the mixing ratio. J Food Sci 2024; 89:1086-1097. [PMID: 38224172 DOI: 10.1111/1750-3841.16917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
In the food industry, the phycobiliprotein phycocyanin acts as a color pigment or the functional part of the superfood "Spirulina." It is industrially extracted from Arthrospira platensis. Current scientific research is focusing on finding complex partners with the potential to stabilize phycocyanin against its sensitivity toward heating and pH changes. Less attention is paid to the factors that influence complexation. This study focuses on the mixing ratio of phycocyanin with pectin. Phycocyanin concentration was fixed, and the mixing ratios ranged from 0.67 to 2.50 (pectin:phycocyanin). All samples were analyzed for their color, size, microscopic structure, zeta potential, and sedimentation stability before and after heating at 85°C. It was found that increasing the pectin content fostered the initial interactions with the protein and chromophore, resulting in a color shift from blue to turquoise. The size of the complexes decreased from several micrometers to nanometers with increasing pectin concentration. Those smaller complexes that were formed at a mixing ratio of 2.5 showed a higher colloidal stability over a period of ∼2 days. It is suggested that at a low mixing ratio (0.67), phycocyanin cannot be completely entrapped within the complexes and attaches to the complex surface as well. This results in aggregation and precipitation of the complexes upon heating. With increasing aggregation and consequently size as well as density of the complexes, sedimentation was accelerated. PRACTICAL APPLICATION: Under acidic conditions, as found in many foods and beverages (e.g., soft drinks, hard candy), phycocyanin tends to agglomerate and lose its color. Specifically heating, triggers denaturation, causing phycocyanin to aggregate and lose vital protein-chromophore interactions necessary to maintain a blue color. To prevent precipitation of the phycocyanin-pectin complexes, increasing the amount of pectin to a ratio of at least 2.0 is effective. This illustrates how adjusting the mixing ratio improves stability. Conversely, lower mixing ratios induce color precipitation, valuable in purification processes. Thus, practical use of biopolymer-complexes, requires determination of the optimal mixing ratio for the desired effect.
Collapse
Affiliation(s)
- Stephan Buecker
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Monika Gibis
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Laura Bartmann
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | | | - Jochen Weiss
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
31
|
Eydi Gabrabad M, Yari M, Bonyadi Z. Using Spirulina platensis as a natural biocoagulant for polystyrene removal from aqueous medium: performance, optimization, and modeling. Sci Rep 2024; 14:2506. [PMID: 38291171 PMCID: PMC10828415 DOI: 10.1038/s41598-024-53123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024] Open
Abstract
Microplastics (MPs) are newly recognized contaminants that result from the breakdown of plastics released into aquatic environments. This study focuses on the elimination of polystyrene (PS) using S. platensis, a natural biocoagulant, from aqueous solutions. The research investigated several crucial variables, including the initial level of PS ranging from 100 to 900 mg L-1, pH levels from 4 to 10, the contact time of 20-40 min, and doses of S. platensis ranging from 50 to 250 mg L-1. The analysis of the data revealed that the quadratic model offered the best fit for the experimental results. In the present study, we utilized S. platensis as a novel natural biocoagulant to effectively eliminate PS from aqueous solutions. Process optimization was performed using a Box-Behnken design (BBD). The best-fitting model for the data was the quadratic model. The results displayed that the highest elimination of PS (81%) was occurred at a pH of 4, with a contact time of 30 min, a dose of S. platensis at 250 mg L-1, and a PS concentration of 500 mg L-1. These findings show that S. platensis has a significant effect on removing PS from the aquatic environment. Algae can serve as a convenient and eco-friendly method, replacing chemical coagulants, to effectively remove MPs from the aquatic environment.
Collapse
Affiliation(s)
- Mohaddeseh Eydi Gabrabad
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Yari
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ziaeddin Bonyadi
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
32
|
Villaró S, García-Vaquero M, Morán L, Álvarez C, Cabral EM, Lafarga T. Effect of seawater on the biomass composition of Spirulina produced at a pilot-scale. N Biotechnol 2023; 78:173-179. [PMID: 37967766 DOI: 10.1016/j.nbt.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/31/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
The microalga Arthrospira platensis BEA 005B was produced in 11.4 m3 raceway photobioreactors and a culture medium based on commercial fertilisers and either freshwater or seawater. The biomass productivity of the reactors operated at a fixed dilution rate of 0.3 day-1 decreased from 22.9 g·m-2·day-1 when operated using freshwater to 16.3 g·m-2·day-1 when the biomass was produced using seawater. The protein content of the biomass produced in seawater was lower; however, the content of essential amino acids including valine, leucine and isoleucine was higher. Seawater also triggered the production of carotenoids and altered the synthesis and accumulation of fatty acids. For example, the biomass produced using seawater showed a 319% and 210% higher content of oleic and eicosenoic acid, respectively. The results demonstrate that it is possible to produce the selected microalga using seawater after an adaptation period and that the composition of the produced biomass is suitable for food applications.
