1
|
Poudel YB, Lo JC, Norris DJ, Cox M, He L, Johnson WL, A. M. Subbaiah M, Mondal S, Thangavel S, Subramani L, Reddy M, Jain S, Weiss DR, Sivaprakasam P, Critton D, Mulligan D, Xie C, Dhar P, Li Y, Sega E, Yamazoe S, Gavai AV, Mathur A, Zapf CW, Chekler EP. Structure-Based Design of Novel TLR7/8 Agonist Payloads Enabling an Immunomodulatory Conjugate Approach. ACS Med Chem Lett 2025; 16:80-88. [PMID: 39811121 PMCID: PMC11726388 DOI: 10.1021/acsmedchemlett.4c00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Dual activation of the TLR7 and TLR8 pathways leads to the production of type I interferon and proinflammatory cytokines, resulting in efficient antigen presentation by dendritic cells to promote T-cell priming and antitumor immunity. We developed a novel series of TLR7/8 dual agonists with varying ratios of TLR7 and TLR8 activity for use as payloads for an antibody-drug conjugate approach. The agonist-induced production of several cytokines in human whole blood confirmed their functional activity. Structure-activity relationship studies guided by structure-based drug design are described.
Collapse
Affiliation(s)
- Yam B. Poudel
- Bristol
Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Julian C. Lo
- Bristol
Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Derek J. Norris
- Bristol
Myers Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Matthew Cox
- Bristol
Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Liqi He
- Bristol
Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Walter L. Johnson
- Bristol
Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | | | - Santigopal Mondal
- Biocon
Bristol Myers Squibb R&D Center (BBRC), Bangalore 560099, India
| | | | | | - Maheswara Reddy
- Biocon
Bristol Myers Squibb R&D Center (BBRC), Bangalore 560099, India
| | - Suraksha Jain
- Biocon
Bristol Myers Squibb R&D Center (BBRC), Bangalore 560099, India
| | - Dahlia R. Weiss
- Bristol
Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Prasanna Sivaprakasam
- Bristol
Myers Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - David Critton
- Bristol
Myers Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Dawn Mulligan
- Bristol
Myers Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Chunshan Xie
- Bristol
Myers Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Payal Dhar
- Bristol
Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Yvonne Li
- Bristol
Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Emanuela Sega
- Bristol
Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Sayumi Yamazoe
- Bristol
Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Ashvinikumar V. Gavai
- Bristol
Myers Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Arvind Mathur
- Bristol
Myers Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Christoph W. Zapf
- Bristol
Myers Squibb Research & Development, 10300 Campus Point Drive, San Diego, California 92121, United States
| | - Eugene P. Chekler
- Bristol
Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| |
Collapse
|
2
|
Patel AM, Willingham A, Cheng AC, Tomazela D, Bowman E, Kofman E, Zhang F, Bao J, Sanzone JR, Choy JW, Flygare JA, Han JH, Pradhan K, Kieffer M, Chernyak N, Akbari P, Liu P, Mehmood R, Naravula S, Hollingsworth SA, Bhagwat B, Lang SB, Seganish WM. Design and Optimization of Selectivity-Tunable Toll-like Receptor 7/8 Agonists as Novel Antibody-Drug Conjugate Payloads. J Med Chem 2024; 67:15756-15779. [PMID: 39172064 DOI: 10.1021/acs.jmedchem.4c01384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Toll-like receptors 7 and 8 are involved in modulating the adaptive and innate immune responses, and their activation has shown promise as a therapeutic strategy in the field of immuno-oncology. While systemic exposure to TLR7/8 agonists can result in poor tolerance, combination therapies and targeted delivery through antibody-drug conjugates (ADCs) can help mitigate adverse effects. Described herein is the identification of a novel and potent series of pyrazolopyrimidine-based TLR7/8 agonists with tunable receptor selectivity. Representative agonists from this series were successfully able to induce the production of various proinflammatory cytokines and chemokines from human peripheral blood mononuclear cells. Anti-HER2-25 and anti-HER2-26 ADCs made from this class of payloads demonstrated mechanism-based activation of TLR7/8 in a THP1/N87 coculture system.
Collapse
Affiliation(s)
- Akash M Patel
- Discovery Chemistry, Merck & Co. Inc., South San Francisco, California 94080, United States
| | - Aarron Willingham
- Discovery Biologics, Merck & Co. Inc., South San Francisco, California 94080, United States
| | - Alan C Cheng
- Modeling and Informatics, Merck & Co. Inc., South San Francisco, California 94080, United States
| | - Daniela Tomazela
- Discovery Biologics, Merck & Co. Inc., South San Francisco, California 94080, United States
| | - Eddie Bowman
- Discovery Oncology, Merck & Co. Inc., South San Francisco, California 94080, United States
| | - Esther Kofman
- Discovery Biologics, Merck & Co. Inc., South San Francisco, California 94080, United States
| | - Fan Zhang
- Discovery Biologics, Merck & Co. Inc., South San Francisco, California 94080, United States
| | - Jianming Bao
- External Discovery Chemistry, Merck & Co. Inc., South San Francisco, California 94080, United States
| | - Jillian R Sanzone
- External Discovery Chemistry, Merck & Co. Inc., South San Francisco, California 94080, United States
| | - Jonathan W Choy
- Discovery Oncology, Merck & Co. Inc., South San Francisco, California 94080, United States
| | - John A Flygare
- Discovery Chemistry, Merck & Co. Inc., South San Francisco, California 94080, United States
| | - Jin-Hwan Han
- Discovery Oncology, Merck & Co. Inc., South San Francisco, California 94080, United States
| | - Komal Pradhan
- Discovery Oncology, Merck & Co. Inc., South San Francisco, California 94080, United States
| | - Madeleine Kieffer
- Discovery Chemistry, Merck & Co. Inc., South San Francisco, California 94080, United States
| | - Natalia Chernyak
- Discovery Chemistry, Merck & Co. Inc., South San Francisco, California 94080, United States
| | - Peyman Akbari
- Discovery Oncology, Merck & Co. Inc., South San Francisco, California 94080, United States
| | - Ping Liu
- External Discovery Chemistry, Merck & Co. Inc., South San Francisco, California 94080, United States
| | - Rimsha Mehmood
- Modeling and Informatics, Merck & Co. Inc., South San Francisco, California 94080, United States
| | - Saraswathi Naravula
- Discovery Biologics, Merck & Co. Inc., South San Francisco, California 94080, United States
| | - Scott A Hollingsworth
- Modeling and Informatics, Merck & Co. Inc., South San Francisco, California 94080, United States
| | - Bhagyashree Bhagwat
- Discovery Biologics, Merck & Co. Inc., South San Francisco, California 94080, United States
| | - Simon B Lang
- Discovery Chemistry, Merck & Co. Inc., South San Francisco, California 94080, United States
| | - W Michael Seganish
- Discovery Chemistry, Merck & Co. Inc., South San Francisco, California 94080, United States
| |
Collapse
|
3
|
Kumar K, Sihag B, Patil MT, Singh R, Sakala IG, Honda-Okubo Y, Singh KN, Petrovsky N, Salunke DB. Design and Synthesis of Polyphenolic Imidazo[4,5- c]quinoline Derivatives to Modulate Toll Like Receptor-7 Agonistic Activity and Adjuvanticity. ACS Pharmacol Transl Sci 2024; 7:2063-2079. [PMID: 39022355 PMCID: PMC11249636 DOI: 10.1021/acsptsci.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 07/20/2024]
Abstract
TLR-7/8 agonists are a well-known class of vaccine adjuvants, with a leading example now included in Covaxin, a licensed human COVID-19 vaccine. This thereby provides the opportunity to develop newer, more potent adjuvants based on structure-function studies of these classes of compounds. Imidazoquinoline-based TLR7/8 agonists are the most potent, but when used as a vaccine adjuvant side effects can arise due to diffusion from the injection site into a systemic circulation. In this work, we sought to address this issue through structural modifications in the agonists to enhance their adsorption capacity to the classic adjuvant alum. We selected a potent TLR7-selective agonist, BBIQ (EC50 = 0.85 μM), and synthesized polyphenolic derivatives to assess their TLR7 agonistic activity and adjuvant potential alone or in combination with alum. Most of the phenolic derivatives were more active than BBIQ and, except for 12b, all were TLR7 specific. Although the synthesized compounds were less active than resiquimod, the immunization data on combination with alum, specifically the IgG1, IgG2b and IgG2c responses, were superior in comparison to BBIQ as well as the reference standard resiquimod. Compound 12b was 5-fold more potent (EC50 = 0.15 μM in TLR7) than BBIQ and induced double the IgG response to SARS-CoV-2 and hepatitis antigens. Similarly, compound 12c (EC50 = 0.31 μM in TLR7) was about 3-fold more potent than BBIQ and doubled the IgG levels. Even though compound 12d exhibited low TLR7 activity (EC50 = 5.13 μM in TLR7), it demonstrated superior adjuvant results, which may be attributed to its enhanced alum adsorption capability as compared with BBIQ and resiquimod. Alum-adsorbed polyphenolic TLR7 agonists thereby represent promising combination adjuvants resulting in a balanced Th1/Th2 immune response.
