1
|
Stocchetti S, Vančo J, Bresciani G, Biancalana L, Belza J, Zacchini S, Dvořák Z, Benetti S, Biver T, Bortoluzzi M, Trávníček Z, Marchetti F. Anticancer diiron aminocarbyne complexes with labile N-donor ligands. Eur J Med Chem 2025; 286:117304. [PMID: 39862748 DOI: 10.1016/j.ejmech.2025.117304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
The novel diiron amine complexes [Fe2Cp2(CO)(NH2R')(μ-CO){μ-CN(Me)(Cy)}]CF3SO3 [R' = H, 3; Cy, 4; CH2CH2NH2, 5; CH2CH2NMe2, 6; CH2CH2(4-C6H4OMe), 7; CH2CH2(4-C6H4OH), 8; Cp = η5-C5H5, Cy = C6H11 = cyclohexyl] were synthesized in 49-92 % yields from [Fe2Cp2(CO)2(μ-CO){μ-CN(Me)(Cy)}]CF3SO3, 1a, using a straightforward two-step procedure. They were characterized by IR and multinuclear NMR spectroscopy, and the structure of 7 was confirmed through X-ray diffraction analysis. Complexes 3-8 and the acetonitrile adducts [Fe2Cp2(CO)(NCMe)(μ-CO){μ-CN(Me)(R)}]CF3SO3 (R = Cy, 2a; Me, 2b; Xyl = 2,6-C6H3Me2, 2c) were assessed for their water solubility, octanol-water partition coefficient and stability in physiological-like solutions. The in vitro antiproliferative activity of 2a-c and 3-8 was tested on seven human cancer cell lines (A2780, A2780R, PC3, A549, MCF7, HOS and HT-29), while the selectivity was evaluated using normal MRC-5 cells. Overall, the complexes exhibited variable cytotoxicity, with IC50 values reaching the low micromolar range for 3, 7 and 8 in A2780 and A2780R cells, along with significant selectivity. Targeted experiments covered cell cycle modification, induction of cell death, mitochondrial membrane potential, ROS production and interaction with DNA and bovine serum albumin (BSA) as a model protein. The interaction of 3 with BSA was further investigated through computational studies. Results showed a negligible increase in intracellular ROS levels (except for 2b) and insignificant changes in mitochondrial membrane potential.
Collapse
Affiliation(s)
- Sara Stocchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy
| | - Ján Vančo
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic
| | - Giulio Bresciani
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy
| | - Lorenzo Biancalana
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy
| | - Jan Belza
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic
| | - Stefano Zacchini
- University of Bologna, Department of Industrial Chemistry "Toso Montanari", I-40136, Bologna, Italy
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic
| | - Sara Benetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy
| | - Tarita Biver
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy
| | - Marco Bortoluzzi
- University of Venezia "Ca' Foscari", Department of Molecular Science and Nanosystems, Via Torino 155, I-30170, Mestre (VE), Italy
| | - Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic.
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy.
| |
Collapse
|
2
|
Niemeier F, Servos LM, Papadopoulos Z, Montesdeoca N, Ni K, Heinrich S, Karges J. Combinatorial Synthesis toward the Discovery of Highly Cytotoxic Fe(III) Complexes. J Med Chem 2025; 68:1316-1327. [PMID: 39680634 DOI: 10.1021/acs.jmedchem.4c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Cancer remains one of the deadliest diseases worldwide, with some tumors proving difficult to treat and increasingly resistant to current therapies. Capitalizing on this, there is a need for new therapeutic agents with novel mechanisms of action. Among promising candidates, Fe(III) complexes have gained significant attention as potential chemotherapeutic agents. However, research on these compounds has been limited to a small number, leading to inefficiencies in drug discovery. This study addresses these limitations by developing a combinatorial library of 495 new Fe(III) complexes synthesized from aminophenol, hydroxybenzaldehyde, and pyridine derivatives. The compounds were screened for cytotoxicity against human breast adenocarcinoma and noncancerous fibroblasts, identifying a novel class of Fe(III) complexes with modest cancer cell selectivity. The lead compound effectively eradicated breast cancer tumor spheroids at low micromolar concentrations, highlighting the potential of this approach for rapid drug discovery.
Collapse
Affiliation(s)
- Felix Niemeier
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Lisa-Marie Servos
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Zisis Papadopoulos
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Kaixin Ni
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Sascha Heinrich
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| |
Collapse
|
3
|
Leitão MIPS, Morais TS. Tailored Metal-Based Catalysts: A New Platform for Targeted Anticancer Therapies. J Med Chem 2024; 67:16967-16990. [PMID: 39348603 DOI: 10.1021/acs.jmedchem.4c01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Innovative strategies for targeted anticancer therapies have gained significant momentum, with metal complexes emerging as tunable catalysts for more effective and safer treatments. Rational design and engineering of metal complexes enable the development of tailored molecular structures optimized for precision oncology. The strategic incorporation of metal complex catalysts within combinatorial therapies amplifies their anticancer properties. This perspective highlights the advancements in synthetic strategies and rational design since 2019, showing how tailored metal catalysts are optimized by designing structures to release or in situ synthesize active drugs, leveraging the target-specific characteristics to develop more precise cancer therapies. This review explores metal-based catalysts, including those conjugated with biomolecules, nanostructures, and metal-organic frameworks (MOFs), highlighting their catalytic activity in biological environments and their in vitro/in vivo performance. To sum up, the potential of metal complexes as catalysts to reshape the landscape of anticancer therapies and foster novel avenues for therapeutic advancement is emphasized.
Collapse
Affiliation(s)
- Maria Inês P S Leitão
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Tânia S Morais
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
4
|
Joksimović N, Petronijević J, Ćoćić D, Ristić M, Mihajlović K, Janković N, Milović E, Klisurić O, Petrović N, Kosanić M. Synthesis, characterization, and biological evaluation of novel cobalt(II) complexes with β-diketonates: crystal structure determination, BSA binding properties and molecular docking study. J Biol Inorg Chem 2024; 29:541-553. [PMID: 39120695 DOI: 10.1007/s00775-024-02069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/28/2024] [Indexed: 08/10/2024]
Abstract
In order to discover a new antibiotic drug with better or similar activity of the already existing drugs, a series of novel cobalt(II) complexes with β-diketonate as ligands is synthesized and tested on four strains of bacteria and four species of fungi. All compounds showed notable antimicrobial activity against all tested strains. More importantly, some cobalt(II) complexes displayed greater activity than ketoconazole. It is important to notice that on the tested strains Mucor mucedo and Penicillium italicum complex 2B showed five times better activity compared to ketoconazole, while complex 2D had two times better activity on Penicillium italicum strain compared to ketoconazole. Moreover, investigations with bovine serum albumin were performed. Investigations showed that the tested complexes have an appropriate affinity for binding to bovine serum albumin. In addition, the molecular docking study was performed to investigate more specifically the sites and binding mode of the tested cobalt(II) complexes with β-diketonate as ligands to bovine serum albumin, tyrosyl-tRNA synthetase, topoisomerase II DNA gyrase, and cytochrome P450 14 alpha-sterol demethylase. In conclusion, all the results indicated the great prospective of the novel cobalt complexes for some potential clinical applications in the future.
Collapse
Affiliation(s)
- Nenad Joksimović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia.
| | - Jelena Petronijević
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Dušan Ćoćić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Marija Ristić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Kristina Mihajlović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Nenad Janković
- Department of Sciences, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia
| | - Emilija Milović
- Department of Sciences, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia
| | - Olivera Klisurić
- Department of Physics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 4, 21000, Novi Sad, Serbia
| | - Nevena Petrović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Marijana Kosanić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| |
Collapse
|
5
|
Almukainzi M, El-Masry TA, El Zahaby EI, El-Nagar MMF. Chitosan/Hesperidin Nanoparticles for Sufficient, Compatible, Antioxidant, and Antitumor Drug Delivery Systems. Pharmaceuticals (Basel) 2024; 17:999. [PMID: 39204104 PMCID: PMC11356969 DOI: 10.3390/ph17080999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
One flavonoid glycoside with demonstrated therapeutic potential for several illnesses, including cancer, is hesperidin. However, because of its limited bioavailability and solubility, it is only marginally absorbed, necessitating a delivery mechanism to reach the intended therapeutic target. Additionally, the cytoskeleton of crustaceans yields chitosan, a naturally occurring biopolymer with mucoadhesive properties that has been used to improve the absorption of advantageous chemical substances like flavonoids. Chitosan/hesperidin nanoparticles (Hes-Nanoparticles) were made using the ion gelation technique. The synthesis of Hes-Nanoparticles was confirmed by several characterization methods, including the swelling test, zeta potential, particle size, FTIR, XRD, TEM, and SEM. DPPH and ABTS were used to demonstrate radical scavenging activity in antioxidant assays of chitosan, hesperidin, and the synthesized Hes-Nanoparticles. In addition, by a viability assay against MDA-MB-231, the anticancer efficacies of chitosan, hesperidin, and the synthesized Hes-Nanoparticles were assessed. Furthermore, annexin-V/PI double staining and the cycle of cell analysis were determined by flow cytometry. The results displayed that Hes-Nanoparticles have higher antioxidant activity than chitosan and hesperidin alone. Also, it has been demonstrated that Hes-Nanoparticles are more effective in early cell cycle arrest, suppressing the viability of cancer cells, and increasing cell apoptosis than chitosan and hesperidin alone. In conclusion, Hes-Nanoparticles demonstrated more antioxidant and antitumor activities than chitosan and hesperidin alone. Moreover, it has been established that Hes-Nanoparticles, in a highly soluble form, increase activity in contrast to the poorly soluble form of hesperidin alone.