Collapse
Affiliation(s)
- Silvia Villaró
- Department of Chemical Engineering, University of Almería, Almería, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, Almería, Spain
| | - Marco García-Vaquero
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Lara Morán
- Lactiker Research Group, Department of Pharmacy and Food Sciences, University of the Basque Country, Vitoria-Gasteiz, Spain
| | - Carlos Álvarez
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin, Ireland
| | - Eduarda Melo Cabral
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin, Ireland
| | - Tomas Lafarga
- Department of Chemical Engineering, University of Almería, Almería, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, Almería, Spain.
| |
Collapse
|
33
|
Fu Q, Zhao J, Rong S, Han Y, Liu F, Chu Q, Wang S, Chen S. Research Advances in Plant Protein-Based Products: Protein Sources, Processing Technology, and Food Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15429-15444. [PMID: 37824166 DOI: 10.1021/acs.jafc.3c02224] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Plant proteins are high-quality dietary components of food products. With the growing interest in sustainable and healthy food alternatives, plant proteins have gained significant attention as viable substitutes for animal-based proteins. Understanding the diversity of protein sources derived from plants, novel processing technology, and multiple applications is crucial for developing nutritious and sustainable plant protein-based products. This Review summarizes the natural sources of traditional and emerging plant proteins. The classifications, processing technologies, and applications of plant protein-based products in the food industry are explicitly elucidated. Moreover, the advantages and disadvantages of plant protein-based food products are revealed. Strategies such as protein fortification and complementation to overcome these shortcomings are critically discussed. We also demonstrate several issues that need to be addressed in future development.
Collapse
Affiliation(s)
- Qi Fu
- School of Public Health, Wuhan University, 430071, Wuhan, China
| | - Jikai Zhao
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, Texas 78542, United States
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, Texas 78542, United States
| | - Shuang Rong
- School of Public Health, Wuhan University, 430071, Wuhan, China
| | - Yahong Han
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest Agriculture & Forestry University, Yangling 712199, China
| | - Qianmei Chu
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, Hubei, China
| | - Suqing Wang
- School of Nursing, Wuhan University, Wuhan 430071, China
| | - Shuai Chen
- School of Public Health, Wuhan University, 430071, Wuhan, China
| |
Collapse
|
34
|
Ali Y, Aubeeluck R, Gurney T. Fourteen-Days Spirulina Supplementation Increases Hemoglobin, but Does Not Provide Ergogenic Benefit in Recreationally Active Cyclists: A Double-Blinded Randomized Crossover Trial. J Diet Suppl 2023; 21:261-280. [PMID: 37807529 DOI: 10.1080/19390211.2023.2263564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Spirulina supplementation has been reported to increase hemoglobin concentration as well as a variety of cardiorespiratory and lactate-based performance parameters during maximal and submaximal states of exercise. This study investigates the efficacy of supplementing a 6 g/day dosage of spirulina for 14-days in recreationally active individuals, analyzing cardiorespiratory parameters during maximal and submaximal cycling as well as the potential mechanistic role of hemoglobin augmentation. 17 recreationally active individuals (Male = 14, Female = 3, Age 23 ± 5 years, V̇O2max 43.3 ± 8.6 ml/min·kg) ingested 6 g/day of spirulina or placebo for 14-days in a double-blinded randomized crossover study, with a 14-day washout period between trials. Participants completed a 20-min submaximal cycle at 40% maximal power output (WRmax), followed by a V̇O2max test. Hemoglobin (g/L), WRmax (watts), time to fatigue (seconds), heart rate (bpm), oxygen uptake (ml/min·kg), RER and blood lactate response (mmol/L) were measured and compared between conditions. Cardiorespiratory variables were recorded at 5-min intervals and lactate was measured at 10-min intervals during the submaximal exercise. There was a significant 3.4% increase in hemoglobin concentration after spirulina supplementation in comparison to placebo (150.4 ± 9.5 g/L Vs 145.6 ± 9.4 g/L, p = 0.047). No significant differences existed between either condition in both testing protocols for V̇O2max, WRmax, time to fatigue, heart rate, oxygen uptake, RER and blood lactate response (p > 0.05). 14-days of spirulina supplementation significantly improved hemoglobin concentration but did not lead to any considerable ergogenic improvements during maximal or submaximal exercise at a 6 g/day dosage in recreationally active individuals whilst cycling.
