1
|
Sciacca C, Cardullo N, Savitteri M, Pittalà MGG, Pulvirenti L, Napoli EM, Muccilli V. Recovery of Natural Hypoglycemic Compounds from Industrial Distillation Wastewater of Lamiaceae. Molecules 2025; 30:1391. [PMID: 40142166 PMCID: PMC11944828 DOI: 10.3390/molecules30061391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
The food industry generates the largest number of valuable by-products. The recovery of compounds such as fatty acids and polyphenols with notorious biological properties from biowaste is a new challenge in the circular economy scenario, as they represent value-added starting materials for the preparation of functional foods, food supplements, cosmetics and over-the-counter drugs. Less commonly explored are industrial wastewaters, which return to the nearby water streams without adequate treatment. Distillation wastewater (DWW) from the essential oils or agro-food industries may represent a valuable source of bioactive compounds to be valorized. In this work, DWW from rosemary was treated with different resins through dynamic and static adsorption/desorption approaches, for the recovery of phenolic compounds including rosmarinic acid. The most effective methodology, selected according to total phenolic and rosmarinic acid contents, as well as antioxidant activity evaluation, was applied to sage, thyme and oregano DWWs. The procedure provides several advantages compared with conventional separation processes, as it involves the lower consumption of reagents/solvents, low operational costs, ease of handling, and simplicity of scale-up. The results of this work highlight a fast and sustainable procedure for the recovery of rosmarinic acid and other phenolics (caffeic acid derivatives and flavonoid glycosides) from DWWS, thus affording a fraction with antioxidant and hypoglycemic activities.
Collapse
Affiliation(s)
- Claudia Sciacca
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.S.); (M.S.); (M.G.G.P.); (V.M.)
| | - Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.S.); (M.S.); (M.G.G.P.); (V.M.)
| | - Martina Savitteri
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.S.); (M.S.); (M.G.G.P.); (V.M.)
| | - Maria Gaetana Giovanna Pittalà
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.S.); (M.S.); (M.G.G.P.); (V.M.)
| | - Luana Pulvirenti
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy;
| | - Edoardo Marco Napoli
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy;
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.S.); (M.S.); (M.G.G.P.); (V.M.)
| |
Collapse
|
2
|
Nishimoto S, Debarbat A, Ikeda Y, Arikawa E, Odagaki Y, Yano H, Qiao Y, Ito M, Kimura T, Takita T, Yasukawa K. Expression of Recombinant Human α-Glucosidase in HEK293 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:617-624. [PMID: 39714016 DOI: 10.1021/acs.jafc.4c06902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
In mammals, intestinal α-glucosidase exists as a maltase-glucoamylase complex (MGAM) and a sucrase-isomaltase complex (SI). In this study, we transiently expressed human MGAM and SI in human embryonic kidney 293 (HEK293) cells. At pH 6.0 and 37 °C, the MGAM-expressing HEK293 cells extract (MGE) exhibited maltase, glucoamylase, and isomaltase activities but not sucrase activity, whereas the SI-expressing HEK293 cells extract (SIE) exhibited sucrase, isomaltase, and maltase activities but not glucoamylase activity. The apparent Km value of the MGE for maltose hydrolysis was 14-26% of that of the SIE for maltose, sucrose, and isomaltose hydrolysis. The respective apparent Vmax values of the MGE and SIE for sucrose and isomaltose hydrolysis were 0% and 6% and 10% and 42% of those for maltose hydrolysis. These results indicated that the maltase activities of MGAM and SI were higher than those of sucrase and isomaltase.
Collapse
Affiliation(s)
- So Nishimoto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Anaïs Debarbat
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yuki Ikeda
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Emi Arikawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yuki Odagaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Haruna Yano
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ying Qiao
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masaaki Ito
- Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Henoko, Nago 905-2192, Japan
| | - Toshiyuki Kimura
- Research Center of Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8642, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Fuochi V, Furnari S, Floresta G, Patamia V, Zagni C, Drago F, Rescifina A, Furneri PM. Antiviral efficacy of heparan sulfate and enoxaparin sodium against SARS-CoV-2. Arch Pharm (Weinheim) 2025; 358:e2400545. [PMID: 39520338 PMCID: PMC11704024 DOI: 10.1002/ardp.202400545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
As the world transitions from the acute phase of the COVID-19 pandemic caused by SARS-CoV-2, the scientific community continues to explore various therapeutic avenues to control its spread and mitigate its ongoing effects. Among the promising candidates are heparan sulfate (HS) and enoxaparin (EX), which have emerged as potential virus inhibitors. HS, a type of glycosaminoglycan, plays a prominent role in the attachment of the virus to host cells. At the same time, EX, a low-molecular-weight heparin, is being investigated for its ability to disrupt the interaction between the spike protein of SARS-CoV-2 and the ACE2 receptor in human cells. Understanding the mechanisms through which these substances operate could lay the foundation for new strategies in the ongoing management of COVID-19. This study aimed to examine the details of SARS-CoV-2's entry mechanisms and the role of HS in this process. Furthermore, it examines EX's mechanism of action, highlighting how it potentially inhibits SARS-CoV-2. The interactions between HS and the virus, alongside in-vitro and in-silico inhibition studies with HS and EX, are critically analyzed to assess their antiviral efficacy. Additionally, the antiviral activity of sulfated polysaccharides and the potential therapeutic applications of these findings are discussed.