Collapse
Affiliation(s)
- Kushvinder Kumar
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Binita Sihag
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Madhuri T. Patil
- Mehr
Chand Mahajan DAV College for Women, Sector 36A, Chandigarh 160 036, India
| | - Rahul Singh
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Isaac G. Sakala
- Vaxine
Pty Ltd, 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- College
of Medicine and Public Health, Flinders
University, Bedford Park, South Australia 5042, Australia
| | - Yoshikazu Honda-Okubo
- Vaxine
Pty Ltd, 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- College
of Medicine and Public Health, Flinders
University, Bedford Park, South Australia 5042, Australia
| | - Kamal Nain Singh
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Nikolai Petrovsky
- Vaxine
Pty Ltd, 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- College
of Medicine and Public Health, Flinders
University, Bedford Park, South Australia 5042, Australia
| | - Deepak B. Salunke
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
- National
Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials
(NICOVIA), Panjab University, Chandigarh 160 014, India
| |
Collapse
|
4
|
Xu Y, Lv J, Liu F, Wang J, Liu Y, Kong C, Li Y, Shen N, Gu Z, Tang Z, Chen X. Tumor Microenvironment Remodeling-Mediated Sequential Drug Delivery Potentiates Treatment Efficacy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312493. [PMID: 38444177 DOI: 10.1002/adma.202312493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/16/2024] [Indexed: 03/07/2024]
Abstract
Toll-like receptor 7/8 agonists, such as imidazoquinolines (IMDQs), are promising for the de novo priming of antitumor immunity. However, their systemic administration is severely limited due to the off-target toxicity. Here, this work describes a sequential drug delivery strategy. The formulation is composed of two sequential modules: a tumor microenvironment remodeling nanocarrier (poly(l-glutamic acid)-graft-methoxy poly(ethylene glycol)/combretastatin A4, termed CA4-NPs) and an immunotherapy nanocarrier (apcitide peptide-decorated poly(l-glutamic acid)-graft-IMDQ-N3 conjugate, termed apcitide-PLG-IMDQ-N3 ). CA4-NPs, as a vascular disrupting agent, are utilized to remodel the tumor microenvironment for enhancing tumor coagulation and hypoxia. Subsequently, the apcitide-PLG-IMDQ-N3 could identify and target tumor coagulation through the binding of surface apcitide peptide to the GPIIb-IIIa on activated platelets. Afterward, IMDQ is activated selectively through the conversion of "-N3 " to "-NH2 " in the presence of hypoxia. The biodistribution results confirm their high tumor uptake of activated IMDQ (22.66%ID/g). By augmenting the priming and immunologic memory of tumor-specific CD8+ T cells, 4T1 and CT26 tumors with a size of ≈500 mm3 are eradicated without recurrence in mouse models.
Collapse
Affiliation(s)
- Yajun Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Jianlin Lv
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Fuyao Liu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321037, China
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Provincial, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinqiang Wang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321037, China
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Provincial, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ya Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Chaoying Kong
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Yanran Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Na Shen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Zhen Gu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321037, China
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Provincial, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| |
Collapse
|
5
|
Das P, N M, Singh N, Datta P. Supramolecular Nanostructures for the Delivery of Peptides in Cancer Therapy. J Pharmacol Exp Ther 2024; 388:67-80. [PMID: 37827700 DOI: 10.1124/jpet.123.001698] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Supramolecular nanostructured based delivery systems are emerging as a meaningful approach in the treatment of cancer, offering controlled drug release and improved therapeutic efficacy. The self-assembled structures can be small molecules, polymers, peptides, or proteins, which can be used and functionalized to achieve tailored release and target specific cells, tissues, or organs. These structures can improve the solubility and stability of drugs having low aqueous solubility by encapsulating and protecting them from degradation. Alongside, peptides as natural biomolecules have gained increasing attention as potential candidates in cancer treatment because of their biocompatibility, low cytotoxicity, and high specificity toward tumor cells. The amino acid sequences in peptide molecules are tunable, efficiently controlling the morphology of peptide-based self-assembled nanosystems and offering flexibility to form supramolecular nanostructures (SNs). It is evident from the current literature that the supramolecular nanostructures based delivery of peptide for cancer treatment hold great promise for future cancer therapy, offering potential strategies for personalized medicine with improved patient outcomes. SIGNIFICANCE STATEMENT: This review focuses on fundamentals and various drug delivery mechanisms based on SNs. Different SN approaches and recent literature reviews on peptide delivery are also presented to the readers.
