1
|
Neto DCF, Diz JSF, Guimarães SJA, Dos Santos EM, Nascimento MDDSB, de Azevedo-Santos APS, França TCC, LaPlante SR, do Nascimento CJ, Lima JA. Guanylhydrazone and semicarbazone derivatives as potential prototypes for the design of cholinesterase inhibitors against Alzheimer's disease: biological evaluation and molecular modeling studies. Chem Biol Interact 2025; 415:111515. [PMID: 40246050 DOI: 10.1016/j.cbi.2025.111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Despite being present in many drugs, guanylhydrazones and semicarbazones are two functional groups that have been little investigated as potential therapeutic strategies for the treatment of Alzheimer's disease (AD). For this reason, we initiated the synthesis and evaluation of these compounds as potential anticholinesterase agents, aiming to offer new alternatives for drug development against AD. In the severe phase of AD butyrylcholinesterase (BChE) becomes the main enzyme responsible for the hydrolysis of acetylcholine (ACh). Therefore, in this project, we present the results of BChE inhibitory activity, enzyme kinetics, cytotoxicity, and molecular modeling studies for three guanylhydrazone and two semicarbazone derivatives that were previously synthesized and evaluated as acetylcholinesterase (AChE) inhibitors. Among the compounds tested, guanylhydrazones (1, 2, and 3) showed inhibitory activity against BChE, exhibiting a mixed non-competitive inhibition profile. Specifically, compound 2 (phenanthrenequinone) demonstrated superior inhibitory potency with an IC50 of 0.68 μM, compared to compound 1 (acridinone) with an IC50 of 3.87 μM, and compound 3 (benzodioxole) with an IC50 of 101.7 μM. In contrast, semicarbazones (4 and 5) showed no BChE inhibition up to the highest concentration tested (300 μM). Importantly, all five compounds were found to be non-cytotoxic. Our results suggest that these compounds have potential as drug prototypes targeting different phases of AD. Compounds 3, 4, and 5 may be more effective in the early phase, when AChE activity remains high; compound 1 could be useful in the intermediate phase; and compound 2 appears particularly promising for the severe phase, when BChE plays a more dominant role.
Collapse
Affiliation(s)
- Denise Cristian Ferreira Neto
- Medicinal Chemistry Group, Department of Chemistry, Military Institute of Engineering, Praça General Tibúrcio 80, 22290-270, Rio de Janeiro, RJ, Brazil; Department of Chemistry, Federal University of Roraima, Av. Cap. Ene Garcês, 2413, 69310-000, Boa Vista, Roraima, Brazil.
| | - Joyce Sobreiro Francisco Diz
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Military Institute of Engineering (IME), Praça General Tibúrcio 80, 22290-270, Rio de Janeiro, Brazil; Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Av. das Américas 28705, Área 4, 23020-470, Rio de Janeiro, RJ, Brazil
| | - Sulayne Janayna Araújo Guimarães
- Laboratory for Applied Cancer Immunology, Biological and Health Sciences Center, Federal University of Maranhão, Avenida dos Portugueses, 1966, Bacanga, 65080-805, São Luís, Maranhão, Brazil
| | - Eduardo Mendes Dos Santos
- Federal University of Maranhão, Postgraduate Program in Adult Health (PPGSAD), Avenida dos Portugueses, 1966, Bacanga, 65080-805, São Luís, Maranhão, Brazil
| | | | - Ana Paula Silva de Azevedo-Santos
- Laboratory for Applied Cancer Immunology, Biological and Health Sciences Center, Federal University of Maranhão, Avenida dos Portugueses, 1966, Bacanga, 65080-805, São Luís, Maranhão, Brazil
| | - Tanos Celmar Costa França
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Military Institute of Engineering (IME), Praça General Tibúrcio 80, 22290-270, Rio de Janeiro, Brazil; Université de Québec, INRS - Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada; Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Steven R LaPlante
- Université de Québec, INRS - Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Claudia Jorge do Nascimento
- Institute of Biosciences, Federal University of the State of Rio de Janeiro, Av. Pasteur, 296, Urca, 22290-250, Rio de Janeiro, Brazil
| | - Josélia Alencar Lima
- Federal University of Maranhão, Postgraduate Program in Adult Health (PPGSAD), Avenida dos Portugueses, 1966, Bacanga, 65080-805, São Luís, Maranhão, Brazil.
| |
Collapse
|
2
|
Price E, Dagommer M, Thieme M, Hong R, Kalvass JC, Doktor S, Rivkin A, Wang YT, Cox P, Pandey A, DeGoey D. Explainable Machine Learning for ETR and Drug Chameleonicity. J Med Chem 2025. [PMID: 40367343 DOI: 10.1021/acs.jmedchem.5c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Explainable machine learning that identifies molecular "hot spots" for chameleonicity can guide rapid chemical design for oral absorption of beyond-rule-of-five (bRo5) drugs. Traditional in silico methods rely on computationally intensive 3D physics-based modeling or classical descriptors that do not fully explain bRo5 drug behavior. To address this, we introduced the EPSA-to-TPSA ratio (ETR) as a high-throughput measure of polarity reduction, generating data for thousands of macrocycles, PROTACs, and other bRo5s. Using this data set, we developed an explainable deep learning model to predict EPSA and locate polarity-reducing "hot spots" that influence chameleonicity. This first-of-its-kind interpretable model in the bRo5 3D domain guides chemical modifications before synthesis, helping chemists optimize physicochemical properties and design complex bRo5 drugs with improved oral bioavailability. Model insights validated by molecular dynamics enable robust, high-throughput predictions of bRo5 chameleonic behavior, building on Lipinski descriptors to establish new frameworks for complex drug design.
Collapse
Affiliation(s)
- Edward Price
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Matthieu Dagommer
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Mattson Thieme
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Richard Hong
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - J Cory Kalvass
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Stella Doktor
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Alexey Rivkin
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Yue-Ting Wang
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Philip Cox
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Abhishek Pandey
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - David DeGoey
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
3
|
Wang H, Hao X, Dong C, Yuan X, Zhang P, Gu G. LC-MS/MS-guided discovery of japonamides C and D, two new cyclohexadepsipeptides, from the Nicotiana tabacum-derived endophytic fungus Aspergillus japonicus TE-739D. Front Microbiol 2025; 16:1595569. [PMID: 40406348 PMCID: PMC12095196 DOI: 10.3389/fmicb.2025.1595569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 04/17/2025] [Indexed: 05/26/2025] Open
Abstract
Endophytic fungi belonging to the Aspergillus genus have received substantial attention due to their notable secondary metabolic potential. In this study, chemical investigations using LC-MS/MS-based molecular networking on the endophytic fungus Aspergillus japonicus TE-739D led to the discovery of two new cyclohexadepsipeptides, namely japonamides C (1) and D (2), along with three known cyclodipeptides (3-5). Their structures, including the absolute configurations of the amino acid residues, were elucidated through spectroscopic data analysis and an optimized Marfey's method. The newly discovered compounds, japonamides C (1) and D (2), were screened for broad-spectrum cell proliferation inhibitory activity against 20 different human cell lines. The results indicated that both compounds displayed broad-spectrum antiproliferative activity against MKN-45, HCT116, TE-1, 5,637, CAL-62, and A-637 cells, with inhibition rates ranging from 55.0 to 72.3%. Moreover, the antibacterial activity of compounds 1-5 against two Gram-positive bacteria and two Gram-negative bacteria was also evaluated.
Collapse
Affiliation(s)
- Haisu Wang
- Research Center for Plant Functional Components, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xianwei Hao
- Technological Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, China
| | - Chen Dong
- Research Center for Plant Functional Components, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiaolong Yuan
- Research Center for Plant Functional Components, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Peng Zhang
- Research Center for Plant Functional Components, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Gan Gu
- Research Center for Plant Functional Components, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
4
|
Lemke J, Mengers N, Schmidt L, Schulig L, König S, Rosendahl P, Bartz FM, Garscha U, Bednarski PJ, Link A. Lead Optimization of Positive Allosteric K V7.2/3 Channel Modulators toward Improved Balance of Lipophilicity and Aqueous Solubility. J Med Chem 2025; 68:8377-8399. [PMID: 40198203 DOI: 10.1021/acs.jmedchem.4c03112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The voltage-gated potassium channel KV7.2/3 is gaining attention for its association with several medical indications. While recently reported, potent compounds aimed to fill the therapeutic gap left by market-withdrawn activators, key physicochemical parameters did not meet the requirements of potential drug candidates. Targeting the membrane-located channel requires subtly balancing lipophilicity, activity, and aqueous solubility. This publication describes the lead optimization of a highly active compound toward optimized physicochemical parameters. Out of 42 newly synthesized compounds, 30 showed activity on KV7.2/3 channels, and 15 had also an increased solubility compared the to hit compound. The integration of a three-dimensional bulky structure and the probable onset of chameleonic behavior, led to a 20-fold solubility increase (S = 21.7 vs 1.1 μM) and only slightly reduced potency (pEC50 = 7.42 vs 7.96) for the lead. Additionally, the target engagement of the compound was theoretically enhanced by a reduction of membrane retention.
