1
|
Trotsko N, Głogowska A, Kaproń B, Kozieł K, Augustynowicz-Kopeć E, Paneth A. The new thiazolidine-2,4-dione-based hybrids with promising antimycobacterial activity: design, synthesis, biological evaluation, and drug interaction analysis. J Enzyme Inhib Med Chem 2025; 40:2442703. [PMID: 39749402 DOI: 10.1080/14756366.2024.2442703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 10/14/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
The ever-increasing drug-resistant tuberculosis (TB) has invigorated the focus on the discovery and development of novel therapeutic agents and treatment options. Thiazolidinone-based compounds have shown good antitubercular properties in vitro. Here, we report the design and synthesis of a number of new derivatives inspired by the structure of thiazolidine-2,4-dione (TZD). The TZD-based hybrids with the thiosemicarbazone or the pyridinecarbohydrazone moiety were synthesised and their antimycobacterial activity was investigated against the reference H37Rv and two wild Mycobacterium tuberculosis (Mtb) strains. In further studies, a two-drug interaction analysis was also performed for assessing their synergism with the current first-line drugs used for the treatment of TB. It was found that some of the compounds showed high antimycobacterial activity with MICs (0.078-0.283 µM) and a synergistic effect with isoniazid or rifampicin, thereby demonstrating their potential as a promising scaffold for the development of novel coadjuvants for the effective treatment of TB.
Collapse
Affiliation(s)
- Nazar Trotsko
- Department of Organic Chemistry, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Głogowska
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Barbara Kaproń
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Kozieł
- Department of Organic Chemistry, Students Research Group, Medical University of Lublin, Lublin, Poland
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Agata Paneth
- Department of Organic Chemistry, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
2
|
Saif A, Islam MT, Raihan MO, Yousefi N, Rahman MA, Faridi H, Hasan AR, Hossain MM, Saleem RM, Albadrani GM, Al-Ghadi MQ, Ahasan Setu MA, Kamel M, Abdel-Daim MM, Aktaruzzaman M. Pan-cancer analysis of CDC7 in human tumors: Integrative multi-omics insights and discovery of novel marine-based inhibitors through machine learning and computational approaches. Comput Biol Med 2025; 190:110044. [PMID: 40120182 DOI: 10.1016/j.compbiomed.2025.110044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Cancer remains a significant global health challenge, with the Cell Division Cycle 7 (CDC7) protein emerging as a potential therapeutic target due to its critical role in tumor proliferation, survival, and resistance. However, a comprehensive analysis of CDC7 across multiple cancers is lacking, and existing therapeutic options have come with limited clinical success. The aim of this is to integrate a comprehensive pan-cancer analysis of CDC7 with the identification of novel marine-derived inhibitors, bridging the understanding of CDC7's role as a prognostic biomarker and therapeutic target across diverse cancer types. In this study, we conducted a pan-cancer analysis of CDC7 across 33 tumor types using publicly available datasets to evaluate its expression, genetic alterations, immune interactions, survival, and prognostic significance. Additionally, a marine-derived compound library of 31,492 molecules was screened to identify potential CDC7 inhibitors using chemoinformatics and machine learning. The top candidates underwent rigorous evaluations, including molecular docking, pharmacokinetics, toxicity, Density Functional Theory (DFT) calculations, and Molecular Dynamics (MD) simulations. The findings revealed that CDC7 is overexpressed in several cancers and is associated with poor survival outcomes and unfavorable prognosis. Enrichment analysis linked CDC7 to critical DNA replication pathways, while its role in modulating tumor-immune interactions highlighted its potential as a target for immunotherapy. Among all tested compounds, Tetrahydroaltersolanol D (CMNPD21999) exhibited the strongest binding affinity and stability, along with better drug-likeness and zero toxicity. These attributes highlight its potential as a promising drug candidate for CDC7 inhibition and future cancer treatment development. Furthermore, additional in vitro and in vivo studies are required to confirm the effectiveness of this drug candidate against the CDC7 protein.
Collapse
Affiliation(s)
- Ahmed Saif
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh; Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh.
| | - Md Tarikul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh.
| | - Md Obayed Raihan
- Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh; Department of Pharmaceutical Sciences, College of Health Sciences and Pharmacy, Chicago State University, Chicago, IL, USA.
| | - Niloofar Yousefi
- Department of Industrial Engineering and Management Systems, University of Central Florida, USA, Orlando, FL, USA
| | - Md Ajijur Rahman
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Hafeez Faridi
- Department of Pharmaceutical Sciences, College of Health Sciences and Pharmacy, Chicago State University, Chicago, IL, USA
| | - Al Riyad Hasan
- Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh; Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Mirza Mahfuj Hossain
- Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh; Department of Computer Science and Engineering, Faculty of Engineering and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Rasha Mohammed Saleem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, 65431, Saudi Arabia
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, 84428, Riyadh, 11671, Saudi Arabia
| | - Muath Q Al-Ghadi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Md Ali Ahasan Setu
- Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh; Department of Microbiology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Md Aktaruzzaman
- Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh; Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
3
|
Hefny A, Singh K, Karuturi RC, Shakeri A, Beazely MA, Rao PPN. Novel Phenoselenazines as Amyloid-β Aggregation Inhibitors. ACS Med Chem Lett 2025; 16:567-574. [PMID: 40236527 PMCID: PMC11995212 DOI: 10.1021/acsmedchemlett.4c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 04/17/2025] Open
Abstract
A novel library of N-benzylphenoselenazine derivatives 8a-j were designed, synthesized, and evaluated as inhibitors of amyloid-beta (Aβ42) aggregation. In the thioflavin T-based fluorescence aggregation kinetics assay, compounds 8i and 8j exhibited excellent inhibition of Aβ42 aggregation (∼91% inhibition at 25 μM), and the activity was comparable to that of reference agents resveratrol (∼88%) and methylene blue (∼95% inhibition). Both compounds also demonstrated Aβ42 disaggregation properties (58% and 76% respectively at 25 μM) and antioxidant activity (80.5% and 59% respectively at 25 μM). In the cell culture studies, both 8i and 8j were able to reduce Aβ42-mediated cytotoxicity. Computational studies suggest that these compounds interact in a narrow channel formed by the N- and C-termini in the Aβ42 pentamer model to stabilize the assembly and prevent further aggregation. These results demonstrate the viability of the N-benzylphenoselenazines as promising candidates to target the amyloid cascade in Alzheimer's disease.
Collapse
Affiliation(s)
- Ahmed
A. Hefny
- School
of Pharmacy, Health Sciences Campus, University
of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- Medicinal
Chemistry Department, Faculty of Pharmacy,
Beni-Suef University, Beni-Suef 62514, Egypt
| | - Kartar Singh
- School
of Pharmacy, Health Sciences Campus, University
of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Rahul C. Karuturi
- School
of Pharmacy, Health Sciences Campus, University
of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Arash Shakeri
- School
of Pharmacy, Health Sciences Campus, University
of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Michael A. Beazely
- School
of Pharmacy, Health Sciences Campus, University
of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Praveen P. N. Rao
- School
of Pharmacy, Health Sciences Campus, University
of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
4
|
Kline GM, Boinon L, Guerrero A, Kutseikin S, Cruz G, Williams MP, Paxman RJ, Balch WE, Kelly JW, Mu T, Wiseman RL. Phenylhydrazone-based Endoplasmic Reticulum Proteostasis Regulator Compounds with Enhanced Biological Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.646800. [PMID: 40236048 PMCID: PMC11996566 DOI: 10.1101/2025.04.04.646800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Pharmacological enhancement of endoplasmic reticulum (ER) proteostasis is an attractive strategy to mitigate pathology linked to etiologically-diverse protein misfolding diseases. However, despite this promise, few compounds have been identified that enhance ER proteostasis through defined mechanisms of action. We previously identified the phenylhydrazone-based compound AA263 as a compound that promotes adaptive ER proteostasis remodeling through mechanisms including activation of the ATF6 signaling arm of the unfolded protein response (UPR). However, the protein target(s) of AA263 and the potential for further development of this class of ER proteostasis regulators had not been previously explored. Here, we employ chemical proteomics to demonstrate that AA263 covalently targets a subset of ER protein disulfide isomerases, revealing a molecular mechanism for the activation of ATF6 afforded by this compound. We then use medicinal chemistry to establish next-generation AA263 analogs showing improved potency and efficacy for ATF6 activation, as compared to the parent compound. Finally, we show that treatment with these AA263 analogs enhances secretory pathway proteostasis to correct the pathologic protein misfolding and trafficking of both a destabilized, disease-associated α1-antitrypsin (A1AT) variant and an epilepsy-associated GABA A receptor variant. These results establish AA263 analogs with enhanced potential for correcting imbalanced ER proteostasis associated with etiologically-diverse protein misfolding disorders.
Collapse
|
5
|
Rehman MU, He F, Shu X, Guo J, Liu Z, Cao S, Long S. Antibacterial and antifungal pyrazoles based on different construction strategies. Eur J Med Chem 2025; 282:117081. [PMID: 39608204 DOI: 10.1016/j.ejmech.2024.117081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/05/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
The growing prevalence of microbial infections, and antimicrobial resistance (AMR) stemming from the overuse and misuse of antibiotics, call for novel therapeutic agents, particularly ones targeting resistant microbial strains. Scientists are striving to develop innovative agents to tackle the rising microbial infections and abate the risk of AMR. Pyrazole, a five-membered heterocyclic compound belonging to the azole family, is a versatile scaffold and serves as a core structure in many drugs with antimicrobial and other therapeutic effects. In this review, we have updated pyrazole-based antibacterial and antifungal agents mainly developed between 2016 and 2024, by combining with diverse pharmacophores such as coumarin, thiazole, oxadiazole, isoxazole, indole, etc. Meanwhile, the various strategies (molecular hybridization, bioisosterism, scaffold hopping, multicomponent reactions, and catalyst-free synthesis) for integrating different functional groups with the pyrazole ring are discussed. Additionally, structure-activity relationships of these pyrazole derivatives, i.e., how structural modifications impact their selectivity and therapeutic potential against bacterial and fungal strains, are highlighted. This review provides insights into designing next-generation antimicrobials to combat AMR, and offers valuable perspectives to the scientists working on heterocyclic compounds with diverse bioactivities.
Collapse
Affiliation(s)
- Muneeb Ur Rehman
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Fang He
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Xi Shu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ziwei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| |
Collapse
|
6
|
Jangra J, Bajad NG, Singh R, Kumar A, Singh SK. Identification of novel potential cathepsin-B inhibitors through pharmacophore-based virtual screening, molecular docking, and dynamics simulation studies for the treatment of Alzheimer's disease. Mol Divers 2024; 28:4381-4401. [PMID: 38517648 DOI: 10.1007/s11030-024-10821-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/03/2024] [Indexed: 03/24/2024]
Abstract
Cathepsin B is a cysteine protease lysosomal enzyme involved in several physiological functions. Overexpression of the enzyme enhances its proteolytic activity and causes the breakdown of amyloid precursor protein (APP) into neurotoxic amyloid β (Aβ), a characteristic hallmark of Alzheimer's disease (AD). Therefore, inhibition of the enzyme is a crucial therapeutic aspect for treating the disease. Combined structure and ligand-based drug design strategies were employed in the current study to identify the novel potential cathepsin B inhibitors. Five different pharmacophore models were developed and used for the screening of the ZINC-15 database. The obtained hits were analyzed for the presence of duplicates, interfering PAINS moieties, and structural similarities based on Tanimoto's coefficient. The molecular docking study was performed to screen hits with better target binding affinity. The top seven hits were selected and were further evaluated based on their predicted ADME properties. The resulting best hits, ZINC827855702, ZINC123282431, and ZINC95386847, were finally subjected to molecular dynamics simulation studies to determine the stability of the protein-ligand complex during the run. ZINC123282431 was obtained as the virtual lead compound for cathepsin B inhibition and may be a promising novel anti-Alzheimer agent.