Collapse
Affiliation(s)
- Yunus Ali
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Rama Aubeeluck
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Tom Gurney
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| |
Collapse
|
35
|
Abreu AP, Martins R, Nunes J. Emerging Applications of Chlorella sp. and Spirulina ( Arthrospira) sp. Bioengineering (Basel) 2023; 10:955. [PMID: 37627840 PMCID: PMC10451540 DOI: 10.3390/bioengineering10080955] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Chlorella sp. and Spirulina (Arthrospira) sp. account for over 90% of the global microalgal biomass production and represent one of the most promising aquiculture bioeconomy systems. These microorganisms have been widely recognized for their nutritional and therapeutic properties; therefore, a significant growth of their market is expected, especially in the nutraceutical, food, and beverage segments. However, recent advancements in biotechnology and environmental science have led to the emergence of new applications for these microorganisms. This paper aims to explore these innovative applications, while shedding light on their roles in sustainable development, health, and industry. From this state-of-the art review, it was possible to give an in-depth outlook on the environmental sustainability of Chlorella sp. and Spirulina (Arthrospira) sp. For instance, there have been a variety of studies reported on the use of these two microorganisms for wastewater treatment and biofuel production, contributing to climate change mitigation efforts. Moreover, in the health sector, the richness of these microalgae in photosynthetic pigments and bioactive compounds, along with their oxygen-releasing capacity, are being harnessed in the development of new drugs, wound-healing dressings, photosensitizers for photodynamic therapy, tissue engineering, and anticancer treatments. Furthermore, in the industrial sector, Chlorella sp. and Spirulina (Arthrospira) sp. are being used in the production of biopolymers, fuel cells, and photovoltaic technologies. These innovative applications might bring different outlets for microalgae valorization, enhancing their potential, since the microalgae sector presents issues such as the high production costs. Thus, further research is highly needed to fully explore their benefits and potential applications in various sectors.
Collapse
Affiliation(s)
- Ana P. Abreu
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, 3405-155 Oliveira do Hospital, Portugal; (R.M.); (J.N.)
| | - Rodrigo Martins
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, 3405-155 Oliveira do Hospital, Portugal; (R.M.); (J.N.)
| | - João Nunes
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, 3405-155 Oliveira do Hospital, Portugal; (R.M.); (J.N.)
- BLC3 Evolution Lda, 3405-155 Oliveira do Hospital, Portugal
| |
Collapse
|
36
|
Machihara K, Oki S, Maejima Y, Kageyama S, Onda A, Koseki Y, Imai Y, Namba T. Restoration of mitochondrial function by Spirulina polysaccharide via upregulated SOD2 in aging fibroblasts. iScience 2023; 26:107113. [PMID: 37416477 PMCID: PMC10319841 DOI: 10.1016/j.isci.2023.107113] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/21/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
Reactive oxygen species (ROS), such as superoxide, are crucial factors involved in the stimulation of cellular aging. Mitochondria, which are important organelles responsible for various metabolic processes in cells, produce ROS. These ROS impair mitochondrial function, thereby accelerating aging-related cellular dysfunction. Herein, we demonstrated that the Spirulina polysaccharide complex (SPC) restores mitochondrial function and collagen production by scavenging superoxide via the upregulation of superoxide dismutase 2 (SOD2) in aging fibroblasts. We observed that SOD2 expression was linked to inflammatory pathways; however, SPC did not upregulate the expression of most inflammatory cytokines produced as a result of induction of LPS in aging fibroblasts, indicating that SPC induces SOD2 without activation of inflammatory pathways. Furthermore, SPC stimulated endoplasmic reticulum (ER) protein folding by upregulating ER chaperones expression. Thus, SPC is proposed to be an antiaging material that rejuvenates aging fibroblasts by increasing their antioxidant potential via the upregulation of SOD2.