Collapse
Affiliation(s)
- Jana Lemke
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Nadine Mengers
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Louis Schmidt
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Lukas Schulig
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Stefanie König
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Pascal Rosendahl
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Frieda-Marie Bartz
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Ulrike Garscha
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Patrick J Bednarski
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Andreas Link
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| |
Collapse
|
5
|
Al-Shaqsi N, Khan F, Al-Jahdhami H, Ullah S, Khan A, Ullah A, Mohamad S, Lim SH, Al-Harrasi A, Rehman NU. Phytochemical Profiling, Biological Activities, and Molecular Docking Studies of Essential Oils from Ziziphus leucodermis (Baker) O. Schwartz. Chem Biodivers 2025:e202500434. [PMID: 40235162 DOI: 10.1002/cbdv.202500434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/17/2025]
Abstract
The current study describes the chemical profiles and biological activities of essential oils (EOs) from Ziziphus leucodermis stem and leaves for the first time. Higher quantity of β-eudesmol (1) was found in stem (43.4 ± 0.68%) compared to leave's oil, while leaves contained higher amounts of α-bergamotene (2, 13.5 ± 0.65%) and β-eudesmene (3, 7.4 ± 0.51%) compared to stem. Significant potential was shown by leave's oil having IC50 of 133.5 ± 0.80 µg/mL than stem's oil (IC50 = 210.4 ± 0.20 µg/mL) against breast cancer (MDA-MB-231) cells. Similarly, higher inhibition was observed by leave's oil (IC50 = 1.61 ± 0.08 µg/mL) than stem's oil (IC50 = 2.39 ± 0.10) against α-glucosidase enzyme, while stem (95.36 ± 2.10) determined higher carbonic anhydrase II activity than leaves (116.54 ± 0.86) compared to standards. Furthermore, only stem oil had significant antimicrobial activity against gram positive bacteria (Staphylococcus aureus) having MIC of 12.5 ± 0.2 and fungi (Candida albicans and Candida kruzei) with an equal concentration of 50.0 ± 0.4 mm. The compounds identified in the stem and leaves oils were docked with the active pocket of α-glucosidase enzyme. In conclusion, these EOs might be a natural source for the treatment of breast cancer, antimicrobial, and diabetes-related diseases.
Collapse
Affiliation(s)
- Noura Al-Shaqsi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Faizullah Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Habib Al-Jahdhami
- Department of Medical Laboratory Sciences, Oman College of Health Sciences, Muscat, Oman
| | - Saeed Ullah
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ajmal Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- Department of Chemical and Biological Engineering, College of Engineering, Korea University, Seoul, Republic of Korea
| | - Atta Ullah
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Sharifah Mohamad
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Siew-Huah Lim
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Najeeb Ur Rehman
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
6
|
Harvey TK, Pota K, Mekhail MM, Freire DM, Agbaglo DA, Janesko BG, Green KN. Predicting p K a of flexible polybasic tetra-aza macrocycles. RSC Adv 2025; 15:10663-10670. [PMID: 40196824 PMCID: PMC11973477 DOI: 10.1039/d5ra01015b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/30/2025] [Indexed: 04/09/2025] Open
Abstract
We present physics-based pK a predictions for a library of tetra-aza macrocycles. These flexible, polybasic molecules exhibit highly charged states and substantial prototropic tautomerism, presenting a challenge for pK a prediction. Our computational protocol combines CREST/xTB conformational sampling, density functional theory (DFT) refinement in continuum solvent, and a linear empirical correction (LEC). This approach predicts known tetra-aza macrocycle pK a to within a root-mean-square deviation 1.2 log units. This approach also provides reasonable predictions for the most stable protomers at different pH. We use this protocol to predict pK a values for four novel, synthetically achievable, previously un-synthesized tetra-aza macrocycles, providing new leads for future experiments.
Collapse
Affiliation(s)
- Tatum K Harvey
- Department of Chemistry & Biochemistry, Texas Christian University 2800 S. University Dr. Fort Worth TX 76129 USA
| | - Kristof Pota
- Department of Chemistry & Biochemistry, Texas Christian University 2800 S. University Dr. Fort Worth TX 76129 USA
| | - Magy M Mekhail
- Department of Chemistry, University of California Irvine USA
| | - David M Freire
- Department of Chemistry & Biochemistry, Texas Christian University 2800 S. University Dr. Fort Worth TX 76129 USA
| | - Donatus A Agbaglo
- Department of Chemistry & Biochemistry, Texas Christian University 2800 S. University Dr. Fort Worth TX 76129 USA
| | - Benjamin G Janesko
- Department of Chemistry & Biochemistry, Texas Christian University 2800 S. University Dr. Fort Worth TX 76129 USA
| | - Kayla N Green
- Department of Chemistry & Biochemistry, Texas Christian University 2800 S. University Dr. Fort Worth TX 76129 USA
| |
Collapse
|
7
|
Dash R, Liu Z, Lepori I, Chordia MD, Ocius K, Holsinger K, Zhang H, Kenyon R, Im W, Siegrist MS, Pires MM. Systematic Determination of the Impact of Structural Edits on Peptide Accumulation into Mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633618. [PMID: 39868157 PMCID: PMC11760776 DOI: 10.1101/2025.01.17.633618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Understanding the factors that influence the accumulation of molecules beyond the mycomembrane of Mycobacterium tuberculosis ( Mtb ) - the main barrier to accumulation - is essential for developing effective antimycobacterial agents. In this study, we investigated two design principles commonly observed in natural products and mammalian cell-permeable peptides: backbone N -alkylation and macrocyclization. To assess how these structural edits impact molecule accumulation beyond the mycomembrane, we utilized our recently developed Peptidoglycan Accessibility Click-Mediated Assessment (PAC-MAN) assay for live-cell analysis. Our findings provide the first empirical evidence that peptide macrocyclization generally enhances accumulation in mycobacteria, while N -alkylation influences accumulation in a context-dependent manner. We examined these design principles in the context of two peptide antibiotics, tridecaptin A1 and griselimycin, which revealed the roles of N -alkylation and macrocyclization in improving both accumulation and antimicrobial activity against mycobacteria in specific contexts. Together, we present a working model for strategic structural modifications aimed at enhancing the accumulation of molecules past the mycomembrane. More broadly, our results also challenge the prevailing belief in the field that large and hydrophilic molecules, such as peptides, cannot readily traverse the mycomembrane.
Collapse
|
8
|
França TC, Maddalena M, Kouidmi I, Ayotte Y, Islam ST, LaPlante SR. SI/II Pocket of Ras: An Opportunity for a Once "Undruggable" Target. ACS OMEGA 2025; 10:9463-9473. [PMID: 40092832 PMCID: PMC11904710 DOI: 10.1021/acsomega.4c10493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/19/2025] [Accepted: 02/05/2025] [Indexed: 03/19/2025]
Abstract
Mutations on the Ras-family of small GTPases are among the most common molecular oncogenic drivers, with the HRas isoform being primarily associated with head-and-neck and genito-urinary cancers. Although once considered "undruggable," recent efforts have identified a structurally conserved surface pocket in the Ras family, designated the SI/II pocket, situated near the binding site of the guanidine exchange factor (GEF) SOS1. The SI/II pocket may represent a potential target site for a pan-Ras drug. A crystal structure representing the native state of GDP-bound HRasG12V was generated to characterize the topology of the SI/II pocket. This native-state structure was employed, together with the published structure of GppNHp-bound HRasG12V in state 1 (PDB ID: 4EFM), as a base for further molecular dynamics simulations exploring the conformational dynamics of the SI/II pocket via four generated synthetic HRas model structures. Our results show that the SI/II pocket is natively inaccessible in GDP-bound HRas yet becomes accessible in state 1 GppNHp-bound HRas systems, an effect that seems to be more evident in the mutated enzyme. This points to the GTP-bound state as a most promising target for Ras inhibitors directed at the SI/II pocket. Occlusion of the SI/II pocket is dictated by the spatial position of the α2 α helix in relation to the protein core, with α2 residue Y71 acting as a "tyrosine toggle" capable of restricting the pocket access.
Collapse
Affiliation(s)
- Tanos
C. C. França
- INRS
Centre Armand Frappier Santé Biotechnologie, 531 des Prairies Boulevard, Laval, Quebec H7 V 1B7, Canada
- Laboratory
of Molecular Modeling Applied to the Chemical and Biological Defense
(LMCBD), Military Institute of Engineering (IME), Praça General Tibúrcio
80, 22290-270 Rio
de Janeiro, Brazil
- Center
for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Michael Maddalena
- Institut
National de la Recherche Scientifique (INRS), Centre Armand-Frappier
Sante Biotechnologie, Universite du Quebec,
Institut Pasteur International Network, Laval, QC, H7V
1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Universite Laval, Quebec, QC, G1V 0A6, Canada
| | - Imène Kouidmi
- Institut
National de la Recherche Scientifique (INRS), Centre Armand-Frappier
Sante Biotechnologie, Universite du Quebec,
Institut Pasteur International Network, Laval, QC, H7V
1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Universite Laval, Quebec, QC, G1V 0A6, Canada
| | - Yann Ayotte
- NMX
Research and Solutions Inc., Laval, Québec H7 V 5B7, Canada
| | - Salim T. Islam
- Institut
National de la Recherche Scientifique (INRS), Centre Armand-Frappier
Sante Biotechnologie, Universite du Quebec,
Institut Pasteur International Network, Laval, QC, H7V
1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Universite Laval, Quebec, QC, G1V 0A6, Canada
| | - Steven R. LaPlante
- NMX
Research and Solutions Inc., Laval, Québec H7 V 5B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Universite Laval, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
9
|
Pugliano A, Kuhn B, Manevski N, Wagner B, Wittwer MB. A novel application of hydrophilic interaction liquid chromatography for the identification of compounds with intramolecular hydrogen bonds. J Pharm Biomed Anal 2025; 252:116499. [PMID: 39418698 DOI: 10.1016/j.jpba.2024.116499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
The incorporation of intramolecular hydrogen bonds (IMHB) into small molecules constitutes an interesting optimization strategy to afford potential drug candidates with enhanced solubility as well as permeability and consequently improved bioavailability (if metabolic stability is high). Common methods to assess IMHB rely on spectroscopic or diffraction techniques, which, however, have limited throughput when screening for hit compounds in early phases of drug discovery. Inspired by literature findings using supercritical fluid chromatography (SFC) as an indirect method for IMHB identification in a screening context, we aimed at developing a secondary chromatographic methodology taking advantage of commonly used HPLC-MS instrumentation. In this work, we explored hydrophilic interaction liquid chromatography (HILIC) and developed a method for discriminating compounds based on their hydrogen bonding features. By quantifying retention of different matched molecular pairs (MMP) and using information about their low energy conformations from quantum-mechanical calculations, we defined a hydrogen bonding-driven adsorption (kads) chromatographic parameter to assess a compound's propensity to forming IMHB. In addition to the MMP analysis, we found that the kads parameter allows for the differentiation of analytes forming IMHB regardless of the comparison with control compounds.