Collapse
Affiliation(s)
- May Almukainzi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Enas I. El Zahaby
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt;
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
6
|
De Franco M, Biancalana L, Zappelli C, Zacchini S, Gandin V, Marchetti F. 1,3,5-Triaza-7-phosphaadamantane and Cyclohexyl Groups Impart to Di-Iron(I) Complex Aqueous Solubility and Stability, and Prominent Anticancer Activity in Cellular and Animal Models. J Med Chem 2024; 67:11138-11151. [PMID: 38951717 DOI: 10.1021/acs.jmedchem.4c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Using a multigram-scalable synthesis, we obtained nine dinuclear complexes based on nonendogenous iron(I) centers and featuring variable aminocarbyne and P-ligands. One compound from the series (FEACYP) emerged for its strong cytotoxicity in vitro against four human cancer cell lines, surpassing the activity of cisplatin by 3-6 times in three cell lines, with an average selectivity index of 6.2 compared to noncancerous HEK293 cells. FEACYP demonstrated outstanding water solubility (15 g/L) and stability in physiological-like solutions. It confirmed its superior antiproliferative activity when tested in 3D spheroids of human pancreatic cancer cells and showed a capacity to inhibit thioredoxin reductase (TrxR) similar to auranofin. In vivo treatment of murine LLC carcinoma with FEACYP (8 mg kg-1 dose) led to excellent tumor growth suppression (88%) on day 15, with no signs of systemic toxicity and only limited body weight loss.
Collapse
Affiliation(s)
- Michele De Franco
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, I-35131 Padova, Italy
| | - Lorenzo Biancalana
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Chiara Zappelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via P. Gobetti 85, I-40129 Bologna, Italy
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, I-35131 Padova, Italy
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
7
|
Roy N, Paira P. Glutathione Depletion and Stalwart Anticancer Activity of Metallotherapeutics Inducing Programmed Cell Death: Opening a New Window for Cancer Therapy. ACS OMEGA 2024; 9:20670-20701. [PMID: 38764686 PMCID: PMC11097382 DOI: 10.1021/acsomega.3c08890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 05/21/2024]
Abstract
The cellular defense system against exogenous substances makes therapeutics inefficient as intracellular glutathione (GSH) exhibits an astounding antioxidant activity in scavenging reactive oxygen species (ROS) or reactive nitrogen species (RNS) or other free radicals produced by the therapeutics. In the cancer cell microenvironment, the intracellular GSH level becomes exceptionally high to fight against oxidative stress created by the production of ROS/RNS or any free radicals, which are the byproducts of intracellular redox reactions or cellular respiration processes. Thus, in order to maintain redox homeostasis for survival of cancer cells and their rapid proliferation, the GSH level starts to escalate. In this circumstance, the administration of anticancer therapeutics is in vain, as the elevated GSH level reduces their potential by reduction or by scavenging the ROS/RNS they produce. Therefore, in order to augment the therapeutic potential of anticancer agents against elevated GSH condition, the GSH level must be depleted by hook or by crook. Hence, this Review aims to compile precisely the role of GSH in cancer cells, the importance of its depletion for cancer therapy and examples of anticancer activity of a few selected metal complexes which are able to trigger cancer cell death by depleting the GSH level.
Collapse
Affiliation(s)
- Nilmadhab Roy
- Department of Chemistry, School of
Advanced Sciences, Vellore Institute of
Technology, Vellore-632014, Tamilnadu, India
| | - Priyankar Paira
- Department of Chemistry, School of
Advanced Sciences, Vellore Institute of
Technology, Vellore-632014, Tamilnadu, India
| |
Collapse
|
8
|
Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol 2024; 70:103032. [PMID: 38232457 PMCID: PMC10827563 DOI: 10.1016/j.redox.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Thioredoxin (Trx) is a compact redox-regulatory protein that modulates cellular redox state by reducing oxidized proteins. Trx exhibits dual functionality as an antioxidant and a cofactor for diverse enzymes and transcription factors, thereby exerting influence over their activity and function. Trx has emerged as a pivotal biomarker for various diseases, particularly those associated with oxidative stress, inflammation, and aging. Recent clinical investigations have underscored the significance of Trx in disease diagnosis, treatment, and mechanistic elucidation. Despite its paramount importance, the intricate interplay between Trx and cellular senescence-a condition characterized by irreversible growth arrest induced by multiple aging stimuli-remains inadequately understood. In this review, our objective is to present a comprehensive and up-to-date overview of the structure and function of Trx, its involvement in redox signaling pathways and cellular senescence, its association with aging and age-related diseases, as well as its potential as a therapeutic target. Our review aims to elucidate the novel and extensive role of Trx in senescence while highlighting its implications for aging and age-related diseases.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
9
|
Alotaibi BS, El-Masry TA, Selim H, El-Bouseary MM, El-Sheekh MM, Makhlof MEM, El-Nagar MMF. New insights into the anticancer effects of Polycladia crinita aqueous extract and its selenium nanoformulation against the solid Ehrlich carcinoma model in mice via VEGF, notch 1, NF-кB, cyclin D1, and caspase 3 signaling pathway. Front Pharmacol 2024; 15:1345516. [PMID: 38469406 PMCID: PMC10926956 DOI: 10.3389/fphar.2024.1345516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Background: Phaeophyceae species are enticing interest among researchers working in the nanotechnology discipline, because of their diverse biological activities such as anti-inflammatory, antioxidant, anti-microbial, and anti-tumor. In the present study, the anti-cancer properties of Polycladia crinita extract and green synthesized Polycladia crinita selenium nanoparticles (PCSeNPs) against breast cancer cell line (MDA-MB-231) and solid Ehrlich carcinoma (SEC) were investigated. Methods: Gas chromatography-mass spectroscopy examinations of Polycladia crinita were determined and various analytical procedures, such as SEM, TEM, EDX, and XRD, were employed to characterize the biosynthesized PCSeNPs. In vitro, the anticancer activity of free Polycladia crinita and PCSeNPs was evaluated using the viability assay against MDA-MB-231, and also cell cycle analysis by flow cytometry was determined. Furthermore, to study the possible mechanisms behind the in vivo anti-tumor action, mice bearing SEC were randomly allocated into six equal groups (n = 6). Group 1: Tumor control group, group 2: free SeNPs, group 3: 25 mg/kg Polycladia crinita, group 4: 50 mg/kg Polycladia crinita, group 5: 25 mg/kg PCSeNPs, group 6: 50 mg/kg PCSeNPs. Results: Gas chromatography-mass spectroscopy examinations of Polycladia crinita extract exposed the presence of many bioactive compounds, such as 4-Octadecenoic acid-methyl ester, Tetradecanoic acid, and n-Hexadecenoic acid. These compounds together with other compounds found, might work in concert to encourage the development of anti-tumor activities. Polycladia crinita extract and PCSeNPs were shown to inhibit cancer cell viability and early cell cycle arrest. Concentrations of 50 mg/kg of PCSeNPs showed suppression of COX-2, NF-кB, VEGF, ki-67, Notch 1, and Bcl-2 protein levels. Otherwise, showed amplification of the caspase 3, BAX, and P53 protein levels. Moreover, gene expression of caspase 3, caspase 9, Notch 1, cyclin D1, NF-кB, IL-6, and VEGF was significantly more effective with PCSeNPs than similar doses of free extract. Conclusion: The PCSeNPs mediated their promising anti-cancerous action by enhancing apoptosis and mitigating inflammation, which manifested in promoting the total survival rate and the tumor volume decrease.