Collapse
Affiliation(s)
- Kayo Machihara
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, Kochi 783-8505, Japan
| | - Shoma Oki
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Kochi 783-8502, Japan
| | - Yuka Maejima
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Kochi 783-8502, Japan
| | - Sou Kageyama
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Kochi 783-8502, Japan
| | - Ayumu Onda
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, Kochi 783-8505, Japan
| | - Yurino Koseki
- Health Care Technical G, Chiba Plants, DIC Corporation, Ichihara, Chiba 290-8585, Japan
| | - Yasuyuki Imai
- Health Care Technical G, Chiba Plants, DIC Corporation, Ichihara, Chiba 290-8585, Japan
| | - Takushi Namba
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, Kochi 783-8505, Japan
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Kochi 783-8502, Japan
| |
Collapse
|
37
|
Bartkiene E, Starkute V, Jomantaite I, Zokaityte E, Mockus E, Tolpeznikaite E, Zokaityte G, Petrova P, Santini A, Rocha JM, Özogul F, Klupsaite D. Multifunctional Nutraceutical Composition Based on Fermented Spirulina, Apple Cider Vinegar, Jerusalem Artichoke, and Bovine Colostrum. Foods 2023; 12:foods12081690. [PMID: 37107485 PMCID: PMC10138001 DOI: 10.3390/foods12081690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The main purpose of this experiment was to develop a multifunctional nutraceutical composition based on ingredients of different origins (Spirulina powder (SP), bovine colostrum (BC), Jerusalem artichoke powder (JAP), and apple cider vinegar (ACV)) which possess different health benefits through their different mechanisms of action. In order to improve the functional properties of Spirulina and bovine colostrum, fermentation with the Pediococcus acidilactici No. 29 and Lacticaseibacillus paracasei LUHS244 strains, respectively, was carried out. These LAB strains were chosen due to their good antimicrobial properties. The following parameters were analysed: for Spirulina (non-treated and fermented)-pH, colour coordinates, fatty acid profile, and contents of L-glutamic and GABA acids; for bovine colostrum (non-treated and fermented)-pH, colour coordinates, dry matter, and microbiological parameters (total LAB, total bacteria, total enterobacteria, Escherichia coli, and mould/yeast counts); for the produced nutraceuticals-hardness, colour coordinates, and overall acceptability. It was established that fermentation reduced the pH of the SP and BC and affected their colour coordinates. Fermented SP contained a greater concentration of gamma-aminobutyric and L-glutamic acids (by 5.2 times and 31.4% more, respectively), compared to the non-treated SP and BC. In addition, the presence of gamma-linolenic and omega-3 fatty acids was observed in fermented SP. Fermentation of BC reduces Escherichia coli, total bacteria, total enterobacteria, and total mould/yeast counts in samples. The obtained three-layer nutraceutical (I layer-fermented SP; II-fermented BC and JAP; III-ACV) demonstrated a high overall acceptability. Finally, our finding suggest that the selected nutraceutical combination has immense potential in the production of a multifunctional product with improved functionality and a high acceptability.
Collapse
Affiliation(s)
- Elena Bartkiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Vytaute Starkute
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Ieva Jomantaite
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Egle Zokaityte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Ernestas Mockus
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Ernesta Tolpeznikaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Gintare Zokaityte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. bl. 26, 1113 Sofia, Bulgaria
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - João Miguel Rocha
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Balcali, Adana 01330, Turkey
- Biotechnology Research and Application Center, Cukurova University, Balcali, Adana 01330, Turkey
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
38
|
Fernandes R, Campos J, Serra M, Fidalgo J, Almeida H, Casas A, Toubarro D, Barros AIRNA. Exploring the Benefits of Phycocyanin: From Spirulina Cultivation to Its Widespread Applications. Pharmaceuticals (Basel) 2023; 16:592. [PMID: 37111349 PMCID: PMC10144176 DOI: 10.3390/ph16040592] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Large-scale production of microalgae and their bioactive compounds has steadily increased in response to global demand for natural compounds. Spirulina, in particular, has been used due to its high nutritional value, especially its high protein content. Promising biological functions have been associated with Spirulina extracts, mainly related to its high value added blue pigment, phycocyanin. Phycocyanin is used in several industries such as food, cosmetics, and pharmaceuticals, which increases its market value. Due to the worldwide interest and the need to replace synthetic compounds with natural ones, efforts have been made to optimize large-scale production processes and maintain phycocyanin stability, which is a highly unstable protein. The aim of this review is to update the scientific knowledge on phycocyanin applications and to describe the reported production, extraction, and purification methods, including the main physical and chemical parameters that may affect the purity, recovery, and stability of phycocyanin. By implementing different techniques such as complete cell disruption, extraction at temperatures below 45 °C and a pH of 5.5-6.0, purification through ammonium sulfate, and filtration and chromatography, both the purity and stability of phycocyanin have been significantly improved. Moreover, the use of saccharides, crosslinkers, or natural polymers as preservatives has contributed to the increased market value of phycocyanin.