Collapse
Affiliation(s)
- Virginia Fuochi
- Department of Biomedical and Biotechnological Sciences (Biometec)University of CataniaCataniaItaly
| | - Salvatore Furnari
- Department of Biomedical and Biotechnological Sciences (Biometec)University of CataniaCataniaItaly
| | - Giuseppe Floresta
- Department of Drug and Health Sciences (DSFS)University of CataniaCataniaItaly
| | - Vincenzo Patamia
- Department of Drug and Health Sciences (DSFS)University of CataniaCataniaItaly
| | - Chiara Zagni
- Department of Drug and Health Sciences (DSFS)University of CataniaCataniaItaly
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences (Biometec)University of CataniaCataniaItaly
| | - Antonio Rescifina
- Department of Drug and Health Sciences (DSFS)University of CataniaCataniaItaly
| | - Pio Maria Furneri
- Department of Biomedical and Biotechnological Sciences (Biometec)University of CataniaCataniaItaly
| |
Collapse
|
4
|
Sciacca C, Cardullo N, Pulvirenti L, Travagliante G, D'Urso A, D'Agata R, Peri E, Cancemi P, Cornu A, Deffieux D, Pouységu L, Quideau S, Muccilli V. Synthesis of obovatol and related neolignan analogues as α-glucosidase and α-amylase inhibitors. Bioorg Chem 2024; 147:107392. [PMID: 38723423 DOI: 10.1016/j.bioorg.2024.107392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 05/18/2024]
Abstract
Diabetes mellitus is a metabolic disease characterized by hyperglycemia, which can be counteracted by the inhibition of α-glucosidase (α-Glu) and α-amylase (α-Amy), enzymes responsible for the hydrolysis of carbohydrates. In recent decades, many natural compounds and their bioinspired analogues have been studied as α-Glu and α-Amy inhibitors. However, no studies have been devoted to the evaluation of α-Glu and α-Amy inhibition by the neolignan obovatol (1). In this work, we report the synthesis of 1 and a library of new analogues. The synthesis of these compounds was achieved by implementing methodologies based on: phenol allylation, Claisen/Cope rearrangements, methylation, Ullmann coupling, demethylation, phenol oxidation and Michael-type addition. Obovatol (1) and ten analogues were evaluated for their in vitro inhibitory activity towards α-Glu and α-Amy. Our investigation highlighted that the naturally occurring 1 and four neolignan analogues (11, 22, 26 and 27) were more effective inhibitors than the hypoglycemic drug acarbose (α-Amy: 34.6 µM; α-Glu: 248.3 µM) with IC5O value of 6.2-23.6 µM toward α-Amy and 39.8-124.6 µM toward α-Glu. Docking investigations validated the inhibition outcomes, highlighting optimal compatibility between synthesized neolignans and both the enzymes. Concurrently circular dichroism spectroscopy detected the conformational changes in α-Glu induced by its interaction with the studied neolignans. Detailed studies through fluorescence measurements and kinetics of α-Glu and α-Amy inhibition also indicated that 1, 11, 22, 26 and 27 have the greatest affinity for α-Glu and 1, 11 and 27 for α-Amy. Surface plasmon resonance imaging (SPRI) measurements confirmed that among the compounds studied, the neolignan 27 has the greater affinity for both enzymes, thus corroborating the results obtained by kinetics and fluorescence quenching. Finally, in vitro cytotoxicity of the investigated compounds was tested on human colon cancer cell line (HCT-116). All these results demonstrate that these obovatol-based neolignan analogues constitute promising candidates in the pursuit of developing novel hypoglycemic drugs.
Collapse
Affiliation(s)
- Claudia Sciacca
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Luana Pulvirenti
- CNR-ICB, Consiglio Nazionale delle Ricerche-Istituto di Chimica Biomolecolare, via Paolo Gaifami 18, Catania 95126, Italy
| | - Gabriele Travagliante
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Alessandro D'Urso
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Roberta D'Agata
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Emanuela Peri
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy
| | - Patrizia Cancemi
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy
| | - Anaëlle Cornu
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, Talence Cedex, France
| | - Denis Deffieux
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, Talence Cedex, France
| | - Laurent Pouységu
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, Talence Cedex, France
| | - Stéphane Quideau
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, Talence Cedex, France; Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France.
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
5
|
Aryal D, Joshi S, Thapa NK, Chaudhary P, Basaula S, Joshi U, Bhandari D, Rogers HM, Bhattarai S, Sharma KR, Regmi BP, Parajuli N. Dietary phenolic compounds as promising therapeutic agents for diabetes and its complications: A comprehensive review. Food Sci Nutr 2024; 12:3025-3045. [PMID: 38726403 PMCID: PMC11077226 DOI: 10.1002/fsn3.3983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 05/12/2024] Open
Abstract
In the middle of an ever-changing landscape of diabetes care, precision medicine, and lifestyle therapies are becoming increasingly important. Dietary polyphenols are like hidden allies found in our everyday meals. These biomolecules, found commonly in fruits, vegetables, and various plant-based sources, hold revolutionary potential within their molecular structure in the way we approach diabetes and its intimidating consequences. There are currently numerous types of diabetes medications, but they are not appropriate for all patients due to limitations in dosages, side effects, drug resistance, a lack of efficacy, and ethnicity. Currently, there has been increased interest in practicing herbal remedies to manage diabetes and its related complications. This article aims to summarize the potential of dietary polyphenols as a foundation in the treatment of diabetes and its associated consequences. We found that most polyphenols inhibit enzymes linked to diabetes. This review outlines the potential benefits of selected molecules, including kaempferol, catechins, rosmarinic acid, apigenin, chlorogenic acid, and caffeic acid, in managing diabetes mellitus as these compounds have exhibited promising results in in vitro, in vivo, in silico, and some preclinical trials study. This encompassing exploration reveals the multifaceted impact of polyphenols not only in mitigating diabetes but also in addressing associated conditions like inflammation, obesity, and even cancer. Their mechanisms involve antioxidant functions, immune modulation, and proinflammatory enzyme regulation. Furthermore, these molecules exhibit anti-tumor activities, influence cellular pathways, and activate AMPK pathways, offering a less toxic, cost-effective, and sustainable approach to addressing diabetes and its complications.
Collapse
Affiliation(s)
- Dipa Aryal
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Soniya Joshi
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Nabin Kumar Thapa
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Pratiksha Chaudhary
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Sirjana Basaula
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Usha Joshi
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Damodar Bhandari
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Hannah M. Rogers
- Department of ChemistryFlorida Agricultural and Mechanical UniversityTallahasseeFloridaUSA
| | | | - Khaga Raj Sharma
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Bishnu P. Regmi
- Department of ChemistryFlorida Agricultural and Mechanical UniversityTallahasseeFloridaUSA
| | - Niranjan Parajuli
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| |
Collapse
|
6
|
Badalamenti N, Maggio A, Fontana G, Bruno M, Lauricella M, D’Anneo A. Synthetic Derivatives of Natural ent-Kaurane Atractyligenin Disclose Anticancer Properties in Colon Cancer Cells, Triggering Apoptotic Cell Demise. Int J Mol Sci 2024; 25:3925. [PMID: 38612735 PMCID: PMC11011390 DOI: 10.3390/ijms25073925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
The antitumor activity of different ent-kaurane diterpenes has been extensively studied. Several investigations have demonstrated the excellent antitumor activity of synthetic derivatives of the diterpene atractyligenin. In this research, a series of new synthetic amides and their 15,19-di-oxo analogues obtained from atractyligenin by modifying the C-2, C-15, and C-19 positions were designed in order to dispose of a set of derivatives with different substitutions at the amidic nitrogen. Using different concentrations of the obtained compounds (10-300 μM) a reduction in cell viability of HCT116 colon cancer cells was observed at 48 h of treatment. All the di-oxidized compounds were more effective than their alcoholic precursors. The di-oxidized compounds had already reduced the viability of two colon cancer cells (HCT116 and Caco-2) at 24 h when used at low doses (2.5-15 μM), while they turned out to be poorly effective in differentiated Caco-2 cells, a model of polarized enterocytes. The data reported here provide evidence that di-oxidized compounds induced apoptotic cell death, as demonstrated by the appearance of condensed and fragmented DNA in treated cells, as well as the activation of caspase-3 and fragmentation of its target PARP-1.