Collapse
Affiliation(s)
- Alessandra Pugliano
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel CH-4070, Switzerland.
| | - Bernd Kuhn
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel CH-4070, Switzerland.
| | - Nenad Manevski
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel CH-4070, Switzerland.
| | - Björn Wagner
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel CH-4070, Switzerland.
| | - Matthias Beat Wittwer
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel CH-4070, Switzerland.
| |
Collapse
|
10
|
Sato T, Kawabata T, Kumondai M, Hayashi N, Komatsu H, Kikuchi Y, Onoguchi G, Sato Y, Nanatani K, Hiratsuka M, Maekawa M, Yamaguchi H, Abe T, Tomita H, Mano N. Effect of Organic Anion Transporting Polypeptide 1B1 on Plasma Concentration Dynamics of Clozapine in Patients with Treatment-Resistant Schizophrenia. Int J Mol Sci 2024; 25:13228. [PMID: 39684938 DOI: 10.3390/ijms252313228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
The involvement of drug-metabolizing enzymes and transporters in plasma clozapine (CLZ) dynamics has not been well examined in Japanese patients with treatment-resistant schizophrenia (TRS). Therefore, this clinical study investigated the relationship between single nucleotide polymorphisms (SNPs) of various pharmacokinetic factors (drug-metabolizing enzymes and transporters) and dynamic changes in CLZ. Additionally, we aimed to determine whether CLZ acts as a substrate for pharmacokinetic factors using in vitro assays and molecular docking calculations. We found that 6 out of 10 patients with TRS and with multiple organic anion transporting polypeptide (OATP) variants (OATP1B1: *1b, *15; OATP1B3: 334T>G, 699G>A; and OATP2B1: *3, 935G>A, 601G>A, 76_84del) seemed to be highly exposed to CLZ and/or N-desmethyl CLZ. A CLZ uptake study using OATP-expressing HEK293 cells showed that CLZ was a substrate of OATP1B1 with Km and Vmax values of 38.9 µM and 2752 pmol/mg protein/10 min, respectively. The results of molecular docking calculations supported the differences in CLZ uptake among OATP molecules and the weak inhibitory effect of cyclosporine A, which is a strong inhibitor of OATPs, on CLZ uptake via OATP1B1. This is the first study to show that CLZ is an OATP1B1 substrate and that the presence of SNPs in OATPs potentially alters CLZ pharmacokinetic parameters.
Collapse
Affiliation(s)
- Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Takeshi Kawabata
- Graduate School of Information Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Nagomi Hayashi
- Faculty of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hiroshi Komatsu
- Department of Psychiatry, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Yuki Kikuchi
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Go Onoguchi
- Department of Psychiatry, Tohoku University Hospital, Sendai 980-8574, Japan
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Kei Nanatani
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - Masahiro Hiratsuka
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
- Faculty of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
- Faculty of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Hiroaki Yamaguchi
- Department of Pharmacy, Yamagata University Hospital, Yamagata 990-9585, Japan
- Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology, and Vascular Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan
- Division of Medical Science, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan
- Department of Clinical Biology and Hormonal Regulation, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Tohoku University Hospital, Sendai 980-8574, Japan
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
- Faculty of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
11
|
Maloney R, Junod SL, Hagen KM, Lewis T, Cheng C, Shajan FJ, Zhao M, Moore TW, Truong TH, Yang W, Wang RE. Flexible fluorine-thiol displacement stapled peptides with enhanced membrane penetration for the estrogen receptor/coactivator interaction. J Biol Chem 2024; 300:107991. [PMID: 39547512 PMCID: PMC11667158 DOI: 10.1016/j.jbc.2024.107991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/17/2024] Open
Abstract
Understanding how natural and engineered peptides enter cells would facilitate the elucidation of biochemical mechanisms underlying cell biology and is pivotal for developing effective intracellular targeting strategies. In this study, we demonstrate that our peptide stapling technique, fluorine-thiol displacement reaction (FTDR), can produce flexibly constrained peptides with significantly improved cellular uptake, particularly into the nucleus. This platform confers enhanced flexibility, which is further amplified by the inclusion of a D-amino acid, while maintaining environment-dependent α helicity, resulting in highly permeable peptides without the need for additional cell-penetrating motifs. Targeting the estrogen receptor α (ERα)-coactivator interaction prevalent in estrogen receptor-positive (ER+) breast cancers, we showcased that FTDR-stapled peptides, notably SRC2-LD, achieved superior internalization, including cytoplasmic and enriched nuclear uptake, compared to peptides stapled by ring-closing metathesis. These FTDR-stapled peptides use different mechanisms of cellular uptake, including energy-dependent transport such as actin-mediated endocytosis and macropinocytosis. As a result, FTDR peptides exhibit enhanced antiproliferative effects despite their slightly decreased target affinity. Our findings challenge existing perceptions of cell permeability, emphasizing the possibly incomplete understanding of the structural determinants vital for cellular uptake of peptide-like macromolecules. Notably, while α helicity and lipophilicity are positive indicators, they alone are insufficient to determine high-cell permeability, as evidenced by our less helical, more flexible, and less lipophilic FTDR-stapled peptides.
Collapse
Affiliation(s)
- Robert Maloney
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Samuel L Junod
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Kyla M Hagen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Todd Lewis
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Changfeng Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Femil J Shajan
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Mi Zhao
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Terry W Moore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Thu H Truong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA.
| | - Rongsheng E Wang
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
12
|
Tien NTN, Anh TT, Yen NTH, Anh NK, Nguyen HT, Kim HS, Oh JH, Kim DH, Long NP. Time-course cross-species transcriptomics reveals conserved hepatotoxicity pathways induced by repeated administration of cyclosporine A. Toxicol Mech Methods 2024; 34:1010-1021. [PMID: 38937256 DOI: 10.1080/15376516.2024.2371894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Cyclosporine A (CsA) has shown efficacy against immunity-related diseases despite its toxicity in various organs, including the liver, emphasizing the need to elucidate its underlying hepatotoxicity mechanism. This study aimed to capture the alterations in genome-wide expression over time and the subsequent perturbations of corresponding pathways across species. Six data from humans, mice, and rats, including animal liver tissue, human liver microtissues, and two liver cell lines exposed to CsA toxic dose, were used. The microtissue exposed to CsA for 10 d was analyzed to obtain dynamically differentially expressed genes (DEGs). Single-time points data at 1, 3, 5, 7, and 28 d of different species were used to provide additional evidence. Using liver microtissue-based longitudinal design, DEGs that were consistently up- or down-regulated over time were captured, and the well-known mechanism involved in CsA toxicity was elucidated. Thirty DEGs that consistently changed in longitudinal data were also altered in 28-d rat in-house data with concordant expression. Some genes (e.g. TUBB2A, PLIN2, APOB) showed good concordance with identified DEGs in 1-d and 7-d mouse data. Pathway analysis revealed up-regulations of protein processing, asparagine N-linked glycosylation, and cargo concentration in the endoplasmic reticulum. Furthermore, the down-regulations of pathways related to biological oxidations and metabolite and lipid metabolism were elucidated. These pathways were also enriched in single-time-point data and conserved across species, implying their biological significance and generalizability. Overall, the human organoids-based longitudinal design coupled with cross-species validation provides temporal molecular change tracking, aiding mechanistic elucidation and biologically relevant biomarker discovery.
Collapse
Affiliation(s)
- Nguyen Tran Nam Tien
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Trinh Tam Anh
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Thi Hai Yen
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Ky Anh
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Ho-Sook Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Dong-Hyun Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
13
|
Li Y, Cotham WE, Eliasof A, Bland K, Walla M, Pellechia PJ, Chen C, Fan D, McLaughlin JP, Liu-Chen LY. Conformational Plasticity Enhances the Brain Penetration of a Metabolically Stable, Dual-Functional Opioid-Peptide CycloAnt. Int J Mol Sci 2024; 25:11389. [PMID: 39518941 PMCID: PMC11546339 DOI: 10.3390/ijms252111389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
CycloAnt is an opioid peptide that produces potent and efficacious antinociception with significantly reduced side effects upon systemic administration in mice. To verify its CNS-mediated antinociception, we determined its binding affinity at the opioid receptors, its proteolytic stability in mouse serum, metabolic stability in mouse liver microsomes, and pharmacokinetics in mice. CycloAnt exhibited stability toward proteolytic degradation in serum and resistance against metabolism mediated by cytochrome P450 enzymes (CYP450s) and UDP-glucuronosyl transferases (UGTs) in mouse liver microsomes. A pharmacokinetic study of CycloAnt in mice confirmed that CycloAnt crossed the blood-brain barrier (BBB) with a brain-to-plasma ratio of 11.5%, a high extent of BBB transport for a peptide. To elucidate the structural basis underlying its BBB penetration, we investigated its conformation in water and DMSO using 1H NMR spectroscopy. The results show that CycloAnt displays an extended conformation in water with most amide NHs being exposed, while in less polar DMSO, it adopts a compact conformation with all amide NHs locked in intramolecular hydrogen bonds. The chameleonic property helps CycloAnt permeate the BBB.