Collapse
Affiliation(s)
- Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hend Selim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Maisra M. El-Bouseary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Mofida E. M. Makhlof
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
10
|
Chen S, Zhang Z, Wei L, Fan Z, Li Y, Wang X, Feng T, Huang H. Photo-catalytic Staphylococcus aureus inactivation and biofilm destruction with novel bis-tridentate iridium(iii) photocatalyst. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
11
|
Zhou S, Tian H, Yan J, Zhang Z, Wang G, Yu X, Sang W, Li B, Mok GS, Song J, Dai Y. IR780/Gemcitabine-conjugated metal-phenolic network enhanced photodynamic cancer therapy. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
12
|
Hesperidin Induced HePG-2 Cell Apoptosis through ROS-Mediated p53/Bcl-2/Bax and p-mTOR Signaling Pathways. J Food Biochem 2023. [DOI: 10.1155/2023/3788655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Recently, research showed that one of the most common kinds of liver cancer is hepatocellular carcinoma (HCC), which is also the fourth main cause of cancer deaths. In studies regarding chemicals to better treat the disease, hesperidin shows a novel potential in performing anticancer activities, particularly in liver cancer. However, the specific mechanism of hesperidin that causes such activities remains a mystery. Thus, the purpose of this study is to investigate hesperidin’s effect on cell proliferation and activation of ROS-mediated signaling pathways in HePG-2 cells. Hesperidin shows a significant impact on inhibiting HePG-2 cells’ proliferation through induction of cell apoptosis by Bcl-2, Bax, and p53 pathways. Treating cells with hesperidin in a dose-dependent manner shows a significant increase in the apoptotic cell population (sub-G1). Moreover, Hesperidin’s induction of apoptotic activities shows dependence on ROS (reactive oxygen species) overproduction, further affecting the p-mTOR pathways and leading to DNA damage. Hence, the overall data demonstrate that ROS-mediated signaling pathways exhibit mechanisms that may lead to useful information for interpreting hesperidin-induced hepatocarcinoma cell apoptosis.
Collapse
|
13
|
He Z, Li X, Zhang H, Liu X, Han S, Abdurahman A, Shen L, Du X, Li N, Yang X, Liu Q. A novel vanadium complex VO(p-dmada) inhibits neuroinflammation induced by lipopolysaccharide. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
14
|
Chen D, Ning Z, Su J, Zheng R, Liu X, Wu H, Zhu B, Li Y. Inhibition of H1N1 by Picochlorum sp. 122 via AKT and p53 signaling pathways. Food Sci Nutr 2023; 11:743-751. [PMID: 36789072 PMCID: PMC9922122 DOI: 10.1002/fsn3.3110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022] Open
Abstract
Influenza viruses cause a severe threat to global health, which can lead to annual epidemics and cause pandemics occasionally. However, the number of anti-influenza therapeutic agents is very limited. Polysaccharides, extracted from Picochlorum sp. (PPE), seaweed Polysaccharides, have exhibited antiviral activity and were expected to be used for influenza treatment. In our research, the capability of PPE to inhibit H1N1 infection was proved in MDCK cells. PPE could make MDCK cells avoid being infected with H1N1 and inhibited nuclear fragmentation and condensation of chromatin. PPE evidently inhibited the generation of reactive oxygen species in MDCK cells. Mechanism study revealed that PPE prevented MDCK cells from H1N1 infection through induction of apoptosis by stimulating AKT signaling pathway and suppressing p-p53 signaling pathway. In conclusion, PPE turns out to act as a prospective antiviral drug for H1N1 influenza.
Collapse
Affiliation(s)
- Danyang Chen
- Center Laboratory, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Zhihui Ning
- Center Laboratory, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Jingyao Su
- Center Laboratory, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Ruilin Zheng
- Center Laboratory, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Xia Liu
- Center Laboratory, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Hua‐lian Wu
- South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
| | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Yinghua Li
- Center Laboratory, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
15
|
Murillo MI, Gaiddon C, Le Lagadec R. Targeting of the intracellular redox balance by metal complexes towards anticancer therapy. Front Chem 2022; 10:967337. [PMID: 36034648 PMCID: PMC9405673 DOI: 10.3389/fchem.2022.967337] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
The development of cancers is often linked to the alteration of essential redox processes, and therefore, oxidoreductases involved in such mechanisms can be considered as attractive molecular targets for the development of new therapeutic strategies. On the other hand, for more than two decades, transition metals derivatives have been leading the research on drugs as alternatives to platinum-based treatments. The success of such compounds is particularly due to their attractive redox kinetics properties, favorable oxidation states, as well as routes of action different to interactions with DNA, in which redox interactions are crucial. For instance, the activity of oxidoreductases such as PHD2 (prolyl hydroxylase domain-containing protein) which can regulate angiogenesis in tumors, LDH (lactate dehydrogenase) related to glycolysis, and enzymes, such as catalases, SOD (superoxide dismutase), TRX (thioredoxin) or GSH (glutathione) involved in controlling oxidative stress, can be altered by metal effectors. In this review, we wish to discuss recent results on how transition metal complexes have been rationally designed to impact on redox processes, in search for effective and more specific cancer treatments.
Collapse
Affiliation(s)
- María Isabel Murillo
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Christian Gaiddon
- Strasbourg Université, Inserm UMR_S U1113, IRFAC, Strasbourg, France
| | - Ronan Le Lagadec
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
- *Correspondence: Ronan Le Lagadec,
| |
Collapse
|
16
|
Peña Q, Wang A, Zaremba O, Shi Y, Scheeren HW, Metselaar JM, Kiessling F, Pallares RM, Wuttke S, Lammers T. Metallodrugs in cancer nanomedicine. Chem Soc Rev 2022; 51:2544-2582. [PMID: 35262108 DOI: 10.1039/d1cs00468a] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal complexes are extensively used for cancer therapy. The multiple variables available for tuning (metal, ligand, and metal-ligand interaction) offer unique opportunities for drug design, and have led to a vast portfolio of metallodrugs that can display a higher diversity of functions and mechanisms of action with respect to pure organic structures. Clinically approved metallodrugs, such as cisplatin, carboplatin and oxaliplatin, are used to treat many types of cancer and play prominent roles in combination regimens, including with immunotherapy. However, metallodrugs generally suffer from poor pharmacokinetics, low levels of target site accumulation, metal-mediated off-target reactivity and development of drug resistance, which can all limit their efficacy and clinical translation. Nanomedicine has arisen as a powerful tool to help overcome these shortcomings. Several nanoformulations have already significantly improved the efficacy and reduced the toxicity of (chemo-)therapeutic drugs, including some promising metallodrug-containing nanomedicines currently in clinical trials. In this critical review, we analyse the opportunities and clinical challenges of metallodrugs, and we assess the advantages and limitations of metallodrug delivery, both from a nanocarrier and from a metal-nano interaction perspective. We describe the latest and most relevant nanomedicine formulations developed for metal complexes, and we discuss how the rational combination of coordination chemistry with nanomedicine technology can assist in promoting the clinical translation of metallodrugs.
Collapse
Affiliation(s)
- Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Alec Wang
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Orysia Zaremba
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Hans W Scheeren
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Josbert M Metselaar
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany
| | - Roger M Pallares
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Stefan Wuttke
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
17
|
Xia D, Liu H, Cheng X, Maraswami M, Chen Y, Lv X. Recent Developments of Coumarin-based Hybrids in Drug Discovery. Curr Top Med Chem 2022; 22:269-283. [PMID: 34986774 DOI: 10.2174/1568026622666220105105450] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/23/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
Coumarin scaffold is a highly significant O-heterocycle, namely benzopyran-2-ones, form an elite class of naturally occurring compounds that possess promising therapeutic perspectives. Based on its broad spectrum of biological activities, the privileged coumarin scaffold is applied to medicinal and pharmacological treatments by several rational design strategies and approaches. Structure-activity relationships of the coumarin-based hybrids with various bioactivity fragments revealed significant information toward the further development of highly potent and selective disorder therapeutic agents. The molecular docking studies between coumarins and critical therapeutic enzymes demonstrated mode of action by forming noncovalent interactions with more than one receptor, further rationally confirm information about structure-activity relationships. This review summarizes recent developments relating to coumarin-based hybrids with other pharmacophores aiming to numerous feasible therapeutic enzymatic targets to combat various therapeutic fields, including anticancer, antimicrobic, anti-Alzheimer, anti-inflammatory activities.
Collapse
Affiliation(s)
- Dongguo Xia
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Hao Liu
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Xiang Cheng
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Manikantha Maraswami
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Yiting Chen
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, Minjiang University, 350108, Fuzhou, China
| | - Xianhai Lv
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| |
Collapse
|
18
|
Schoch S, Braccini S, Biancalana L, Pratesi A, Funaioli T, Zacchini S, Pampaloni G, Chiellini F, Marchetti F. When ferrocene and diiron organometallics meet: triiron vinyliminium complexes exhibit strong cytotoxicity and cancer cell selectivity. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00534d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Robust and versatile cationic triiron complexes, obtained from the assembly of ferrocenyl with a di-organoiron structure, display an outstanding cytotoxicity profile, which may be related to redox processes provided by the two metallic components.