Collapse
Affiliation(s)
- Jatin Jangra
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Nilesh Gajanan Bajad
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
7
|
Manakkadan V, Haribabu J, Palakkeezhillam VNV, Rasin P, Vediyappan R, Kumar VS, Garg M, Bhuvanesh N, Sreekanth A. Copper-mediated cyclization of thiosemicarbazones leading to 1,3,4-thiadiazoles: Structural elucidation, DFT calculations, in vitro biological evaluation and in silico evaluation studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124117. [PMID: 38461559 DOI: 10.1016/j.saa.2024.124117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/11/2024] [Accepted: 03/02/2024] [Indexed: 03/12/2024]
Abstract
Cancer's global impact necessitates innovative and less toxic treatments. Thiosemicarbazones (TSCs), adaptable metal chelators, offer such potential. In this study, we have synthesized N (4)-substituted heterocyclic TSCs from syringaldehyde (TSL1, TSL2), and also report the unexpected copper-mediated cyclization of the TSCs to form thiadiazoles (TSL3, TSL4), expanding research avenues. This work includes extensive characterization and studies such as DNA/protein binding, molecular docking, and theoretical analyses to demonstrate the potential of the as-prepared TSCs and thiadiazoles against different cancer cells. The DFT results depict that the thiadiazoles exhibit greater structural stability and reduced reactivity compared to the corresponding TSCs. The docking results suggest superior EGFR inhibition for TSL3 with a binding constant value of - 6.99 Kcal/mol. According to molecular dynamics studies, the TSL3-EGFR complex exhibits a lower average RMSD (1.39 nm) as compared to the TSL1-EGFR complex (3.29 nm) suggesting that both the thiadiazole and thiosemicarbazone examined here can be good inhibitors of EGFR protein, also that TSL3 can inhibit EGFR better than TSL1. ADME analysis indicates drug-likeness and oral availability of the thiadiazole-based drugs. The DNA binding experiment through absorption and emission spectroscopy discovered that TSL3 is more active towards DNA which is quantitatively calculated with a Kb value of 4.74 × 106 M-1, Kq value of 4.04 × 104 M-1and Kapp value of 5 × 106 M-1. Furthermore, the BSA binding studies carried out with fluorescence spectroscopy showed that TSL3 shows better binding capacity (1.64 × 105 M-1) with BSA protein. All the compounds show significant cytotoxicity against A459-lung, MCF-7-breast, and HepG2-liver cancer cell lines; TSL3 exhibits the best cytotoxicity, albeit less effective than cisplatin. Thiadiazoles demonstrate greater cytotoxicity than the TSCs. Overall, the promise of TSCs and thiadiazoles in cancer research is highlighted by this study. Furthermore, it unveils unexpected copper-mediated cyclization of the TSCs to thiadiazoles.
Collapse
Affiliation(s)
- Vipin Manakkadan
- Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tamil Nadu, 620015, India
| | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, Copiapo 1532502, Chile; Chennai Institute of Technology (CIT), Chennai 600069, India
| | | | - Puthiyavalappil Rasin
- Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tamil Nadu, 620015, India
| | - Ramesh Vediyappan
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Vaishnu Suresh Kumar
- Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tamil Nadu, 620015, India; Department of Chemical Engineering, Birla Institute of Technology & Science, Pilani-333031 Rajasthan, India
| | - Mohit Garg
- Department of Chemical Engineering, Birla Institute of Technology & Science, Pilani-333031 Rajasthan, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, TX 77842, USA
| | - Anandaram Sreekanth
- Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tamil Nadu, 620015, India.
| |
Collapse
|
8
|
Fallah S, Duncan D, Reichl KD, Smith MJ, Wang W, Porco JA, Brown LE, Whitesell L, Robbins N, Cowen LE. A chemical screen identifies structurally diverse metal chelators with activity against the fungal pathogen Candida albicans. Microbiol Spectr 2024; 12:e0409523. [PMID: 38376363 PMCID: PMC10986608 DOI: 10.1128/spectrum.04095-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024] Open
Abstract
Candida albicans, one of the most prevalent human fungal pathogens, causes diverse diseases extending from superficial infections to deadly systemic mycoses. Currently, only three major classes of antifungal drugs are available to treat systemic infections: azoles, polyenes, and echinocandins. Alarmingly, the efficacy of these antifungals against C. albicans is hindered both by basal tolerance toward the drugs and the development of resistance mechanisms such as alterations of the drug's target, modulation of stress responses, and overexpression of efflux pumps. Thus, the need to identify novel antifungal strategies is dire. To address this challenge, we screened 3,049 structurally-diverse compounds from the Boston University Center for Molecular Discovery (BU-CMD) chemical library against a C. albicans clinical isolate and identified 17 molecules that inhibited C. albicans growth by >80% relative to controls. Among the most potent compounds were CMLD013360, CMLD012661, and CMLD012693, molecules representing two distinct chemical scaffolds, including 3-hydroxyquinolinones and a xanthone natural product. Based on structural insights, CMLD013360, CMLD012661, and CMLD012693 were hypothesized to exert antifungal activity through metal chelation. Follow-up investigations revealed all three compounds exerted antifungal activity against non-albicans Candida, including Candida auris and Candida glabrata, with the xanthone natural product CMLD013360 also displaying activity against the pathogenic mould Aspergillus fumigatus. Media supplementation with metallonutrients, namely ferric or ferrous iron, rescued C. albicans growth, confirming these compounds act as metal chelators. Thus, this work identifies and characterizes two chemical scaffolds that chelate iron to inhibit the growth of the clinically relevant fungal pathogen C. albicansIMPORTANCEThe worldwide incidence of invasive fungal infections is increasing at an alarming rate. Systemic candidiasis caused by the opportunistic pathogen Candida albicans is the most common cause of life-threatening fungal infection. However, due to the limited number of antifungal drug classes available and the rise of antifungal resistance, an urgent need exists for the identification of novel treatments. By screening a compound collection from the Boston University Center for Molecular Discovery (BU-CMD), we identified three compounds representing two distinct chemical scaffolds that displayed activity against C. albicans. Follow-up analyses confirmed these molecules were also active against other pathogenic fungal species including Candida auris and Aspergillus fumigatus. Finally, we determined that these compounds inhibit the growth of C. albicans in culture through iron chelation. Overall, this observation describes two novel chemical scaffolds with antifungal activity against diverse fungal pathogens.
Collapse
Affiliation(s)
- Sara Fallah
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Dustin Duncan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Chemistry, Brock University, St. Catharines, Ontario, Canada
| | - Kyle D. Reichl
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, USA
| | - Michael J. Smith
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, USA
| | - Wenyu Wang
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, USA
| | - John A. Porco
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, USA
| | - Lauren E. Brown
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, USA
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Hossain A, Rahman ME, Faruqe MO, Saif A, Suhi S, Zaman R, Hirad AH, Matin MN, Rabbee MF, Baek KH. Characterization of Plant-Derived Natural Inhibitors of Dipeptidyl Peptidase-4 as Potential Antidiabetic Agents: A Computational Study. Pharmaceutics 2024; 16:483. [PMID: 38675143 PMCID: PMC11053753 DOI: 10.3390/pharmaceutics16040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetes, characterized by elevated blood sugar levels, poses significant health and economic risks, correlating with complications like cardiovascular disease, kidney failure, and blindness. Dipeptidyl peptidase-4 (DPP-4), also referred to as T-cell activation antigen CD26 (EC 3.4.14.5.), plays a crucial role in glucose metabolism and immune function. Inhibiting DPP-4 was anticipated as a potential new therapy for diabetes. Therefore, identification of plant-based natural inhibitors of DPP-4 would help in eradicating diabetes worldwide. Here, for the identification of the potential natural inhibitors of DPP-4, we developed a phytochemicals library consisting of over 6000 phytochemicals detected in 81 medicinal plants that exhibited anti-diabetic potency. The library has been docked against the target proteins, where isorhamnetin, Benzyl 5-Amino-5-deoxy-2,3-O-isopropyl-alpha-D-mannofuranoside (DTXSID90724586), and 5-Oxo-7-[4-(trifluoromethyl) phenyl]-4H,6H,7H-[1,2]thiazolo[4,5-b]pyridine 3-carboxylic acid (CHEMBL3446108) showed binding affinities of -8.5, -8.3, and -8.3 kcal/mol, respectively. These compounds exhibiting strong interactions with DPP-4 active sites (Glu205, Glu206, Tyr547, Trp629, Ser630, Tyr662, His740) were identified. ADME/T and bioactivity predictions affirmed their pharmacological safety. Density functional theory calculations assessed stability and reactivity, while molecular dynamics simulations demonstrated persistent stability. Analyzing parameters like RMSD, RG, RMSF, SASA, H-bonds, MM-PBSA, and FEL confirmed stable protein-ligand compound formation. Principal component analysis provided structural variation insights. Our findings suggest that those compounds might be possible candidates for developing novel inhibitors targeting DPP-4 for treating diabetes.
Collapse
Affiliation(s)
- Alomgir Hossain
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (A.H.); (M.E.R.); (R.Z.); (M.N.M.)
| | - Md Ekhtiar Rahman
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (A.H.); (M.E.R.); (R.Z.); (M.N.M.)
| | - Md Omar Faruqe
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Ahmed Saif
- Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Suzzada Suhi
- Department of Zoology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Rashed Zaman
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (A.H.); (M.E.R.); (R.Z.); (M.N.M.)
| | - Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Mohammad Nurul Matin
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (A.H.); (M.E.R.); (R.Z.); (M.N.M.)
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Republic of Korea
| | - Muhammad Fazle Rabbee
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
10
|
Talevi A. Computer-Aided Drug Discovery and Design: Recent Advances and Future Prospects. Methods Mol Biol 2024; 2714:1-20. [PMID: 37676590 DOI: 10.1007/978-1-0716-3441-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Computer-aided drug discovery and design involve the use of information technologies to identify and develop, on a rational ground, chemical compounds that align a set of desired physicochemical and biological properties. In its most common form, it involves the identification and/or modification of an active scaffold (or the combination of known active scaffolds), although de novo drug design from scratch is also possible. Traditionally, the drug discovery and design processes have focused on the molecular determinants of the interactions between drug candidates and their known or intended pharmacological target(s). Nevertheless, in modern times, drug discovery and design are conceived as a particularly complex multiparameter optimization task, due to the complicated, often conflicting, property requirements.This chapter provides an updated overview of in silico approaches for identifying active scaffolds and guiding the subsequent optimization process. Recent groundbreaking advances in the field have also analyzed the integration of state-of-the-art machine learning approaches in every step of the drug discovery process (from prediction of target structure to customized molecular docking scoring functions), integration of multilevel omics data, and the use of a diversity of computational approaches to assist target validation and assess plausible binding pockets.
