1
|
Singh RP, Mankad NP. Molecular Design of Al(II) Intermediates for Small Molecule Activation. JACS AU 2025; 5:2076-2088. [PMID: 40443891 PMCID: PMC12117437 DOI: 10.1021/jacsau.5c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 06/02/2025]
Abstract
Promoting societally important small molecule activation processes with earth-abundant metals is foundational for a sustainable chemistry future. In this context, mapping new reaction pathways that would enable abundant main-group elements to mimic the behaviors of d- and f-block elements is facilitated by exploring unusual oxidation states. The most abundant metal on earth, aluminum, has been well studied in the Lewis acidic +III and Lewis basic +I oxidation states but rarely in the potentially biphilic +II oxidation state until recently, when a renaissance of Al-(II) chemistry emerged from a range of research groups. In this Perspective, we review the chemistry of mononuclear Al radicals, including both Al-centered radicals (i.e., Al-(II) compounds) and redox non-innocent systems (i.e., formally Al-(II) species that are physically Al-(III) with ligand-centered radicals), with an emphasis on small molecule reactivity. We also provide a meta-analysis of the Al-(II) literature to summarize how different design strategies (e.g., redox non-innocence, strained coordination geometries) have been shown to impart biphilic character to Al radicals and tune their behavior, thus allowing Al radicals to mimic the chemistry of certain d- and f-block metal ions such as Ti-(III) and Sm-(II). We expect these molecular design concepts to inform future Al-(II) studies as the chemistry of this unusual oxidation state of Al continues to grow.
Collapse
Affiliation(s)
- Roushan Prakash Singh
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois60607, United States
| | - Neal P. Mankad
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois60607, United States
| |
Collapse
|
2
|
Teng F, Li ZQ, Mao ZC, Zhang Z, Jiang M, Xiao WJ, Chen JR. Unlocking Epoxide Radical Anion Reactivity for Asymmetric Cross-Coupling by Copper Metallaphotoredox. J Am Chem Soc 2025. [PMID: 40403247 DOI: 10.1021/jacs.5c05957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
The ability to tame radical anions that feature both an unpaired spin and a charge is critical for synthetic chemistry, enabling the construction of diverse chemical bonds via unique reaction pathways and promoting advances in the area of synthesis. In this regard, C(sp3)-rich epoxide radical anions are particularly attractive but often elusive, highly reactive intermediates. Classic methods to access epoxide radical anions exploit single-electron chemistry by using dissolving alkali, sacrificial electrodes, or redox metals. However, these methods are often prohibitive because of reagent safety issues and over-reduction, limiting their wide implementation, especially in asymmetric synthesis. Herein, we realize a copper metallaphotoredox platform to unlock epoxide radical anion reactivity, allowing the controlled generation of epoxide radical anions and their enantioconvergent cross-coupling with diverse, readily available partners via distonic radical anion intermediates. These discoveries permit highly regio-, chemo-, and enantioselective hydrocyanation and hydroalkynylation, thereby providing a general solution to the challenge of epoxide radical anion-mediated enantioselective chemical diversification.
Collapse
Affiliation(s)
- Fan Teng
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Zi-Qing Li
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Zhi-Cheng Mao
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Zhihan Zhang
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Min Jiang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang 311121, China
| | - Wen-Jing Xiao
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, China
| | - Jia-Rong Chen
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, China
| |
Collapse
|
3
|
Tian X, Wu L. Synthesis of α-substituted cyclic boronates via titanium-catalyzed cyclization of vinyl boronates with dihaloalkanes. Chem Sci 2025; 16:6515-6521. [PMID: 40103718 PMCID: PMC11913033 DOI: 10.1039/d5sc01132a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
Cyclic boronates are versatile synthons for organic synthesis and for introducing ring systems into bioactive molecules. Existing synthetic methods have narrow substrate scope and the synthesis of α-substituted cyclic boronates is still elusive. Furthermore, no general method for synthesizing cyclic boronates with different ring sizes and hetero atom containing rings is available. Herein, we present a new and general synthetic method for synthesizing α-substituted cyclic boronates. Our approach has the advantage of using earth-abundant Ti as the catalyst and readily available dihaloalkanes, such as dichloromethane, as the reactant. Cyclic boronates that are otherwise difficult to access, such as α-substituted cyclic boronates with three-, four-, five-, and six-membered rings, heteroatom-containing rings, and cyclic boronates with spiro rings, are readily obtained.