Collapse
Affiliation(s)
- Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (G.F.); (M.B.); (A.D.)
- NBFC—National Biodiversity Future Center, Piazza Marina 60, 90133 Palermo, Italy
| | - Antonella Maggio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (G.F.); (M.B.); (A.D.)
- NBFC—National Biodiversity Future Center, Piazza Marina 60, 90133 Palermo, Italy
| | - Gianfranco Fontana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (G.F.); (M.B.); (A.D.)
- NBFC—National Biodiversity Future Center, Piazza Marina 60, 90133 Palermo, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (G.F.); (M.B.); (A.D.)
- NBFC—National Biodiversity Future Center, Piazza Marina 60, 90133 Palermo, Italy
- Centro Interdipartimentale di Ricerca “Riutilizzo Bio-Based Degli Scarti da Matrici Agroalimentari” (RIVIVE), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy;
| | - Antonella D’Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (G.F.); (M.B.); (A.D.)
| |
Collapse
|
7
|
Quan W, Wang Y, Chen YH, Shao Q, Gong YZ, Hu JW, Liu WH, Wu ZJ, Wang J, Ma SB, Li XQ. Screening of rosmarinic acid from Salvia miltiorrhizae acting on the novel target TRPC1 based on the 'homology modelling-virtual screening-molecular docking-affinity assay-activity evaluation' method. PHARMACEUTICAL BIOLOGY 2023; 61:155-164. [PMID: 36604840 PMCID: PMC9828776 DOI: 10.1080/13880209.2022.2160769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/14/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
CONTEXT Salvia miltiorrhizae Bunge (Lamiaceae) is a traditional Chinese medicine (TCM) for the treatment of 'thoracic obstruction'. Transient receptor potential canonical channel 1 (TRPC1) is a important target for myocardial injury treatment. OBJECTIVE This work screens the active component acting on TRPC1 from Salvia miltiorrhizae. MATERIALS AND METHODS TCM Systems Pharmacology Database and Analysis Platform (TCMSP) was used to retrieve Salvia miltiorrhiza compounds for preliminary screening by referring to Lipinski's rule of five. Then, the compound group was comprehensively scored by AutoDock Vina based on TRPC1 protein. Surface plasmon resonance (SPR) was used to determine the affinity of the optimal compound to TRPC1 protein. Western blot assay was carried out to observe the effect of the optimal compound on TRPC1 protein expression in HL-1 cells, and Fura-2/AM detection was carried out to observe the effect of the optimal compound on calcium influx in HEK293 cells. RESULTS Twenty compounds with relatively good characteristic parameters were determined from 202 compounds of Salvia miltiorrhiza. Rosmarinic acid (RosA) was obtained based on the molecular docking scoring function. RosA had a high binding affinity to TRPC1 protein (KD value = 1.27 µM). RosA (50 μM) could reduce the protein levels (417.1%) of TRPC1 after oxygen-glucose deprivation/reperfusion (OGD/R) in HL-1 cells and it could inhibit TRPC1-mediated Ca2+ influx injury (0.07 ΔRatio340/380) in HEK293 cells. DISCUSSION AND CONCLUSIONS We obtained the potential active component RosA acting on TRPC1 from Salvia miltiorrhizae, and we speculate that RosA may be a promising clinical candidate for myocardial injury therapy.
Collapse
Affiliation(s)
- Wei Quan
- Department of Pharmacy, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Yuan Wang
- Department of Neurosurgery, Wuhan No.1 Hospital, Wuhan, China
| | - Yu-han Chen
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Qing Shao
- Xi’an Mental Health Center, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Yang-ze Gong
- Xi’an Mental Health Center, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Jie-wen Hu
- Xi’an Mental Health Center, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Wei-hai Liu
- Department of Pharmacy, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zi-jun Wu
- Department of Pharmacy, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jie Wang
- Department of Pharmacy, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Shan-bo Ma
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xiao-qiang Li
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi’an, China
| |
Collapse
|
8
|
Cárdenas-Valdovinos JG, García-Ruiz I, Angoa-Pérez MV, Mena-Violante HG. Ethnobotany, Biological Activities and Phytochemical Compounds of Some Species of the Genus Eryngium (Apiaceae), from the Central-Western Region of Mexico. Molecules 2023; 28:molecules28104094. [PMID: 37241835 DOI: 10.3390/molecules28104094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
There are approximately 250 species of Eryngium L. distributed throughout the world, with North America and South America being centers of diversity on this continent. In the central-western region of Mexico there may be around 28 species of this genus. Some Eryngium species are cultivated as leafy vegetables, ornamental, and medicinal plants. In traditional medicine they are used to treat respiratory and gastrointestinal conditions, diabetes, and dyslipidemia, among others. This review addresses the phytochemistry and biological activities, as well as traditional uses, distribution, and characteristics of the eight species of Eryngium reported as medicinal in the central-western region of Mexico: E. cymosum, E. longifolium, E. fluitans (or mexicanum), E. beecheyanum, E. carlinae, E. comosum, E. heterophyllum, and E. nasturtiifolium. The extracts of the different Eryngium spp. have shown biological activities such as hypoglycemic, hypocholesterolemic, renoprotective, anti-inflammatory, antibacterial, and antioxidant, among others. E. carlinae is the most studied species, and phytochemical analyses, performed mainly by high-performance liquid chromatography (HPLC) and gas chromatography coupled with mass spectrometry (GC-MS), have shown its content of terpenoids, fatty acids, organic acids, phenolic acids, flavonoids, sterols, saccharides, polyalcohols, and aromatic and aliphatic aldehydes. According to the results of this review on Eryngium spp., they constitute a relevant alternative as a source of bioactive compounds for pharmaceutical, food, and other industries. However, there is a lot of research to be conducted regarding phytochemistry, biological activities, cultivation, and propagation, in those species with few or no reports.