Collapse
Affiliation(s)
- Silvia Schoch
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Simona Braccini
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Lorenzo Biancalana
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Alessandro Pratesi
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Tiziana Funaioli
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- University of Bologna, Department of Industrial Chemistry “Toso Montanari”, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Guido Pampaloni
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Federica Chiellini
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
19
|
Li X, Wang Y, Li M, Wang H, Dong X. Metal Complexes or Chelators with ROS Regulation Capacity: Promising Candidates for Cancer Treatment. Molecules 2021; 27:148. [PMID: 35011380 PMCID: PMC8746559 DOI: 10.3390/molecules27010148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species (ROS) are rapidly eliminated and reproduced in organisms, and they always play important roles in various biological functions and abnormal pathological processes. Evaluated ROS have frequently been observed in various cancers to activate multiple pro-tumorigenic signaling pathways and induce the survival and proliferation of cancer cells. Hydrogen peroxide (H2O2) and superoxide anion (O2•-) are the most important redox signaling agents in cancer cells, the homeostasis of which is maintained by dozens of growth factors, cytokines, and antioxidant enzymes. Therefore, antioxidant enzymes tend to have higher activity levels to maintain the homeostasis of ROS in cancer cells. Effective intervention in the ROS homeostasis of cancer cells by chelating agents or metal complexes has already developed into an important anti-cancer strategy. We can inhibit the activity of antioxidant enzymes using chelators or metal complexes; on the other hand, we can also use metal complexes to directly regulate the level of ROS in cancer cells via mitochondria. In this review, metal complexes or chelators with ROS regulation capacity and with anti-cancer applications are collectively and comprehensively analyzed, which is beneficial for the development of the next generation of inorganic anti-cancer drugs based on ROS regulation. We expect that this review will provide a new perspective to develop novel inorganic reagents for killing cancer cells and, further, as candidates or clinical drugs.
Collapse
Affiliation(s)
- Xiang Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuhui Wang
- School of Chemistry, Central China Normal University, Wuhan 430079, China; (Y.W.); (M.L.)
| | - Man Li
- School of Chemistry, Central China Normal University, Wuhan 430079, China; (Y.W.); (M.L.)
| | - Huipeng Wang
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430073, China;
| | - Xiongwei Dong
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430073, China;
| |
Collapse
|
20
|
Selective Anticancer and Antimicrobial Metallodrugs Based on Gold(III) Dithiocarbamate Complexes. Biomedicines 2021; 9:biomedicines9121775. [PMID: 34944591 PMCID: PMC8698672 DOI: 10.3390/biomedicines9121775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
New dithiocarbamate cycloaurated complexes have been synthesized and their physicochemical and in vitro antitumor properties have been evaluated. All the performed studies highlighted good transport through the blood and biodistribution, according to the balance between the properties of hydrophilicity/lipophilicity and the binding of moderate strength to the BSA protein. Furthermore, none of the complexes exhibited reduction or decomposition reactions, presenting excellent physiological stability. The in vitro cytotoxic effect was evaluated on human colon cancer cell line Caco-2/TC7, and the complexes showed great antiproliferative activity and excellent selectivity, as much less effect was detected on normal Caco-2/TC7 cells. Most of the complexes exhibit antiproliferative activity that was better than or similar to auranofin, and at least nine times better than that of cisplatin. Its action mechanism is still under discussion since no evidence of cell cycle arrest was found, but an antioxidant role was shown for some of the selective complexes. All complexes were also tested as antimicrobial drugs, exhibiting good activity towards S. aureus and E. coli. bacteria and C. albicans and C. neoformans fungi.
Collapse
|
21
|
Prabakarakrishnan R, Praveen S, Natarajan A, Kandasamy S, Geetha K, Elfasakhany A, Pugazhendhi A. Computational and experimental studies of Metallo organic framework on human epidermal cell line and anticancer potential. ENVIRONMENTAL RESEARCH 2021; 201:111520. [PMID: 34153332 DOI: 10.1016/j.envres.2021.111520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
The pentadentate ligand and the precursors were combined to form complexes by green approach. The ligand formation was confirmed by UV-Vis, FT-IR, 1H-NMR, and LC-MS. The optimised stable structure was obtained by molecular simulation studies and the complexes were interpreted by conductivity measurements, UV-Vis, FT-IR, magnetic susceptibility, VSM, and ESR spectral studies. The redox nature of the complexes was investigated by cyclic voltammetry. The cyclic voltammogram shows complexes exhibited single electron transfer from Cu+2/Cu+1. Complexes and penta-dentate ligand were screened for in vitro cytotoxicity by MTT assay method on A431 skin cancer cell line. The ligand structural stability and biological activity were confirmed by theoretical computational studies. The magnetic behaviour showed antiferromagnetic properties at low temperature. The complexes were used as high bar magnets. Similarly, the redox behaviour showed that the complexes could be used in electroplating techniques and sensors. Clinical application revealed that the complexes had effective cytotoxicity. From the data obtained, the complexes were in the form [MLR], where L was the penta-dentate ligand and R = [C6H5COO] & R = [C6H4COO (OH)].
Collapse
Affiliation(s)
- R Prabakarakrishnan
- Department of Chemistry, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya, Enathur, Kanchipuram, 631 561, Tamil Nadu, India
| | - S Praveen
- PG and Research Department of Chemistry, Muthurangam Govt. Arts College, Otteri, Vellore, 632 002, Tamil Nadu, India
| | - A Natarajan
- Department of Biochemistry, Lakshmi Bangaru Arts and Science College, Melmaruvathur, 603 319, Chengalpattu, Tamil Nadu, India
| | | | - K Geetha
- PG and Research Department of Chemistry, Muthurangam Govt. Arts College, Otteri, Vellore, 632 002, Tamil Nadu, India.
| | - Ashraf Elfasakhany
- Mechanical Engineering Department, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai, 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
22
|
Zhang SP, Zhou J, Fan QZ, Lv XM, Wang T, Wang F, Chen Y, Hong SY, Liu XP, Xu BS, Hu L, Zhang C, Zhang YM. Discovery of hydroxytyrosol as thioredoxin reductase 1 inhibitor to induce apoptosis and G 1/S cell cycle arrest in human colorectal cancer cells via ROS generation. Exp Ther Med 2021; 22:829. [PMID: 34149875 PMCID: PMC8200807 DOI: 10.3892/etm.2021.10261] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer types and a leading cause of cancer-associated mortality in China. Increased thioredoxin reductase 1 (TrxR1) levels have been previously identified as possible target for CRC. The present study revealed that the natural product hydroxytyrosol (HT), which exhibits a polyphenol scaffold, is a potent inhibitor of TrxR1. Inhibition of TrxR1 was indicated to result in accumulation of reactive oxygen species, inhibit proliferation and induce apoptosis and G1/S cell cycle arrest of CRC cells. Using a C-terminal mutant TrxR1 enzyme activity assay, TrxR1 RNA interference assay and HT binding model assay, the present study demonstrated the core character of the selenocysteine residue in the interaction between HT and TrxR1. HT can serve as polyphenol scaffold to develop novel TrxR1 inhibitors for CRC treatment in the future.
Collapse
Affiliation(s)
- Sheng-Peng Zhang
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Ji Zhou
- Center for Reproductive Medicine, The First Affiliated Hospital, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Qing-Zhu Fan
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Xiao-Mei Lv
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Tian Wang
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Fan Wang
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Yang Chen
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Sen-Yan Hong
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Xiao-Ping Liu
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Bing-Song Xu
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Lei Hu
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Chao Zhang
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Ye-Ming Zhang
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| |
Collapse
|
23
|
|
24
|
Zhong Y, Liu J, Cheng X, Zhang H, Zhang C, Xia Z, Wu Z, Zhang L, Zheng Y, Gao Z, Jiang Z, Wang Z, Huang D, Lu Y, Jiang F. Design, synthesis and biological evaluations of diverse Michael acceptor-based phenazine hybrid molecules as TrxR1 inhibitors. Bioorg Chem 2021; 109:104736. [PMID: 33640630 DOI: 10.1016/j.bioorg.2021.104736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
A series of novel phenazine derivatives (1~27) containing the Michael acceptor scaffolds were designed and synthesized in this study. Some compounds exhibited selective cytotoxicity against Bel-7402 cancer cell line in vitro, in which compound 26 were found to have the best antiproliferative activity. Meanwhile, compound 26 showed no obvious cell toxicity against human normal liver epithelial L02 cells, which means this compound possessed a better safety potential. In the following research, compound 26 was verified to inhibit TrxR1 enzyme activity, ultimately resulting in cellular molecular mechanism events of apoptosis including growth of intracellular ROS level, depletion of reduced Trx1, liberation of ASK1 and up-regulation of p38, respectively. Together, all these evidences implicated that compound 26 acted as the TrxR1 inhibitor against Bel-7402 cells, and could activate apoptosis through the ROS-Trx-ASK1-p38 pathway.
Collapse
Affiliation(s)
- Yucheng Zhong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Liu
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyu Cheng
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Zhang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Chunhua Zhang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Zhuolu Xia
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Zhongxi Wu
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Lu Zhang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yuting Zheng
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Zhanyu Gao
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Zhidong Jiang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Zhixiang Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Dechun Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Feng Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
25
|
Dorababu A. Report on Recently (2017–20) Designed Quinoline‐Based Human Cancer Cell Growth Inhibitors. ChemistrySelect 2020. [DOI: 10.1002/slct.202003888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Atukuri Dorababu
- Department of Chemistry SRMPP Govt. First Grade College Huvinahadagali 583219 India
| |
Collapse
|
26
|
Bouché M, Hognon C, Grandemange S, Monari A, Gros PC. Recent advances in iron-complexes as drug candidates for cancer therapy: reactivity, mechanism of action and metabolites. Dalton Trans 2020; 49:11451-11466. [PMID: 32776052 DOI: 10.1039/d0dt02135k] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this perspective, we discuss iron-complexes as drug candidates that are promising alternatives to conventional platinum-based chemotherapies owing to their broad range of reactivities and to the targeting of different biological systems. Breakthroughs in the comprehension of iron complexes' structure-activity relationship contributed to the clarification of their metabolization pathways, sub-cellular localization and influence on iron homeostasis, while enlightening the primary molecular targets of theses likely multi-target metallodrugs. Both the antiproliferative activity and elevated safety index observed among the family of iron complexes showed encouraging results as per their therapeutic potential and selectivity also with the aim of reducing chemotherapy side-effects, and facilitated more pre-clinical investigations. The purpose of this perspective is to summarize the recent advances that contributed in unveiling the intricate relationships between the structural modifications on iron-complexes and their reactivity, cellular trafficking and global mechanisms of action to broaden their use as anticancer drugs and advance to clinical evaluation.