Collapse
Affiliation(s)
- Priyanka Das
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Manasa N
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Nidhi Singh
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Pallab Datta
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| |
Collapse
|
6
|
Heck AG, Stickdorn J, Rosenberger LJ, Scherger M, Woller J, Eigen K, Bros M, Grabbe S, Nuhn L. Polymerizable 2-Propionic-3-methylmaleic Anhydrides as a Macromolecular Carrier Platform for pH-Responsive Immunodrug Delivery. J Am Chem Soc 2023; 145:27424-27436. [PMID: 38054646 DOI: 10.1021/jacs.3c08511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The design of functional polymers coupled with stimuli-triggered drug release mechanisms is a promising achievement to overcome various biological barriers. pH trigger methods yield significant potential for controlled targeting and release of therapeutics due to their simplicity and relevance, especially upon cell internalization. Here, we introduce reactive polymers that conjugate primary or secondary amines and release potential drugs under acidic conditions. For that purpose, we introduced methacrylamide-based monomers with pendant 2-propionic-3-methylmaleic anhydride groups. Such groups allow the conjugation of primary and secondary amines but are resistant to radical polymerization conditions. We, therefore, polymerized 2-propionic-3-methylmaleic anhydride amide-based methacrylates via reversible addition-fragmentation chain transfer (RAFT) polymerization. Their amine-reactive anhydrides could sequentially be derivatized by primary or secondary amines into hydrophilic polymers. Acidic pH-triggered drug release from the polymeric systems was fine-tuned by comparing different amines. Thereby, the conjugation of primary amines led to the formation of irreversible imide bonds in dimethyl sulfoxide, while secondary amines could quantitatively be released upon acidification. In vitro, this installed pH-responsiveness can contribute to an effective release of conjugated immune stimulatory drugs under endosomal pH conditions. Interestingly, the amine-modified polymers generally showed no toxicity and a high cellular uptake. Furthermore, secondary amine-modified immune stimulatory drugs conjugated to the polymers yielded better receptor activity and immune cell maturation than their primary amine derivatives due to their pH-sensitive drug release mechanism. Consequently, 2-propionic-3-methylmaleic anhydride-based polymers can be considered as a versatile platform for pH-triggered delivery of various (immuno)drugs, thus enabling new strategies in macromolecule-assisted immunotherapy.
Collapse
Affiliation(s)
- Alina G Heck
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | | | - Laura J Rosenberger
- Department of Dermatology, University Medical Center (UMC) of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | | | - Jonas Woller
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Katharina Eigen
- Institute of Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Würzburg 97070, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center (UMC) of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center (UMC) of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
- Institute of Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Würzburg 97070, Germany
| |
Collapse
|
7
|
Li S, Chen Y, Ma R, Du Y, Han B. Cationic lipid-assisted nanoparticles for simultaneous delivery of CD47 siRNA and R848 to promote antitumor immune responses. Front Pharmacol 2023; 14:1142374. [PMID: 37063284 PMCID: PMC10102467 DOI: 10.3389/fphar.2023.1142374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
Graphical AbstractThe PEG-PLGA nanoparticles effectively delivered R848 and CD47 siRNA into tumor cells, resulting in simultaneous activation of DCs and downregulation of CD47 expression on tumor cells, thereby enhancing antitumor immune responses by T cells.
Collapse
|
8
|
Breast Cancer Vaccine Containing a Novel Toll-like Receptor 7 Agonist and an Aluminum Adjuvant Exerts Antitumor Effects. Int J Mol Sci 2022; 23:ijms232315130. [PMID: 36499455 PMCID: PMC9741412 DOI: 10.3390/ijms232315130] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Mucin 1 (MUC1) has received increasing attention due to its high expression in breast cancer, in which MUC1 acts as a cancer antigen. Our group has been committed to the development of small-molecule TLR7 (Toll-like receptor 7) agonists, which have been widely investigated in the field of tumor immunotherapy. In the present study, we constructed a novel tumor vaccine (SZU251 + MUC1 + Al) containing MUC1 and two types of adjuvants: a TLR7 agonist (SZU251) and an aluminum adjuvant (Al). Immunostimulatory responses were first verified in vitro, where the vaccine promoted the release of cytokines and the expression of costimulatory molecules in mouse BMDCs (bone marrow dendritic cells) and spleen lymphocytes. Then, we demonstrated that SZU251 + MUC1 + Al was effective and safe against a tumor expressing the MUC1 antigen in both prophylactic and therapeutic schedules in vivo. The immune responses in vivo were attributed to the increase in specific humoral and cellular immunity, including antibody titers, CD4+, CD8+ and activated CD8+ T cells. Therefore, our vaccine candidate may have beneficial effects in the prevention and treatment of breast cancer patients.
Collapse
|
9
|
Stickdorn J, Stein L, Arnold-Schild D, Hahlbrock J, Medina-Montano C, Bartneck J, Ziß T, Montermann E, Kappel C, Hobernik D, Haist M, Yurugi H, Raabe M, Best A, Rajalingam K, Radsak MP, David SA, Koynov K, Bros M, Grabbe S, Schild H, Nuhn L. Systemically Administered TLR7/8 Agonist and Antigen-Conjugated Nanogels Govern Immune Responses against Tumors. ACS NANO 2022; 16:4426-4443. [PMID: 35103463 PMCID: PMC8945363 DOI: 10.1021/acsnano.1c10709] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The generation of specific humoral and cellular immune responses plays a pivotal role in the development of effective vaccines against tumors. Especially the presence of antigen-specific, cytotoxic T cells influences the outcome of therapeutic cancer vaccinations. Different strategies, ranging from delivering antigen-encoding mRNAs to peptides or full antigens, are accessible but often suffer from insufficient immunogenicity and require immune-boosting adjuvants as well as carrier platforms to ensure stability and adequate retention. Here, we introduce a pH-responsive nanogel platform as a two-component antitumor vaccine that is safe for intravenous application and elicits robust immune responses in vitro and in vivo. The underlying chemical design allows for straightforward covalent attachment of a model antigen (ovalbumin) and an immune adjuvant (imidazoquinoline-type TLR7/8 agonist) onto the same nanocarrier system. In addition to eliciting antigen-specific T and B cell responses that outperform mixtures of individual components, our two-component nanovaccine leads in prophylactic and therapeutic studies to an antigen-specific growth reduction of different tumors expressing ovalbumin intracellularly or on their surface. Regarding the versatile opportunities for functionalization, our nanogels are promising for the development of highly customized and potent nanovaccines.