Collapse
Affiliation(s)
| | - Ignacio García-Ruiz
- Instituto Politécnico Nacional, Department of Research, CIIDIR IPN Unidad Michoacán, Jiquilpan 59510, Mexico
| | - María V Angoa-Pérez
- Instituto Politécnico Nacional, Department of Research, CIIDIR IPN Unidad Michoacán, Jiquilpan 59510, Mexico
| | - Hortencia G Mena-Violante
- Instituto Politécnico Nacional, Department of Research, CIIDIR IPN Unidad Michoacán, Jiquilpan 59510, Mexico
| |
Collapse
|
9
|
Heparan Sulfate and Enoxaparin Interact at the Interface of the Spike Protein of HCoV-229E but Not with HCoV-OC43. Viruses 2023; 15:v15030663. [PMID: 36992372 PMCID: PMC10056857 DOI: 10.3390/v15030663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/20/2022] [Accepted: 01/05/2023] [Indexed: 03/05/2023] Open
Abstract
It is known that the spike protein of human coronaviruses can bind to a secondary receptor, or coreceptor, to facilitate the virus entry. While HCoV-229E uses human aminopeptidase N (hAPN) as a receptor, HCoV-OC43 binds to 9-O-acetyl-sialic acid (9-O-Ac-Sia), which is linked in a terminal way to the oligosaccharides that decorate glycoproteins and gangliosides on the surface of the host cell. Thus, evaluating the possible inhibitory activity of heparan sulfate, a linear polysaccharide found in animal tissues, and enoxaparin sodium on these viral strains can be considered attractive. Therefore, our study also aims to evaluate these molecules’ antiviral activity as possible adsorption inhibitors against non-SARS-CoV. Once the molecules’ activity was verified in in vitro experiments, the binding was studied by molecular docking and molecular dynamic simulations confirming the interactions at the interface of the spike proteins.
Collapse
|
10
|
Zagni C, Scamporrino AA, Riccobene PM, Floresta G, Patamia V, Rescifina A, Carroccio SC. Portable Nanocomposite System for Wound Healing in Space. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:741. [PMID: 36839109 PMCID: PMC9961582 DOI: 10.3390/nano13040741] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
It is well known that skin wound healing could be severely impaired in space. In particular, the skin is the tissue at risk of injury, especially during human-crewed space missions. Here, we propose a hybrid system based on the biocompatible poly 2-hydroxyethyl methacrylate (pHEMA) to actively support a nanocontainer filled with the drug. Specifically, during the cryo-polymerization of HEMA, halloysite nanotubes (HNTs) embedded with thymol (Thy) were added as a component. Thy is a natural pharmaceutical ingredient used to confer wound healing properties to the material, whereas HNTs were used to entrap the Thy into the lumen to ensure a sustained release of the drug. The as-obtained material was characterized by chemical-physical methods, and tests were performed to assess its ability for a prolonged drug release. The results showed that the adopted synthetic procedure allows the formation of a super absorbent system with good swelling ability that can contain up to 5.5 mg of Thy in about 90 mg of dried sponge. Releasing tests demonstrated the excellent material's ability to perform a slow controlled delivery of 62% of charged Thy within a week. As humans venture deeper into space, with more extended missions, limited medical capabilities, and a higher risk of skin wounds, the proposed device would be a versatile miniaturized device for skin repair in space.
Collapse
Affiliation(s)
- Chiara Zagni
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | | | - Paolo Maria Riccobene
- Institute for Polymers, Composites, and Biomaterials CNR-IPCB, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Vincenzo Patamia
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Sabrina Carola Carroccio
- Institute for Polymers, Composites, and Biomaterials CNR-IPCB, Via Paolo Gaifami 18, 95126 Catania, Italy
| |
Collapse
|
11
|
Flow Synthesis of Nature-Inspired Mitochondria-Targeted Phenolic Derivatives as Potential Neuroprotective Agents. Antioxidants (Basel) 2022; 11:antiox11112160. [DOI: 10.3390/antiox11112160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
A series of phenolic derivatives designed to selectively target mitochondria were synthesized under flow conditions starting from natural phenolic acids. The two-step continuous flow protocol, performed in Cyrene, a bioavailable dipolar aprotic solvent, allowed the isolation of the MITO compounds in moderate to good yields. The MITO compounds obtained, as a first step, were tested for their safety by cell viability analysis. The cytocompatible dose, in human neuronal cell line SH-SH5Y, depends on the type of compound and the non-toxic dose is between 3.5 and 125 µM. Among the seven MITO compounds synthesized, two of them have shown interesting performances, being able to protect mitochondria from oxidative insult.