Collapse
Affiliation(s)
- Alan Talevi
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata (UNLP), La Plata, Argentina.
- Argentinean National Council of Scientific and Technical Research (CONICET), La Plata, Argentina.
| |
Collapse
|
11
|
Souza BGD, Choudhary S, Vilela GG, Passos GFS, Costa CACB, Freitas JDD, Coelho GL, Brandão JDA, Anderson L, Bassi ÊJ, Araújo-Júnior JXD, Tomar S, Silva-Júnior EFD. Design, synthesis, antiviral evaluation, and In silico studies of acrylamides targeting nsP2 from Chikungunya virus. Eur J Med Chem 2023; 258:115572. [PMID: 37364511 DOI: 10.1016/j.ejmech.2023.115572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/11/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
The Togaviridae family comprises several New- and Old-World Alphaviruses that have been responsible for thousands of human illnesses, including the RNA arbovirus Chikungunya virus (CHIKV). Firstly, it was reported in Tanzania in 1952 but rapidly it spread to several countries from Europe, Asia, and the Americas. Since then, CHIKV has been circulating in diverse countries around the world, leading to increased morbidity rates. Currently, there are no FDA-approved drugs or licensed vaccines to specifically treat CHIKV infections. Thus, there is a lack of alternatives to fight against this viral disease, making it an unmet need. Structurally, CHIKV is composed of five structural proteins (E3, E2, E1, C, and 6k) and four non-structural proteins (nsP1-4), in which nsP2 represents an attractive antiviral target for designing novel inhibitors since it has an essential role in the virus replication and transcription. Herein, we used a rational drug design strategy to select some acrylamide derivatives to be synthesized and evaluated against CHIKV nsP2 and also screened on CHIKV-infected cells. Thus, two regions of modifications were considered for these types of inhibitors, based on a previous study of our group, generating 1560 possible inhibitors. Then, the 24 most promising ones were synthesized and screened by using a FRET-based enzymatic assay protocol targeting CHIKV nsP2, identifying LQM330, 333, 336, and 338 as the most potent inhibitors, with Ki values of 48.6 ± 2.8, 92.3 ± 1.4, 2.3 ± 1.5, and 181.8 ± 2.5 μM, respectively. Still, their Km and Vmax kinetic parameters were also determined, along with their competitive binding modes of CHIKV nsP2 inhibition. Then, ITC analyses revealed KD values of 127, 159, 198, and 218 μM for LQM330, 333, 336, and 338, respectively. Also, their ΔH, ΔS, and ΔG physicochemical parameters were determined. MD simulations demonstrated that these inhibitors present a stable binding mode with nsP2, interacting with important residues of this protease, according to docking analyzes. Moreover, MM/PBSA calculations displayed that van der Waals interactions are mainly responsible for stabilizing the inhibitor-nsP2 complex, and their binding energies corroborated with their Ki values, having -198.7 ± 15.68, -124.8 ± 17.27, -247.4 ± 23.78, and -100.6 ± 19.21 kcal/mol for LQM330, 333, 336, and 338, respectively. Since Sindbis (SINV) nsP2 is similar to CHIKV nsP2, these best inhibitors were screened against SINV-infected cells, and it was verified that LQM330 presented the best result, with an EC50 value of 0.95 ± 0.09 μM. Even at 50 μM concentration, LQM338 was found to be cytotoxic on Vero cells after 48 h. Then, LQM330, 333, and 336 were evaluated against CHIKV-infected cells in antiviral assays, in which LQM330 was found to be the most promising antiviral candidate in this study, exhibiting an EC50 value of 5.2 ± 0.52 μM and SI of 31.78. The intracellular flow cytometry demonstrated that LQM330 is able to reduce the CHIKV cytopathogenic effect on cells, and also reduce the percentage of CHIKV-positive cells from 66.1% ± 7.05 to 35.8% ± 5.78 at 50 μM concentration. Finally, qPCR studies demonstrated that LQM330 was capable of reducing the number of viral RNA copies/μL, suggesting that CHIKV nsP2 is targeted by this inhibitor as its mechanism of action.
Collapse
Affiliation(s)
- Beatriz Gois de Souza
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Gabriel Gomes Vilela
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - Gabriel Felipe Silva Passos
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | | | - Johnnatan Duarte de Freitas
- Department of Chemistry, Federal Institute of Alagoas, Maceió Campus, Mizael Domingues Street, 57020-600, Alagoas, Maceió, Brazil
| | - Grazielle Lobo Coelho
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - Júlia de Andrade Brandão
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - Leticia Anderson
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil; CESMAC University Center, 57051-160, Alagoas, Maceió, Brazil
| | - Ênio José Bassi
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - João Xavier de Araújo-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Edeildo Ferreira da Silva-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil; Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil.
| |
Collapse
|
12
|
Xia B, Zheng L, Li Y, Sun W, Liu Y, Li L, Pang J, Chen J, Li J, Cheng H. The brief overview, antivirus and anti-SARS-CoV-2 activity, quantitative methods, and pharmacokinetics of cepharanthine: a potential small-molecule drug against COVID-19. Front Pharmacol 2023; 14:1098972. [PMID: 37583901 PMCID: PMC10423819 DOI: 10.3389/fphar.2023.1098972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
To effectively respond to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an increasing number of researchers are focusing on the antiviral activity of cepharanthine (CEP), which is a clinically approved drug being used for over 70 years. This review aims to provide a brief overview of CEP and summarize its recent findings in quantitative analysis, pharmacokinetics, therapeutic potential, and mechanism in antiviral and anti-SARS-CoV-2 activity. Given its remarkable capacity against SARS-CoV-2 infection in vitro and in vivo, with its primary target organ being the lungs, and its good pharmacokinetic profile; mature and stable manufacturing technique; and its advantages of safety, effectiveness, and accessibility, CEP has become a promising drug candidate for treating COVID-19 despite being an old drug.
Collapse
Affiliation(s)
- Binbin Xia
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Li Zheng
- Department of Pharmacy, China Aerospace Science & Industry Corporation 731 Hospital, Beijing, China
| | - Yali Li
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Wenfang Sun
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yang Liu
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Liushui Li
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jingyao Pang
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jing Chen
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jiaxin Li
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Hua Cheng
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Schaefer D, Cheng X. Recent Advances in Covalent Drug Discovery. Pharmaceuticals (Basel) 2023; 16:ph16050663. [PMID: 37242447 DOI: 10.3390/ph16050663] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/10/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
In spite of the increasing number of biologics license applications, the development of covalent inhibitors is still a growing field within drug discovery. The successful approval of some covalent protein kinase inhibitors, such as ibrutinib (BTK covalent inhibitor) and dacomitinib (EGFR covalent inhibitor), and the very recent discovery of covalent inhibitors for viral proteases, such as boceprevir, narlaprevir, and nirmatrelvir, represent a new milestone in covalent drug development. Generally, the formation of covalent bonds that target proteins can offer drugs diverse advantages in terms of target selectivity, drug resistance, and administration concentration. The most important factor for covalent inhibitors is the electrophile (warhead), which dictates selectivity, reactivity, and the type of protein binding (i.e., reversible or irreversible) and can be modified/optimized through rational designs. Furthermore, covalent inhibitors are becoming more and more common in proteolysis, targeting chimeras (PROTACs) for degrading proteins, including those that are currently considered to be 'undruggable'. The aim of this review is to highlight the current state of covalent inhibitor development, including a short historical overview and some examples of applications of PROTAC technologies and treatment of the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Daniel Schaefer
- Buchmann Institute for Molecular Life Sciences, Chemical Biology, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 15. R. 3.652, 60438 Frankfurt am Main, Germany
- Pharmaceutical Chemistry, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Xinlai Cheng
- Buchmann Institute for Molecular Life Sciences, Chemical Biology, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 15. R. 3.652, 60438 Frankfurt am Main, Germany
- Pharmaceutical Chemistry, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany
| |
Collapse
|
14
|
Repurposing FDA-approved drugs as FXR agonists: a structure based in silico pharmacological study. Biosci Rep 2023; 43:231090. [PMID: 35348180 PMCID: PMC9977715 DOI: 10.1042/bsr20212791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Farnesoid X receptor (FXR) modulates the expression of genes involved in lipid and carbohydrate homeostasis and inflammatory processes. This nuclear receptor is likely a tumor suppressor in several cancers, but its molecular mechanism of suppression is still under study. Several studies reported that FXR agonism increases the survival of colorectal, biliary tract, and liver cancer patients. In addition, FXR expression was shown to be down-regulated in many diseases such as obesity, irritable bowel syndrome, glomerular inflammation, diabetes, proteinuria, and ulcerative colitis. Therefore, development of novel FXR agonists may have significant potential in the prevention and treatment of these diseases. In this scenario, computer-aided drug design procedures can be resourcefully applied for the rapid identification of promising drug candidates. In the present study, we applied the molecular docking method in conjunction with molecular dynamics (MD) simulations to find out potential agonists for FXR based on structural similarity with the drug that is currently used as FXR agonist, obeticholic acid. Our results showed that alvimopan and montelukast could be used as potent FXR activators and outperform the binding affinity of obeticholic acid by forming stable conformation with the protein in silico. However, further investigational studies and validations of the selected drugs are essential to figure out their suitability for preclinical and clinical trials.
Collapse
|
15
|
Vanreppelen G, Wuyts J, Van Dijck P, Vandecruys P. Sources of Antifungal Drugs. J Fungi (Basel) 2023; 9:jof9020171. [PMID: 36836286 PMCID: PMC9965926 DOI: 10.3390/jof9020171] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Due to their eukaryotic heritage, the differences between a fungal pathogen's molecular makeup and its human host are small. Therefore, the discovery and subsequent development of novel antifungal drugs are extremely challenging. Nevertheless, since the 1940s, researchers have successfully uncovered potent candidates from natural or synthetic sources. Analogs and novel formulations of these drugs enhanced the pharmacological parameters and improved overall drug efficiency. These compounds ultimately became the founding members of novel drug classes and were successfully applied in clinical settings, offering valuable and efficient treatment of mycosis for decades. Currently, only five different antifungal drug classes exist, all characterized by a unique mode of action; these are polyenes, pyrimidine analogs, azoles, allylamines, and echinocandins. The latter, being the latest addition to the antifungal armamentarium, was introduced over two decades ago. As a result of this limited arsenal, antifungal resistance development has exponentially increased and, with it, a growing healthcare crisis. In this review, we discuss the original sources of antifungal compounds, either natural or synthetic. Additionally, we summarize the existing drug classes, potential novel candidates in the clinical pipeline, and emerging non-traditional treatment options.