Collapse
Affiliation(s)
- Mathilde Bouché
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France.
| | - Cécilia Hognon
- Université de Lorraine, CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | | | - Antonio Monari
- Université de Lorraine, CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Philippe C Gros
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France.
| |
Collapse
|
27
|
Huang W, Chen Z, Hou L, Feng P, Li Y, Chen T. Adjusting the lipid-water distribution coefficient of iridium(III) complexes to enhance the cellular penetration and treatment efficacy to antagonize cisplatin resistance in cervical cancer. Dalton Trans 2020; 49:11556-11564. [PMID: 32716436 DOI: 10.1039/d0dt02064h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effective design of metal complexes to manipulate their lipid-water distribution coefficient is an appealing strategy for improving their cellular penetration and treatment efficacy. Here, we conveniently synthesized three iridium (Ir) complexes with red fluorescence via the simple non-conjugate modification of the side arm of the ligand. Bio-evaluation revealed that upon adding non-conjugate selenium (Se) arene derivatives, the lipid-water distribution coefficient of Ir-Se was found to be suitable, not only decreasing the toxic side effects of complexes to normal cells, but also effectively improving their anticancer activity via enhancing their penetration into tumor cells. Moreover, mechanistic investigations demonstrated that Ir-Se entered R-HeLa cells through endocytosis, and triggered apoptosis via the down-regulation of the mitochondrial membrane potential and excessive production of singlet oxygen, thereby possessing a highly effective cytotoxicity to antagonize cisplatin resistance. Therefore, we developed a convenient strategy to derive functional metal complexes and revealed that the introduction of Se on the side arm of the ligand provided the complexes with the capacity to reverse multidrug resistance.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Zhen Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Liyuan Hou
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Pengju Feng
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Yiqun Li
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
28
|
Basu U, Roy M, Chakravarty AR. Recent advances in the chemistry of iron-based chemotherapeutic agents. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213339] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Synthesis, evaluation of biological activity studies of iridium(III) complexes against human gastric carcinoma SGC-7901 cells. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Chanu SB, Raza MK, Musib D, Pal M, Pal M, Roy M. Potent Photochemotherapeutic Activity of Iron(III) Complexes on Visible Light-induced Ligand to Metal Charge Transfer. CHEM LETT 2020. [DOI: 10.1246/cl.200139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- S. Binita Chanu
- Department of Chemistry, National Institute of Technology, Manipur, Langol 795004, Imphal (Manipur), India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, Bangalore-560012, Karnataka, India
| | - Dulal Musib
- Department of Chemistry, National Institute of Technology, Manipur, Langol 795004, Imphal (Manipur), India
| | - Mrityunjoy Pal
- Department of Chemistry, National Institute of Technology, Manipur, Langol 795004, Imphal (Manipur), India
| | - Maynak Pal
- Department of Chemistry, National Institute of Technology, Manipur, Langol 795004, Imphal (Manipur), India
| | - Mithun Roy
- Department of Chemistry, National Institute of Technology, Manipur, Langol 795004, Imphal (Manipur), India
| |
Collapse
|
31
|
Jiang GB, Zhang WY, He M, Gu YY, Bai L, Wang YJ, Yi QY, Du F. Development of four ruthenium polypyridyl complexes as antitumor agents: Design, biological evaluation and mechanism investigation. J Inorg Biochem 2020; 208:111104. [PMID: 32485635 DOI: 10.1016/j.jinorgbio.2020.111104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022]
Abstract
Ruthenium complexes are expected to be new opportunities for the development of antitumor agents. Herein, four ruthenium polypyridyl complexes ([Ru(bpy)2(CAPIP)](ClO4)2 (Ru(II)-1, bpy = 2,2'-bipyridine; CAPIP = (E)-2-(2-(furan-2-yl)vinyl)-1H-imidazo[4,5-f][1,10]phenanthroline), [Ru(phen)2(CA-PIP)](ClO4)2 (Ru(II)-2, phen = 1,10-phenanthroline), [Ru(dmb)2(CAPIP)](ClO4)2 (Ru(II)-3, dmb = 4,4'-dimethyl-2,2'-bipyridine), [Ru(dmb)2(ETPIP)](ClO4)2 (Ru(II)-4, ETPIP = 2-(4-(thiophen-2-ylethynyl)phenyl)-1H-imidazo[4,5-f][1,10]phen-anthroline)) have been investigated as mitochondria-targeted antitumor metallodrugs. DNA binding studies indicated that target Ru(II) complexes interacts with CT DNA (calf thymus DNA) by an intercalative mode. Cytotoxicity assay results demonstrate that Ru(II) complexes show high cytotoxicity against A549 cells with low IC50 value of 23.6 ± 2.3, 20.1 ± 1.9, 22.7 ± 1.8 and 18.4 ± 2.3 μM, respectively. Flow cytometry and morphological analysis revealed that these Ru(II) complexes can induce apoptosis in A549 cells. Intracellular reactive oxygen species (ROS) and mitochondrial membrane potential were also investigated by ImageXpress Micro XLS system. The experimental results indicate that the reactive oxygen species in A549 cells increased significantly and mitochondrial membrane potential decreased obviously. In addition, colocalization studies shown these complexes could get to the cytoplasm through the cell membrane and accumulate in the mitochondria. Furthermore, Ru(II) complexes can effectively induces cell cycle arrest at the S phase in A549 cells. Finally, cell invasion assay and quantitative studies were also performed to investigate the mechanism of this process. All in together, this study suggested that these Ru(II) complexes could induce apoptosis in A549 cells through cell cycle arrest and ROS-mediated mitochondrial dysfunction pathway.
Collapse
Affiliation(s)
- Guang-Bin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Wen-Yao Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Miao He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi-Ying Gu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lan Bai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yang-Jie Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiao-Yan Yi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Fan Du
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
32
|
Sohtun WP, Khamrang T, Kannan A, Balakrishnan G, Saravanan D, Akhbarsha MA, Velusamy M, Palaniandavar M. Iron(III) bis‐complexes of Schiff bases of
S
‐methyldithiocarbazates: Synthesis, structure, spectral and redox properties and cytotoxicity. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Winaki P. Sohtun
- Department of ChemistryNorth Eastern Hill University Shillong 793022 India
| | - Themmila Khamrang
- Department of ChemistryNorth Eastern Hill University Shillong 793022 India
- Present Address: C. I. College, Bishnupur Manipur 795126 India
| | | | - Gowdhami Balakrishnan
- Mahatma Gandhi‐Doerenkamp Center for Alternatives to Use of Animals in Life Science EducationBharathidasan University Tiruchirappalli 620024 India
| | | | - Mohammad Abdulkader Akhbarsha
- Mahatma Gandhi‐Doerenkamp Center for Alternatives to Use of Animals in Life Science EducationBharathidasan University Tiruchirappalli 620024 India
| | - Marappan Velusamy
- Department of ChemistryNorth Eastern Hill University Shillong 793022 India
| | | |
Collapse
|
33
|
Jiang GB, Zhang WY, He M, Gu YY, Bai L, Wang YJ, Yi QY, Du F. New ruthenium polypyridyl complexes functionalized with fluorine atom or furan: Synthesis, DNA-binding, cytotoxicity and antitumor mechanism studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117534. [PMID: 31685424 DOI: 10.1016/j.saa.2019.117534] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/27/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Two novel ruthenium(II) polypyridyl complexes, namely, [Ru(dmp)2(CAPIP)](ClO4)2 (Ru(II)-1) and [Ru(dmp)2(CFPIP)](ClO4)2 (Ru(II)-2), which respectively contain (E)-2-(2-(furan-2-yl)vinyl)-1H-imidazo[4,5-f][1,10]phen-anthroline (CAPIP) and (E)-2-(4-fluorostyryl)-1H-imidazo[4,5-f][1,10]phenanthroline. (CFPIP), were first designed and characterized (dmp = 2,9-dimethyl-1,10-phenanthroline). DNA binding experiments indicated that Ru(II) complexes interact with CT DNA through intercalative mode. In addition, the complexes Ru(II)-1 and Ru(II)-2, showed remarkable cell cytotoxicity, giving the respective IC50 values of 4.1 ± 1.4 μM and 6.1 ± 1.4 μM on the A549 cancer cells. These values indicated higher activity than CAPIP, CFPIP, cisplatin (8.2 ± 1.4 μM) and other corresponding Ru(II) polypyridyl complexes. Furthermore, the Ru(II) complexes could arrive the cytoplasm through the cell membrane and accumulate in the mitochondria. Significantly, complexes Ru(II)-1 and Ru(II)-2 induced A549 cells apoptosis was mediated by increase of ROS levels and dysfunction of mitochondria, and resulted in cell cycle arrest and increased anti-migration activity on A549 cells. Overall, these results indicated that complexes Ru(II)-1 and Ru(II)-2 could be suitable candidates for further investigation as a chemotherapeutic agent in the treatment of tumors.