Collapse
Affiliation(s)
- Raquel Fernandes
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Joana Campos
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Mónica Serra
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Javier Fidalgo
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Hugo Almeida
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
- UCIBIO (Research Unit on Applied Molecular Biosciences), REQUIMTE (Rede de Química e Tecnologia), MEDTECH (Medicines and Healthcare Products), Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Casas
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Duarte Toubarro
- CBA and Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus No 13, 9500-321 Ponta Delgada, Portugal
| | - Ana I. R. N. A. Barros
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
39
|
Stefanutti D, Tonin G, Morelli G, Zampieri RM, La Rocca N, Ricci R. Oral Palatability and Owners' Perception of the Effect of Increasing Amounts of Spirulina ( Arthrospira platensis) in the Diet of a Cohort of Healthy Dogs and Cats. Animals (Basel) 2023; 13:1275. [PMID: 37106838 PMCID: PMC10135035 DOI: 10.3390/ani13081275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The nutraceutical supplementation of Spirulina (Arthrospira platensis) in dogs and cats has not yet been investigated. The aim of this study was to evaluate if the dietary supplementation of increasing amounts of Spirulina for 6 weeks is palatable to pets and to assess the owner's perception of such supplementation. The owners of the 60 dogs and 30 cats that participated in this study were instructed to daily provide Spirulina tablets starting with a daily amount of 0.4 g, 0.8 g, and 1.2 g for cats as well as small dogs, medium dogs, and large dogs, respectively, and allowing a dose escalation of 2× and 3× every 2 weeks. The daily amount (g/kg BW) of Spirulina ranged from 0.08 to 0.25 for cats, from 0.06 to 0.19 for small-sized dogs, from 0.05 to 0.15 for medium-sized dogs, and from 0.04 to 0.12 for large-sized dogs. Each owner completed a questionnaire at the time of recruitment and the end of each 2-week period. No significant effect on the fecal score, defecation frequency, vomiting, scratching, lacrimation, general health status, and behavioral attitudes was detected by the owners' reported evaluations. Most animals accepted Spirulina tablets either administrated alone or mixed with food in the bowl. Daily supplementation of Spirulina for 6 weeks in the amounts provided in this study is therefore palatable and well tolerated by dogs and cats.
Collapse
Affiliation(s)
- Davide Stefanutti
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy
| | - Gloria Tonin
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy
| | - Giada Morelli
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy
| | | | - Nicoletta La Rocca
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35151 Padova, PD, Italy
| | - Rebecca Ricci
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy
- Vetekipp S.r.l., via del Cristo 326, 35127 Padova, PD, Italy
| |
Collapse
|
40
|
Cyanobacteria and Algal-Based Biological Life Support System (BLSS) and Planetary Surface Atmospheric Revitalizing Bioreactor Brief Concept Review. Life (Basel) 2023; 13:life13030816. [PMID: 36983971 PMCID: PMC10057978 DOI: 10.3390/life13030816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Exploring austere environments required a reimagining of resource acquisition and utilization. Cyanobacterial in situ resources utilization (ISRU) and biological life support system (BLSS) bioreactors have been proposed to allow crewed space missions to extend beyond the temporal boundaries that current vehicle mass capacities allow. Many cyanobacteria and other microscopic organisms evolved during a period of Earth’s history that was marked by very harsh conditions, requiring robust biochemical systems to ensure survival. Some species work wonderfully in a bioweathering capacity (siderophilic), and others are widely used for their nutritional power (non-siderophilic). Playing to each of their strengths and having them grow and feed off of each other is the basis for the proposed idea for a series of three bioreactors, starting from regolith processing and proceeding to nutritional products, gaseous liberation, and biofuel production. In this paper, we discuss what that three reactor system will look like, with the main emphasis on the nutritional stage.
Collapse
|
41
|
Rutar JM, Strojnik L, Nečemer M, Bontempo L, Ogrinc N. Determining the Authenticity of Spirulina Dietary Supplements Based on Stable Isotope and Elemental Composition. Foods 2023; 12:foods12030562. [PMID: 36766091 PMCID: PMC9914286 DOI: 10.3390/foods12030562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
While the demand for Spirulina dietary supplements continues to grow, product inspection in terms of authenticity and safety remains limited. This study used the stable isotope ratios of light elements (C, N, S, H, and O) and the elemental composition to characterize Spirulina dietary supplements available on the Slovenian market. Forty-six samples were labelled as originating from the EU (1), non-EU (6), Hawaii (2), Italy (2), Japan (1), Portugal (2), Taiwan (3), India (4), and China (16), and nine products were without a declared origin. Stable isotope ratio median values were -23.9‱ (-26.0 to -21.8‱) for δ13C, 4.80‱ (1.30-8.02‱) for δ15N, 11.0‱ (6.79-12.7‱) for δ34S, -173‱ (- 190 to -158‱) for δ2H, and 17.2‱ (15.8-18.8‱) for δ18O. Multivariate statistical analyses achieved a reliable differentiation of Hawaiian, Italian, and Portuguese (100%) samples and a good separation of Chinese samples, while the separation of Indian and Taiwanese samples was less successful, but still notable. The study showed that differences in isotopic and elemental composition are indicative of sample origins, cultivation and processing methods, and environmental conditions such that, when combined, they provide a promising tool for determining the authenticity of Spirulina products.