Collapse
|
16
|
Dak M, Šlachtová V, Šebela M, Bazgier V, Berka K, Smiejkowska N, Oorts L, Cappoen D, Brulíková L. Novel heterocyclic hydroxamates as inhibitors of the mycobacterial zinc metalloprotease Zmp1 to probe its mechanism of function. Eur J Med Chem 2022; 244:114831. [DOI: 10.1016/j.ejmech.2022.114831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022]
|
17
|
Jeuken S, Shkura O, Röger M, Brickau V, Choidas A, Degenhart C, Gülden D, Klebl B, Koch U, Stoll R, Scherkenbeck J. Synthesis, Biological Evaluation, and Binding Mode of a New Class of Oncogenic K-Ras4b Inhibitors. ChemMedChem 2022; 17:e202200392. [PMID: 35979853 PMCID: PMC9826232 DOI: 10.1002/cmdc.202200392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/15/2022] [Indexed: 01/14/2023]
Abstract
Ras proteins are implicated in some of the most common life-threatening cancers. Despite intense research during the past three decades, progress towards small-molecule inhibitors of mutant Ras proteins still has been limited. Only recently has significant progress been made, in particular with ligands for binding sites located in the switch II and between the switch I and switch II region of K-Ras4B. However, the structural diversity of inhibitors identified for those sites to date is narrow. Herein, we show that hydrazones and oxime ethers of specific bis(het)aryl ketones represent structurally variable chemotypes for new GDP/GTP-exchange inhibitors with significant cellular activity.
Collapse
Affiliation(s)
- Stephan Jeuken
- Faculty of Mathematics and Natural SciencesUniversity of WuppertalGaussstrasse 2042119WuppertalGermany
| | - Oleksandr Shkura
- Faculty of Chemistry and BiochemistryBiomolecular Spectroscopy and RUBiospec | NMRUniversity of BochumUniversitätsstrasse 15044780BochumGermany
| | - Marc Röger
- Faculty of Mathematics and Natural SciencesUniversity of WuppertalGaussstrasse 2042119WuppertalGermany
| | - Victoria Brickau
- Lead Discovery Center GmbHOtto-Hahn-Strasse 1544227DortmundGermany
| | - Axel Choidas
- Lead Discovery Center GmbHOtto-Hahn-Strasse 1544227DortmundGermany
| | | | - Daniel Gülden
- Faculty of Mathematics and Natural SciencesUniversity of WuppertalGaussstrasse 2042119WuppertalGermany
| | - Bert Klebl
- Lead Discovery Center GmbHOtto-Hahn-Strasse 1544227DortmundGermany
| | - Uwe Koch
- Lead Discovery Center GmbHOtto-Hahn-Strasse 1544227DortmundGermany
| | - Raphael Stoll
- Faculty of Chemistry and BiochemistryBiomolecular Spectroscopy and RUBiospec | NMRUniversity of BochumUniversitätsstrasse 15044780BochumGermany
| | - Jürgen Scherkenbeck
- Faculty of Mathematics and Natural SciencesUniversity of WuppertalGaussstrasse 2042119WuppertalGermany
| |
Collapse
|
18
|
Matica OT, Brotea AG, Ungureanu E, Mandoc LR, Birzan L. Electrochemical and spectral studies of rhodanine in view of heavy metals determination. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Affiliation(s)
- Ovidiu Teodor Matica
- Doctoral School Chemical Engineering and Biotechnologies, Faculty of Chemical Engineering and Biotechnologies University POLITEHNICA of Bucharest Bucharest Romania
| | - Alina Giorgiana Brotea
- Doctoral School Chemical Engineering and Biotechnologies, Faculty of Chemical Engineering and Biotechnologies University POLITEHNICA of Bucharest Bucharest Romania
| | - Eleonora‐Mihaela Ungureanu
- Doctoral School Chemical Engineering and Biotechnologies Faculty of Chemical Engineering and Biotechnologies University POLITEHNICA of Bucharest Bucharest Romania
| | - Luisa Roxana Mandoc
- National Research and Development Institute For Cryogenic and Isotopic Technologies Ramnicu Valcea Romania
| | - Liviu Birzan
- Romanian Academy Organic Chemistry Center “C.D. Nenitzescu” Bucharest Romania
| |
Collapse
|
19
|
Yu W, Xie X, Ma Y, Fang S, Dong Y, Liu G. Identification of 1,4-Benzodiazepine-2,5-dione Derivatives as Potential Protein Synthesis Inhibitors with Highly Potent Anticancer Activity. J Med Chem 2022; 65:14891-14915. [PMID: 36260776 DOI: 10.1021/acs.jmedchem.2c01431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, a random multiple human tumor cell line screening of an in-stock small-molecule chemical library was performed, and a hit compound, 1,4-benzodiazepine-2,5-dione (BZD, 11a; average 50% growth inhibitory concentration (GI50 = 0.24 μM)) to 60 tumor cell lines of nine types of human cancers, was identified. Subsequent structure-activity relationship (SAR) investigation disclosed a highly potent antitumor compound, 52b, that was shown to exert promising effects against lung cancer cells by inducing cell cycle arrest and apoptosis. Further polysome profile analysis revealed that 52b inhibited protein synthesis in cancer cells. Moreover, 52b significantly prevented tumor growth in a human non-small-cell lung cancer (NCI-H522) xenograft mouse model with no observable toxic effects. These findings are the first report of the synthetic compound 52b with a 1,4-benzodiazepine-2,5-dione skeleton that acts as a potential protein synthesis inhibitor to effectively inhibit tumor growth.
Collapse
Affiliation(s)
- Wenjun Yu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist, Beijing 100084, P. R. China
| | - Xilei Xie
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 2A Nanwei Rd, Xicheng Dist, Beijing 100050, P. R. China.,College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yao Ma
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 2A Nanwei Rd, Xicheng Dist, Beijing 100050, P. R. China
| | - Shiping Fang
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist, Beijing 100084, P. R. China
| | - Yi Dong
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 2A Nanwei Rd, Xicheng Dist, Beijing 100050, P. R. China
| | - Gang Liu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist, Beijing 100084, P. R. China.,Key laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P. R. China
| |
Collapse
|
20
|
Robbins N, Cowen LE. Genomic Approaches to Antifungal Drug Target Identification and Validation. Annu Rev Microbiol 2022; 76:369-388. [PMID: 35650665 PMCID: PMC10727914 DOI: 10.1146/annurev-micro-041020-094524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The last several decades have witnessed a surge in drug-resistant fungal infections that pose a serious threat to human health. While there is a limited arsenal of drugs that can be used to treat systemic infections, scientific advances have provided renewed optimism for the discovery of novel antifungals. The development of chemical-genomic assays using Saccharomyces cerevisiae has provided powerful methods to identify the mechanism of action of molecules in a living cell. Advances in molecular biology techniques have enabled complementary assays to be developed in fungal pathogens, including Candida albicans and Cryptococcus neoformans. These approaches enable the identification of target genes for drug candidates, as well as genes involved in buffering drug target pathways. Here, we examine yeast chemical-genomic assays and highlight how such resources can be utilized to predict the mechanisms of action of compounds, to study virulence attributes of diverse fungal pathogens, and to bolster the antifungal pipeline.
Collapse
Affiliation(s)
- Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada;
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada;
| |
Collapse
|
21
|
Zhou X, Pan Y, Qu Y, Ke X. Tideglusib Inhibits Pif1 Helicase of Bacteroides sp. via an Irreversible and Cys-380-Dependent Mechanism. ACS OMEGA 2022; 7:31289-31298. [PMID: 36092604 PMCID: PMC9453980 DOI: 10.1021/acsomega.2c03546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Pif1 helicase plays multiple roles in maintaining genome stability, which is an attractive therapeutic target for helicase-related diseases, while small molecules targeting Pif1 are not yet available. In this study, we performed a fluorescence polarization-based high-throughput screening and identified that an FDA-approved drug, Tideglusib (TD), could inhibit the DNA-binding activity (IC50 = 6.2 ± 0.4 μM) and ATPase and helicase activity (IC50 = 2-4 μM) of Bacteroides sp. Pif1 (BaPif1), which was also confirmed with human Pif1. In addition, the TD analogue TDZD-8 displayed similar inhibitory effects on Pif1 activities. Notably, TD irreversibly inhibited BaPif1 and severely induced BaPif1 aggregation. Furthermore, inhibition of BaPif1 by TD was significantly attenuated in the presence of dithiothreitol, indicating that TD could be a thiol-reactive compound. We also identified that Cys-380 of BaPif1 is critical for the inhibition by TD, suggesting that TD inhibits BaPif1 via an irreversible and Cys-380-dependent mechanism.
Collapse
|
22
|
In Silico and In Vitro Screening Constituents of Eclipta alba Leaf Extract to Reveal Antimicrobial Potential. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3290790. [PMID: 36034950 PMCID: PMC9402321 DOI: 10.1155/2022/3290790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Phytochemicals have been shown to possess multiple bioactives and have been reported to showcase many medicinal effects. A similar kind of evaluation of phytoconstituents for their antimicrobial action has been reported, based on in vitro and in silico data. The goal of the research was to explore bioactive phytoconstituents of Eclipta alba leaf for antimicrobial activity. The antimicrobial activity was validated by both molecular docking and antimicrobial assay. Bioactive metabolites were identified using GC-MS. The antimicrobial and antimycobacterial activity of Eclipta alba leaves was investigated using the Kirby–Bauer well diffusion method and the rapid culture—MGIT™ DST method against a variety of human pathogens, as well as Mycobacterium tuberculosis (H37Rv) and Mycobacterium tuberculosis bacteria resistant to isoniazid and rifampicin. Eclipta alba’s GC-MS studies confirmed the detection of 17 bioactive constituents. The extract demonstrates the highest antibacterial activity against Escherichia coli (sensitive), Pseudomonas aeruginosa (sensitive) and methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa susceptible and MRSA (sensitive) with zone of inhibition of 27 mm, 24 mm, and 32 mm respectively. The extract showed no effect on Mycobacterium tuberculosis (H37Rv) and Mycobacterium tuberculosis bacteria resistant to isoniazid and rifampicin in antimycobacterial activity testing. Molecular docking investigation revealed that three compounds (phthalic acid, isobutyl octadecyl ester, hexadecanoic acid, 1(hydroxymethyl)1,2-ethanediylester, and 2,myristynoyl pantetheine) have generated the best results in terms of binding energies and significant interactions with key residues of target protein 3-hydroxydecanoyl-acyl carrier protein dehydratase (FabA) and confirm its activity as antimicrobial inhibitors. These two-dimensional plots show significant protein-ligand binding interactions (van der Waals interactions, hydrogen bond, alkyl, and Pi-alkyl interactions). ADMET (absorption, distribution, metabolism, excretion, and toxicity) results additionally support the drug-likeness characteristics of concluded potential compounds. The experimental and computational results demonstrated that methanolic extract of Eclipta alba leaves had antimicrobial effects for specific infections due to the presence of phytochemical compounds.
Collapse
|
23
|
Jasinski G, Salas-Sarduy E, Vega D, Fabian L, Martini MF, Moglioni AG. Thiosemicarbazone derivatives: Evaluation as cruzipain inhibitors and molecular modeling study of complexes with cruzain. Bioorg Med Chem 2022; 61:116708. [PMID: 35334448 DOI: 10.1016/j.bmc.2022.116708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 11/02/2022]
Abstract
The development of cruzipain inhibitors represents one of the most attractive challenges in the search for drugs for the treatment of Chagas disease. A recombinant form of this enzyme, cruzain, has been crystallized with numerous inhibitors, excluding thiosemicarbazones. These compounds have been established as potent inhibitors of cruzain, although there is very little data in the literature of thiosemicarbazones tested on cruzipain. In this work, we present the results of the evaluation of eleven thiosemicarbazones on cruzipain, isolated from T. cruzi epimastigotes, six of them previously evaluated on cruzain. For these latter, we studied through computational methods, the mode of interaction with the active site of cruzain and the contribution of geometric parameters to the possible mechanism of action involved in the observed inhibition. Finally, from some geometric parameters analyzed on modeled TSC-cruzain complexes, a semi-quantitative relationship was established that could explain the inhibitory activity of thiosemicarbazones on cruzipain, the enzyme actually present in the parasite.