Collapse
Affiliation(s)
- Guang-Bin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Wen-Yao Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Miao He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yi-Ying Gu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Lan Bai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yang-Jie Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Qiao-Yan Yi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Fan Du
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| |
Collapse
|
34
|
Liu F, Ma J, Shi Z, Zhang Q, Wang H, Li D, Song Z, Wang C, Jin J, Xu J, Tuerhong M, Abudukeremu M, Shuai L, Lee D, Guo Y. Clerodane Diterpenoids Isolated from the Leaves of Casearia graveolens. JOURNAL OF NATURAL PRODUCTS 2020; 83:36-44. [PMID: 31916761 DOI: 10.1021/acs.jnatprod.9b00515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A phytochemical survey aiming to acquire pharmacologically active substances has resulted in the isolation of nine new clerodane diterpenoids, named graveospenes A-I (1-9), from the leaves of Casearia graveolens. Spectroscopic methods were employed to establish the structures with their absolute configurations being confirmed by ECD data analysis. A biological evaluation was performed, and compound 1 was found to be cytotoxic to both human lung cancer cells (A549) and human hepatocellular carcinoma cells (HepG2). A mechanism-of-action study on 1 revealed this compound to induce apoptosis of A549 cells and impede them at the G0/G1 stage.
Collapse
Affiliation(s)
- Feng Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Jun Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Zhaoyu Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Qi Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Huimei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Dihua Li
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine , Nankai Hospital Affiliated to Nankai University , Tianjin 300100 , People's Republic of China
| | - Zhaohui Song
- State Key Laboratory of Core Technology in Innovative Chinese Medicine , Tasly Pharmaceutical Group Co., Ltd. , Tianjin 300410 , People's Republic of China
| | - Chunyan Wang
- Tianjin Second People's Hospital , Tianjin 300192 , People's Republic of China
| | - Jin Jin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Muhetaer Tuerhong
- College of Chemistry and Environmental Sciences , Kashgar University , Kashgar 844000 , People's Republic of China
| | - Munira Abudukeremu
- College of Chemistry and Environmental Sciences , Kashgar University , Kashgar 844000 , People's Republic of China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Dongho Lee
- College of Life Sciences and Biotechnology , Korea University , Seoul 02841 , Republic of Korea
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| |
Collapse
|
35
|
Wang Y, Zhang W, Dong J, Gao J. Design, synthesis and bioactivity evaluation of coumarin-chalcone hybrids as potential anticancer agents. Bioorg Chem 2019; 95:103530. [PMID: 31887477 DOI: 10.1016/j.bioorg.2019.103530] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
The selenoprotein thioredoxin reductases (TrxRs) have been extensively studied as a potential target for the development of anticancer drugs. Herein, we designed, synthesized, and evaluated a series of coumarin-chalcone hybrids as TrxR inhibitors. Most of them exhibited enhancing anticancer activity than Xanthohumol (Xn). The representative Xn-2 (IC50 = 3.6 μM) was a fluorescence agent, wherein drug uptake can be readily monitored in living cells by red fluorescence imaging. Xn-2 down-regulated the expression of TrxR, remarkedly induced ROS accumulation to activate mitochondrial apoptosis pathway. Furthermore, Xn-2 inhibited cancer cell metastasis and abolished the colony formation ability of cancer cells. Taken together, these results highlight that compound Xn-2 may be a promising theranostic TrxR inhibitor for human cancer therapy.
Collapse
Affiliation(s)
- Yu Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China
| | - Wenda Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China.
| | - Junqiang Dong
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China.
| |
Collapse
|
36
|
Mao X, Xiao X, Chen D, Yu B, He J. Tea and Its Components Prevent Cancer: A Review of the Redox-Related Mechanism. Int J Mol Sci 2019; 20:E5249. [PMID: 31652732 PMCID: PMC6862630 DOI: 10.3390/ijms20215249] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer is a worldwide epidemic and represents a major threat to human health and survival. Reactive oxygen species (ROS) play a dual role in cancer cells, which includes both promoting and inhibiting carcinogenesis. Tea remains one of the most prevalent beverages consumed due in part to its anti- or pro-oxidative properties. The active compounds in tea, particularly tea polyphenols, can directly or indirectly scavenge ROS to reduce oncogenesis and cancerometastasis. Interestingly, the excessive levels of ROS induced by consuming tea could induce programmed cell death (PCD) or non-PCD of cancer cells. On the basis of illustrating the relationship between ROS and cancer, the current review discusses the composition and efficacy of tea including the redox-relative (including anti-oxidative and pro-oxidative activity) mechanisms and their role along with other components in preventing and treating cancer. This information will highlight the basis for the clinical utilization of tea extracts in the prevention or treatment of cancer in the future.
Collapse
Affiliation(s)
- Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 611130, China.
| | - Xiangjun Xiao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 611130, China.
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 611130, China.
| | - Jun He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 611130, China.
| |
Collapse
|
37
|
Zhao J, Zhang X, Liu H, Xiong Z, Li M, Chen T. Ruthenium arene complex induces cell cycle arrest and apoptosis through activation of P53-mediated signaling pathways. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Jiang GB, Zhang WY, He M, Gu YY, Bai L, Wang YJ, Yi QY, Du F. Design and synthesis of new ruthenium polypyridyl complexes with potent antitumor activity in vitro. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 220:117132. [PMID: 31146211 DOI: 10.1016/j.saa.2019.05.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/06/2019] [Accepted: 05/12/2019] [Indexed: 06/09/2023]
Abstract
We herein report the synthesis, characterization and anticancer activity of BTPIP (2-(4-(benzo[b]thiophen-2-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline) and its four ruthenium(II) polypyridyl complexes [Ru(NN)2(BTPIP)](ClO4)2 (N-N = bpy = 2,2'-bipyridine, Ru(II)-1; phen = 1,10-phenanthroline, Ru(II)-2; dmb = 4,4'-dimethyl-2,2'-bipyridine, Ru(II)-3; dmp = 2,9-dimethyl-1,10-phenanthroline, Ru(II)-4). The DNA binding behaviors reveal that the complexes bind to calf thymus DNA by intercalation. Cytotoxicity of the complexes against A549, HepG-2, SGC-7901 and Hela cells were evaluated in vitro. Complexes Ru(II)-1, Ru(II)-2, Ru(II)-3, Ru(II)-4 show moderate activity on the cell proliferation in A549 cells with IC50 values of 9.3 ± 1.2, 12.1 ± 1.6, 10.3 ± 1.6, 8.9 ± 1.2 μM, respectively. Apoptosis assessment, intracellular mitochondrial membrane potential (MMP), location in mitochondria, reactive oxygen species (ROS), cell invasion assay and cell cycle arrest were also performed to explore the mechanism of this action. When the concentration of the ruthenium(II) complexes is increased, the amount of reactive oxygen species increases obviously and the mitochondrial membrane potential decreases dramatically in A549 cells. Most importantly, the ruthenium(II) polypyridyl complexes could arrive the cytoplasm through the cell membrane and accumulate in the mitochondria. These results showed that the ruthenium(II) complexes could induce apoptosis in A549 cells through an ROS-mediated mitochondrial dysfunction pathway.