Collapse
Affiliation(s)
- Judith Stickdorn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Lara Stein
- Institute
of Immunology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Danielle Arnold-Schild
- Institute
of Immunology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Jennifer Hahlbrock
- Institute
of Immunology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Carolina Medina-Montano
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Joschka Bartneck
- III Department of Medicine - Hematology, Oncology, Pneumology, University Medical Center of the Johannes Gutenberg-University
Mainz, Langenbeckstraße
1, 55131 Mainz, Germany
| | - Tanja Ziß
- Institute
of Immunology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Evelyn Montermann
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Cinja Kappel
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Dominika Hobernik
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Maximilian Haist
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Hajime Yurugi
- Cell
Biology Unit, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Marco Raabe
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Andreas Best
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Krishnaraj Rajalingam
- Cell
Biology Unit, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Markus P. Radsak
- III Department of Medicine - Hematology, Oncology, Pneumology, University Medical Center of the Johannes Gutenberg-University
Mainz, Langenbeckstraße
1, 55131 Mainz, Germany
| | - Sunil A. David
- ViroVax,
LLC, 2029 Becker Drive
Suite 100E, Lawrence 66047-1620, Kansas. United States
| | - Kaloian Koynov
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Matthias Bros
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Stephan Grabbe
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Hansjörg Schild
- Institute
of Immunology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Lutz Nuhn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
10
|
Counoupas C, Pino P, Stella AO, Ashley C, Lukeman H, Bhattacharyya ND, Tada T, Anchisi S, Metayer C, Martinis J, Aggarwal A, Dcosta BM, Britton WJ, Kint J, Wurm MJ, Landau NR, Steain M, Turville SG, Wurm FM, David SA, Triccas JA. High-Titer Neutralizing Antibodies against the SARS-CoV-2 Delta Variant Induced by Alhydroxyquim-II-Adjuvanted Trimeric Spike Antigens. Microbiol Spectr 2022; 10:e0169521. [PMID: 35171046 PMCID: PMC8849074 DOI: 10.1128/spectrum.01695-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/13/2022] [Indexed: 12/23/2022] Open
Abstract
Global control of COVID-19 will require the deployment of vaccines capable of inducing long-term protective immunity against SARS-CoV-2 variants. In this report, we describe an adjuvanted subunit candidate vaccine that affords elevated, sustained, and cross-variant SARS-CoV-2 neutralizing antibodies (NAbs) in multiple animal models. Alhydroxiquim-II is a Toll-Like Receptor (TLR) 7/8 small-molecule agonist chemisorbed on aluminum hydroxide (Alhydrogel). Vaccination with Alhydroxiquim-II combined with a stabilized, trimeric form of the SARS-CoV-2 spike protein (termed CoVac-II) resulted in high-titer NAbs in mice, with no decay in responses over an 8-month period. NAbs from sera of CoVac-II-immunized mice, horses and rabbits were broadly neutralizing against SARS-CoV-2 variants. Boosting long-term CoVac-II-immunized mice with adjuvanted spike protein from the Beta variant markedly increased levels of NAb titers against multiple SARS-CoV-2 variants; notably, high titers against the Delta variant were observed. These data strongly support the clinical assessment of Alhydroxiquim-II-adjuvanted spike proteins to protect against SARS-CoV-2 variants of concern. IMPORTANCE There is an urgent need for next-generation COVID-19 vaccines that are safe, demonstrate high protective efficacy against SARS-CoV-2 variants and can be manufactured at scale. We describe a vaccine candidate (CoVac-II) that is based on stabilized, trimeric spike antigen produced in an optimized, scalable and chemically defined production process. CoVac-II demonstrates strong and persistent immunity after vaccination of mice, and is highly immunogenic in multiple animal models, including rabbits and horses. We further show that prior immunity can be boosted using a recombinant spike antigen from the Beta variant; importantly, plasma from boosted mice effectively neutralize multiple SARS-CoV-2 variants in vitro, including Delta. The strong humoral and Th1-biased immunogenicity of CoVac-II is driven by use of Alhydroxiquim-II (AHQ-II), the first adjuvant in an authorized vaccine that acts through the dual Toll-like receptor (TLR)7 and TLR8 pathways, as part of the Covaxin vaccine. Our data suggest AHQ-II/spike protein combinations could constitute safe, affordable, and mass-manufacturable COVID-19 vaccines for global distribution.
Collapse
Affiliation(s)
- Claudio Counoupas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- Tuberculosis Research Program, Centenary Institute, Sydney, New South Wales, Australia
| | | | - Alberto O. Stella
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Caroline Ashley
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Hannah Lukeman
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Nayan D. Bhattacharyya
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Takuya Tada
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| | | | | | | | - Anupriya Aggarwal
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Belinda M. Dcosta
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Warwick J. Britton
- Tuberculosis Research Program, Centenary Institute, Sydney, New South Wales, Australia
| | | | | | - Nathaniel R. Landau
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Megan Steain
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Stuart G. Turville
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Florian M. Wurm
- ExcellGene SA, Monthey, Switzerland
- Life Science Faculty, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | | | - James A. Triccas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
11
|
The Critical Role of Toll-like Receptor-mediated Signaling in Cancer Immunotherapy. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
12
|
Li X, Sun X, Guo X, Li X, Peng S, Mu X. Chemical reagents modulate nucleic acid-activated toll-like receptors. Biomed Pharmacother 2022; 147:112622. [PMID: 35008000 DOI: 10.1016/j.biopha.2022.112622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/08/2023] Open
Abstract
Nucleic acid-mediated interferon signaling plays a pivotal role in defense against microorganisms, especially during viral infection. Receptors sensing exogenous nucleic acid molecules are localized in the cytosol and endosomes. Cytosolic sensors, including cGAS, RIG-I, and MDA5, and endosome-anchored receptors are toll-like receptors (TLR3, TLR7, TLR8, and TLR9). These TLRs share the same domain architecture and have similar structures, facing the interior of endosomes so their binding to nucleic acids of invading pathogens via endocytosis is possible. The correct function of these receptors is crucial for cell homeostasis and effective response against pathogen invasion. A variety of endogenous mechanisms modulates their activities. Nevertheless, naturally occurring mutations lead to aberrant TLR-mediated interferon (IFN) signaling. Furthermore, certain pathogens require a more robust defense against control. Thus, manipulating these TLR activities has a profound impact. High-throughput virtual screening followed by experimental validation led to the discovery of numerous chemicals that can change these TLR-mediated IFN signaling activities. Many of them are unique in selectivity, while others regulate more than one TLR due to commonalities in these receptors. We summarized these nucleic acid-sensing TLR-mediated IFN signaling pathways and the corresponding chemicals activating or deactivating their signaling.
Collapse
Affiliation(s)
- Xiao Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xinyuan Sun
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xuemin Guo
- Meizhou People's Hospital, Meizhou 514031, China; Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou 514031, China
| | - Xueren Li
- Department of Respiratory Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, China
| | - Shouchun Peng
- Department of Respiratory Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, China.
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
13
|
Johnson-Weaver BT, Choi HW, Yang H, Granek JA, Chan C, Abraham SN, Staats HF. Nasal Immunization With Small Molecule Mast Cell Activators Enhance Immunity to Co-Administered Subunit Immunogens. Front Immunol 2021; 12:730346. [PMID: 34566991 PMCID: PMC8461742 DOI: 10.3389/fimmu.2021.730346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/23/2021] [Indexed: 01/02/2023] Open
Abstract
Mast cell activators are a novel class of mucosal vaccine adjuvants. The polymeric compound, Compound 48/80 (C48/80), and cationic peptide, Mastoparan 7 (M7) are mast cell activators that provide adjuvant activity when administered by the nasal route. However, small molecule mast cell activators may be a more cost-efficient adjuvant alternative that is easily synthesized with high purity compared to M7 or C48/80. To identify novel mast cell activating compounds that could be evaluated for mucosal vaccine adjuvant activity, we employed high-throughput screening to assess over 55,000 small molecules for mast cell degranulation activity. Fifteen mast cell activating compounds were down-selected to five compounds based on in vitro immune activation activities including cytokine production and cellular cytotoxicity, synthesis feasibility, and selection for functional diversity. These small molecule mast cell activators were evaluated for in vivo adjuvant activity and induction of protective immunity against West Nile Virus infection in BALB/c mice when combined with West Nile Virus envelope domain III (EDIII) protein in a nasal vaccine. We found that three of the five mast cell activators, ST101036, ST048871, and R529877, evoked high levels of EDIII-specific antibody and conferred comparable levels of protection against WNV challenge. The level of protection provided by these small molecule mast cell activators was comparable to the protection evoked by M7 (67%) but markedly higher than the levels seen with mice immunized with EDIII alone (no adjuvant 33%). Thus, novel small molecule mast cell activators identified by high throughput screening are as efficacious as previously described mast cell activators when used as nasal vaccine adjuvants and represent next-generation mast cell activators for evaluation in mucosal vaccine studies.