Collapse
Affiliation(s)
- Gabriel Jasinski
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CABA, C1113AAD, Argentina; Instituto de la Química y el Metabolismo del Fármaco (IQUIMEFA), CONICET-Universidad de Buenos Aires, CABA, 1113, Argentina
| | - Emir Salas-Sarduy
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo Ugalde" (IIBIO), CONICET-Universidad de San Martín (UNSAM), San Martín, Buenos Aires 1650, Argentina
| | - Daniel Vega
- Departamento de Física de la Materia Condensada, GIyA, CAC, CNEA, Buenos Aires B1650KNA, Argentina; Escuela de Ciencia y Tecnología, UNSAM, San Martín, Buenos Aires B1650KNA, Argentina
| | - Lucas Fabian
- Instituto de la Química y el Metabolismo del Fármaco (IQUIMEFA), CONICET-Universidad de Buenos Aires, CABA, 1113, Argentina
| | - María Florencia Martini
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CABA, C1113AAD, Argentina; Instituto de la Química y el Metabolismo del Fármaco (IQUIMEFA), CONICET-Universidad de Buenos Aires, CABA, 1113, Argentina
| | - Albertina G Moglioni
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CABA, C1113AAD, Argentina; Instituto de la Química y el Metabolismo del Fármaco (IQUIMEFA), CONICET-Universidad de Buenos Aires, CABA, 1113, Argentina
| |
Collapse
|
24
|
Perfect JR, Krysan DJ, Del Poeta M, Selmecki AM, Brown JCS, Cowen LE. Editorial: Antifungal Pipeline: Build It Strong; Build It Better! Front Cell Infect Microbiol 2022; 12:881272. [PMID: 35372097 PMCID: PMC8965832 DOI: 10.3389/fcimb.2022.881272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, United States,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States,*Correspondence: John R. Perfect,
| | - Damian J. Krysan
- Department of Pediatrics and Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States,Department of Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology and Division of Infectious Diseases, Stony Brook University, Stony Brook, NY, United States, Veterans Administration Medical Center, Northport, NY, United States
| | - Anna M. Selmecki
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Jessica C. S. Brown
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Electrochemical and Spectral Studies on Benzylidenerhodanine for Sensor Development for Heavy Metals in Waters. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Electrochemical and spectral studies of benzylidenerhodanine (BR) were performed in order to develop new sensors for heavy metals (HMs) based on chemically modified electrodes (CMEs). CMEs were obtained by cycling and by controlled potential electrolysis at different potentials and charges. Film formation was demonstrated by recording the CV curves of CMEs in transfer solutions containing ferrocene in 0.1 M TBAP/CH3CN. BR-CMEs were used for the analysis of HMs. Samples of Cd(II), Pb(II), Cu(II), and Hg(II), each possessing concentrations between 10−7 and 10−5 M, were analyzed by using CMEs prepared in different conditions. The most intense signal was obtained for the Pb(II) ion. These BR-CMEs can be used for the analysis of Pb(II) in monitored waters. An electrochemical study was performed at different concentrations of BR in 0.1 M TBAP/CH3CN on a glassy carbon electrode by differential pulse voltammetry, cyclic voltammetry, and rotating disk electrode voltammetry. The complexation ratio in the homogeneous solution has been established by the Mollard method in acetonitrile solutions.
Collapse
|
26
|
Murphy SE, Bicanic T. Drug Resistance and Novel Therapeutic Approaches in Invasive Candidiasis. Front Cell Infect Microbiol 2022; 11:759408. [PMID: 34970504 PMCID: PMC8713075 DOI: 10.3389/fcimb.2021.759408] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Candida species are the leading cause of invasive fungal infections worldwide and are associated with acute mortality rates of ~50%. Mortality rates are further augmented in the context of host immunosuppression and infection with drug-resistant Candida species. In this review, we outline antifungal drugs already in clinical use for invasive candidiasis and candidaemia, their targets and mechanisms of resistance in clinically relevant Candida species, encompassing not only classical resistance, but also heteroresistance and tolerance. We describe novel antifungal agents and targets in pre-clinical and clinical development, including their spectrum of activity, antifungal target, clinical trial data and potential in treatment of drug-resistant Candida. Lastly, we discuss the use of combination therapy between conventional and repurposed agents as a potential strategy to combat the threat of emerging resistance in Candida.
Collapse
Affiliation(s)
- Sarah E Murphy
- Institute of Infection & Immunity, St George's University of London, London, United Kingdom
| | - Tihana Bicanic
- Institute of Infection & Immunity, St George's University of London, London, United Kingdom.,Clinical Academic Group in Infection and Immunity, St. George's University Hospital National Health Service (NHS) Foundation Trust, London, United Kingdom
| |
Collapse
|
27
|
Christoff RM, Soares da Costa TP, Bayat S, Holien JK, Perugini MA, Abbott BM. Synthesis and structure-activity relationship studies of 2,4-thiazolidinediones and analogous heterocycles as inhibitors of dihydrodipicolinate synthase. Bioorg Med Chem 2021; 52:116518. [PMID: 34826680 DOI: 10.1016/j.bmc.2021.116518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS), responsible for the first committed step of the diaminopimelate pathway for lysine biosynthesis, has become an attractive target for the development of new antibacterial and herbicidal agents. Herein, we report the discovery and exploration of the first inhibitors of E. coli DHDPS which have been identified from screening lead and are not based on substrates from the lysine biosynthesis pathway. Over 50 thiazolidinediones and related analogues have been prepared in order to thoroughly evaluate the structure-activity relationships against this enzyme of significant interest.
Collapse
Affiliation(s)
- Rebecca M Christoff
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Saadi Bayat
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jessica K Holien
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Belinda M Abbott
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
28
|
Skoreński M, Sieńczyk M. The Fellowship of Privileged Scaffolds-One Structure to Inhibit Them All. Pharmaceuticals (Basel) 2021; 14:ph14111164. [PMID: 34832946 PMCID: PMC8622370 DOI: 10.3390/ph14111164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/22/2022] Open
Abstract
Over the past few years, the application of privileged structure has emerged as a powerful approach to the discovery of new biologically active molecules. Privileged structures are molecular scaffolds with binding properties to the range of different biological targets. Moreover, privileged structures typically exhibit good drug-like properties, thus assuring more drug-like properties of modified compound. Our main objective is to discuss the privileged structures used for the development of antiviral agents.
Collapse
|
29
|
Danne A, Deshpande MV, Sangshetti JN, Khedkar VM, Shingate BB. New 1,2,3-Triazole-Appended Bis-pyrazoles: Synthesis, Bioevaluation, and Molecular Docking. ACS OMEGA 2021; 6:24879-24890. [PMID: 34604669 PMCID: PMC8482464 DOI: 10.1021/acsomega.1c03734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 05/22/2023]
Abstract
The present work describes design of a small library of new 1,2,3-triazole-appended bis-pyrazoles by using a molecular hybridization approach, and the synthesized hybrids were evaluated for their antifungal activity against different fungal strains, namely, Candida albicans, Cryptococcus neoformans, Candida glabrata, Candida tropicalis, Aspergillus niger, and Aspergillus fumigatus. All the compounds exhibited broad-spectrum activity against the tested fungal strains with excellent minimum inhibitory concentration values. The molecular docking study against sterol 14α-demethylase (CYP51) could provide valuable insights into the binding modes and affinity of these compounds. Furthermore, these compounds were also evaluated for their antioxidant activity, which also resulted in promising data.
Collapse
Affiliation(s)
- Ashruba
B. Danne
- Department
of Chemistry, Dr. Babasaheb Ambedkar Marathwada
University, Aurangabad 431 004, Maharashtra, India
| | - Mukund V. Deshpande
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Dr. Homi
Bhabha Road, Pune 411008, Maharashtra, India
| | - Jaiprakash N. Sangshetti
- Y.
B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad 431001, Maharashtra, India
| | - Vijay M. Khedkar
- School
of Pharmacy, Vishwakarma University, Pune 411048, Maharashtra, India
| | - Bapurao B. Shingate
- Department
of Chemistry, Dr. Babasaheb Ambedkar Marathwada
University, Aurangabad 431 004, Maharashtra, India
| |
Collapse
|
30
|
Striking Back against Fungal Infections: The Utilization of Nanosystems for Antifungal Strategies. Int J Mol Sci 2021; 22:ijms221810104. [PMID: 34576268 PMCID: PMC8466259 DOI: 10.3390/ijms221810104] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Fungal infections have become a major health concern, given that invasive infections by Candida, Cryptococcus, and Aspergillus species have led to millions of mortalities. Conventional antifungal drugs including polyenes, echinocandins, azoles, allylamins, and antimetabolites have been used for decades, but their limitations include off-target toxicity, drug-resistance, poor water solubility, low bioavailability, and weak tissue penetration, which cannot be ignored. These drawbacks have led to the emergence of novel antifungal therapies. In this review, we discuss the nanosystems that are currently utilized for drug delivery and the application of antifungal therapies.
Collapse
|
31
|
Li Z, Zhang M, Teuscher KB, Ji H. Discovery of 1-Benzoyl 4-Phenoxypiperidines as Small-Molecule Inhibitors of the β-Catenin/B-Cell Lymphoma 9 Protein-Protein Interaction. J Med Chem 2021; 64:11195-11218. [PMID: 34270257 DOI: 10.1021/acs.jmedchem.1c00596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Structure-based design and optimization were performed to develop small-molecule β-catenin/B-cell lymphoma 9 (BCL9) inhibitors and improve their inhibitory activities. Compound ZL3138 with a novel 1-benzoyl 4-phenoxypiperidine scaffold was discovered to disrupt the β-catenin/BCL9 protein-protein interaction (PPI) with a Ki of 0.96 μM in AlphaScreen competitive inhibition assays and displayed good selectivity for β-catenin/BCL9 over β-catenin/E-cadherin PPIs. The binding mode of new inhibitors was characterized by structure-activity relationship and site-directed mutagenesis studies. Protein pull-down assays indicate that this series of compounds directly binds with β-catenin. Cellular target engagement and co-immunoprecipitation experiments demonstrate that ZL3138 binds with β-catenin and disrupts the β-catenin/BCL9 interaction without affecting the β-catenin/E-cadherin interaction in living cells. Further cell-based studies show that ZL3138 selectively suppresses transactivation of Wnt/β-catenin signaling, regulates transcription and expression of Wnt target genes, and inhibits the growth of Wnt/β-catenin-dependent cancer cells.