Collapse
|
12
|
Gentile D, Coco A, Patamia V, Zagni C, Floresta G, Rescifina A. Targeting the SARS-CoV-2 HR1 with Small Molecules as Inhibitors of the Fusion Process. Int J Mol Sci 2022; 23:10067. [PMID: 36077465 PMCID: PMC9456533 DOI: 10.3390/ijms231710067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
The rapid and global propagation of the novel human coronavirus that causes severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has produced an immediate urgency to discover promising targets for the treatment of this virus. In this paper, we studied the spike protein S2 domain of SARS-CoV-2 as it is the most conserved component and controls the crucial fusion process of SARS-CoV-2 as a target for different databases of small organic compounds. Our in silico methodology, based on pharmacophore modeling, docking simulation and molecular dynamics simulations, was first validated with ADS-J1, a potent small-molecule HIV fusion inhibitor that has already proved effective in binding the HR1 domain and inhibiting the fusion core of SARS-CoV-1. It then focused on finding novel small molecules and new peptides as fusion inhibitors. Our methodology identified several small molecules and peptides as potential inhibitors of the fusion process. Among these, NF 023 hydrate (MolPort-006-822-583) is one of the best-scored compounds. Other compounds of interest are ZINC00097961973, Salvianolic acid, Thalassiolin A and marine_160925_88_2. Two interesting active peptides were also identified: AP00094 (Temporin A) and AVP1227 (GBVA5). The inhibition of the spike protein of SARS-CoV-2 is a valid target to inhibit the virus entry in human cells. The discussed compounds reported in this paper led to encouraging results for future in vitro tests against SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco e Della Salute, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
13
|
Badalamenti N, Sottile F, Bruno M. Ethnobotany, Phytochemistry, Biological, and Nutritional Properties of Genus Crepis-A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040519. [PMID: 35214852 PMCID: PMC8875603 DOI: 10.3390/plants11040519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 05/06/2023]
Abstract
The genus Crepis L., included within the Asteraceae family, has a very wide distribution, expanding throughout the northern hemisphere, including Europe, northern Africa, and temperate Asia. This genus has a fundamental value from biodynamic and ecological perspectives, with the different species often being chosen for soil conservation, for environmental sustainability, and for their attraction towards pollinating species. Furthermore, various species of Crepis have been used in the popular medicine of several countries as medicinal herbs and food since ancient times. In most cases, the species is consumed either in the form of a decoction, or as a salad, and is used for its cardiovascular properties, as a digestive, for problems related to sight, for the treatment of diabetes, and for joint diseases. This literature review, the first one of the Crepis genus, includes publications with the word 'Crepis', and considers the single metabolites identified, characterised, and tested to evaluate their biological potential. The various isolated compounds, including in most cases sesquiterpenes and flavonoids, were obtained by extracting the roots and aerial parts of the different species. The secondary metabolites, extracted using traditional (solvent extraction, column chromatography, preparative thin layer chromatography, preparative HPLC, vacuum liquid chromatography), and modern systems such as ultrasounds, microwaves, etc., and characterised by mono- and bi- dimensional NMR experiments and by HPLC-MS, have a varied application spectrum at a biological level, with antimicrobial, antioxidant, antidiabetic, antitumor, antiviral, antiulcer, phytotoxic, and nutritional properties having been reported. Unfortunately, in vitro tests have not always been accompanied by in vivo tests, and this is the major critical aspect that emerges from the study of the scientific aspects related to this genus. Therefore, extensive investigations are necessary to evaluate the real capacity of the different species used in food, and above all to discover what the different plants that have never been analysed could offer at a scientific level.
Collapse
Affiliation(s)
- Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy;
| | - Francesco Sottile
- Department of Architecture, University of Palermo, Viale delle Scienze, Parco d’Orleans II, I-90128 Palermo, Italy;
- Centro Interdipartimentale di Ricerca “Riuszo Bio-Based Degli Scarti da Matrici Agroalimentari” (RIVIVE), Università degli Studi di Palermo, I-90128 Palermo, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy;
- Centro Interdipartimentale di Ricerca “Riuszo Bio-Based Degli Scarti da Matrici Agroalimentari” (RIVIVE), Università degli Studi di Palermo, I-90128 Palermo, Italy
- Correspondence:
| |
Collapse
|
14
|
Nan X, Jia W, Zhang Y, Wang H, Lin Z, Chen S. An on-line detection system for screening small molecule inhibitors of α-Amylase and α-Glucosidase in Prunus mume. J Chromatogr A 2021; 1663:462754. [PMID: 34954531 DOI: 10.1016/j.chroma.2021.462754] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/15/2022]
Abstract
High-throughput screening of inhibitors from natural products is an efficient approach to target key enzymes in diabetes progression. In this study, an on-line detection system was established for the first time to rapidly screen inhibitors of α-amylase and α-glucosidase from Prunus mume. Among 28 identified compounds, 26 and 21 compounds showed strong inhibitory effect against α-amylase and α-glucosidase, respectively. Their inhibitory effects were validated by in vitro enzyme assay and fluorescence quenching which demonstrated that these inhibitors effectively interfered enzyme active sites. The inhibition kinetics suggested that chemical structures are of great importance for interfering the enzyme structures and their microenvironment polarity. Among evaluated compounds, isorhamnetin-3-O-glucoside (19) showed the strongest binding activities to α-amylase and α-glucosidase (6.34×106·nmol-1 and 6.28×106·nmol-1, respectively) by the on-line detection system. Its IC50 values were 0.16 ± 0.06 and 0.09 ± 0.01 µM against α-amylase and α-glucosidase, respectively. 19 gave a much higher Ki for α-amylase (0.1307 mM) than α-glucosidase (0.0063 mM), indicating its selectivity towards α-glucosidase. This reported method was rapid and reliable to identify prototype inhibitors against key enzymes in diabetes, and thus might serve as a general platform to screen enzyme inhibitors from natural products.
Collapse
Affiliation(s)
- Xiaoke Nan
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Weijuan Jia
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Yuankuan Zhang
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Hong Wang
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Zongtao Lin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Shizhong Chen
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
15
|
Cardullo N, Floresta G, Rescifina A, Muccilli V, Tringali C. Synthesis and in vitro evaluation of chlorogenic acid amides as potential hypoglycemic agents and their synergistic effect with acarbose. Bioorg Chem 2021; 117:105458. [PMID: 34736132 DOI: 10.1016/j.bioorg.2021.105458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 01/01/2023]
Abstract
Type 2 Diabetes mellitus is a chronic disease considered one of the most severe global health emergencies. Chlorogenic acid (1) has been shown to delay intestinal glucose absorption by inhibiting the activity of α-glucosidase (α-Glu) and α-amylase (α-Amy). In the present work, eleven chlorogenic acid amides have been synthesized and evaluated for their antioxidant properties (as DPPH and ORAC) and inhibition activity towards the two enzymes and, with the aim to obtain dual-action antidiabetic agents. The two most promising hypoglycemic compounds, bearing a tertiary amine function on an alkyl chain (8) and a benzothiazole scaffold (11), showed IC50 values lower than that of (1) (45.5 µM α-Glu; 105.2 µM α-Amy). Amides 8 and 11 were by far more potent α-Glu inhibitors than the antidiabetic drug acarbose (IC50 = 268.4 µM) and about twice less active toward α-Amy than acarbose (IC50 = 34.4 µM). Kinetics experiments on amides 8 and 11 indicated these compounds as mixed-type inhibitors of α-Glu with K'i values of 13.3 and 6.3 µM, respectively. The amylase inhibition occurred with a competitive mechanism in the presence of 8 (Ki = 79.7 µM) and with a mixed-type mechanism with 11 (Ki = 19.1 µM; K'i = 93.6 µM). Molecular docking analyses supported these results, highlighting the presence of additional binding sites in both enzymes. Fluorescence experiments confirmed the grater affinity of amides 8 and 11 towards the two enzymes respect to (1). Moreover, a significant enhancement in acarbose efficacy was observed when inhibition assays were performed adding acarbose and amide 11. The above outcomes pinpointed the benzothiazole-based amide 11 as a promising candidate for further studies on type 2 diabetes treatment, both alone or combined with acarbose.