Collapse
Affiliation(s)
- Guang-Bin Jiang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Wen-Yao Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Miao He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yi-Ying Gu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lan Bai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yang-Jie Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Qiao-Yan Yi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Fan Du
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| |
Collapse
|
39
|
Zhu H, Dai C, He L, Xu A, Chen T. Iron (II) Polypyridyl Complexes as Antiglioblastoma Agents to Overcome the Blood-Brain Barrier and Inhibit Cell Proliferation by Regulating p53 and 4E-BP1 Pathways. Front Pharmacol 2019; 10:946. [PMID: 31551768 PMCID: PMC6733960 DOI: 10.3389/fphar.2019.00946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/24/2019] [Indexed: 12/28/2022] Open
Abstract
Background and Purpose: It is urgently required to develop promising candidates to permeate across blood-brain barrier (BBB) efficiently with simultaneous disrupting vasculogenic mimicry capability of gliomas. Previously, a series of iron (II) complexes were synthesized through a modified method. Hence, the aim of this study was to evaluate anticancer activity of Fe(PIP)3SO4 against glioma cancer cells. Methods: Cytotoxic effects were determined via MTT assay, and IC50 values were utilized to evaluate the cytotoxicity. Cellular uptake of Fe(PIP)3SO4 between U87 and HEB cells was conducted by subtracting content of the complex remaining in the cell culture supernatants. Propidium Iodide (PI)-flow cytometric analysis was used to analyze cell cycle proportion of U87 cells treated with Fe(PIP)3SO4. The reactive oxygen species levels induced by Fe(PIP)3SO4 were measured by 2'-deoxycoformycin (DCF) probe; ABTS assay was utilized to examine the radical scavenge capacity of Fe(PIP)3SO4. To study the bind efficiency to thioredoxin reductase (TrxR), Fe(PIP)3SO4 was introduced into solution containing TrxR. To verify if Fe(PIP)3SO4 could penetrate BBB, HBMEC/U87 coculture as BBB model was established, and penetrating capability of Fe(PIP)3SO4 was tested. In vitro U87 tumor spheroids were formed to test the permeating ability of Fe(PIP)3SO4. Acute toxicity and biodistribution of Fe(PIP)3SO4 were tested on mice for 72 h. Protein profiles associated with U87 cells treated with Fe(PIP)3SO4 were determined by Western blotting analysis. Results: Results showed that Fe(PIP)3SO4 could suppress cell proliferation by inducing G2/M phase cycle retardation and apoptotic pathways, which was related with expression of p53 and initiation factor 4E binding protein 1. In addition, Fe complex could suppress cell proliferation by downregulating reactive oxygen species levels via scavenging free radicals and interaction with TrxR. Furthermore, Fe(PIP)3SO4 could permeate across BBB and simultaneously inhibited the vasculogenic mimicry-channel of U87 cells, suggesting favorable antiglioblastoma efficacy. Acute toxicity manifested lower degree of the complex compared with cisplatin and temozolomide. Conclusion: Fe(PIP)3SO4 exhibited favorable anticancer activity against glioma cells associated with p53 and 4E binding protein 1, accompanied with negligible toxic effects on normal tissues. Herein, Fe(PIP)3SO4 could be developed as a promising metal-based chemotherapeutic agent to overcome BBB and antagonize glioblastomas.
Collapse
Affiliation(s)
- Huili Zhu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Chengli Dai
- The First Affiliated Hospital and the Department of Chemistry, Jinan University, Guangzhou, China
| | - Lizhen He
- The First Affiliated Hospital and the Department of Chemistry, Jinan University, Guangzhou, China
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Tianfeng Chen
- The First Affiliated Hospital and the Department of Chemistry, Jinan University, Guangzhou, China
| |
Collapse
|
40
|
Solvothermal syntheses, crystal structures and luminescence properties of Zn(II) coordination compounds based on imidazophenanthroline carboxylate derivative ligand. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.05.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Dai C, He L, Ma B, Chen T. Facile Nanolization Strategy for Therapeutic Ganoderma Lucidum Spore Oil to Achieve Enhanced Protection against Radiation-Induced Heart Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902642. [PMID: 31353836 DOI: 10.1002/smll.201902642] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Radiotherapy (RT) has been extensively utilized for clinical cancer therapy, however, excessive generation of reactive oxygen species (ROS) is becoming a main cause for radiation-induced heart disease (RIHD). Ganoderma lucidum spore oil (GLSO) is a popular functional food composite with potent antioxidant activity, but it is compromised by poor solubility and stability for further application. Therefore, a strategy for rational fabrication of GLSO@P188/PEG400 nanosystem (NS) is demonstrated in this study to realize good water solubility and achieve enhanced protection against RIHD. As expected, GLSO@P188/PEG400 NS can attenuate X-ray-induced excessive ROS levels thanks to its enhanced free radical scavenging capability, simultaneously protecting on mitochondria from X-ray irradiation (IR). Moreover, GLSO@P188/PEG400 NS alleviates DNA damage and promotes self-repair processes against IR, thus recovering G0/G1 proportion back to normal levels. Furthermore, pre- and post-treated GLSO@P188/PEG400 NS demonstrates potential protection on heart from X-rays in vivo, as evidenced by attenuating cardiac dysfunction and myocardial fibrosis. Meanwhile, the cell antioxidant capacity (including T-SOD, MDA, and GSH-x) stays in balance during this process. This study not only provides a promising strategy for facile nanolization of functional food composites with hydrophobic defects but also sheds light on their cardiac protection and action mechanisms against IR-induced disease.
Collapse
Affiliation(s)
- Chengli Dai
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Lizhen He
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Bin Ma
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
42
|
Matos CP, Adiguzel Z, Yildizhan Y, Cevatemre B, Onder TB, Cevik O, Nunes P, Ferreira LP, Carvalho MD, Campos DL, Pavan FR, Pessoa JC, Garcia MH, Tomaz AI, Correia I, Acilan C. May iron(III) complexes containing phenanthroline derivatives as ligands be prospective anticancer agents? Eur J Med Chem 2019; 176:492-512. [DOI: 10.1016/j.ejmech.2019.04.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/18/2019] [Accepted: 04/29/2019] [Indexed: 02/08/2023]
|
43
|
Liao J, Wang L, Wu Z, Wang Z, Chen J, Zhong Y, Jiang F, Lu Y. Identification of phenazine analogue as a novel scaffold for thioredoxin reductase I inhibitors against Hep G2 cancer cell lines. J Enzyme Inhib Med Chem 2019; 34:1158-1163. [PMID: 31179772 PMCID: PMC6567043 DOI: 10.1080/14756366.2019.1624541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Even though phenazines have been extensively reported as anticancer molecules, the molecular target of these compounds is severely lagging behind. Our study consequently focuses on the anticancer target of a phenazine analogue (CPUL1) for its potently antitumor activities in initial stage. Along with redox status courses of Hep G2 cells, thioredoxin reductase I (TrxR1) was speculated as anticancer target of CPUL1. By virtue of zymologic, immunological and molecular biological experiments, we demonstrated that TrxR1 could be the anticancer target of CPUL1. The knowledge on phenazine targeting to TrxR1 have not been reported previously. Thus, it can provide valuable information for further development of the TrxR1 inhibitors.
Collapse
Affiliation(s)
- Jianming Liao
- a School of Life Science and Technology , China Pharmaceutical University , Nanjing , China
| | - Linlin Wang
- a School of Life Science and Technology , China Pharmaceutical University , Nanjing , China
| | - Zhongxi Wu
- b School of Engineering , China Pharmaceutical University , Nanjing , China
| | - Zhixiang Wang
- b School of Engineering , China Pharmaceutical University , Nanjing , China
| | - Jun Chen
- a School of Life Science and Technology , China Pharmaceutical University , Nanjing , China
| | - Yucheng Zhong
- a School of Life Science and Technology , China Pharmaceutical University , Nanjing , China
| | - Feng Jiang
- b School of Engineering , China Pharmaceutical University , Nanjing , China
| | - Yuanyuan Lu
- a School of Life Science and Technology , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
44
|
Ye J, Ma J, Liu C, Huang J, Wang L, Zhong X. A novel iron(II) phenanthroline complex exhibits anticancer activity against TFR1-overexpressing esophageal squamous cell carcinoma cells through ROS accumulation and DNA damage. Biochem Pharmacol 2019; 166:93-107. [PMID: 31078603 DOI: 10.1016/j.bcp.2019.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common and aggressive cancers worldwide, especially in China, with poor prognosis due to the lack of effective therapeutic strategies. Here, the anticancer effect and pharmacological mechanism of a newly synthesized Fe(II) phenanthroline complex was studied in ESCC. Our data showed that transferrin receptor 1 (TFR1) was specifically overexpressed in ESCC tissues compared to its expression in normal esophageal tissues, a finding further supported by public datasets. The newly synthesized Fe(II) complex was selectively transported into ESCC cells overexpressing TFR1 through TFR1-mediated endocytosis and exhibited anticancer activity in a dose-dependent manner. The mechanistic study elucidated that the Fe(II) complex caused cell cycle arrest at the G0/G1 phase by blocking the CDK4/6-cyclin D1 complex and induced mitochondria-mediated apoptosis. Furthermore, exposure to the Fe(II) complex led to excessive reactive oxygen species (ROS) accumulation by thioredoxin reductase (TrxR) inhibition and DNA double-strand breaks (DSBs), which in turn sequentially activated ATM, CHK1/2 and p53. Moreover, combination treatment with cisplatin and the Fe(II) complex exhibited a synergistic effect in ESCC cells. Taken together, our results initially suggest the potential application of the Fe(II) complex in ESCC chemotherapy, especially for patients with TFR1 overexpression.