Collapse
Affiliation(s)
- Zilu Li
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States.,Departments of Oncologic Sciences and Chemistry, University of South Florida, Tampa, Florida 33612-9497, United States
| | - Min Zhang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Kevin B Teuscher
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States.,Department of Chemistry, Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Haitao Ji
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States.,Departments of Oncologic Sciences and Chemistry, University of South Florida, Tampa, Florida 33612-9497, United States
| |
Collapse
|
32
|
Jackson MR, Cox KD, Baugh SDP, Wakeen L, Rashad AA, Lam PYS, Polyak B, Jorns MS. Discovery of a first-in-class inhibitor of sulfide:quinone oxidoreductase that protects against adverse cardiac remodeling and heart failure. Cardiovasc Res 2021; 118:1771-1784. [PMID: 34132787 DOI: 10.1093/cvr/cvab206] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 06/14/2021] [Indexed: 12/27/2022] Open
Abstract
AIMS Hydrogen sulfide (H2S) is a potent signaling molecule that activates diverse cardioprotective pathways by posttranslational modification (persulfidation) of cysteine residues in upstream protein targets. Heart failure patients with reduced ejection fraction (HFrEF) exhibit low levels of H2S. Sulfide: quinone oxidoreductase (SQOR) catalyzes the first irreversible step in the metabolism of H2S and plays a key role in regulating H2S-mediated signaling. Our aim here was to discover a first-in-class inhibitor of human SQOR and evaluate its cardioprotective effect in an animal model of HFrEF. METHODS AND RESULTS We identified a potent inhibitor of human SQOR (STI1, IC50 = 29 nM) by high-throughput screening of a small-molecule library, followed by focused medicinal chemistry optimization and structure-based design. STI1 is a competitive inhibitor that binds with high selectivity to the coenzyme Q-binding pocket in SQOR. STI1 exhibited very low cytotoxicity and attenuated the hypertrophic response of neonatal rat ventricular cardiomyocytes and H9c2 cells induced by neurohormonal stressors. A mouse HFrEF model was produced by transverse aortic constriction (TAC). Treatment of TAC mice with STI1 mitigated the development of cardiomegaly, pulmonary congestion, dilatation of the left ventricle, and cardiac fibrosis and decreased the pressure gradient across the aortic constriction. Moreover, STI1 dramatically improved survival, preserved cardiac function, and prevented the progression to HFrEF by impeding the transition from compensated to decompensated left ventricle hypertrophy. CONCLUSION We demonstrate that the coenzyme Q-binding pocket in human SQOR is a druggable target and establish proof of concept for the potential of SQOR inhibitors to provide a novel therapeutic approach for the treatment of HFrEF. TRANSLATIONAL PERSPECTIVE In HFrEF there is a compelling need for new drugs that mitigate the pathological remodeling induced by injury and improve patient survival. This study identifies SQOR-inhibiting drugs as a promising first-in-class therapy for HFrEF patients. Due to the well-established protective properties of H2S-induced signaling in renal physiology and disease, this novel class of heart failure therapeutics may also address the large unmet need of therapies for approximately 50% of heart failure patients that have coexisting chronic renal dysfunction.
Collapse
Affiliation(s)
- Michael R Jackson
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Kristie D Cox
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Simon D P Baugh
- Fox Chase Chemical Diversity Center, Inc. Doylestown, PA, 18902, USA
| | - Luke Wakeen
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Adel A Rashad
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Patrick Y S Lam
- Fox Chase Chemical Diversity Center, Inc. Doylestown, PA, 18902, USA
| | - Boris Polyak
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Marilyn Schuman Jorns
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| |
Collapse
|
33
|
Abstract
Invasive fungal diseases continue to cause substantial mortality in the enlarging immunocompromised population. It is fortunate that the field has moved past amphotericin B deoxycholate as the only available antifungal drug but despite new classes of antifungal agents both primary and secondary drug resistance in molds and yeasts abound. From the rise of multiple-drug-resistant Candida auris to the agrochemical selection of environmental azole-resistant Aspergillus fumigatus, it is and will be critical to understand antifungal drug resistance and both prevent and treat it with new strategies and agents.
Collapse
|
34
|
Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem Rev 2021; 121:5193-5239. [PMID: 33724814 PMCID: PMC8687107 DOI: 10.1021/acs.chemrev.0c01005] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Salete M C Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - David A Six
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, Minnesota 55112, United States
| | - Colton Munger
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Somnath Chakravorty
- Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
35
|
Mohareb RM, Milad YR, Mostafa BM, El-Ansary RA. New Approaches for the Synthesis of Heterocyclic Compounds Corporating Benzo[d]imidazole as Anticancer Agents, Tyrosine, Pim-1 Kinases Inhibitions and their PAINS Evaluations. Anticancer Agents Med Chem 2021; 21:327-342. [PMID: 32698742 DOI: 10.2174/1871520620666200721111230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Benzo[d]imidazoles are highly biologically active, in addition, they are considered as a class of heterocyclic compounds with many pharmaceutical applications. OBJECTIVE We are aiming in this work to synthesize target molecules that possess not only anti-tumor activities but also kinase inhibitors. The target molecules were obtained starting from the benzo[d]imidazole derivatives followed by their heterocyclization reactions to produce anticancer target molecules. METHODS The 1-(1H-benzo[d]imidazol-2-yl)propan-2-one (3) and the ethyl 2-(1H-benzo[d]imidazol-2- yl)acetate (16) were used as the key starting material which reacted with salicylaldehyde to give the corresponding benzo[4,5]imidazo[1,2-a]quinoline derivatives. On the other hand, both of them were reacted with different reagents to give thiophene, pyran and benzo[4,5]imidazo[1,2-c]pyrimidine derivatives. The synthesized compounds were evaluated against the six cancer cell lines A549, HT-29, MKN-45, U87MG, SMMC-7721, and H460 together with inhibitions toward tyrosine kinases, c-Met kinase and prostate cancer cell line PC-3 using the standard MTT assay in vitro, with foretinib as the positive control. RESULTS Most of the synthesized compounds exhibited high inhibitions toward the tested cancer cell lines. In addition, tyrosine and Pim-1 kinases inhibitions were performed for the most active compounds where the variation of substituent through the aryl ring and heterocyclic ring afforded compounds with high activities. Our analysis showed that there is a strong correlation between the structure of the compound and the substituents of target molecules. CONCLUSION Our present research proved that the synthesized heterocyclic compounds with varieties of substituents have a strong impact on the activity of compounds. The evaluations through different cell lines and tyrosine kinases indicated that the compounds were the excellent candidates as anticancer agents. This could encourage doing further research within this field for the building of compounds with high inhibitions.
Collapse
Affiliation(s)
- Rafat M Mohareb
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Yara R Milad
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Egypt
| | - Bahaa M Mostafa
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Reem A El-Ansary
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
36
|
Benchmarking the mechanisms of frequent hitters: limitation of PAINS alerts. Drug Discov Today 2021; 26:1353-1358. [PMID: 33581116 DOI: 10.1016/j.drudis.2021.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022]
Abstract
In 2010, the pan-assay interference compounds (PAINS) rule was proposed to identify false-positive compounds, especially frequent hitters (FHs), in biological screening campaigns, and has rapidly become an essential component in drug design. However, the specific mechanisms remain unknown, and the result validation and follow-up processing schemes are still unclear. In this review, a large benchmark collection of >600,000 compounds sourced from databases and the literature, including six common false-positive mechanisms, was used to evaluate the detection ability of PAINS. In addition, 400 million purchasable molecules from the ZINC database were also applied to PAINS screening. The results indicate that the PAINS rule is not suitable for the screening of all types of false-positive results and needs more improvement.
Collapse
|
37
|
Santana MVS, Silva-Jr FP. De novo design and bioactivity prediction of SARS-CoV-2 main protease inhibitors using recurrent neural network-based transfer learning. BMC Chem 2021; 15:8. [PMID: 33531083 PMCID: PMC7852053 DOI: 10.1186/s13065-021-00737-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/16/2021] [Indexed: 12/13/2022] Open
Abstract
The global pandemic of coronavirus disease (COVID-19) caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) created a rush to discover drug candidates. Despite the efforts, so far no vaccine or drug has been approved for treatment. Artificial intelligence offers solutions that could accelerate the discovery and optimization of new antivirals, especially in the current scenario dominated by the scarcity of compounds active against SARS-CoV-2. The main protease (Mpro) of SARS-CoV-2 is an attractive target for drug discovery due to the absence in humans and the essential role in viral replication. In this work, we developed a deep learning platform for de novo design of putative inhibitors of SARS-CoV-2 main protease (Mpro). Our methodology consists of 3 main steps: (1) training and validation of general chemistry-based generative model; (2) fine-tuning of the generative model for the chemical space of SARS-CoV- Mpro inhibitors and (3) training of a classifier for bioactivity prediction using transfer learning. The fine-tuned chemical model generated > 90% valid, diverse and novel (not present on the training set) structures. The generated molecules showed a good overlap with Mpro chemical space, displaying similar physicochemical properties and chemical structures. In addition, novel scaffolds were also generated, showing the potential to explore new chemical series. The classification model outperformed the baseline area under the precision-recall curve, showing it can be used for prediction. In addition, the model also outperformed the freely available model Chemprop on an external test set of fragments screened against SARS-CoV-2 Mpro, showing its potential to identify putative antivirals to tackle the COVID-19 pandemic. Finally, among the top-20 predicted hits, we identified nine hits via molecular docking displaying binding poses and interactions similar to experimentally validated inhibitors.
Collapse
Affiliation(s)
- Marcos V S Santana
- LaBECFar-Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Floriano P Silva-Jr
- LaBECFar-Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil.
| |
Collapse
|
38
|
Wang Z, Li Z, Ji H. Direct targeting of β-catenin in the Wnt signaling pathway: Current progress and perspectives. Med Res Rev 2021; 41:2109-2129. [PMID: 33475177 DOI: 10.1002/med.21787] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/30/2020] [Accepted: 01/05/2021] [Indexed: 12/28/2022]
Abstract
Aberrant activation of the Wnt/β-catenin signaling circuit is associated with cancer recurrence and relapse, cancer invasion and metastasis, and cancer immune evasion. Direct targeting of β-catenin, the central hub in this signaling pathway, is a promising strategy to suppress the hyperactive β-catenin signaling but has proven to be highly challenging. Substantial efforts have been made to discover compounds that bind with β-catenin, block β-catenin-mediated protein-protein interactions, and suppress β-catenin signaling. Herein, we characterize potential small-molecule binding sites in β-catenin, summarize bioactive small molecules that directly target β-catenin, and review structure-based inhibitor optimization, structure-activity relationship, and biological activities of reported inhibitors. This knowledge will benefit future inhibitor development and β-catenin-related drug discovery.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Zilu Li
- Department of Chemistry, University of South Florida, Tampa, Florida, USA
| | - Haitao Ji
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Chemistry, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
39
|
Xue A, Robbins N, Cowen LE. Advances in fungal chemical genomics for the discovery of new antifungal agents. Ann N Y Acad Sci 2020; 1496:5-22. [PMID: 32860238 DOI: 10.1111/nyas.14484] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Invasive fungal infections have escalated from a rare curiosity to a major cause of human mortality around the globe. This is in part due to a scarcity in the number of antifungal drugs available to combat mycotic disease, making the discovery of novel bioactive compounds and determining their mode of action of utmost importance. The development and application of chemical genomic assays using the model yeast Saccharomyces cerevisiae has provided powerful methods to identify the mechanism of action of diverse molecules in a living cell. Furthermore, complementary assays are continually being developed in fungal pathogens, most notably Candida albicans and Cryptococcus neoformans, to elucidate compound mechanism of action directly in the pathogen of interest. Collectively, the suite of chemical genetic assays that have been developed in multiple fungal species enables the identification of candidate drug target genes, as well as genes involved in buffering drug target pathways, and genes involved in general cellular responses to small molecules. In this review, we examine current yeast chemical genomic assays and highlight how such resources provide powerful tools that can be utilized to bolster the antifungal pipeline.