Collapse
Affiliation(s)
- Jasmina Masten Rutar
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| | - Lidija Strojnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Marijan Nečemer
- Department of Low and Medium Energy Physics, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Luana Bontempo
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all’Adige, Italy
| | - Nives Ogrinc
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-5885-387
| |
Collapse
|
42
|
Kumar R, Sharma V, Das S, Patial V, Srivatsan V. Arthrospira platensis ( Spirulina) fortified functional foods ameliorate iron and protein malnutrition by improving growth and modulating oxidative stress and gut microbiota in rats. Food Funct 2023; 14:1160-1178. [PMID: 36601898 DOI: 10.1039/d2fo02226e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The present study was aimed at developing Arthrospira platensis (Spirulina) fortified traditional foods of the Indian subcontinent, namely sattu (multigrain beverage mix) and chikki (peanut bar) and evaluating their ability to promote recovery from protein and iron deficiency anaemia (IDA) using albino Wistar rats. Addition of Spirulina (at 4% w/w Spirulina inclusion levels) enriched the protein content by 20.33% in sattu and 15.65% in chikki while the iron content was enhanced by 45% in sattu and 29.6% in chikki. In addition, the total carotenoid and polyphenol content and antioxidant capacity of the food products improved after Spirulina incorporation. Supplementation of 100 g of Spirulina fortified food products meets more than 50% of recommended dietary allowances (RDA) of protein, dietary fiber, iron and zinc for the age group 3 to 10 years of children. Spirulina contributed between 11% and 22% of RDA for protein and iron, respectively; however it contributed very negligibly to RDA of dietary fibre with respect to the nutrient requirements for the target age group. Supplementation of Spirulina fortified foods individually promoted bodyweight gain in malnourished rats and restored haemoglobin, serum protein, albumin, serum iron, and hepcidin levels and reduced the iron binding capacity indicating recovery from IDA. Spirulina supplementation ameliorated malnutrition induced oxidative stress in the liver, spleen and kidneys by reducing the lipid peroxidation and enhancing superoxide dismutase and glutathione activities. Histopathological analysis revealed that supplementation of Spirulina fortified foods reversed pathological changes such as fatty changes in the liver cells, thinning of cardiac muscle fibers and degeneration of intestinal villi. Fe-protein deficiency significantly altered the gut microflora by reducing the abundance of beneficial microbes. However, supplementation of Spirulina fortified foods improved the levels of beneficial gut microbes such as Lactobacillus reuteri and Akkermansia muciniphila while reducing the abundance of Helicobacteraceae, Enterobacteria and Clostridia. In summary, supplementation of Spirulina fortified foods promoted recovery from protein and iron deficiency indicating the bioavailability of nutrients (iron and protein) from Spirulina at par with casein and ferrous ascorbate.
Collapse
Affiliation(s)
- Raman Kumar
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh-201002, India
| | - Vinesh Sharma
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh-201002, India
| | - Sampa Das
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India.
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh-201002, India
| | - Vidyashankar Srivatsan
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh-201002, India
| |
Collapse
|
43
|
Ouzkan S, Güler &, Güroy B, Bakr K, Özasl M. Investigation of Antitumor Activity of Phycocyanin Obtained from Spirulina (Arthrospira) platensis in Mice. INT J PHARMACOL 2023. [DOI: 10.3923/ijp.2023.114.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
44
|
Elmorsi RM, Kabel AM, El Saadany AA, Abou El-Seoud SH. The protective effects of topiramate and spirulina against doxorubicin-induced cardiotoxicity in rats. Hum Exp Toxicol 2023; 42:9603271231198624. [PMID: 37644674 DOI: 10.1177/09603271231198624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Doxorubicin (DOX) is a widely used chemotherapy drug that can cause significant cardiotoxicity, limiting its clinical application. This study aimed to investigate the potential protective effects of topiramate (TPM) and spirulina (SP), either alone or in combination, in preventing DOX-induced cardiotoxicity. Adult Sprague Dawley rats were divided into five groups, including a normal control group and groups receiving DOX alone, DOX with TPM, DOX with SP, or DOX with a combination of TPM and SP. Cardiotoxicity was induced by administering DOX intraperitoneally at a cumulative dose of 16 mg/kg over 4 weeks. TPM and/or SP administration started 1 week before DOX treatment and continued for 35 days. Body weight, serum markers of cardiac damage, oxidative stress and inflammatory parameters were assessed. Histopathological and immunohistochemical examinations were performed on cardiac tissues. Results showed that TPM and SP monotherapy led to significant improvements in serum levels of cardiac markers, decreased oxidative stress, reduced fibrosis-related growth factor levels, increased antioxidant levels, and improved histopathological features. SP demonstrated more prominent effects in comparison to TPM, and the combination of TPM and SP exhibited even more pronounced effects. In conclusion, TPM and SP, either alone or in combination, hold promise as therapeutic interventions for mitigating DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Radwa M Elmorsi