Collapse
Affiliation(s)
- Jiecheng Ye
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China
| | - Jiwei Ma
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Chan Liu
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China
| | - Jianxian Huang
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China
| | - Lihui Wang
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China.
| | - Xueyun Zhong
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
45
|
Han X, Zhang J, Shi D, Wu Y, Liu R, Liu T, Xu J, Yao X, Fang J. Targeting Thioredoxin Reductase by Ibrutinib Promotes Apoptosis of SMMC-7721 Cells. J Pharmacol Exp Ther 2019; 369:212-222. [PMID: 30760494 DOI: 10.1124/jpet.118.254862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/11/2019] [Indexed: 03/08/2025] Open
Abstract
Ibrutinib (IBT), the first-in-class inhibitor of Bruton's tyrosine kinase (BTK), has demonstrated clinical activity against various B-cell malignancies. Aside from its therapeutic mechanism through BTK inhibition, IBT has other target sites reported for cancer therapy, leading us to investigate whether IBT has unreported targets. Our study revealed that IBT can inhibit SMMC-7721 cells through irreversible inhibition of mammalian thioredoxin reductase enzymes. Further study demonstrated that IBT can cause cellular reactive oxygen species elevation and induce cancer cell apoptosis. The discovery of a new target of IBT sheds light on better understanding its anticancer mechanisms and provides a theoretical foundation for its further use in clinical therapy.
Collapse
Affiliation(s)
- Xiao Han
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering (X.H., D.S., Y.W., T.L., X.Y., J.F.) and School of Pharmacy (J.Z., R.L.), Lanzhou University, Lanzhou, China; and School of Life Science and Medicine and Panjin Industrial Technology Institute, Dalian University of Technology, Panjin Campus, Panjin, China (J.X.)
| | - Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering (X.H., D.S., Y.W., T.L., X.Y., J.F.) and School of Pharmacy (J.Z., R.L.), Lanzhou University, Lanzhou, China; and School of Life Science and Medicine and Panjin Industrial Technology Institute, Dalian University of Technology, Panjin Campus, Panjin, China (J.X.)
| | - Danfeng Shi
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering (X.H., D.S., Y.W., T.L., X.Y., J.F.) and School of Pharmacy (J.Z., R.L.), Lanzhou University, Lanzhou, China; and School of Life Science and Medicine and Panjin Industrial Technology Institute, Dalian University of Technology, Panjin Campus, Panjin, China (J.X.)
| | - Yueting Wu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering (X.H., D.S., Y.W., T.L., X.Y., J.F.) and School of Pharmacy (J.Z., R.L.), Lanzhou University, Lanzhou, China; and School of Life Science and Medicine and Panjin Industrial Technology Institute, Dalian University of Technology, Panjin Campus, Panjin, China (J.X.)
| | - Ruijuan Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering (X.H., D.S., Y.W., T.L., X.Y., J.F.) and School of Pharmacy (J.Z., R.L.), Lanzhou University, Lanzhou, China; and School of Life Science and Medicine and Panjin Industrial Technology Institute, Dalian University of Technology, Panjin Campus, Panjin, China (J.X.)
| | - Tianyu Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering (X.H., D.S., Y.W., T.L., X.Y., J.F.) and School of Pharmacy (J.Z., R.L.), Lanzhou University, Lanzhou, China; and School of Life Science and Medicine and Panjin Industrial Technology Institute, Dalian University of Technology, Panjin Campus, Panjin, China (J.X.)
| | - Jianqiang Xu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering (X.H., D.S., Y.W., T.L., X.Y., J.F.) and School of Pharmacy (J.Z., R.L.), Lanzhou University, Lanzhou, China; and School of Life Science and Medicine and Panjin Industrial Technology Institute, Dalian University of Technology, Panjin Campus, Panjin, China (J.X.)
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering (X.H., D.S., Y.W., T.L., X.Y., J.F.) and School of Pharmacy (J.Z., R.L.), Lanzhou University, Lanzhou, China; and School of Life Science and Medicine and Panjin Industrial Technology Institute, Dalian University of Technology, Panjin Campus, Panjin, China (J.X.)
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering (X.H., D.S., Y.W., T.L., X.Y., J.F.) and School of Pharmacy (J.Z., R.L.), Lanzhou University, Lanzhou, China; and School of Life Science and Medicine and Panjin Industrial Technology Institute, Dalian University of Technology, Panjin Campus, Panjin, China (J.X.)
| |
Collapse
|
46
|
Abstract
Many ferrocene complexes have been prepared for their oncological potential. Some derive from molecules with known biological effects (taxanes, podophyllotoxine, artemisine, SAHA, etc.) while others are synthetic molecules selected for their cytotoxic effects (N-alkylaminoferrocenes and ferrocenyl alkylpyridinium). Although these complexes have received a great deal of attention, the field of iron metallodrugs is not limited to them. A number of inorganic complexes of iron(ii) and iron(iii) with possible anticancer effects have also been published, although research into their biological effects is often only at an early stage. This chapter also includes iron chelators, molecules that are administered in non-metallic form but whose cytotoxic species are their coordination complexes of iron generated in vivo. The most emblematic molecule of this family is bleomycin, used as an anticancer agent in many chemotherapies. To these can be added the iron chelates originally synthesized to treat iron overload, some of which have been shown to possess interesting anticancer properties. They have been, and continue to be, the subject of many clinical trials, whether alone or in combination. Thus, the area of iron metallodrugs includes molecules with very different structures and reactivity, studied from a number of different perspectives, but focused on increasing the number of molecules at our disposal for combatting cancer.
Collapse
Affiliation(s)
- Anne Vessieres
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232 4, Place Jussieu F-75005 Paris France
| |
Collapse
|
47
|
Bian M, Fan R, Zhao S, Liu W. Targeting the Thioredoxin System as a Strategy for Cancer Therapy. J Med Chem 2019; 62:7309-7321. [PMID: 30963763 DOI: 10.1021/acs.jmedchem.8b01595] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thioredoxin reductase (TrxR) participates in the regulation of redox reactions in organisms. It works mainly via its substrate molecule, thioredoxin, to maintain the redox balance and regulate signal transduction, which controls cell proliferation, differentiation, death, and other important physiological processes. In recent years, increasing evidence has shown that the overactivation of TrxR is related to the development of tumors. The exploration of TrxR-targeted antitumor drugs has attracted wide attention and is expected to provide new therapies for cancer treatment. In this perspective, we highlight the specific relationship between TrxR and apoptotic signaling pathways. The cytoplasm and mitochondria both contain TrxR, resulting in the activation of apoptosis. TrxR activity influences reactive oxygen species (ROS) and further regulates the inflammatory signaling pathway. In addition, we discuss representative TrxR inhibitors with anticancer activity and analyze the challenges in developing TrxR inhibitors as anticancer drugs.
Collapse
Affiliation(s)
- Mianli Bian
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China
| | - Rong Fan
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China
| | - Sai Zhao
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China.,Institute of New Medicine Research , Nanjing Hicin Pharmaceutical Co. Ltd. , Nanjing 210046 , P. R. China
| | - Wukun Liu
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China.,State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
| |
Collapse
|
48
|
Lai L, Luo D, Liu T, Zheng W, Chen T, Li D. Self-Assembly of Copper Polypyridyl Supramolecular Metallopolymers to Achieve Enhanced Anticancer Efficacy. ChemistryOpen 2019; 8:434-437. [PMID: 30984487 PMCID: PMC6445060 DOI: 10.1002/open.201900036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/18/2019] [Indexed: 11/10/2022] Open
Abstract
Self‐assembled functional supramolecular metallopolymers have demonstrated application potential in cancer therapy. Herein, a copper polypyridyl complex was found able to self‐assemble into a supramolecular metallopolymer driven by the intermolecular interactions, which could enhance the uptake in cancer cells through endocytosis, and thus effectively inhibiting tumor growth in vivo without damaging to the major organs. This study provides a facile way to achieve enhanced anticancer efficacy by using self‐assembled metallopolymers.
Collapse
Affiliation(s)
- Lanhai Lai
- Department of Chemistry Jinan University Guangzhou 510632 GuangDong Province China)
| | - Dong Luo
- Department of Chemistry Jinan University Guangzhou 510632 GuangDong Province China)
| | - Ting Liu
- Department of Chemistry Jinan University Guangzhou 510632 GuangDong Province China)
| | - Wenjie Zheng
- Department of Chemistry Jinan University Guangzhou 510632 GuangDong Province China)
| | - Tianfeng Chen
- Department of Chemistry Jinan University Guangzhou 510632 GuangDong Province China)
| | - Dan Li
- Department of Chemistry Jinan University Guangzhou 510632 GuangDong Province China)
| |
Collapse
|
49
|
Ruthenium(II) salicylate complexes inducing ROS-mediated apoptosis by targeting thioredoxin reductase. J Inorg Biochem 2019; 193:112-123. [DOI: 10.1016/j.jinorgbio.2019.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/19/2019] [Accepted: 01/20/2019] [Indexed: 12/16/2022]
|
50
|
Wu YG, Wang DB, Hu JJ, Song XQ, Xie CZ, Ma ZY, Xu JY. An iron( iii) complex selectively mediated cancer cell death: crystal structure, DNA targeting and in vitro antitumor activities. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00030e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new iron(iii) complexes were prepared, and complex 3 exhibited a 14-fold higher selectivity index for HeLa vs. LO2 normal cells than cisplatin.
Collapse
Affiliation(s)
- Yi-Gang Wu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Dong-Bo Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Juan-Juan Hu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Xue-Qing Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Cheng-Zhi Xie
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Zhong-Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Jing-Yuan Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| |
Collapse
|