Collapse
Affiliation(s)
| | - Hae Woong Choi
- Pathology Department, School of Medicine, Duke University, Durham, NC, United States
| | - Hang Yang
- Biostatistics and Bioinformatics Department, School of Medicine, Duke University, Durham, NC, United States
| | - Josh A. Granek
- Biostatistics and Bioinformatics Department, School of Medicine, Duke University, Durham, NC, United States
| | - Cliburn Chan
- Biostatistics and Bioinformatics Department, School of Medicine, Duke University, Durham, NC, United States
| | - Soman N. Abraham
- Pathology Department, School of Medicine, Duke University, Durham, NC, United States
- Department of Immunology, School of Medicine, Duke University, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - Herman F. Staats
- Pathology Department, School of Medicine, Duke University, Durham, NC, United States
- Department of Immunology, School of Medicine, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| |
Collapse
|
14
|
Bhagchandani S, Johnson JA, Irvine DJ. Evolution of Toll-like receptor 7/8 agonist therapeutics and their delivery approaches: From antiviral formulations to vaccine adjuvants. Adv Drug Deliv Rev 2021; 175:113803. [PMID: 34058283 PMCID: PMC9003539 DOI: 10.1016/j.addr.2021.05.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023]
Abstract
Imidazoquinoline derivatives (IMDs) and related compounds function as synthetic agonists of Toll-like receptors 7 and 8 (TLR7/8) and one is FDA approved for topical antiviral and skin cancer treatments. Nevertheless, these innate immune system-activating drugs have potentially much broader therapeutic utility; they have been pursued as antitumor immunomodulatory agents and more recently as candidate vaccine adjuvants for cancer and infectious disease. The broad expression profiles of TLR7/8, poor pharmacokinetic properties of IMDs, and toxicities associated with systemic administration, however, are formidable barriers to successful clinical translation. Herein, we review IMD formulations that have advanced to the clinic and discuss issues related to biodistribution and toxicity that have hampered the further development of these compounds. Recent strategies aimed at enhancing safety and efficacy, particularly through the use of bioconjugates and nanoparticle formulations that alter pharmacokinetics, biodistribution, and cellular targeting, are described. Finally, key aspects of the biology of TLR7 signaling, such as TLR7 tolerance, that may need to be considered in the development of new IMD therapeutics are discussed.
Collapse
Affiliation(s)
- Sachin Bhagchandani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jeremiah A Johnson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA.
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
15
|
Huppertsberg A, Kaps L, Zhong Z, Schmitt S, Stickdorn J, Deswarte K, Combes F, Czysch C, De Vrieze J, Kasmi S, Choteschovsky N, Klefenz A, Medina-Montano C, Winterwerber P, Chen C, Bros M, Lienenklaus S, Sanders NN, Koynov K, Schuppan D, Lambrecht BN, David SA, De Geest BG, Nuhn L. Squaric Ester-Based, pH-Degradable Nanogels: Modular Nanocarriers for Safe, Systemic Administration of Toll-like Receptor 7/8 Agonistic Immune Modulators. J Am Chem Soc 2021; 143:9872-9883. [PMID: 34166595 PMCID: PMC8267846 DOI: 10.1021/jacs.1c03772] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 12/25/2022]
Abstract
Small-molecular Toll-like receptor 7/8 (TLR7/8) agonists hold promise as immune modulators for a variety of immune therapeutic purposes including cancer therapy or vaccination. However, due to their rapid systemic distribution causing difficult-to-control inflammatory off-target effects, their application is still problematic, in particular systemically. To address this problem, we designed and robustly fabricated pH-responsive nanogels serving as versatile immunodrug nanocarriers for safe delivery of TLR7/8-stimulating imidazoquinolines after intravenous administration. To this aim, a primary amine-reactive methacrylamide monomer bearing a pendant squaric ester amide is introduced, which is polymerized under controlled RAFT polymerization conditions. Corresponding PEG-derived squaric ester amide block copolymers self-assemble into precursor micelles in polar protic solvents. Their cores are amine-reactive and can sequentially be transformed by acid-sensitive cross-linkers, dyes, and imidazoquinolines. Remaining squaric ester amides are hydrophilized affording fully hydrophilic nanogels with profound stability in human plasma but stimuli-responsive degradation upon exposure to endolysosomal pH conditions. The immunomodulatory behavior of the imidazoquinolines alone or conjugated to the nanogels was demonstrated by macrophages in vitro. In vivo, however, we observed a remarkable impact of the nanogel: After intravenous injection, a spatially controlled immunostimulatory activity was evident in the spleen, whereas systemic off-target inflammatory responses triggered by the small-molecular imidazoquinoline analogue were absent. These findings underline the potential of squaric ester-based, pH-degradable nanogels as a promising platform to permit intravenous administration routes of small-molecular TLR7/8 agonists and, thus, the opportunity to explore their adjuvant potency for systemic vaccination or cancer immunotherapy purposes.
Collapse
Affiliation(s)
| | - Leonard Kaps
- Institute
for Translational Immunology and Research Center for Immune Therapy,
University Medical Center, Johannes Gutenberg-University
Mainz, 55131 Mainz, Germany
- Department
of Internal Medicine I, University Medical
Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Zifu Zhong
- Department
of Pharmaceutics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Sascha Schmitt
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | | - Kim Deswarte
- Department
of Internal Medicine and Pediatrics, Ghent
University, VIB Center for Inflammation Research, Ghent 9052, Belgium
| | - Francis Combes
- Laboratory
of Gene Therapy, Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke 9820, Belgium
| | | | - Jana De Vrieze
- Department
of Pharmaceutics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Sabah Kasmi
- Department
of Pharmaceutics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Niklas Choteschovsky
- Institute
for Translational Immunology and Research Center for Immune Therapy,
University Medical Center, Johannes Gutenberg-University
Mainz, 55131 Mainz, Germany
| | - Adrian Klefenz
- Institute
for Translational Immunology and Research Center for Immune Therapy,
University Medical Center, Johannes Gutenberg-University
Mainz, 55131 Mainz, Germany
| | - Carolina Medina-Montano
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | | | - Chaojian Chen
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Matthias Bros
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Stefan Lienenklaus
- Institute
for Laboratory Animal Science and Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Niek N. Sanders
- Laboratory
of Gene Therapy, Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke 9820, Belgium
| | - Kaloian Koynov
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Detlef Schuppan
- Institute
for Translational Immunology and Research Center for Immune Therapy,
University Medical Center, Johannes Gutenberg-University
Mainz, 55131 Mainz, Germany
- Division
of Gastroenterology, Beth Israel Deaconess
Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Bart N. Lambrecht
- Department
of Internal Medicine and Pediatrics, Ghent
University, VIB Center for Inflammation Research, Ghent 9052, Belgium
- Department
of Pulmonary Medicine, Erasmus University
Medical Center, Rotterdam 3015, Netherlands
| | | | - Bruno G. De Geest
- Department
of Pharmaceutics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Lutz Nuhn
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
16
|
Talukdar A, Ganguly D, Roy S, Das N, Sarkar D. Structural Evolution and Translational Potential for Agonists and Antagonists of Endosomal Toll-like Receptors. J Med Chem 2021; 64:8010-8041. [PMID: 34107682 DOI: 10.1021/acs.jmedchem.1c00300] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) are members of a large family of evolutionarily conserved pattern recognition receptors (PRRs), which serve as key components of the innate immune system by playing a pivotal role in sensing "nonself" ligands. Endosomal TLRs (TLR3, TLR7, TLR8, and TLR9) can recognize pathogen-derived nucleic acid and initiate an innate immune response because they react against both self- and non-self-origin nucleic acid molecules. Accordingly, both receptor agonists and antagonists are potentially useful in disparate clinical contexts and thus are globally sought after. Recent research has revealed that agonists and antagonists share an overlapping binding region. This Perspective highlights rational medicinal chemistry approaches to elucidate the structural attributes of small molecules capable of agonism or antagonism or of elegantly switching between the two. The structural evolution of different chemotypes can provide the framework for the future development of endosomal TLR agonists and antagonists.