Collapse
Affiliation(s)
- Ximei Tian
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lipeng Wu
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences Lanzhou 730000 P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University Hangzhou 311121 P. R. China
| |
Collapse
|
4
|
Wang L, Zhou PP, Xie D, Yue Q, Sun HZ, Yang SD, Wang GW. Dynamic Kinetic Activation of Aziridines Enables Radical-Polar Crossover (4 + 3) Cycloaddition with 1,3-Dienes. J Am Chem Soc 2025; 147:2675-2688. [PMID: 39791566 DOI: 10.1021/jacs.4c15003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The cycloaddition of aziridines with unsaturated compounds is a valuable method for synthesizing nitrogen heterocycles. However, this process is predominantly substrate-controlled, posing significant challenges in regulating the regioselectivity of the C-N bond cleavage. In this study, we report a nickel-catalyzed dynamic kinetic activation strategy that enables catalyst-controlled activation of aziridines. Various types of aziridines, including 2-phenyl, 2-carbonyl, 2-alkyl, and disubstituted aziridines, consistently cleave their more sterically hindered C-N bonds to generate 1,3-radical anion intermediates. These intermediates participate in a highly regioselective 1,4-Heck/allylic substitution cascade with aromatic branched 1,3-dienes, resulting in a radical-polar crossover (4 + 3) cycloaddition that produces seven-membered azepine products. This approach not only complements traditional dipolar cycloaddition, in which aziridines typically act as zwitterionic 1,3-dipoles, but also introduces an unusual cycloaddition mode for 1,3-dienes. Experimental investigations and density functional theory (DFT) calculations provide insight into the reaction mechanism.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Pan-Pan Zhou
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Dong Xie
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qian Yue
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hao-Zheng Sun
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Gang-Wei Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Aida K, Hirao M, Saitoh T, Yamamoto T, Einaga Y, Ota E, Yamaguchi J. Selective C-N Bond Cleavage in Unstrained Pyrrolidines Enabled by Lewis Acid and Photoredox Catalysis. J Am Chem Soc 2024; 146:30698-30707. [PMID: 39440606 PMCID: PMC11544709 DOI: 10.1021/jacs.4c13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Cleavage of inert C-N bonds in unstrained azacycles such as pyrrolidine remains a formidable challenge in synthetic chemistry. To address this, we introduce an effective strategy for the reductive cleavage of the C-N bond in N-benzoyl pyrrolidine, leveraging a combination of Lewis acid and photoredox catalysis. This method involves single-electron transfer to the amide, followed by site-selective cleavage at the C2-N bond. Cyclic voltammetry and NMR studies demonstrated that the Lewis acid is crucial for promoting the single-electron transfer from the photoredox catalyst to the amide carbonyl group. This protocol is widely applicable to various pyrrolidine-containing molecules and enables inert C-N bond cleavage including C-C bond formation via intermolecular radical addition. Furthermore, the current protocol successfully converts pyrrolidines to aziridines, γ-lactones, and tetrahydrofurans, showcasing its potential of the inert C-N bond cleavage for expanding synthetic strategies.