Collapse
Affiliation(s)
- Yangmei Li
- College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - William E. Cotham
- Mass Spectrometry Facility, University of South Carolina, Columbia, SC 29208, USA
| | - Abbe Eliasof
- College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Kathryn Bland
- Center for Substance Abuse Research, Temple University, Philadelphia, PA 19140, USA (L.-Y.L.-C.)
| | - Michael Walla
- Mass Spectrometry Facility, University of South Carolina, Columbia, SC 29208, USA
| | - Perry J. Pellechia
- Nuclear Magnetic Resonance Facility, University of South Carolina, Columbia, SC 29208, USA
| | - Chongguang Chen
- Center for Substance Abuse Research, Temple University, Philadelphia, PA 19140, USA (L.-Y.L.-C.)
| | - Daping Fan
- School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
| | - Jay P. McLaughlin
- College of Pharmacy, University of Florida, Gainesville, FL 32610, USA;
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research, Temple University, Philadelphia, PA 19140, USA (L.-Y.L.-C.)
| |
Collapse
|
14
|
Zeng W, Wang Y, Gao R, Wen H, Yu M. Unlocking the Reverse Targeting Mechanisms of Cannabidiol: Unveiling New Therapeutic Avenues. J Med Chem 2024; 67:14574-14585. [PMID: 39092992 DOI: 10.1021/acs.jmedchem.4c01353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), the main components of Cannabis sativa plants, have attracted a significant amount of attention due to their biological activities. This study identified GPR18 as the target of partial agonist CBD activating the p42/p44 MAPK pathway leading to migration of endometrial epithelial cells. Induced fit docking (IFD) showed that the affinity of THC for GPR18 is higher than that of CBD, and molecular dynamics (MD) simulations showed that CBD-GPR18 complexes at 130/200 ns might have stable conformations, potentially activating GPR18 by changing the distances of key residues in its active pocket. In contrast, THC maintains "metastable" conformations, generating a "shrinking space" leading to full agonism of THC by adding mechanical constraints in GPR18's active pocket. Steered molecular dynamics (SMD) revealed GPR18's active pocket was influenced more by CBD's partial agonism compared with THC. This combined IFD-MD-SMD method may be used to explain the mechanism of activation of partial or full agonists of GPR18.
Collapse
Affiliation(s)
- Wen Zeng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| | - Yifei Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Rui Gao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hongliang Wen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| | - Mingjia Yu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
15
|
Schade M, Scott JS, Hayhow TG, Pike A, Terstiege I, Ahlqvist M, Johansson JR, Diene CR, Fallan C, Balazs AYS, Chiarparin E, Wilson D. Structural and Physicochemical Features of Oral PROTACs. J Med Chem 2024. [PMID: 39078401 DOI: 10.1021/acs.jmedchem.4c01017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Achieving oral bioavailability with Proteolysis Targeting Chimeras (PROTACs) is a key challenge. Here, we report the in vivo pharmacokinetic properties in mouse, rat, and dog of four clinical oral PROTACs and compare with an internally derived data set. We use NMR to determine 3D molecular conformations and structural preorganization free in solution, and we introduce the new experimental descriptors, solvent-exposed H-bond donors (eHBD), and acceptors (eHBA). We derive an upper limit of eHBD ≤ 2 for oral PROTACs in apolar environments and show a greater tolerance for other properties (eHBA, polarity, lipophilicity, and molecular weight) than for Rule-of-5 compliant oral drugs. Within a set of structurally related PROTACs, we show that examples with eHBD > 2 have much lower oral bioavailability than those that have eHBD ≤ 2. We summarize our findings as an experimental "Rule-of-oral-PROTACs" in order to assist medicinal chemists to achieve oral bioavailability in this challenging space.
Collapse
Affiliation(s)
- Markus Schade
- Chemistry and DMPK, Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - James S Scott
- Chemistry and DMPK, Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Thomas G Hayhow
- Chemistry and DMPK, Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Andy Pike
- Chemistry and DMPK, Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Ina Terstiege
- Chemistry and DMPK, Research and Early Development, Respiratory and Immunology, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 43183, Sweden
| | - Marie Ahlqvist
- Chemistry and DMPK, Research and Early Development, Respiratory and Immunology, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 43183, Sweden
| | - Johan R Johansson
- Chemistry and DMPK, Research and Early Development, Respiratory and Immunology, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 43183, Sweden
| | - Coura R Diene
- Chemistry and DMPK, Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Charlene Fallan
- Chemistry and DMPK, Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Amber Y S Balazs
- Chemistry, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Elisabetta Chiarparin
- Chemistry and DMPK, Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - David Wilson
- Chemistry and DMPK, Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| |
Collapse
|
16
|
Garcia Jimenez D, Rossi Sebastiano M, Vallaro M, Ermondi G, Caron G. IMHB-Mediated Chameleonicity in Drug Design: A Focus on Structurally Related PROTACs. J Med Chem 2024; 67:11421-11434. [PMID: 38943610 DOI: 10.1021/acs.jmedchem.4c01200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Molecular chameleonicity may enable compounds to compensate for the unfavorable ADME properties typically associated with complex molecules, such as PROTACs. Here we present a few in silico strategies to implement chameleonicity considerations in drug design. Initially, we identified six structurally related CRBN-based PROTACs targeting BET proteins and experimentally verified whether chameleonicity is needed to obtain an acceptable physicochemical profile. Then, we utilized experimental data to validate our novel computational strategies based on tools crafted to encompass a spectrum of complexities and innovative features. After confirming that the formation of IMHBs is the primary driving factor behind chameleonicity, we initially utilized conformational sampling data to define cChameCS, an IMHB-mediated, simple, and rapid chameleonicity predictor index suitable for early drug discovery. Subsequently, we identified dynamic IMHB patterns relevant to chameleonicity through molecular dynamics simulations. Finally, we proposed a workflow for designing structurally related chameleonic PROTACs of potential application in the lead optimization process.
Collapse
Affiliation(s)
- Diego Garcia Jimenez
- Molecular Biotechnology and Health Sciences Department, CASSMedChem, University of Torino, Via Nizza 44 Bis, Torino 10126, Italy
| | - Matteo Rossi Sebastiano
- Molecular Biotechnology and Health Sciences Department, CASSMedChem, University of Torino, Via Nizza 44 Bis, Torino 10126, Italy
| | - Maura Vallaro
- Molecular Biotechnology and Health Sciences Department, CASSMedChem, University of Torino, Via Nizza 44 Bis, Torino 10126, Italy
| | - Giuseppe Ermondi
- Molecular Biotechnology and Health Sciences Department, CASSMedChem, University of Torino, Via Nizza 44 Bis, Torino 10126, Italy
| | - Giulia Caron
- Molecular Biotechnology and Health Sciences Department, CASSMedChem, University of Torino, Via Nizza 44 Bis, Torino 10126, Italy
| |
Collapse
|
17
|
Zhou JS, Wen HL, Yu MJ. Mechanism Analysis of Antimicrobial Peptide NoPv1 Related to Potato Late Blight through a Computer-Aided Study. Int J Mol Sci 2024; 25:5312. [PMID: 38791351 PMCID: PMC11121460 DOI: 10.3390/ijms25105312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Phytophthora infestans (Mont.) de Bary, the oomycotic pathogen responsible for potato late blight, is the most devastating disease of potato production. The primary pesticides used to control oomycosis are phenyl amide fungicides, which cause environmental pollution and toxic residues harmful to both human and animal health. To address this, an antimicrobial peptide, NoPv1, has been screened to target Plasmopara viticola cellulose synthase 2 (PvCesA2) to inhibit the growth of Phytophthora infestans (P. infestans). In this study, we employed AlphaFold2 to predict the three-dimensional structure of PvCesA2 along with NoPv peptides. Subsequently, utilizing computational methods, we dissected the interaction mechanism between PvCesA2 and these peptides. Based on this analysis, we performed a saturation mutation of NoPv1 and successfully obtained the double mutants DP1 and DP2 with a higher affinity for PvCesA2. Meanwhile, dynamics simulations revealed that both DP1 and DP2 utilize a mechanism akin to the barrel-stave model for penetrating the cell membrane. Furthermore, the predicted results showed that the antimicrobial activity of DP1 was superior to that of NoPv1 without being toxic to human cells. These findings may offer insights for advancing the development of eco-friendly pesticides targeting various oomycete diseases, including late blight.
Collapse
Affiliation(s)
- Jiao-Shuai Zhou
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China;
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Yangtze Delta Region Academy, Beijing Institute of Technology, Jiaxing 314019, China
| | - Hong-Liang Wen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China;
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Yangtze Delta Region Academy, Beijing Institute of Technology, Jiaxing 314019, China
| | - Ming-Jia Yu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China;
| |
Collapse
|
18
|
Frazee N, Billlings KR, Mertz B. Gaussian accelerated molecular dynamics simulations facilitate prediction of the permeability of cyclic peptides. PLoS One 2024; 19:e0300688. [PMID: 38652734 PMCID: PMC11037548 DOI: 10.1371/journal.pone.0300688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/02/2024] [Indexed: 04/25/2024] Open
Abstract
Despite their widespread use as therapeutics, clinical development of small molecule drugs remains challenging. Among the many parameters that undergo optimization during the drug development process, increasing passive cell permeability (i.e., log(P)) can have some of the largest impact on potency. Cyclic peptides (CPs) have emerged as a viable alternative to small molecules, as they retain many of the advantages of small molecules (oral availability, target specificity) while being highly effective at traversing the plasma membrane. However, the relationship between the dominant conformations that typify CPs in an aqueous versus a membrane environment and cell permeability remain poorly characterized. In this study, we have used Gaussian accelerated molecular dynamics (GaMD) simulations to characterize the effect of solvent on the free energy landscape of lariat peptides, a subset of CPs that have recently shown potential for drug development (Kelly et al., JACS 2021). Differences in the free energy of lariat peptides as a function of solvent can be used to predict permeability of these molecules, and our results show that permeability is most greatly influenced by N-methylation and exposure to solvent. Our approach lays the groundwork for using GaMD as a way to virtually screen large libraries of CPs and drive forward development of CP-based therapeutics.