Collapse
Affiliation(s)
- Alice Xue
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
40
|
Naidoo D, Roy A, Kar P, Mutanda T, Anandraj A. Cyanobacterial metabolites as promising drug leads against the M pro and PL pro of SARS-CoV-2: an in silico analysis. J Biomol Struct Dyn 2020; 39:6218-6230. [PMID: 32691680 PMCID: PMC7441779 DOI: 10.1080/07391102.2020.1794972] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) has emerged as the causative agent behind the coronavirus disease 2019 (COVID-19) pandemic. Treatment efforts have been severely impeded due to the lack of specific effective antiviral drugs for the treatment of COVID-associated pathologies. In the present research endeavour the inhibitory prospects of cyanobacterial metabolites were assessed at the active binding pockets of the two vital SARS-CoV-2 proteases namely, main protease (Mpro) and the papain-like protease (PLpro) that proteolytically process viral polyproteins and facilitate viral replication, employing an in silico molecular interaction-based approach. It was evident from our analysis based on the binding energy scores that the metabolites cylindrospermopsin, deoxycylindrospermopsin, carrageenan, cryptophycin 52, eucapsitrione, tjipanazole, tolyporphin and apratoxin A exhibited promising inhibitory potential against the SARS-CoV-2 Mpro. The compounds cryptophycin 1, cryptophycin 52 and deoxycylindrospermopsin were observed to display encouraging binding energy scores with the PLpro of SARS-CoV-2. Subsequent estimation of physicochemical properties and potential toxicity of the metabolites followed by robust molecular dynamics simulations and analysis of MM-PBSA energy scoring function established deoxycylindrospermopsin as the most promising inhibitory candidate against both SARS-CoV-2 proteases. Present research findings bestow ample scopes to further exploit the potential of deoxycylindrospermopsin as a successful inhibitor of SARS-CoV-2 in vitro and in vivo and pave the foundation for the development of novel effective therapeutics against COVID-19. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Devashan Naidoo
- Faculty of Natural Sciences, Centre for Algal Biotechnology, Mangosuthu University of Technology, Durban, South Africa
| | - Ayan Roy
- Department of Biotechnology, Lovely Professional University, Punjab, India
| | - Pallab Kar
- Department of Botany, Bioinformatics Facility, University of North Bengal, Siliguri, India
| | - Taurai Mutanda
- Faculty of Natural Sciences, Centre for Algal Biotechnology, Mangosuthu University of Technology, Durban, South Africa
| | - Akash Anandraj
- Faculty of Natural Sciences, Centre for Algal Biotechnology, Mangosuthu University of Technology, Durban, South Africa
| |
Collapse
|
41
|
Yang T, Zhang T, Guan XN, Dong Z, Lan L, Yang S, Yang CG. Tideglusib and Its Analogues As Inhibitors of Staphylococcus aureus SrtA. J Med Chem 2020; 63:8442-8457. [PMID: 32639734 DOI: 10.1021/acs.jmedchem.0c00803] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sortase A (SrtA) anchors surface proteins to the cell wall envelope, and it has attracted increasing interesting as a potential antivirulence target. Several small-molecule inhibitors for SrtA have been developed, but target validation remains largely underexplored. Herein, we report a new class of SrtA inhibitors that supports antivirulence therapy through small-molecule targeting of SrtA. Tideglusib (TD), a drug candidate for myotonic dystrophy, was outstanding in high-throughput screening. A concise synthetic route quickly provided TD analogues, and the structure-activity relationships for SrtA inhibition have been established from those analogues. Several compounds largely retained the in vitro potency and exhibited a better solubility than TD. Additionally, TD attenuated virulence-related phenotypes in vitro and protected mice against lethal S. aureus USA300 bacteremia. Our study indicates that TD and its analogues could be new candidates as SrtA inhibitors with potential in the development of new antivirulence agents.
Collapse
Affiliation(s)
- Teng Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guizhou 550025, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tao Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiang-Na Guan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ze Dong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of the Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guizhou 550025, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of the Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
42
|
Passos GFS, Gomes MGM, de Aquino TM, de Araújo-Júnior JX, de Souza SJM, Cavalcante JPM, dos Santos EC, Bassi ÊJ, da Silva-Júnior EF. Computer-Aided Design, Synthesis, and Antiviral Evaluation of Novel Acrylamides as Potential Inhibitors of E3-E2-E1 Glycoproteins Complex from Chikungunya Virus. Pharmaceuticals (Basel) 2020; 13:E141. [PMID: 32629969 PMCID: PMC7407227 DOI: 10.3390/ph13070141] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
Chikungunya virus (CHIKV) causes an infectious disease characterized by inflammation and pain of the musculoskeletal tissues accompanied by swelling in the joints and cartilage damage. Currently, there are no licensed vaccines or chemotherapeutic agents to prevent or treat CHIKV infections. In this context, our research aimed to explore the potential in vitro anti-CHIKV activity of acrylamide derivatives. In silico methods were applied to 132 Michael's acceptors toward the six most important biological targets from CHIKV. Subsequently, the ten most promising acrylamides were selected and synthesized. From the cytotoxicity MTT assay, we verified that LQM330, 334, and 336 demonstrate high cell viability at 40 µM. Moreover, these derivatives exhibited anti-CHIKV activities, highlighting the compound LQM334 which exhibited an inhibition value of 81%. Thus, docking simulations were performed to suggest a potential CHIKV-target for LQM334. It was observed that the LQM334 has a high affinity towards the E3-E2-E1 glycoproteins complex. Moreover, LQM334 reduced the percentage of CHIKV-positive cells from 74.07 to 0.88%, 48h post-treatment on intracellular flow cytometry staining. In conclusion, all virtual simulations corroborated with experimental results, and LQM334 could be used as a promising anti-CHIKV scaffold for designing new drugs in the future.
Collapse
Affiliation(s)
- Gabriel Felipe Silva Passos
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió 57072-970, Brazil; (G.F.S.P.); (M.G.M.G.); (J.X.d.A.-J.)
| | - Matheus Gabriel Moura Gomes
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió 57072-970, Brazil; (G.F.S.P.); (M.G.M.G.); (J.X.d.A.-J.)
| | - Thiago Mendonça de Aquino
- Center of Analysis and Research in Nuclear Magnetic Resonance, Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió 57072-970, Brazil;
| | - João Xavier de Araújo-Júnior
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió 57072-970, Brazil; (G.F.S.P.); (M.G.M.G.); (J.X.d.A.-J.)
| | - Stephannie Janaina Maia de Souza
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-970, Brazil; (S.J.M.d.S.); (J.P.M.C.); (E.C.d.S.); (Ê.J.B.)
| | - João Pedro Monteiro Cavalcante
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-970, Brazil; (S.J.M.d.S.); (J.P.M.C.); (E.C.d.S.); (Ê.J.B.)
| | - Elane Conceição dos Santos
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-970, Brazil; (S.J.M.d.S.); (J.P.M.C.); (E.C.d.S.); (Ê.J.B.)
| | - Ênio José Bassi
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-970, Brazil; (S.J.M.d.S.); (J.P.M.C.); (E.C.d.S.); (Ê.J.B.)
| | - Edeildo Ferreira da Silva-Júnior
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió 57072-970, Brazil; (G.F.S.P.); (M.G.M.G.); (J.X.d.A.-J.)
- Center of Analysis and Research in Nuclear Magnetic Resonance, Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió 57072-970, Brazil;
| |
Collapse
|
43
|
Kar P, Sharma NR, Singh B, Sen A, Roy A. Natural compounds from Clerodendrum spp. as possible therapeutic candidates against SARS-CoV-2: An in silico investigation. J Biomol Struct Dyn 2020; 39:4774-4785. [PMID: 32552595 PMCID: PMC7309333 DOI: 10.1080/07391102.2020.1780947] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has rattled global public health, with researchers struggling to find specific therapeutic solutions. In this context, the present study employed an in silico approach to assess the inhibitory potential of the phytochemicals obtained from GC-MS analysis of twelve Clerodendrum species against the imperative spike protein, main protease enzyme Mpro and RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2. An extensive molecular docking investigation of the phytocompounds at the active binding pockets of the viral proteins revealed promising inhibitory potential of the phytochemicals taraxerol, friedelin and stigmasterol. Decent physicochemical attributes of the compounds in accordance with Lipinski’s rule of five and Veber’s rule further established them as potential therapeutic candidates against SARS-CoV-2. Molecular mechanics-generalized Born surface area (MM-GBSA) binding free energy estimation revealed that taraxerol was the most promising candidate displaying the highest binding efficacy with all the concerned SARS-CoV-2 proteins included in the present analysis. Our observations were supported by robust molecular dynamics simulations of the complexes of the viral proteins with taraxerol for a timescale of 40 nanoseconds. It was striking to note that taraxerol exhibited better binding energy scores with the concerned viral proteins than the drugs that are specifically targeted against them. The present results promise to provide new avenues to further evaluate the potential of the phytocompound taraxerol in vitro and in vivo towards its successful deployment as a SARS-CoV-2 inhibitor and combat the catastrophic COVID-19. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Pallab Kar
- Bioinformatics Facility, Department of Botany, University of North Bengal, Siliguri, India
| | - Neeta Raj Sharma
- Department of Biotechnology, Lovely Professional University, Phagwara, India
| | - Bhupender Singh
- Department of Biotechnology, Lovely Professional University, Phagwara, India
| | - Arnab Sen
- Bioinformatics Facility, Department of Botany, University of North Bengal, Siliguri, India
| | - Ayan Roy
- Department of Biotechnology, Lovely Professional University, Phagwara, India
| |
Collapse
|
44
|
Schäfer SM, Sendetski M, Angioni C, Nüsing R, Geisslinger G, Scholich K, Sisignano M. The omega-3 lipid 17,18-EEQ sensitizes TRPV1 and TRPA1 in sensory neurons through the prostacyclin receptor (IP). Neuropharmacology 2020; 166:107952. [DOI: 10.1016/j.neuropharm.2020.107952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/13/2019] [Accepted: 01/10/2020] [Indexed: 12/31/2022]
|
45
|
Mohareb RM, Alwan ES. Heterocyclization of 2-(2-phenylhydrazono)cyclohexane-1,3-dione to Synthesis Thiophene, Pyrazole and 1,2,4-triazine Derivatives with Anti-Tumor and Tyrosine Kinase Inhibitions. Anticancer Agents Med Chem 2020; 20:1209-1220. [PMID: 32156245 DOI: 10.2174/1871520620666200310093911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/04/2020] [Accepted: 01/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recently tetrahydrobenzo[b]thiazole derivatives acquired a special attention due to their wide range of pharmacological activities especially the therapeutic activities. Through the market it was found that many pharmacological drugs containing the thiazole nucleus were known. OBJECTIVE This work aimed to synthesize target molecules not only possess anti-tumor activities but also kinase inhibitors. The target molecules were obtained starting from the arylhydrazonocyclohexan-1,3-dione followed by their heterocyclization reactions to produce anticancer target molecules. METHODS The arylhydrazone derivatives 3a-c underwent different heterocyclization reactions to produce thiophene, thiazole, pyrazole and 1,2,4-triazine derivatives. The anti-proliferative activity of twenty six compounds among the synthesized compounds toward the six cancer cell lines namely A549, H460, HT-29, MKN-45, U87MG, and SMMC-7721 was studied. RESULTS Anti-proliferative evaluations, tyrosine and Pim-1 kinase inhibitions were perform for most of the synthesized compounds where the varieties of substituent through the aryl ring and the thiophene moiety afforded compounds with high activities. CONCLUSION The compounds with high anti-proliferative activity towards the cancer cell lines showed that compounds 3b, 3c, 5e, 5f, 8c, 9c, 11c, 12c, 14e, 14f and 16c were the most cytotoxic compounds. Further tests of the latter compounds toward the five tyrosine kinases c-Kit, Flt-3, VEGFR-2, EGFR, and PDGFR and Pim-1 kinase showed that compounds 3c, 5e, 5f, 8c, 9c, 12c, 14e, 14f and 16c were the most potent of the tested compounds toward the five tyrosine kinases and compounds 6d, 11a, 20b and 21e were of the highest inhibitions towards Pim-1 kinase. Pan Assay Interference Compounds (PAINS) for the most cytotoxic compounds showed zero PAINS alert and can be used as lead compounds.