Collapse
Affiliation(s)
- Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, Catania 95125, Italy.
| | - Giuseppe Floresta
- Department of Analytical, Environmental and Forensic Sciences, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Catania, V.le A. Doria 6, Catania 95125, Italy.
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, Catania 95125, Italy.
| | - Corrado Tringali
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, Catania 95125, Italy.
| |
Collapse
|
16
|
Marchev AS, Vasileva LV, Amirova KM, Savova MS, Koycheva IK, Balcheva-Sivenova ZP, Vasileva SM, Georgiev MI. Rosmarinic acid - From bench to valuable applications in food industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Zhang C, Lum KY, Taki AC, Gasser RB, Byrne JJ, Wang T, Blaskovich MAT, Register ET, Montaner LJ, Tietjen I, Davis RA. Design, synthesis and screening of a drug discovery library based on an Eremophila-derived serrulatane scaffold. PHYTOCHEMISTRY 2021; 190:112887. [PMID: 34339980 DOI: 10.1016/j.phytochem.2021.112887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Chemical studies of the aerial parts of the Australian desert plant Eremophila microtheca afforded the targeted and known diterpenoid scaffolds, 3,7,8-trihydroxyserrulat-14-en-19-oic acid and 3-acetoxy-7,8-dihydroxyserrulat-14-en-19-oic acid. The most abundant serrulatane scaffold was converted to the poly-methyl derivatives, 3-hydroxy-7,8-dimethoxyserrulat-14-en-19-oic acid methyl ester and 3,7,8-trimethoxyserrulat-14-en-19-oic acid methyl ester using simple and rapid methylation conditions consisting of DMSO, NaOH and MeI at room temperature. Subsequently a 12-membered amide library was synthesised by reacting the methylated scaffolds with a diverse series of commercial primary amines. The chemical structures of the 12 undescribed semi-synthetic analogues were fully characterised following 1D/2D NMR, MS, UV, ECD and [α]D data analyses. All compounds were evaluated for their anthelmintic, anti-microbial and anti-viral activities. While none of the compounds significantly inhibited motility or development of the exsheathed third-stage larvae (xL3s) of a pathogenic ruminant parasite, Haemonchus contortus, the tri-methylated analogue induced a skinny phenotype in fourth-stage larvae (L4s) after seven days of treatment (IC50 = 14 μM). Anti-bacterial and anti-fungal activities were not observed at concentrations up to 20 μM. Activity against HIV latency reversal was tested in inducible, chronically-infected cells, with the tri-methylated analogue being the most active (EC50 = 38 μM).
Collapse
Affiliation(s)
- Chen Zhang
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| | - Kah Yean Lum
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| | - Aya C Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Joseph J Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark A T Blaskovich
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | - Rohan A Davis
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
18
|
Aroua LM, Almuhaylan HR, Alminderej FM, Messaoudi S, Chigurupati S, Al-Mahmoud S, Mohammed HA. A facile approach synthesis of benzoylaryl benzimidazole as potential α-amylase and α-glucosidase inhibitor with antioxidant activity. Bioorg Chem 2021; 114:105073. [PMID: 34153810 DOI: 10.1016/j.bioorg.2021.105073] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/25/2021] [Accepted: 06/06/2021] [Indexed: 12/23/2022]
Abstract
Synthetic routes to a series of benzoylarylbenzimidazol 3a-h have been derived from 3,4-diaminobenzophenone and an appropriate arylaldehyde in the presence of ammonium chloride or a mixture of ammonium chloride and sodium metabisulfite as catalyst. The antioxidant activity of targeted compounds 3a-h has been measured by four different methods and the overall antioxidant evaluation of the compounds indicated the significant MCA, FRAP, and (DPPH-SA) of the compounds except for the compound 3h. In vitro antidiabetic assay of α-amylase and α-glucosidase suggest a good to excellent activity for most tested compounds. The target benzimidazole 3f containing hydroxyl motif at para-position of phenyl revealed an important activity inhibitor against α- amylase (IC50 = 12.09 ± 0.38 µM) and α-glucosidase (IC50 = 11.02 ± 0.04 µM) comparable to the reference drug acarbose. The results of the anti hyperglycemic activity were supported by means of in silico molecular docking calculations showing strong binding affinity of compounds 3a-h with human pancreatic α-amylase (HPA) and human lysosomal acid-α-glucosidase (HLAG) active sites that confirm a good to excellent activity for most of tested compounds.
Collapse
Affiliation(s)
- Lotfi M Aroua
- Department of Chemistry, College of Science, Qassim University, Campus University, King Abdulaziz Road, Al-Malida, 51452-P.O. Box: 6644, Buraydah, Qassim, Saudi Arabia; Laboratory of Organic Structural Chemistry and Macromolecules, Department of Chemistry, Faculty of Sciences of Tunis, Tunis El-Manar University, El Manar I 2092, Tunis, Tunisia; Carthage University, Faculty of Sciences of Bizerte, 7021 Jarzouna, Tunisia.