Collapse
Affiliation(s)
- Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Dipyaman Ganguly
- IICB-Translational Research Unit of Excellence, Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, CN6, Sector V, Salt Lake, Kolkata 700091, West Bengal, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Swarnali Roy
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Nirmal Das
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Dipika Sarkar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| |
Collapse
|
17
|
Wang Z, Gao Y, He L, Sun S, Xia T, Hu L, Yao L, Wang L, Li D, Shi H, Liao X. Structure-Based Design of Highly Potent Toll-like Receptor 7/8 Dual Agonists for Cancer Immunotherapy. J Med Chem 2021; 64:7507-7532. [PMID: 34048243 DOI: 10.1021/acs.jmedchem.1c00179] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Activation of the toll-like receptors 7 and 8 has emerged as a promising strategy for cancer immunotherapy. Herein, we report the design and synthesis of a series of pyrido[3,2-d]pyrimidine-based toll-like receptor 7/8 dual agonists that exhibited potent and near-equivalent agonistic activities toward TLR7 and TLR8. In vitro, compounds 24e and 25a significantly induced the secretion of IFN-α, IFN-γ, TNF-α, IL-1β, IL-12p40, and IP-10 in human peripheral blood mononuclear cell assays. In vivo, compounds 24e, 24m, and 25a significantly suppressed tumor growth in CT26 tumor-bearing mice by remodeling the tumor microenvironment. Additionally, compounds 24e, 24m, and 25a markedly improved the antitumor activity of PD-1/PD-L1 blockade. In particular, compound 24e combined with the anti-PD-L1 antibody led to complete tumor regression. These results demonstrated that TLR7/8 agonists (24e, 24m, and 25a) held great potential as single agents or in combination with PD-1/PD-L1 blockade for cancer immunotherapy.
Collapse
Affiliation(s)
- Zhisong Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, Beijing 100084, China.,Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Gao
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, Beijing 100084, China.,Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Lei He
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, Beijing 100084, China
| | - Shuhao Sun
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, Beijing 100084, China
| | - Tingting Xia
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, Beijing 100084, China
| | - Lu Hu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, Beijing 100084, China
| | - Licheng Yao
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, Beijing 100084, China
| | - Liangliang Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, Beijing 100084, China
| | - Dan Li
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, Beijing 100084, China
| | - Hui Shi
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, Beijing 100084, China.,Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuebin Liao
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, Beijing 100084, China.,Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Kaushik D, Kaur A, Petrovsky N, Salunke DB. Structural evolution of toll-like receptor 7/8 agonists from imidazoquinolines to imidazoles. RSC Med Chem 2021; 12:1065-1120. [PMID: 34355178 DOI: 10.1039/d1md00031d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Several synthetic heterocyclic small molecules like imiquimod, resiquimod, CL097, CL075, bromopirone, tilorone, loxoribine and isatoribine demonstrated TLR7/8 agonistic activity and relatively modest structural changes in such molecules result in major variation in the TLR7 and/or TLR8 activity. A strict dependency of the electronic configuration of the heterocyclic system was also observed to influence the agonistic activity. In the present review, an evolution of imidazole based TLR7/8 agonist from imidazoquinoline based scaffold is delineated along with the elaboration of detailed structure activity relationship (SAR) in each chemotype. The structural and activity details of not only the active compounds but also the related inactive compounds are included to better understand the SAR. TLR7/8 agonists are emerging as promising vaccine adjuvant candidates and the present SAR and structural information will provide a road map towards the identification of more potent and appropriate candidates for further drug discovery.
Collapse
Affiliation(s)
- Deepender Kaushik
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh 160014 India
| | - Arshpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh 160014 India
| | - Nikolai Petrovsky
- Vaxine Pty Ltd 11 Walkley Avenue Warradale 5046 Australia.,College of Medicine and Public Health, Flinders University Bedford Park 5042 Australia
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh 160014 India .,National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials, Panjab University Chandigarh 160014 India
| |
Collapse
|
19
|
Jindal G, Kaur N. Biologically significant pyrimidine appended optical sensors: An inclusive anthology of literature from 2005 to 2020. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Abstract
Personalized cancer vaccines (PCVs) are reinvigorating vaccine strategies in cancer immunotherapy. In contrast to adoptive T-cell therapy and checkpoint blockade, the PCV strategy modulates the innate and adaptive immune systems with broader activation to redeploy antitumor immunity with individualized tumor-specific antigens (neoantigens). Following a sequential scheme of tumor biopsy, mutation analysis, and epitope prediction, the administration of neoantigens with synthetic long peptide (SLP) or mRNA formulations dramatically improves the population and activity of antigen-specific CD4+ and CD8+ T cells. Despite the promising prospect of PCVs, there is still great potential for optimizing prevaccination procedures and vaccine potency. In particular, the arduous development of tumor-associated antigen (TAA)-based vaccines provides valuable experience and rational principles for augmenting vaccine potency which is expected to advance PCV through the design of adjuvants, delivery systems, and immunosuppressive tumor microenvironment (TME) reversion since current personalized vaccination simply admixes antigens with adjuvants. Considering the broader application of TAA-based vaccine design, these two strategies complement each other and can lead to both personalized and universal therapeutic methods. Chemical strategies provide vast opportunities for (1) exploring novel adjuvants, including synthetic molecules and materials with optimizable activity, (2) constructing efficient and precise delivery systems to avoid systemic diffusion, improve biosafety, target secondary lymphoid organs, and enhance antigen presentation, and (3) combining bioengineering methods to innovate improvements in conventional vaccination, "smartly" re-educate the TME, and modulate antitumor immunity. As chemical strategies have proven versatility, reliability, and universality in the design of T cell- and B cell-based antitumor vaccines, the union of such numerous chemical methods in vaccine construction is expected to provide new vigor and vitality in cancer treatment.