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ahmed M Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amira A El Saadany
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | |
Collapse
|
45
|
Ferreira de Oliveira AP, Bragotto APA. Microalgae-based products: Food and public health. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
46
|
Combination of Spirulina platensis, Ganoderma lucidum and Moringa oleifera Improves Cardiac Functions and Reduces Pro-Inflammatory Biomarkers in Preclinical Models of Short-Term Doxorubicin-Mediated Cardiotoxicity: New Frontiers in Cardioncology? J Cardiovasc Dev Dis 2022; 9:jcdd9120423. [PMID: 36547420 PMCID: PMC9780956 DOI: 10.3390/jcdd9120423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Anthracyclines are essential adjuvant therapies for a variety of cancers, particularly breast, gastric and esophageal cancers. Whilst prolonging cancer-related survival, these agents can induce drug-related cardiotoxicity. Spirulina, Reishi (Ganoderma lucidum) and Moringa are three nutraceuticals with anti-inflammatory effects that are currently used in cancer patients as complementary and alternative medicines to improve quality of life and fatigue. We hypothesize that the nutraceutical combination of Spirulina, Reishi and Moringa (Singo) could reduce inflammation and cardiotoxicity induced by anthracyclines. Female C57Bl/6 mice were untreated (Sham, n = 6) or treated for 7 days with short-term doxorubicin (DOXO, n = 6) or Singo (Singo, n = 6), or pre-treated with Singo for 3 days and associated with DOXO for remaining 7 days (DOXO−Singo, n = 6). The ejection fraction and radial and longitudinal strain were analyzed through transthoracic echocardiography (Vevo 2100, Fujifilm, Tokyo, Japan). The myocardial expressions of NLRP3, DAMPs (galectin-3 and calgranulin S100) and 13 cytokines were quantified through selective mouse ELISA methods. Myocardial fibrosis, necrosis and hypertrophy were analyzed through immunohistochemistry (IHC). Human cardiomyocytes were exposed to DOXO (200 nM) alone or in combination with Singo (at 10, 25 and 50 µg/mL) for 24 and 48 h. Cell viability and inflammation studies were also performed. In preclinical models, Singo significantly improved ejection fraction and fractional shortening. Reduced expressions of myocardial NLRP3 and NF-kB levels in cardiac tissues were seen in DOXO−Singo mice vs. DOXO (p < 0.05). The myocardial levels of calgranulin S100 and galectin-3 were strongly reduced in DOXO−Singo mice vs. DOXO (p < 0.05). Immunohistochemistry analysis indicates that Singo reduces fibrosis and hypertrophy in the myocardial tissues of mice during exposure to DOXO. In conclusion, in the preclinical model of DOXO-induced cardiotoxicity, Singo is able to improve cardiac function and reduce biomarkers involved in heart failure and fibrosis.
Collapse
|
47
|
Żymańczyk-Duda E, Samson SO, Brzezińska-Rodak M, Klimek-Ochab M. Versatile Applications of Cyanobacteria in Biotechnology. Microorganisms 2022; 10:microorganisms10122318. [PMID: 36557571 PMCID: PMC9785398 DOI: 10.3390/microorganisms10122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria are blue-green Gram-negative and photosynthetic bacteria which are seen as one of the most morphologically numerous groups of prokaryotes. Because of their ability to fix gaseous nitrogen and carbon dioxide to organic materials, they are known to play important roles in the universal nutrient cycle. Cyanobacteria has emerged as one of the promising resources to combat the issues of global warming, disease outbreaks, nutrition insecurity, energy crises as well as persistent daily human population increases. Cyanobacteria possess significant levels of macro and micronutrient substances which facilitate the versatile popularity to be utilized as human food and protein supplements in many countries such as Asia. Cyanobacteria has been employed as a complementary dietary constituent of feed for poultry and as vitamin and protein supplement in aquatic lives. They are effectively used to deal with numerous tasks in various fields of biotechnology, such as agricultural (including aquaculture), industrial (food and dairy products), environmental (pollution control), biofuel (bioenergy) and pharmaceutical biotechnology (such as antimicrobial, anti-inflammatory, immunosuppressant, anticoagulant and antitumor); recently, the growing interest of applying them as biocatalysts has been observed as well. Cyanobacteria are known to generate a numerous variety of bioactive compounds. However, the versatile potential applications of cyanobacteria in biotechnology could be their significant growth rate and survival in severe environmental conditions due to their distinct and unique metabolic pathways as well as active defensive mechanisms. In this review, we elaborated on the versatile cyanobacteria applications in different areas of biotechnology. We also emphasized the factors that could impede the implementation to cyanobacteria applications in biotechnology and the execution of strategies to enhance their effective applications.