Collapse
Affiliation(s)
- Rafat M Mohareb
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Ensaf S Alwan
- Department of Quality Assurance, Yemen Drug Company for Industry and Commerce, (YEDCO), Sana'a, Yemen
| |
Collapse
|
46
|
Pagniez F, Lebouvier N, Na YM, Ourliac-Garnier I, Picot C, Le Borgne M, Le Pape P. Biological exploration of a novel 1,2,4-triazole-indole hybrid molecule as antifungal agent. J Enzyme Inhib Med Chem 2020; 35:398-403. [PMID: 31899979 PMCID: PMC6968525 DOI: 10.1080/14756366.2019.1705292] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
(2-(2,4-Dichlorophenyl)-3-(1H-indol-1-yl)-1-(1,2,4-1H-triazol-1-yl)propan-2-ol (8 g), a new 1,2,4-triazole-indole hybrid molecule, showed a broad-spectrum activity against Candida, particularly against low fluconazole-susceptible species. Its activity was higher than fluconazole and similar to voriconazole on C. glabrata (MIC90 = 0.25, 64 and 1 µg/mL, respectively), C. krusei (MIC90 = 0.125, 64 and 0.125 µg/mL, respectively) and C. albicans (MIC90 = 0.5, 8 and 0.25 µg/mL, respectively). The action mechanisms of 8 g were also identified as inhibition of ergosterol biosynthesis and phospholipase A2-like activity. At concentration as low as 4 ng/mL, 8g inhibited ergosterol production by 82% and induced production of 14a-methyl sterols, that is comparable to the results obtained with fluconazole at higher concentration. 8 g demonstrated moderate inhibitory effect on phospholipase A2-like activity being a putative virulence factor. Due to a low MRC5 cytotoxicity, this compound presents a high therapeutic index. These results pointed out that 8 g is a new lead antifungal candidate with potent ergosterol biosynthesis inhibition.
Collapse
Affiliation(s)
- Fabrice Pagniez
- Département de Parasitologie et Mycologie Médicale, Université de Nantes, Nantes Atlantique Universités, EA1155 - IICiMed, Institut de Recherche en Santé 2, Nantes, France
| | - Nicolas Lebouvier
- Département de Chimie Thérapeutique, Université de Nantes, Nantes Atlantique Universités, EA1155 - IICiMed, Institut de Recherche en Santé 2, Nantes, France.,Institut des Sciences Exactes et Appliquées (ISEA) - EA 7484, Université de la Nouvelle-Calédonie, Noumea Cedex, New Caledonia
| | - Young Min Na
- Département de Chimie Thérapeutique, Université de Nantes, Nantes Atlantique Universités, EA1155 - IICiMed, Institut de Recherche en Santé 2, Nantes, France
| | - Isabelle Ourliac-Garnier
- Département de Parasitologie et Mycologie Médicale, Université de Nantes, Nantes Atlantique Universités, EA1155 - IICiMed, Institut de Recherche en Santé 2, Nantes, France
| | - Carine Picot
- Département de Parasitologie et Mycologie Médicale, Université de Nantes, Nantes Atlantique Universités, EA1155 - IICiMed, Institut de Recherche en Santé 2, Nantes, France
| | - Marc Le Borgne
- Département de Chimie Thérapeutique, Université de Nantes, Nantes Atlantique Universités, EA1155 - IICiMed, Institut de Recherche en Santé 2, Nantes, France.,EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie - ISPB, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Patrice Le Pape
- Département de Parasitologie et Mycologie Médicale, Université de Nantes, Nantes Atlantique Universités, EA1155 - IICiMed, Institut de Recherche en Santé 2, Nantes, France
| |
Collapse
|
47
|
Naidoo D, Roy A, Slavětínská LP, Chukwujekwu JC, Gupta S, Van Staden J. New role for crinamine as a potent, safe and selective inhibitor of human monoamine oxidase B: In vitro and in silico pharmacology and modeling. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112305. [PMID: 31639490 DOI: 10.1016/j.jep.2019.112305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/30/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The development of selective inhibitors of monoamine oxidase B (MAO-B) has been essential in treating Parkinson's disease. However, the apparent hepatotoxicity and drug-drug interactions of current inhibitors accentuate the need for the development of novel pharmacotherapies. Crossyne guttata (L.) D. & U. Müll-Doblies is used frequently by Rastafarian bush doctors to treat alcoholism, a disorder which is also accentuated by MAO. OBJECTIVE The study sought to isolate, identify and characterise the biologically active constituents of C. guttata based on their ability to inhibit the MAO enzymes. MATERIALS AND METHODS Column chromatography was used to isolate the biologically active alkaloids of C. guttata. The ability of the alkaloids to inhibit the biotransformation of 4-aminoantipyrine by the MAO enzymes was evaluated in vitro. In silico docking was conducted using AutoDock Vina server while the pharmacokinetic properties of the compounds were evaluated using SwissADME. RESULTS Chromatographic separation of an ethanolic fraction of C. guttata yielded the alkaloids crinamine 1 and epibuphanisine 2. 1 and 2 along with structurally related alkaloids haemanthamine 3 and haemanthidine 4 were evaluated for their ability to inhibit the action of isozymes of MAO in vitro. Alkaloids effected submicromolar IC50 values against MAO-B, the most potent of which being crinamine 1 (0.014 μM) > haemanthidine 4 (0.017 μM) > epibuphanisine 2 (0.039 μM) > haemanthamine 3 (0.112 μM). Binding energies of the alkaloids correlated well with their inhibitory potential with crinamine displaying the best binding efficacy and binding energy score with MAO-B. DISCUSSION AND CONCLUSION Crinamine and epibuphanisine exhibited potent and selective inhibitory activity towards MAO-B. After comprehensive in silico investigations encompassing robust molecular docking analysis, the drug-like attributes and safety of the alkaloids suggest the crinamine is a potentially safe drug for human application.
Collapse
Affiliation(s)
- D Naidoo
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - A Roy
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - L Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo Nám. 2, 16610 Prague-6, Czech Republic
| | - J C Chukwujekwu
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - S Gupta
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - J Van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa.
| |
Collapse
|
48
|
Khattri RB, Morris DL, Bilinovich SM, Manandhar E, Napper KR, Sweet JW, Modarelli DA, Leeper TC. Identifying Ortholog Selective Fragment Molecules for Bacterial Glutaredoxins by NMR and Affinity Enhancement by Modification with an Acrylamide Warhead. Molecules 2019; 25:E147. [PMID: 31905878 PMCID: PMC6983068 DOI: 10.3390/molecules25010147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/30/2022] Open
Abstract
Illustrated here is the development of a new class of antibiotic lead molecules targeted at Pseudomonas aeruginosa glutaredoxin (PaGRX). This lead was produced to (a) circumvent efflux-mediated resistance mechanisms via covalent inhibition while (b) taking advantage of species selectivity to target a fundamental metabolic pathway. This work involved four components: a novel workflow for generating protein specific fragment hits via independent nuclear magnetic resonance (NMR) measurements, NMR-based modeling of the target protein structure, NMR guided docking of hits, and synthetic modification of the fragment hit with a vinyl cysteine trap moiety, i.e., acrylamide warhead, to generate the chimeric lead. Reactivity of the top warhead-fragment lead suggests that the ortholog selectivity observed for a fragment hit can translate into a substantial kinetic advantage in the mature warhead lead, which bodes well for future work to identify potent, species specific drug molecules targeted against proteins heretofore deemed undruggable.
Collapse
Affiliation(s)
- Ram B. Khattri
- Department of Physiology and Functional genomics, University of Florida, Gainesville, FL 32610, USA;
| | - Daniel L. Morris
- Department of Chemistry and Biochemistry, The University of Akron, Akron, OH 44325, USA; (D.L.M.); (K.R.N.); (J.W.S.); (D.A.M.)
| | - Stephanie M. Bilinovich
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA;
| | | | - Kahlilah R. Napper
- Department of Chemistry and Biochemistry, The University of Akron, Akron, OH 44325, USA; (D.L.M.); (K.R.N.); (J.W.S.); (D.A.M.)
| | - Jacob W. Sweet
- Department of Chemistry and Biochemistry, The University of Akron, Akron, OH 44325, USA; (D.L.M.); (K.R.N.); (J.W.S.); (D.A.M.)
| | - David A. Modarelli
- Department of Chemistry and Biochemistry, The University of Akron, Akron, OH 44325, USA; (D.L.M.); (K.R.N.); (J.W.S.); (D.A.M.)
| | - Thomas C. Leeper
- Department of Chemistry and Biochemistry, Kennesaw State University, GA 30144, USA
| |
Collapse
|
49
|
Reinecke M, Heinzlmeir S, Wilhelm M, Médard G, Klaeger S, Kuster B. Kinobeads: A Chemical Proteomic Approach for Kinase Inhibitor Selectivity Profiling and Target Discovery. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/9783527818242.ch4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
50
|
Ran T, Xiao R, Huang Q, Yuan H, Lu T, Liu W. In Silico Discovery of JMJD6 Inhibitors for Cancer Treatment. ACS Med Chem Lett 2019; 10:1609-1613. [PMID: 31857835 DOI: 10.1021/acsmedchemlett.9b00264] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
The 2-oxoglutarate (2OG)-dependent oxygenase JMJD6 is emerging as a potential anticancer target, but its inhibitors have not been reported so far. In this study, we reported an in silico protocol to discover JMJD6 inhibitors targeting the druggable 2OG-binding site. Following this protocol, one compound, which we named as WL12, was found to be able to inhibit JMJD6 enzymatic activity and JMJD6-dependent cell proliferation. To our best knowledge, this is the first case in drug discovery targeting JMJD6.
Collapse
Affiliation(s)
- Ting Ran
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361105, China
| | - Rongquan Xiao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qixuan Huang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Haoliang Yuan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Wen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|