Collapse
Affiliation(s)
- Nicolas Frazee
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, United States of America
| | - Kyle R. Billlings
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, United States of America
| | - Blake Mertz
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, United States of America
| |
Collapse
|
19
|
Limbach M, Lindberg ET, Olivos HJ, van Tetering L, Steren CA, Martens J, Ngo VA, Oomens J, Do TD. Taming Conformational Heterogeneity on Ion Racetrack to Unveil Principles that Drive Membrane Permeation of Cyclosporines. JACS AU 2024; 4:1458-1470. [PMID: 38665661 PMCID: PMC11040698 DOI: 10.1021/jacsau.4c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/28/2024]
Abstract
Our study reveals the underlying principles governing the passive membrane permeability in three large N-methylated macrocyclic peptides (N-MeMPs): cyclosporine A (CycA), Alisporivir (ALI), and cyclosporine H (CycH). We determine a series of conformers required for robust passive membrane diffusion and those relevant to other functions, such as binding to protein targets or intermediates, in the presence of solvent additives. We investigate the conformational interconversions and establish correlations with the membrane permeability. Nuclear magnetic resonance (NMR) and cyclic ion-mobility spectrometry-mass spectrometry (cIMS-MS) are employed to characterize conformational heterogeneity and identify cis-amides relevant for good membrane permeability. In addition, ion mobility selected cIMS-MS and infrared (IR) multiple-photon dissociation (IRMPD) spectroscopy experiments are conducted to evaluate the energy barriers between conformations. We observe that CycA and ALI, both cyclosporines with favorable membrane permeabilities, display multiple stable and well-defined conformers. In contrast, CycH, an epimer of CycA with limited permeability, exhibits fewer and fewer stable conformers. We demonstrate the essential role of the conformational shift from the aqueous cis MeVal11-MeBmt1 state (A1) to the closed conformation featuring cis MeLeu9-MeLeu10 (C1) in facilitating membrane permeation. Additionally, we highlight that the transition from A1 to the all-trans open conformation (O1) is specifically triggered by the presence of CaCl2. We also capture a set of conformers with cis Sar3-MeLeu4, MeLeu9-MeLeu10, denoted as I. Conformationally selected cIMS-MS and IRMPD data of [CycA+Ca]2+ show immediate repopulation of the original population distribution, suggesting that CaCl2 smooths out the energy barriers. Finally, our work presents an improved sampling molecular dynamics approach based on a refined force field that not only consistently and accurately captures established conformers of cyclosporines but also exhibits strong predictive capabilities for novel conformers.
Collapse
Affiliation(s)
- Miranda
N. Limbach
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Edward T. Lindberg
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | | | - Lara van Tetering
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
| | - Carlos A. Steren
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jonathan Martens
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
| | - Van A. Ngo
- Advanced
Computing for Life Sciences and Engineering Group, Science Engagement
Section, National Center for Computational Sciences, Computing and
Computational Sciences Directorate, Oak
Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jos Oomens
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
| | - Thanh D. Do
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
20
|
Kuemper S, Cairns AG, Birchall K, Yao Z, Large JM. Targeted protein degradation in CNS disorders: a promising route to novel therapeutics? Front Mol Neurosci 2024; 17:1370509. [PMID: 38685916 PMCID: PMC11057381 DOI: 10.3389/fnmol.2024.1370509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024] Open
Abstract
Targeted protein degradation (TPD) is a rapidly expanding field, with various PROTACs (proteolysis-targeting chimeras) in clinical trials and molecular glues such as immunomodulatory imide drugs (IMiDs) already well established in the treatment of certain blood cancers. Many current approaches are focused on oncology targets, leaving numerous potential applications underexplored. Targeting proteins for degradation offers a novel therapeutic route for targets whose inhibition remains challenging, such as protein aggregates in neurodegenerative diseases. This mini review focuses on the prospect of utilizing TPD for neurodegenerative disease targets, particularly PROTAC and molecular glue formats and opportunities for novel CNS E3 ligases. Some key challenges of utilizing such modalities including molecular design of degrader molecules, drug delivery and blood brain barrier penetrance will be discussed.
Collapse
Affiliation(s)
- Sandra Kuemper
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, United Kingdom
| | - Andrew G. Cairns
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, United Kingdom
| | | | | | | |
Collapse
|
21
|
Price E, Weinheimer M, Rivkin A, Jenkins G, Nijsen M, Cox PB, DeGoey D. Beyond Rule of Five and PROTACs in Modern Drug Discovery: Polarity Reducers, Chameleonicity, and the Evolving Physicochemical Landscape. J Med Chem 2024; 67:5683-5698. [PMID: 38498697 DOI: 10.1021/acs.jmedchem.3c02332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Developing orally bioavailable drugs demands an understanding of absorption in early drug development. Traditional methods and physicochemical properties optimize absorption for rule of five (Ro5) compounds; beyond rule of five (bRo5) drugs necessitate advanced tools like the experimental measure of exposed polarity (EPSA) and the AbbVie multiparametric score (AB-MPS). Analyzing AB-MPS and EPSA against ∼1000 compounds with human absorption data and ∼10,000 AbbVie tool compounds (∼1000 proteolysis targeting chimeras or PROTACs, ∼7000 Ro5s, and ∼2000 bRo5s) revealed new patterns of physicochemical trends. We introduced a high-throughput "polarity reduction" descriptor: ETR, the EPSA-to-topological polar surface area (TPSA) ratio, highlights unique bRo5 and PROTAC subsets for specialized drug design strategies for effective absorption. Our methods and guidelines refine drug design by providing innovative in vitro approaches, enhancing physicochemical property optimization, and enabling accurate predictions of intestinal absorption in the complex bRo5 domain.
Collapse
Affiliation(s)
- Edward Price
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Manuel Weinheimer
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Alexey Rivkin
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Gary Jenkins
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Marjoleen Nijsen
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Philip B Cox
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - David DeGoey
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
22
|
Zhang C, Liu F, Zhang Y, Song C. Macrocycles and macrocyclization in anticancer drug discovery: Important pieces of the puzzle. Eur J Med Chem 2024; 268:116234. [PMID: 38401189 DOI: 10.1016/j.ejmech.2024.116234] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/26/2024]
Abstract
Increasing disease-related proteins have been identified as novel therapeutic targets. Macrocycles are emerging as potential solutions, bridging the gap between conventional small molecules and biomacromolecules in drug discovery. Inspired by successful macrocyclic drugs of natural origins, macrocycles are attracting more attention for enhanced binding affinity and target selectivity. Due to the conformation constraint and structure preorganization, macrocycles can reach bioactive conformations more easily than parent acyclic compounds. Also, rational macrocyclization combined with sequent structural modification will help improve oral bioavailability and combat drug resistance. This review introduces various strategies to enhance membrane permeability in macrocyclization and subsequent modification, such as N-methylation, intramolecular hydrogen bonding modulation, isomerization, and reversible bicyclization. Several case studies highlight macrocyclic inhibitors targeting kinases, HDAC, and protein-protein interactions. Finally, some macrocyclic agents targeting tumor microenvironments are illustrated.
Collapse
Affiliation(s)
- Chao Zhang
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China
| | - Fenfen Liu
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Chun Song
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
23
|
Mácha H, Zápal J, Kuzma M, Luptáková D, Lemr K, Havlíček V. Exploring the Effects of Cyclosporin A to Isocyclosporin A Rearrangement on Ion Mobility Separation. Anal Chem 2024; 96:4163-4170. [PMID: 38430121 PMCID: PMC10938282 DOI: 10.1021/acs.analchem.3c05165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 03/03/2024]
Abstract
Cyclosporin A (CycA) is a peptide secondary metabolite derived from fungi that plays a crucial role in transplantation surgery. Cyclic traveling wave ion mobility mass spectrometry (IM-MS) revealed an N → O peptidyl shift in singly protonated CycA to isocyclosporin A (isoA), whereas no such isomerization was observed for doubly protonated and sodiated molecules. CycA and isoA were able to be separated by considering doubly protonated precursors using a specific ion fragment. In parallel, sodium ion stabilization facilitated the simultaneous separation and quantitation of singly charged cyclosporin isomers with the limit of detection and coefficient of determination of 1.3% and 0.9908 for CycA in isoA and 1.0% and 0.9830 for isoA in CycA, respectively. Finally, 1H-13C gHSQC NMR experiments permitted parallel recording of up to 11 cyclosporin conformers. The ratios were determined by integrating the volume of cross-peaks of the upfield resonating hydrogen in the diastereotopic methylene group of sarcosine-3.