Collapse
|
48
|
Li L, Liu H, Zhang P. Effect of Spirulina Meal Supplementation on Growth Performance and Feed Utilization in Fish and Shrimp: A Meta-Analysis. AQUACULTURE NUTRITION 2022; 2022:8517733. [PMID: 36860451 PMCID: PMC9973199 DOI: 10.1155/2022/8517733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 06/18/2023]
Abstract
The application potential of spirulina meal in aquaculture feeds has been well summarized in several descriptive reviews. Nevertheless, they converged on compiling results from all possible relevant studies. Little available quantitative analysis regarding the pertinent topics has been reported. This quantitative meta-analysis was performed to investigate the influences of dietary spirulina meal (SPM) addition on responsive variables in aquaculture animals, including final body weight (FBW), specific growth rate (SGR), feed conversion ratio (FCR), protein efficiency ratio (PER), condition factor (CF), and hepatosomatic index (HSI). The pooled standardized mean difference (Hedges' g) and 95% confidence limit were computed to quantify the primary outcomes based on random-effects model. The sensitivity and subgroup analyses were carried out to evaluate the validity of the pooled effect size. The meta-regression analysis was conducted to investigate the optimal inclusion of SPM as a feed supplement and the upper threshold of SPM usage for substituting fishmeal in aquaculture animals. The results indicated that on the whole, dietary SPM addition significantly improved FBW, SGR, and PER; statistically decreased FCR of animals; had no significant influence on CF and HSI. The growth-enhancing effect of SPM inclusion in the form of feed additive was significant; however, the effect was indistinctive in the form of feedstuff. Furthermore, the meta-regression analysis displayed that the optimal levels of SPM as a feed supplement in fish and shrimp diets were 1.46%-2.26% and 1.67%, respectively. Additionally, up to 22.03%-24.53% and 14.95%-24.85% of SPM as fishmeal substitute did not have a negative effect on growth and feed utilization in fish and shrimp, respectively. Therefore, SPM is a promising fishmeal substitute and a growth-promoting feed additive for sustainable aquaculture of fish and shrimp.
Collapse
Affiliation(s)
- Ling Li
- Laboratory of Aquatic Animal Nutrition and Ecology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Haiyan Liu
- Laboratory of Aquatic Animal Nutrition and Ecology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Shijiazhuang, Hebei 050024, China
| | - Peiyu Zhang
- Laboratory of Aquatic Animal Nutrition and Ecology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Shijiazhuang, Hebei 050024, China
| |
Collapse
|
49
|
Wang Q, Wang X, Wang Y, Hou Y. Evaluation and analysis of the toxicity of mercury (Hg 2+) to allophycocyanin from Spirulina platensis in vitro. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76881-76889. [PMID: 35672637 DOI: 10.1007/s11356-022-21190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
As a global environmental pollution problem, heavy metal pollution has brought great harm to human beings. In this work, we studied the toxicity of Hg2+ on allophycocyanin (APC) at the molecular level. Firstly, APC was extracted and purified from Spirulina platensis mud and its purity (A650/A280) reached 3.75. In addition, the fluorescence intensity of APC decreased with increasing Hg2+ concentration from 0 to 5 × 10-6 mol L-1. The theoretical calculation and experimental results showed that the fluorescence quenching of APC by Hg2+ was static and had a good linear relationship. Moreover, the UV-Vis spectra of APC showed a significant decrease at 200 nm and 650 nm with the increase of Hg2+ concentration from 0 to 5×10-6 mol L-1, and a red-shift at 200 nm, which indicated that Hg2+ not only affected the structure of APC but also affected the light absorption and photosynthetic function of APC. Furthermore, the results of molecular simulation demonstrate that Hg2+ combinations with the Met77, Cys81 in the α chain and the Arg77, Cys81 in the β chain, which interact between the peptide chain and the chromophore, and Hg2+ forms a Hg-S bond with -SH. This study provides new insights into the structure and how Hg2+ effect the optical properties of APC.
Collapse
Affiliation(s)
- Quanfu Wang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Xingteng Wang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Yatong Wang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Yanhua Hou
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China.
| |
Collapse
|
50
|
Durdakova M, Kolackova M, Janova A, Krystofova O, Adam V, Huska D. Microalgae/cyanobacteria: the potential green future of vitamin B 12 production. Crit Rev Food Sci Nutr 2022; 64:3091-3102. [PMID: 36222060 DOI: 10.1080/10408398.2022.2130156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This review summarizes the available information about potential sources of vitamin B12, especially for people who follow a vegan or vegetarian diet and inhabitants of poor countries in the developing world. Cyanobacteria and microalgae approved for food purposes can play a critical role as promising and innovative sources of this vitamin. This work involves a discussion of whether the form of vitamin B12 extracted from microalgae/cyanobacteria is biologically available to humans, specifically focusing on the genera Arthrospira and Chlorella. It describes analyses of their biomass composition, cultivation requirements, and genetic properties in B12 production. Furthermore, this review discusses the function of cobalamin in microalgae and cyanobacteria themselves and the possibility of modification and cocultivation to increase the content of B12 in their biomass.
Collapse
Affiliation(s)
- Michaela Durdakova
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic
| | - Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic
| | - Anna Janova
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic
| | - Olga Krystofova
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic
| |
Collapse
|