| | - Hind R Almuhaylan
- Department of Chemistry, College of Science, Qassim University, Campus University, King Abdulaziz Road, Al-Malida, 51452-P.O. Box: 6644, Buraydah, Qassim, Saudi Arabia
| | - Fahad M Alminderej
- Department of Chemistry, College of Science, Qassim University, Campus University, King Abdulaziz Road, Al-Malida, 51452-P.O. Box: 6644, Buraydah, Qassim, Saudi Arabia
| | - Sabri Messaoudi
- Department of Chemistry, College of Science, Qassim University, Campus University, King Abdulaziz Road, Al-Malida, 51452-P.O. Box: 6644, Buraydah, Qassim, Saudi Arabia; Carthage University, Faculty of Sciences of Bizerte, 7021 Jarzouna, Tunisia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia
| | - Suliman Al-Mahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
19
|
Liu JP, Qian YF, Qin GYX, Zhao LY, Chen GT. Antidiabetic activities of glycoprotein from pea ( Pisum sativum L.) in STZ-induced diabetic mice. Food Funct 2021; 12:5087-5095. [PMID: 33960991 DOI: 10.1039/d1fo00535a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polysaccharides have hypoglycemic activity and pea protein has high nutritional value. The purified pea glycoprotein PGP2 has been shown to inhibit the activity of α-glucosidase and α-amylase in previous studies. To study the mechanism of PGP2-induced blood glucose lowering in vivo, this paper established a diabetic mouse model by intraperitoneal injection of STZ and high-fat diet, and evaluated the blood-glucose-lowering activity of the pea component PGP2 at different doses. The results showed that intragastric administration of PGP2 could effectively reduce diabetic weight loss and polyphagia symptoms, reduce fasting blood glucose levels in mice, and improve oral glucose tolerance levels in mice. PGP2 could promote insulin secretion and had a protective effect on mouse organs. After intragastric administration of PGP2 in mice, the serum levels of total cholesterol, triglycerides and low-density lipoprotein decreased. PGP2 up-regulated the gene expression of insulin receptor substrates IRS-1 and IRS-2 in liver tissues, thereby reducing insulin resistance. Based on the above experimental results, PGP2 had good hypoglycemic activity and was expected to be developed as a natural medicine for the treatment of type II diabetes.
Collapse
Affiliation(s)
- Jun-Ping Liu
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yan-Fang Qian
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, 211198, China.
| | - Gao-Yi-Xin Qin
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, 211198, China.
| | - Li-Yan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gui-Tang Chen
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
20
|
Cardullo N, Muccilli V, Pulvirenti L, Tringali C. Natural Isoflavones and Semisynthetic Derivatives as Pancreatic Lipase Inhibitors. JOURNAL OF NATURAL PRODUCTS 2021; 84:654-665. [PMID: 33646787 DOI: 10.1021/acs.jnatprod.0c01387] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Obesity, now widespread all over the world, is frequently associated with some chronic diseases. Thus, there is a growing interest in the prevention and treatment of obesity. To date, the only antiobesity drug is orlistat, a natural product-derived pancreatic lipase (PL) inhibitor with some undesired side effects. In the last decades, many natural compounds or derivatives have been evaluated as potential PL inhibitors, and natural polyphenols are among the most promising for possible exploitation as antiobesity agents. However, few studies have been devoted to isoflavones. In this work, we report a study on the PL inhibitory properties of a small library of semisynthetic isoflavone derivatives together with the natural leads daidzein (1), genistein (2), and formononetin (3). In vitro lipase inhibition assay showed that 2 is the most promising PL inhibitor. Among synthetic isoflavones, the hydroxylated and brominated derivatives were more potent than their natural leads. Detailed studies through fluorescence measurements and kinetics of lipase inhibition showed that 2 and the bromoderivatives 10 and 11 have the greatest affinity for PL. Docking studies corroborated these findings highlighting the interactions between isoflavones and the enzyme, confirming that hydroxylation and bromination are useful modifications.
Collapse
Affiliation(s)
- Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Luana Pulvirenti
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Corrado Tringali
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
21
|
Li F, Wei Y, Liang L, Huang L, Yu G, Li Q. A novel low-molecular-mass pumpkin polysaccharide: Structural characterization, antioxidant activity, and hypoglycemic potential. Carbohydr Polym 2020; 251:117090. [PMID: 33142631 DOI: 10.1016/j.carbpol.2020.117090] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/20/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
The novel natural low-molecular-mass polysaccharide (SLWPP-3) from pumpkin (Cucurbia moschata) was separated from the waste supernatant after macromolecular polysaccharide production and purified using a DEAE cellulose-52 column and gel-filtration chromatography. Chemical and instrumental studies revealed that SLWPP-3 with a molecular mass of 3.5 kDa was composed of rhamnose, glucose, arabinose, galactose and uronic acid with a weight ratio of 1: 1: 4: 6: 15, and primarily contained →3,6)-β-d-Galp-(1→, →4)-α-GalpA-(1→(OMe), →4)-α-GalpA-(1→, →2,4)-α-d-Rhap-(1→, →3)-β-d-Galp-(1→, →4)-α-d-Glcp, and →4)-β-d-Galp residues in the backbone. The branch chain passes were connected to the main chain through the O-4 atom of glucose and O-3 atom of arabinose. Physiologically, the ability of SLWPP-3 to inhibit carbohydrate-digesting enzymes and DPPH and ABTS radicals, as well as protect pancreatic β cells from oxidative damage by decreasing MDA levels and increasing SOD activities, was confirmed. The findings elucidated the structural types of pumpkin polysaccharides and revealed a potential adjuvant natural product with hypoglycemic effects.
Collapse
Affiliation(s)
- Fei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing, 100083, PR China.
| | - Yunlu Wei
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing, 100083, PR China.
| | - Li Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing, 100083, PR China.
| | - Linlin Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing, 100083, PR China.
| | - Guoyong Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing, 100083, PR China.
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing, 100083, PR China.
| |
Collapse
|
22
|
Cardullo N, Muccilli V, Cunsolo V, Tringali C. Mass Spectrometry and 1H-NMR Study of Schinopsis lorentzii (Quebracho) Tannins as a Source of Hypoglycemic and Antioxidant Principles. Molecules 2020; 25:molecules25143257. [PMID: 32708865 PMCID: PMC7397293 DOI: 10.3390/molecules25143257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 11/23/2022] Open
Abstract
The ethyl acetate extract of the commercial tannin Tan’Activ QS-SOL (from Schinopsis lorentzii wood), employed for the production of red wine, was subjected to chromatography on Sephadex LH-20, providing nine fractions (A-1–A-9), which were estimated for total phenols content (GAE), antioxidant activity (DPPH, ORAC), and hypoglycemic activity (α-glucosidase and α-amylase inhibition). All the fractions were analyzed by means of HPLC/ESI-MS/MS and 1H-NMR to identify the principal active constituents. Fractions A-1 and A-3 showed the highest antioxidant activity and gallic acid (1), pyrogallol (3), eriodictyol (6), catechin (12), and taxifolin (30) were identified as the major constituents. The highest α-glucosidase and α-amylase inhibitory activity was observed in fractions A-7–A-9 containing condensed (9′, 15, 18, 19, 23, and 27) hydrolysable tannins (13 and 32) as well as esters of quinic acid with different units of gallic acid (5, 11, 11′, 14, and 22). This last class of gallic acid esters are here reported for the first time as α-glucosidase and α-amylase inhibitors.