Collapse
Affiliation(s)
- Hynek Mácha
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 142 00, Czech Republic
- Department
of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, Olomouc 771 46, Czech Republic
| | - Jakub Zápal
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 142 00, Czech Republic
| | - Marek Kuzma
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 142 00, Czech Republic
- Department
of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, Olomouc 771 46, Czech Republic
| | - Dominika Luptáková
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 142 00, Czech Republic
| | - Karel Lemr
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 142 00, Czech Republic
- Department
of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, Olomouc 771 46, Czech Republic
| | - Vladimír Havlíček
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 142 00, Czech Republic
- Department
of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, Olomouc 771 46, Czech Republic
| |
Collapse
|
24
|
Faris J, Adaligil E, Popovych N, Ono S, Takahashi M, Nguyen H, Plise E, Taechalertpaisarn J, Lee HW, Koehler MFT, Cunningham CN, Lokey RS. Membrane Permeability in a Large Macrocyclic Peptide Driven by a Saddle-Shaped Conformation. J Am Chem Soc 2024; 146:4582-4591. [PMID: 38330910 PMCID: PMC10885153 DOI: 10.1021/jacs.3c10949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
The effort to modulate challenging protein targets has stimulated interest in ligands that are larger and more complex than typical small-molecule drugs. While combinatorial techniques such as mRNA display routinely produce high-affinity macrocyclic peptides against classically undruggable targets, poor membrane permeability has limited their use toward primarily extracellular targets. Understanding the passive membrane permeability of macrocyclic peptides would, in principle, improve our ability to design libraries whose leads can be more readily optimized against intracellular targets. Here, we investigate the permeabilities of over 200 macrocyclic 10-mers using the thioether cyclization motif commonly found in mRNA display macrocycle libraries. We identified the optimal lipophilicity range for achieving permeability in thioether-cyclized 10-mer cyclic peptide-peptoid hybrid scaffolds and showed that permeability could be maintained upon extensive permutation in the backbone. In one case, changing a single amino acid from d-Pro to d-NMe-Ala, representing the loss of a single methylene group in the side chain, resulted in a highly permeable scaffold in which the low-dielectric conformation shifted from the canonical cross-beta geometry of the parent compounds into a novel saddle-shaped fold in which all four backbone NH groups were sequestered from the solvent. This work provides an example by which pre-existing physicochemical knowledge of a scaffold can benefit the design of macrocyclic peptide mRNA display libraries, pointing toward an approach for biasing libraries toward permeability by design. Moreover, the compounds described herein are a further demonstration that geometrically diverse, highly permeable scaffolds exist well beyond conventional drug-like chemical space.
Collapse
Affiliation(s)
- Justin
H. Faris
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| | - Emel Adaligil
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Nataliya Popovych
- Department
of Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, United States
| | - Satoshi Ono
- Innovative
Research Division, Mitsubishi Tanabe Pharma
Corporation, Kanagawa 227-0033, Japan
| | - Mifune Takahashi
- Department
of Drug Metabolism and Pharmacokinetics, Genentech, South
San Francisco, California 94080, United States
| | - Huy Nguyen
- Department
of Analytical Research, Genentech, South San Francisco, California 94080, United States
| | - Emile Plise
- Department
of Drug Metabolism and Pharmacokinetics, Genentech, South
San Francisco, California 94080, United States
| | - Jaru Taechalertpaisarn
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| | - Hsiau-Wei Lee
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| | - Michael F. T. Koehler
- Department
of Medicinal Chemistry, Genentech, South San Francisco, California 94080, United States
| | - Christian N. Cunningham
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - R. Scott Lokey
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| |
Collapse
|
25
|
Li X, Wang N, Liu Y, Li W, Bai X, Liu P, He CY. Backbone N-methylation of peptides: Advances in synthesis and applications in pharmaceutical drug development. Bioorg Chem 2023; 141:106892. [PMID: 37776681 DOI: 10.1016/j.bioorg.2023.106892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Peptide-based drugs have garnered considerable attention in recent years owing to their increasingly crucial role in the treatment of diverse diseases. However, the limited pharmacokinetic properties of peptides have hindered their full potential. One prominent strategy for enhancing the druggability of peptides is N-methylation, which involves the addition of a methyl group to the nitrogen atom of the peptide backbone. This modification significantly improves the stability, bioavailability, receptor binding affinity and selectivity of peptide drug candidates. In this review, we provide a comprehensive overview of the advancements in synthetic methods for N-methylated peptide synthesis, as well as the associated limitations. Moreover, we explore the versatile effects of N-methylation on various aspects of peptide properties. Furthermore, we emphasize the efforts dedicated to N-methylated peptide pharmaceuticals that have successfully obtained marketing approval.
Collapse
Affiliation(s)
- Xuefei Li
- Key Laboratory of Basic Pharmacology of Ministry of Education, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Central Research Institute, United-Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Ningchao Wang
- Central Research Institute, United-Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Yuhang Liu
- Central Research Institute, United-Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Weipiao Li
- Key Laboratory of Basic Pharmacology of Ministry of Education, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xinyu Bai
- Key Laboratory of Basic Pharmacology of Ministry of Education, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ping Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chun-Yang He
- Key Laboratory of Basic Pharmacology of Ministry of Education, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
26
|
Patterson-Gardner C, Pavelich GM, Cannon AT, Menke AJ, Simanek EE. Adaptation of Empirical Methods to Predict the LogD of Triazine Macrocycles. ACS Med Chem Lett 2023; 14:1378-1382. [PMID: 37849549 PMCID: PMC10577694 DOI: 10.1021/acsmedchemlett.3c00290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/01/2023] [Indexed: 10/19/2023] Open
Abstract
Octanol/water partition coefficients guide drug design, but algorithms do not always accurately predict these values. For cationic triazine macrocycles that adopt a conserved folded shape in solution, common algorithms fall short. Here, the logD values for 12 macrocycles differing in amino acid choice were predicted and then measured experimentally. On average, AlogP, XlogP, and ChemAxon predictions deviate by 0.9, 2.8, and 3.9 log units, with XlogP overestimating lipophilicity and AlogP and ChemAxon underestimating lipophilicity. Importantly, however, a linear relationship (R2 > 0.98) exists between the values predicted by AlogP and the experimentally determined logD values, thus enabling more accurate predictions.
Collapse
Affiliation(s)
- Casey
J. Patterson-Gardner
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Gretchen M. Pavelich
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - April T. Cannon
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Alexander J. Menke
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Eric E. Simanek
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| |
Collapse
|
27
|
Lee D, Choi J, Yang MJ, Park CJ, Seo J. Controlling the Chameleonic Behavior and Membrane Permeability of Cyclosporine Derivatives via Backbone and Side Chain Modifications. J Med Chem 2023; 66:13189-13204. [PMID: 37718494 DOI: 10.1021/acs.jmedchem.3c01140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Some macrocycles exhibit enhanced membrane permeability through conformational switching in different environmental polarities, a trait known as chameleonic behavior. In this study, we demonstrate specific backbone and side chain modifications that can control chameleonic behavior and passive membrane permeability using a cyclosporin O (CsO) scaffold. To quantify chameleonic behavior, we used a ratio of the population of the closed conformation obtained in polar solvent and nonpolar solvent for each CsO derivative. We found that β-hydroxylation at position 1 (1 and 3) can encode chameleonicity and improve permeability. However, the conformational stabilization induced by adding an additional transannular H-bond (2 and 5) leads to a much slower rate of membrane permeation. Our CsO scaffold provides a platform for the systematic study of the relationship among conformation, membrane permeability, solubility, and protein binding. This knowledge contributes to the discovery of potent beyond the rule of five (bRo5) macrocycles capable of targeting undruggable targets.
Collapse
Affiliation(s)
- Dongjae Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jieun Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Min June Yang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
28
|
Garcia Jimenez D, Vallaro M, Rossi Sebastiano M, Apprato G, D’Agostini G, Rossetti P, Ermondi G, Caron G. Chamelogk: A Chromatographic Chameleonicity Quantifier to Design Orally Bioavailable Beyond-Rule-of-5 Drugs. J Med Chem 2023; 66:10681-10693. [PMID: 37490408 PMCID: PMC10424176 DOI: 10.1021/acs.jmedchem.3c00823] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 07/27/2023]
Abstract
New chemical modalities in drug discovery include molecules belonging to the bRo5 chemical space. Because of their complex and flexible structure, bRo5 compounds often suffer from a poor solubility/permeability profile. Chameleonicity describes the capacity of a molecule to adapt to the environment through conformational changes; the design of molecular chameleons is a medicinal chemistry strategy simultaneously optimizing solubility and permeability. A default method to quantify chameleonicity in early drug discovery is still missing. Here we introduce Chamelogk, an automated, fast, and cheap chromatographic descriptor of chameleonicity. Moreover, we report measurements for 55 Ro5 and bRo5 compounds and validate our method with literature data. Then, selected case studies (macrocycles, nonmacrocyclic compounds, and PROTACs) are used to illustrate the application of Chamelogk in combination with lipophilicity (BRlogD) and polarity (Δ log kwIAM) descriptors. Overall, we show how Chamelogk deserves being included in property-based drug discovery strategies to design oral bioavailable bRo5 compounds.
Collapse
Affiliation(s)
- Diego Garcia Jimenez
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Maura Vallaro
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Matteo Rossi Sebastiano
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Giulia Apprato
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Giulia D’Agostini
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Paolo Rossetti
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Giuseppe Ermondi
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| | - Giulia Caron
- Molecular Biotechnology and
Health Sciences Dept., CASSMedChem, University
of Torino, via Quarello 15, 10135 Torino, Italy
| |
Collapse
|
29
|
Ramelot TA, Palmer J, Montelione GT, Bhardwaj G. Cell-permeable chameleonic peptides: Exploiting conformational dynamics in de novo cyclic peptide design. Curr Opin Struct Biol 2023; 80:102603. [PMID: 37178478 PMCID: PMC10923192 DOI: 10.1016/j.sbi.2023.102603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/05/2023] [Indexed: 05/15/2023]
Abstract
Membrane-traversing peptides offer opportunities for targeting intracellular proteins and oral delivery. Despite progress in understanding the mechanisms underlying membrane traversal in natural cell-permeable peptides, there are still several challenges to designing membrane-traversing peptides with diverse shapes and sizes. Conformational flexibility appears to be a key determinant of membrane permeability of large macrocycles. We review recent developments in the design and validation of chameleonic cyclic peptides, which can switch between alternative conformations to enable improved permeability through cell membranes, while still maintaining reasonable solubility and exposed polar functional groups for target protein binding. Finally, we discuss the principles, strategies, and practical considerations for rational design, discovery, and validation of permeable chameleonic peptides.