Collapse
Affiliation(s)
- Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.,Beijing Institute for Brain Disorders, 100069 Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
21
|
Sakaniwa K, Shimizu T. Targeting the innate immune receptor TLR8 using small-molecule agents. Acta Crystallogr D Struct Biol 2020; 76:621-629. [PMID: 32627735 PMCID: PMC7336380 DOI: 10.1107/s2059798320006518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern-recognition receptors that initiate innate immune responses. Among the TLRs, TLR8 (and TLR7) recognizes single-stranded RNA to mediate downstream signals. In recent years, intensive X-ray crystal structural analyses have provided atomic insights into structures of TLR8 complexed with various agonists or antagonists. Here, structural knowledge of the activation and inactivation mechanisms of the ligands is reviewed. In addition, the potential clinical applications of TLR ligands are examined.
Collapse
Affiliation(s)
- Kentaro Sakaniwa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Kaushik D, Dhingra S, Patil MT, Piplani S, Khanna V, Honda-Okubo Y, Li L, Fung J, Sakala IG, Salunke DB, Petrovsky N. BBIQ, a pure TLR7 agonist, is an effective influenza vaccine adjuvant. Hum Vaccin Immunother 2020; 16:1989-1996. [PMID: 32298200 PMCID: PMC7482670 DOI: 10.1080/21645515.2019.1710409] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Better adjuvants are needed for vaccines against seasonal influenza. TLR7 agonists are potent activators of innate immune responses and thereby may be promising adjuvants. Among the imidazoquinoline compounds, 1-benzyl-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine (BBIQ) was reported to be a highly active TLR7 agonist but has remained relatively unexplored because of its commercial unavailability. Indeed, in silico molecular modeling studies predicted that BBIQ had a higher TLR7 docking score and binding free energy than imiquimod, the gold standard TLR7 agonist. To circumvent the availability issue, we developed an improved and higher yield method to synthesize BBIQ. Testing BBIQ on human and mouse TLR7 reporter cell lines confirmed it to be TLR7 specific with significantly higher potency than imiquimod. To test its adjuvant potential, BBIQ or imiquimod were admixed with recombinant influenza hemagglutinin protein and administered to mice as two intramuscular immunizations 2 weeks apart. Serum anti-influenza IgG responses assessed by ELISA 2 weeks after the second immunization confirmed that the mice that received vaccine admixed with BBIQ had significantly higher anti-influenza IgG1 and IgG2c responses than mice immunized with antigen alone or admixed with imiquimod. This confirmed BBIQ to be a TLR7-specific adjuvant able to enhance humoral immune responses.
Collapse
Affiliation(s)
- Deepender Kaushik
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University , Chandigarh, India
| | - Simran Dhingra
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University , Chandigarh, India
| | - Madhuri T Patil
- Department of Chemistry, Mehr Chand Mahajan DAV College for Women , Chandigarh, India
| | - Sakshi Piplani
- Vaxine Pty Ltd , Warradale, Australia.,College of Medicine and Public Health, Flinders University , Adelaide, Australia
| | - Varun Khanna
- Vaxine Pty Ltd , Warradale, Australia.,College of Medicine and Public Health, Flinders University , Adelaide, Australia
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd , Warradale, Australia.,College of Medicine and Public Health, Flinders University , Adelaide, Australia
| | - Lei Li
- Vaxine Pty Ltd , Warradale, Australia.,College of Medicine and Public Health, Flinders University , Adelaide, Australia
| | | | - Isaac G Sakala
- Vaxine Pty Ltd , Warradale, Australia.,College of Medicine and Public Health, Flinders University , Adelaide, Australia
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University , Chandigarh, India.,National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials (NICOVIA), Panjab University , Chandigarh, India
| | - Nikolai Petrovsky
- Vaxine Pty Ltd , Warradale, Australia.,College of Medicine and Public Health, Flinders University , Adelaide, Australia
| |
Collapse
|
23
|
Jiang S, Tanji H, Yin K, Zhang S, Sakaniwa K, Huang J, Yang Y, Li J, Ohto U, Shimizu T, Yin H. Rationally Designed Small-Molecule Inhibitors Targeting an Unconventional Pocket on the TLR8 Protein-Protein Interface. J Med Chem 2020; 63:4117-4132. [PMID: 32233366 DOI: 10.1021/acs.jmedchem.9b02128] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rational designs of small-molecule inhibitors targeting protein-protein interfaces have met little success. Herein, we have designed a series of triazole derivatives with a novel scaffold to specifically intervene with the interaction of TLR8 homomerization. In multiple assays, TH1027 was identified as a highly potent and specific inhibitor of TLR8. A successful solution of the X-ray crystal structure of TLR8 in complex with TH1027 provided an in-depth mechanistic insight into its binding mode, validating that TH1027 was located between two TLR8 monomers and recognized as an unconventional pocket, thereby preventing TLR8 from activation. Further biological evaluations showed that TH1027 dose-dependently suppressed the TLR8-mediated inflammatory responses in both human monocyte cell lines, peripheral blood mononuclear cells, and rheumatoid arthritis patient specimens, suggesting a strong therapeutic potential against autoimmune diseases.
Collapse
Affiliation(s)
| | - Hiromi Tanji
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | - Kentaro Sakaniwa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | - Jing Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing 100730, China
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | |
Collapse
|
24
|
Patinote C, Karroum NB, Moarbess G, Cirnat N, Kassab I, Bonnet PA, Deleuze-Masquéfa C. Agonist and antagonist ligands of toll-like receptors 7 and 8: Ingenious tools for therapeutic purposes. Eur J Med Chem 2020; 193:112238. [PMID: 32203790 PMCID: PMC7173040 DOI: 10.1016/j.ejmech.2020.112238] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
Abstract
The discovery of the TLRs family and more precisely its functions opened a variety of gates to modulate immunological host responses. TLRs 7/8 are located in the endosomal compartment and activate a specific signaling pathway in a MyD88-dependant manner. According to their involvement into various autoimmune, inflammatory and malignant diseases, researchers have designed diverse TLRs 7/8 ligands able to boost or block the inherent signal transduction. These modulators are often small synthetic compounds and most act as agonists and to a much lesser extent as antagonists. Some of them have reached preclinical and clinical trials, and only one has been approved by the FDA and EMA, imiquimod. The key to the success of these modulators probably lies in their combination with other therapies as recently demonstrated. We gather in this review more than 360 scientific publications, reviews and patents, relating the extensive work carried out by researchers on the design of TLRs 7/8 modulators, which are classified firstly by their biological activities (agonist or antagonist) and then by their chemical structures, which total syntheses are not discussed here. This review also reports about 90 clinical cases, thereby showing the biological interest of these modulators in multiple pathologies.
Collapse
Affiliation(s)
- Cindy Patinote
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Nour Bou Karroum
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France; Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, EDST, BP 90656, Fanar Jdeideh, Lebanon
| | - Georges Moarbess
- Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, EDST, BP 90656, Fanar Jdeideh, Lebanon
| | - Natalina Cirnat
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Issam Kassab
- Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, EDST, BP 90656, Fanar Jdeideh, Lebanon
| | | | | |
Collapse
|
25
|
|
26
|
McGowan DC. Latest Advances in Small Molecule TLR 7/8 Agonist Drug Research. Curr Top Med Chem 2019; 19:2228-2238. [DOI: 10.2174/1568026619666191009165418] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
Abstract
Toll-like receptors (TLRs) 7 and 8 play an important role in the activation of innate immune
cells in mammals. These evolutionarily conserved receptors serve as important sentinels in response to
infection. Activation of TLRs 7 and 8 triggers induction of a Th1 type innate immune response. The
emergence of new structural and small molecule information generated in the last decade has contributed
enormously to our understanding of this highly sophisticated process of innate immunity signaling.