Collapse
|
23
|
Ramalingam S, Karuppiah M, Thiruppathi M. Antihyperglycaemic potential of rosmarinic acid attenuates glycoprotein moiety in high-fat diet and streptozotocin-induced diabetic rats. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1733104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Sundaram Ramalingam
- Department of Biochemistry, Dental College and Hospital, Saveetha University, Chennai, India
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research, Chennai, India
| | - Muthu Karuppiah
- Department of Chemistry, Manomanium Sundaranar University, Tirunelveli, India
| | - Muthusamy Thiruppathi
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
24
|
Cardullo N, Barresi V, Muccilli V, Spampinato G, D’Amico M, Condorelli DF, Tringali C. Synthesis of Bisphenol Neolignans Inspired by Honokiol as Antiproliferative Agents. Molecules 2020; 25:molecules25030733. [PMID: 32046220 PMCID: PMC7037512 DOI: 10.3390/molecules25030733] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Honokiol (2) is a natural bisphenol neolignan showing a variety of biological properties, including antitumor activity. Some studies pointed out 2 as a potential anticancer agent in view of its antiproliferative and pro-apoptotic activity towards tumor cells. As a further contribution to these studies, we report here the synthesis of a small library of bisphenol neolignans inspired by honokiol and the evaluation of their antiproliferative activity. The natural lead was hence subjected to simple chemical modifications to obtain the derivatives 3–9; further neolignans (12a-c, 13a-c, 14a-c, and 15a) were synthesized employing the Suzuki–Miyaura reaction, thus obtaining bisphenols with a substitution pattern different from honokiol. These compounds and the natural lead were subjected to antiproliferative assay towards HCT-116, HT-29, and PC3 tumor cell lines. Six of the neolignans show GI50 values lower than those of 2 towards all cell lines. Compounds 14a, 14c, and 15a are the most effective antiproliferative agents, with GI50 in the range of 3.6–19.1 µM, in some cases it is lower than those of the anticancer drug 5-fluorouracil. Flow cytometry experiments performed on these neolignans showed that the inhibition of proliferation is mainly due to an apoptotic process. These results indicate that the structural modification of honokiol may open the way to obtaining antitumor neolignans more potent than the natural lead.
Collapse
Affiliation(s)
- Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
- Correspondence: (C.T.); (N.C.); Tel.: +39-095-7385025 (C.T.)
| | - Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (V.B.); (G.S.); (M.D.); (D.F.C.)
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Giorgia Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (V.B.); (G.S.); (M.D.); (D.F.C.)
| | - Morgana D’Amico
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (V.B.); (G.S.); (M.D.); (D.F.C.)
| | - Daniele Filippo Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (V.B.); (G.S.); (M.D.); (D.F.C.)
| | - Corrado Tringali
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
- Correspondence: (C.T.); (N.C.); Tel.: +39-095-7385025 (C.T.)
| |
Collapse
|
25
|
C-glucosidic ellagitannins and galloylated glucoses as potential functional food ingredients with anti-diabetic properties: a study of α-glucosidase and α-amylase inhibition. Food Chem 2019; 313:126099. [PMID: 31927321 DOI: 10.1016/j.foodchem.2019.126099] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is a metabolic disorder characterized by hyperglycemia, which can be counteracted by inhibition of α-glucosidase and α-amylase, both involved in the carbohydrate metabolism. Fourteen C-glucosidic ellagitannins and three galloylated glucoses were studied as potential α-glucosidase and α-amylase inhibitors. Most of the compounds were found to be moderate inhibitors of α-amylase, but potent inhibitors of α-glucosidase, showing low-micromolar IC50 values, far lower than that of the antidiabetic drug acarbose. This selectivity can be an advantage for their possible application as functional food ingredients with anti-diabetic properties because strong α-amylase inhibition generally causes undesired side effects. The best inhibitors were selected for further studies. Intrinsic fluorescence measurements confirmed their high affinity towards α-glucosidase, highlighting a static quenching mechanism. Circular dichroism measurements and kinetics of inhibition indicated that the most active C-glucosidic ellagitannin roburin D (RobD) is a competitive inhibitor, whereas α-pentagalloylglucose (α-PGG) acts as a mixed-type inhibitor.
Collapse
|
26
|
Li QW, Zhang R, Zhou ZQ, Sun WY, Fan HX, Wang Y, Xiao J, So KF, Yao XS, Gao H. Phenylpropanoid glycosides from the fruit of Lycium barbarum L. and their bioactivity. PHYTOCHEMISTRY 2019; 164:60-66. [PMID: 31096077 DOI: 10.1016/j.phytochem.2019.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/05/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Fifteen phenylpropanoid glycosides, including six undescribed compounds were isolated from the fruit of Lycium barbarum L. (Solanaceae) (goji or wolfberry). Their structures were identified by detailed spectroscopic analyses. Seven known compounds were firstly isolated from the genus Lycium, in which the 1D and 2D NMR data of one compound were reported for the first time. Notably, two undescribed compounds were a pair of rare tautomeric glycoside anomers characterized by the presence of free anomeric hydroxy. Antioxidant and hypoglycemic activities of all these compounds were assessed using DPPH radical scavenging, oxygen radical absorbance capacity (ORAC), and α-glucosidase inhibitory assays, respectively. These compounds showed different levels of oxygen radical absorbance capacity, and some isolates exhibited potent antioxidant activity with greater ORAC values than the positive control (EGCG).
Collapse
Affiliation(s)
- Qing-Wen Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Rui Zhang
- Clinical Medicine Research Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510632, People's Republic of China
| | - Zheng-Qun Zhou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Wan-Yang Sun
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hong-Xia Fan
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, People's Republic of China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Jia Xiao
- Clinical Medicine Research Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510632, People's Republic of China
| | - Kwok-Fai So
- Guangdong Medical Key Laboratory of Brain Function and Diseases, GMH Institute of Central Nervous System Regeneration, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China.
| |
Collapse
|