Collapse
Affiliation(s)
- Theresa A Ramelot
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jonathan Palmer
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA; Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Gaetano T Montelione
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Gaurav Bhardwaj
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA; Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
30
|
Menke AJ, Gloor CJ, Claton LE, Mekhail MA, Pan H, Stewart MD, Green KN, Reibenspies JH, Pavan GM, Capelli R, Simanek EE. A Model for the Rapid Assessment of Solution Structures for 24-Atom Macrocycles: The Impact of β-Branched Amino Acids on Conformation. J Org Chem 2023; 88:2692-2702. [PMID: 36780253 PMCID: PMC10903118 DOI: 10.1021/acs.joc.2c01984] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Experiment and computation are used to develop a model to rapidly predict solution structures of macrocycles sharing the same Murcko framework. These 24-atom triazine macrocycles result from the quantitative dimerization of identical monomers presenting a hydrazine group and an acetal tethered to an amino acid linker. Monomers comprising glycine and the β-branched amino acids threonine, valine, and isoleucine yield macrocycles G-G, T-T, V-V, and I-I, respectively. Elements common to all members of the framework include the efficiency of macrocyclization (quantitative), the solution- and solid-state structures (folded), the site of protonation (opposite the auxiliary dimethylamine group), the geometry of the hydrazone (E), the C2 symmetry of the subunits (conserved), and the rotamer state adopted. In aggregate, the data reveal metrics predictive of the three-dimensional solution structure that derive from the fingerprint region of the 1D 1H spectrum and a network of rOes from a single resonance. The metrics also afford delineation of more nuanced structural features that allow subpopulations to be identified among the members of the framework. Well-tempered metadynamics provides free energy surfaces and population distributions of these macrocycles. The areas of the free energy surface decrease with increasing steric bulk (G-G > V-V ∼ T-T > I-I). In addition, the surfaces are increasingly isoenergetic with decreasing steric bulk (G-G > V-V ∼ T-T > I-I).
Collapse
Affiliation(s)
- Alexander J Menke
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Camryn J Gloor
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Liam E Claton
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Magy A Mekhail
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Hongjun Pan
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Mikaela D Stewart
- Department of Biology, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Kayla N Green
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Joseph H Reibenspies
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - Giovanni M Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano, Viganello, 6962 Lugano, Switzerland
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| | - Riccardo Capelli
- Department of Biosciences, Université degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Eric E Simanek
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| |
Collapse
|
31
|
Menke AJ, Henderson NC, Kouretas LC, Estenson AN, Janesko BG, Simanek EE. Computational and Experimental Evidence for Templated Macrocyclization: The Role of a Hydrogen Bond Network in the Quantitative Dimerization of 24-Atom Macrocycles. Molecules 2023; 28:1144. [PMID: 36770811 PMCID: PMC9921993 DOI: 10.3390/molecules28031144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/26/2023] Open
Abstract
In the absence of preorganization, macrocyclization reactions are often plagued by oligomeric and polymeric side products. Here, a network of hydrogen bonds was identified as the basis for quantitative yields of macrocycles derived from the dimerization of monomers. Oligomers and polymers were not observed. Macrocyclization, the result of the formation of two hydrazones, was hypothesized to proceed in two steps. After condensation to yield the monohydrazone, a network of hydrogen bonds formed to preorganize the terminal acetal and hydrazine groups for cyclization. Experimental evidence for preorganization derived from macrocycles and acyclic models. Solution NMR spectroscopy and single-crystal X-ray diffraction revealed that the macrocycles isolated from the cyclization reaction were protonated twice. These protons contributed to an intramolecular network of hydrogen bonds that engaged distant carbonyl groups to realize a long-range order. DFT calculations showed that this network of hydrogen bonds contributed 8.7 kcal/mol to stability. Acyclic models recapitulated this network in solution. Condensation of an acetal and a triazinyl hydrazine, which adopted a number of conformational isomers, yielded a hydrazone that adopted a favored rotamer conformation in solution. The critical hydrogen-bonded proton was also evident. DFT calculations of acyclic models showed that the rotamers were isoenergetic when deprotonated. Upon protonation, however, energies diverged with one low-energy rotamer adopting the conformation observed in the macrocycle. This conformation anchored the network of hydrogen bonds of the intermediate. Computation revealed that the hydrogen-bonded network in the acyclic intermediate contributed up to 14 kcal/mol of stability and preorganized the acetal and hydrazine for cyclization.
Collapse
Affiliation(s)
| | | | | | | | - Benjamin G. Janesko
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, TX 76109, USA
| | - Eric E. Simanek
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, TX 76109, USA
| |
Collapse
|
32
|
Conformational Sampling Deciphers the Chameleonic Properties of a VHL-Based Degrader. Pharmaceutics 2023; 15:pharmaceutics15010272. [PMID: 36678900 PMCID: PMC9861353 DOI: 10.3390/pharmaceutics15010272] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Chameleonicity (the capacity of a molecule to adapt its conformations to the environment) may help to identify orally bioavailable drugs in the beyond-Rule-of-5 chemical space. Computational methods to predict the chameleonic behaviour of degraders have not yet been reported and the identification of molecular chameleons still relies on experimental evidence. Therefore, there is a need to tune predictions with experimental data. Here, we employ PROTAC-1 (a passively cell-permeable degrader), for which NMR and physicochemical data prove the chameleonic behaviour, to benchmark the capacity of two conformational sampling algorithms and selection schemes. To characterize the conformational ensembles in both polar and nonpolar environments, we compute three molecular properties proven to be essential for cell permeability: conformer shape (radius of gyration), polarity (3D PSA), and the number of intramolecular hydrogen bonds. Energetic criteria were also considered. Infographics monitored the simultaneous variation of those properties in computed and NMR conformers. Overall, we provide key points for tuning conformational sampling tools to reproduce PROTAC-1 chameleonicity according to NMR evidence. This study is expected to improve the design of PROTAC drugs and the development of computational sustainable strategies to exploit the potential of new modalities in drug discovery.
Collapse
|
33
|
Yamane T, Ekimoto T, Ikeguchi M. Development of the force field for cyclosporine A. Biophys Physicobiol 2022; 19:e190045. [PMID: 36567735 PMCID: PMC9751258 DOI: 10.2142/biophysico.bppb-v19.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022] Open
Abstract
Membrane permeability of cyclic peptides is an important factor in drug design. To investigate the membrane permeability of cyclic peptides using molecular dynamics (MD) simulations, the accurate force fields for unnatural amino acids present in the cyclic peptides are required. Therefore, we developed the CHARMM force fields of the unnatural amino acids present in cyclosporin A (CsA), a cyclic peptide used as an immune suppressor. Especially for N-methyl amino acids, which contribute to the membrane permeability of cyclic peptides, we developed a grid correction map (CMAP) of the energy surface using the φ and ψ dihedral angles in the main chain of CsA. To validate the developed force field, we performed MD simulations, including the generalized replica exchange with solute tempering method, of CsA in water and chloroform solvents. The conformations of CsA in water and chloroform sampled using the developed force field were consistent with those of the experimental results of the solution nuclear magnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Tsutomu Yamane
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan,HPC- and AI-driven Drug Development Platform Division, Center for Computational Science, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan,HPC- and AI-driven Drug Development Platform Division, Center for Computational Science, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
34
|
Kashif Khan R, Meanwell NA, Hager HH. Pseudoprolines as stereoelectronically tunable proline isosteres. Bioorg Med Chem Lett 2022; 75:128983. [PMID: 36096342 DOI: 10.1016/j.bmcl.2022.128983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022]
Abstract
The cyclic structure of proline (Pro) confers unique conformational properties on this natural amino acid that influences polypeptide structure and function. Pseudoprolines are a family of Pro isosteres that incorporate a heteroatom, most prominently oxygen or sulfur but also silicon and selenium, to replace the Cβ or Cγ carbon atom of the pyrrolidine ring. These readily synthetically accessible structural motifs can facilitate facile molecular editing in a fashion that allows modulation of the amide bond topology of dipeptide elements and influence over ring pucker. While the properties of pseudoprolines have been exploited most prominently in the design of oligopeptide analogues, they have potential application in the design and optimization of small molecules. In this Digest, we summarize the physicochemical properties of pseudoprolines and illustrate their potential in drug discovery by surveying examples of applications in the design of bioactive molecules.
Collapse
Affiliation(s)
- R Kashif Khan
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, 100 Binney Street, Cambridge, MA 02142, USA.
| | - Nicholas A Meanwell
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, NJ 08543-4000, USA.
| | - Harry H Hager
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, 200 Cambridgepark Drive, Cambridge, MA 02140, USA.
| |
Collapse
|
35
|
Williams-Noonan BJ, Speer MN, Le TC, Sadek MM, Thompson PE, Norton RS, Yuriev E, Barlow N, Chalmers DK, Yarovsky I. Membrane Permeating Macrocycles: Design Guidelines from Machine Learning. J Chem Inf Model 2022; 62:4605-4619. [PMID: 36178379 DOI: 10.1021/acs.jcim.2c00809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to predict cell-permeable candidate molecules has great potential to assist drug discovery projects. Large molecules that lie beyond the Rule of Five (bRo5) are increasingly important as drug candidates and tool molecules for chemical biology. However, such large molecules usually do not cross cell membranes and cannot access intracellular targets or be developed as orally bioavailable drugs. Here, we describe a random forest (RF) machine learning model for the prediction of passive membrane permeation rates developed using a set of over 1000 bRo5 macrocyclic compounds. The model is based on easily calculated chemical features/descriptors as independent variables. Our random forest (RF) model substantially outperforms a multiple linear regression model based on the same features and achieves better performance metrics than previously reported models using the same underlying data. These features include: (1) polar surface area in water, (2) the octanol-water partitioning coefficient, (3) the number of hydrogen-bond donors, (4) the sum of the topological distances between nitrogen atoms, (5) the sum of the topological distances between nitrogen and oxygen atoms, and (6) the multiple molecular path count of order 2. The last three features represent molecular flexibility, the ability of the molecule to adopt different conformations in the aqueous and membrane interior phases, and the molecular "chameleonicity." Guided by the model, we propose design guidelines for membrane-permeating macrocycles. It is anticipated that this model will be useful in guiding the design of large, bioactive molecules for medicinal chemistry and chemical biology applications.