This review will focus on recent developments in the small molecule activation of TLR 7 and 8.
Collapse
Affiliation(s)
- David C. McGowan
- Janssen Pharmaceutica, N.V., Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
27
|
Selective Toll-like receptor 7 agonists with novel chromeno[3,4-d]imidazol-4(1H)-one and 2-(trifluoromethyl)quinoline/ quinazoline-4-amine scaffolds. Eur J Med Chem 2019; 179:109-122. [DOI: 10.1016/j.ejmech.2019.06.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 01/10/2023]
|
28
|
Bou Karroum N, Moarbess G, Guichou JF, Bonnet PA, Patinote C, Bouharoun-Tayoun H, Chamat S, Cuq P, Diab-Assaf M, Kassab I, Deleuze-Masquefa C. Novel and Selective TLR7 Antagonists among the Imidazo[1,2- a]pyrazines, Imidazo[1,5- a]quinoxalines, and Pyrazolo[1,5- a]quinoxalines Series. J Med Chem 2019; 62:7015-7031. [PMID: 31283223 DOI: 10.1021/acs.jmedchem.9b00411] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Toll-like receptors (TLRs) 7 and 8 play an important role in the immune system activation, and their agonists may therefore serve as promising candidate vaccine adjuvants. However, the chronic immune activation by excessive TLR stimulation is a hallmark of several clinically important infectious and autoimmune diseases, which warrants the search for TLR antagonists. In this study, we have synthesized and characterized a variety of compounds belonging to three heterocyclic chemical series: imidazo[1,2-a]pyrazine, imidazo[1,5-a]quinoxaline, and pyrazolo[1,5-a]quinoxaline. These compounds have been tested for their TLR7 or TLR8 agonistic and antagonistic activities. Several of them are shown to be selective TLR7 antagonists without any TLR7 or TLR8 agonistic activity. The selectivity was confirmed by a comparative ligand-docking study in TLR7 antagonist pocket. Two compounds of the pyrazolo[1,5-a]quinoxaline series (10a and 10b) are potent selective TLR7 antagonists and may be considered as promising starting points for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Nour Bou Karroum
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, CNRS, Université de Montpellier , Faculté de Pharmacie , 15 avenue Charles Flahault , BP 14491, Montpellier 34093 Cedex 5 , France.,Tumorigenèse et Pharmacologie Antitumorale , Lebanese University, EDST , BP 90656, Fanar Jdeideh 1202 , Lebanon
| | - Georges Moarbess
- Tumorigenèse et Pharmacologie Antitumorale , Lebanese University, EDST , BP 90656, Fanar Jdeideh 1202 , Lebanon
| | - Jean-François Guichou
- CNRS, UMR 5048, INSERM, U105, Université de Montpellier, Centre de Biochimie Structurale , Montpellier F-34090 , France
| | - Pierre-Antoine Bonnet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, CNRS, Université de Montpellier , Faculté de Pharmacie , 15 avenue Charles Flahault , BP 14491, Montpellier 34093 Cedex 5 , France
| | - Cindy Patinote
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, CNRS, Université de Montpellier , Faculté de Pharmacie , 15 avenue Charles Flahault , BP 14491, Montpellier 34093 Cedex 5 , France
| | - Hasnaa Bouharoun-Tayoun
- Laboratory of Immunology and Vector-Borne Diseases, Faculty of Public Health , Lebanese University , Fanar Jdeideh 1202 , Lebanon
| | - Soulaima Chamat
- Laboratory of Immunology and Vector-Borne Diseases, Faculty of Public Health , Lebanese University , Fanar Jdeideh 1202 , Lebanon.,Faculty of Medical Sciences , Lebanese University , Hadath 1500 , Lebanon
| | - Pierre Cuq
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, CNRS, Université de Montpellier , Faculté de Pharmacie , 15 avenue Charles Flahault , BP 14491, Montpellier 34093 Cedex 5 , France
| | - Mona Diab-Assaf
- Tumorigenèse et Pharmacologie Antitumorale , Lebanese University, EDST , BP 90656, Fanar Jdeideh 1202 , Lebanon
| | - Issam Kassab
- Tumorigenèse et Pharmacologie Antitumorale , Lebanese University, EDST , BP 90656, Fanar Jdeideh 1202 , Lebanon
| | - Carine Deleuze-Masquefa
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, CNRS, Université de Montpellier , Faculté de Pharmacie , 15 avenue Charles Flahault , BP 14491, Montpellier 34093 Cedex 5 , France
| |
Collapse
|
29
|
Design and synthesis of tetrahydropyridopyrimidine based Toll-Like Receptor (TLR) 7/8 dual agonists. Bioorg Med Chem Lett 2018; 28:3216-3221. [PMID: 30143425 DOI: 10.1016/j.bmcl.2018.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/29/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022]
Abstract
In a continuing effort to discover novel TLR agonists, herein we report on the discovery and structure-activity relationship of novel tetrahydropyridopyrimidine TLR 7/8 agonists. Optimization of this series towards dual agonist activity and a high clearance profile resulted in the identification of compound 52a1. Evaluation in vivo revealed an interferon stimulated response (ISG) in mice with limited systemic exposure and demonstrated the potential in antiviral treatment or as a vaccine adjuvant.
Collapse
|
30
|
Yoo E, Salyer ACD, Brush MJH, Li Y, Trautman KL, Shukla NM, De Beuckelaer A, Lienenklaus S, Deswarte K, Lambrecht BN, De Geest BG, David SA. Hyaluronic Acid Conjugates of TLR7/8 Agonists for Targeted Delivery to Secondary Lymphoid Tissue. Bioconjug Chem 2018; 29:2741-2754. [DOI: 10.1021/acs.bioconjchem.8b00386] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Euna Yoo
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Alex C. D. Salyer
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michael J. H. Brush
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yupeng Li
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kathryn L. Trautman
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nikunj M. Shukla
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Ans De Beuckelaer
- Department of Pharmaceutics and Center for Inflammation Research, Ghent University, 9000 Ghent, Belgium
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Kim Deswarte
- Department of Pharmaceutics and Center for Inflammation Research, Ghent University, 9000 Ghent, Belgium
| | - Bart N. Lambrecht
- Department of Pharmaceutics and Center for Inflammation Research, Ghent University, 9000 Ghent, Belgium
| | - Bruno G. De Geest
- Department of Pharmaceutics and Center for Inflammation Research, Ghent University, 9000 Ghent, Belgium
| | - Sunil A. David
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
31
|
Targeting pattern-recognition receptors to discover new small molecule immune modulators. Eur J Med Chem 2018; 144:82-92. [DOI: 10.1016/j.ejmech.2017.12.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/03/2017] [Accepted: 12/07/2017] [Indexed: 12/21/2022]
|