Collapse
Affiliation(s)
- Billy J Williams-Noonan
- School of Engineering, RMIT University, Melbourne3001, Australia.,Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville3052, Australia
| | - Melissa N Speer
- University of Melbourne, Faculty of Engineering and Information Technology, Carlton3053, Australia
| | - Tu C Le
- School of Engineering, RMIT University, Melbourne3001, Australia
| | - Maiada M Sadek
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville3052, Australia
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville3052, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville3052, Australia.,ARC Centre for Fragment-Based Design, Monash University, Parkville, 3052, Australia
| | - Elizabeth Yuriev
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville3052, Australia
| | - Nicholas Barlow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville3052, Australia
| | - David K Chalmers
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville3052, Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne3001, Australia
| |
Collapse
|
36
|
Li Y, Lee SR, Han EJ, Seyedsayamdost MR. Momomycin, an Antiproliferative Cryptic Metabolite from the Oxytetracycline Producer Streptomyces rimosus. Angew Chem Int Ed Engl 2022; 61:e202208573. [PMID: 35903822 PMCID: PMC9489664 DOI: 10.1002/anie.202208573] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Indexed: 08/27/2023]
Abstract
Natural products provide an important source of pharmaceuticals and chemical tools. Traditionally, assessment of unexplored microbial phyla has led to new natural products. However, with every new microbe, the number of orphan biosynthetic gene clusters (BGC) grows. As such, the more difficult proposition is finding new molecules from well-studied strains. Herein, we targeted Streptomyces rimosus, the widely-used oxytetracycline producer, for the discovery of new natural products. Using MALDI-MS-guided high-throughput elicitor screening (HiTES), we mapped the global secondary metabolome of S. rimosus and structurally characterized products of three cryptic BGCs, including momomycin, an unusual cyclic peptide natural product with backbone modifications and several non-canonical amino acids. We elucidated important aspects of its biosynthesis and evaluated its bioactivity. Our studies showcase HiTES as an effective approach for unearthing new chemical matter from "drained" strains.
Collapse
Affiliation(s)
- Yuchen Li
- Department of Chemistry, Princeton University, Princeton, NJ 08544 (USA)
| | - Seoung Rak Lee
- Department of Chemistry, Princeton University, Princeton, NJ 08544 (USA)
| | - Esther J. Han
- Department of Chemistry, Princeton University, Princeton, NJ 08544 (USA)
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ 08544 (USA)
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544 (USA)
| |
Collapse
|
37
|
Rossi Sebastiano M, Garcia Jimenez D, Vallaro M, Caron G, Ermondi G. Refinement of Computational Access to Molecular Physicochemical Properties: From Ro5 to bRo5. J Med Chem 2022; 65:12068-12083. [PMID: 36094896 PMCID: PMC9511483 DOI: 10.1021/acs.jmedchem.2c00774] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
There is a need of computational tools to rank bRo5 drug
candidates
in the very early phases of drug discovery when chemical matter is
unavailable. In this study, we selected three compounds: (a) a Ro5
drug (Pomalidomide), (b) a bRo5 orally available drug (Saquinavir),
and (c) a polar PROTAC (CMP 98) to focus on computational access to
physicochemical properties. To provide a benchmark, the three compounds
were first experimentally characterized for their lipophilicity, polarity,
IMHBs, and chameleonicity. To reproduce the experimental information
content, we generated conformer ensembles with conformational sampling
and molecular dynamics in both water and nonpolar solvents. Then we
calculated Rgyr, 3D PSA, and IMHB number. An innovative pool of strategies
for data analysis was then provided. Overall, we report a contribution
to close the gap between experimental and computational methods for
characterizing bRo5 physicochemical properties.
Collapse
Affiliation(s)
- Matteo Rossi Sebastiano
- Molecular Biotechnology and Health Sciences Department, CASSMedChem, University of Torino, via Quarello 15, 10135 Torino, Italy
| | - Diego Garcia Jimenez
- Molecular Biotechnology and Health Sciences Department, CASSMedChem, University of Torino, via Quarello 15, 10135 Torino, Italy
| | - Maura Vallaro
- Molecular Biotechnology and Health Sciences Department, CASSMedChem, University of Torino, via Quarello 15, 10135 Torino, Italy
| | - Giulia Caron
- Molecular Biotechnology and Health Sciences Department, CASSMedChem, University of Torino, via Quarello 15, 10135 Torino, Italy
| | - Giuseppe Ermondi
- Molecular Biotechnology and Health Sciences Department, CASSMedChem, University of Torino, via Quarello 15, 10135 Torino, Italy
| |
Collapse
|
38
|
Saunders GJ, Yudin AK. Property‐Driven Development of Passively Permeable Macrocyclic Scaffolds Using Heterocycles**. Angew Chem Int Ed Engl 2022; 61:e202206866. [DOI: 10.1002/anie.202206866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 12/18/2022]
Affiliation(s)
- George J. Saunders
- Davenport Research Laboratories University of Toronto 80 St. George St Toronto Ontario, M5S 3H6 Canada
| | - Andrei K. Yudin
- Davenport Research Laboratories University of Toronto 80 St. George St Toronto Ontario, M5S 3H6 Canada
| |
Collapse
|
39
|
Li Y, Lee SR, Han EJ, Seyedsayamdost MR. Momomycin, an Antiproliferative Cryptic Metabolite from the Oxytetracycline Producer Streptomyces rimosus. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuchen Li
- Princeton University Chemistry UNITED STATES
| | | | | | - Mohammad R. Seyedsayamdost
- Princeton University Chemistry Washington UniversityFrick Chemistry Lab, Room 333 08544 Princeton UNITED STATES
| |
Collapse
|
40
|
Limbach MN, Antevska A, Oluwatoba DS, Gray ALH, Carroll XB, Hoffmann CM, Wang X, Voehler MW, Steren CA, Do TD. Atomic View of Aqueous Cyclosporine A: Unpacking a Decades-Old Mystery. J Am Chem Soc 2022; 144:12602-12607. [PMID: 35786958 DOI: 10.1021/jacs.2c01743] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An atomic view of a main aqueous conformation of cyclosporine A (CycA), an important 11-amino-acid macrocyclic immunosuppressant, is reported. For decades, it has been a grand challenge to determine the conformation of free CycA in an aqueous-like solution given its poor water solubility. Using a combination of X-ray and single-crystal neutron diffraction, we unambiguously resolve a unique conformer (A1) with a novel cis-amide between residues 11 and 1 and two water ligands that stabilize hydrogen bond networks. NMR spectroscopy and titration experiments indicate that the novel conformer is as abundant as the closed conformer in 90/10 (v/v) methanol/water and is the main conformer at 10/90 methanol/water. Five other conformers were also detected in 90/10 methanol/water, one in slow exchange with A1, another one in slow exchange with the closed form and three minor ones, one of which contains two cis amides Abu2-Sar3 and MeBmt1-MeVal11. These conformers help better understand the wide spectrum of membrane permeability observed for CycA analogues and, to some extent, the binding of CycA to protein targets.
Collapse
Affiliation(s)
- Miranda N Limbach
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Aleksandra Antevska
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Damilola S Oluwatoba
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Amber L H Gray
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Xian B Carroll
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Christina M Hoffmann
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Xiaoping Wang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Markus W Voehler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Carlos A Steren
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Thanh D Do
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
41
|
Saunders GJ, Yudin AK. Property‐Driven Development of Passively Permeable Macrocyclic Scaffolds using Heterocycles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- George J. Saunders
- University of Toronto - St George Campus: University of Toronto Chemistry 80 St George St M5S3H6 Toronto CANADA
| | - Andrei K. Yudin
- University of Toronto Department of Chemistry 80 St. George Street M5S 3H6 Toronto CANADA
| |
Collapse
|
42
|
Kamenik AS, Linker SM, Riniker S. Enhanced sampling without borders: on global biasing functions and how to reweight them. Phys Chem Chem Phys 2022; 24:1225-1236. [PMID: 34935813 PMCID: PMC8768491 DOI: 10.1039/d1cp04809k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
Abstract
Molecular dynamics (MD) simulations are a powerful tool to follow the time evolution of biomolecular motions in atomistic resolution. However, the high computational demand of these simulations limits the timescales of motions that can be observed. To resolve this issue, so called enhanced sampling techniques are developed, which extend conventional MD algorithms to speed up the simulation process. Here, we focus on techniques that apply global biasing functions. We provide a broad overview of established enhanced sampling methods and promising new advances. As the ultimate goal is to retrieve unbiased information from biased ensembles, we also discuss benefits and limitations of common reweighting schemes. In addition to concisely summarizing critical assumptions and implications, we highlight the general application opportunities as well as uncertainties of global enhanced sampling.
Collapse
Affiliation(s)
- Anna S Kamenik
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| | - Stephanie M Linker
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| |
Collapse
|