Collapse
Affiliation(s)
- Kazuhiro Aida
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Marina Hirao
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Tsuyoshi Saitoh
- International
Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takashi Yamamoto
- Department
of Chemistry, Keio University, Yokohama 223-8522, Japan
| | - Yasuaki Einaga
- Department
of Chemistry, Keio University, Yokohama 223-8522, Japan
| | - Eisuke Ota
- Waseda
Institute for Advanced Study, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
6
|
Wang X, He J, Wang YN, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. Chem Rev 2024; 124:10192-10280. [PMID: 39115179 DOI: 10.1021/acs.chemrev.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
Collapse
Affiliation(s)
- Xinghua Wang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ya-Nan Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tao Zhang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
7
|
Beil SB, Bonnet S, Casadevall C, Detz RJ, Eisenreich F, Glover SD, Kerzig C, Næsborg L, Pullen S, Storch G, Wei N, Zeymer C. Challenges and Future Perspectives in Photocatalysis: Conclusions from an Interdisciplinary Workshop. JACS AU 2024; 4:2746-2766. [PMID: 39211583 PMCID: PMC11350580 DOI: 10.1021/jacsau.4c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Photocatalysis is a versatile and rapidly developing field with applications spanning artificial photosynthesis, photo-biocatalysis, photoredox catalysis in solution or supramolecular structures, utilization of abundant metals and organocatalysts, sustainable synthesis, and plastic degradation. In this Perspective, we summarize conclusions from an interdisciplinary workshop of young principal investigators held at the Lorentz Center in Leiden in March 2023. We explore how diverse fields within photocatalysis can benefit from one another. We delve into the intricate interplay between these subdisciplines, by highlighting the unique challenges and opportunities presented by each field and how a multidisciplinary approach can drive innovation and lead to sustainable solutions for the future. Advanced collaboration and knowledge exchange across these domains can further enhance the potential of photocatalysis. Artificial photosynthesis has become a promising technology for solar fuel generation, for instance, via water splitting or CO2 reduction, while photocatalysis has revolutionized the way we think about assembling molecular building blocks. Merging such powerful disciplines may give rise to efficient and sustainable protocols across different technologies. While photocatalysis has matured and can be applied in industrial processes, a deeper understanding of complex mechanisms is of great importance to improve reaction quantum yields and to sustain continuous development. Photocatalysis is in the perfect position to play an important role in the synthesis, deconstruction, and reuse of molecules and materials impacting a sustainable future. To exploit the full potential of photocatalysis, a fundamental understanding of underlying processes within different subfields is necessary to close the cycle of use and reuse most efficiently. Following the initial interactions at the Lorentz Center Workshop in 2023, we aim to stimulate discussions and interdisciplinary approaches to tackle these challenges in diverse future teams.
Collapse
Affiliation(s)
- Sebastian B. Beil
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
- Max Planck
Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mulheim an der Ruhr, Germany
| | - Sylvestre Bonnet
- Leiden Institute
of Chemistry, Leiden University, Gorlaeus
Laboratories, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Carla Casadevall
- Department
of Physical and Inorganic Chemistry, University
Rovira i Virgili (URV), C/Marcel.lí Domingo, 1, 43007 Tarragona, Spain
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Avinguda dels Països Catalans, 16, 43007 Tarragona, Spain
| | - Remko J. Detz
- Energy Transition
Studies (ETS), Netherlands Organization
for Applied Scientific Research (TNO), Radarweg 60, 1043
NT Amsterdam, The
Netherlands
| | - Fabian Eisenreich
- Department
of Chemical Engineering and Chemistry & Institute for Complex
Molecular Systems, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Starla D. Glover
- Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Christoph Kerzig
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Line Næsborg
- Department
of Organic Chemistry, University of Münster, Correnstr. 40, 48149 Münster, Germany
| | - Sonja Pullen
- Homogeneous
and Supramolecular Catalysis, Van ’t Hoff Institute for Molecular
Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Golo Storch
- Technical
University of Munich (TUM), Lichtenbergstr. 4, 85747 Garching, Germany
| | - Ning Wei
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
- Max Planck
Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mulheim an der Ruhr, Germany
| | - Cathleen Zeymer
- Center for
Functional Protein Assemblies & Department of Bioscience, TUM
School of Natural Sciences, Technical University
of Munich, 85748 Garching, Germany
| |
Collapse
|
8
|
Lin Z, Ren H, Lin X, Yu X, Zheng J. Synthesis of Azabicyclo[3.1.1]heptenes Enabled by Catalyst-Controlled Annulations of Bicyclo[1.1.0]butanes with Vinyl Azides. J Am Chem Soc 2024; 146:18565-18575. [PMID: 38935924 DOI: 10.1021/jacs.4c04485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Bridged bicyclic scaffolds are emerging bioisosteres of planar aromatic rings under the concept of "escape from flatland". However, adopting this concept into the exploration of bioisosteres of pyridines remains elusive due to the challenge of incorporating a N atom into such bridged bicyclic structures. Herein, we report practical routes for the divergent synthesis of 2- and 3-azabicyclo[3.1.1]heptenes (aza-BCHepes) as potential bioisosteres of pyridines from the readily accessible vinyl azides and bicyclo[1.1.0]butanes (BCBs) via two distinct catalytic annulations. The reactivity of vinyl azides tailored with BCBs is the key to achieving divergent transformations. TiIII-catalyzed single-electron reductive generation of C-radicals from BCBs allows a concise (3 + 3) annulation with vinyl azides, affording novel 2-aza-BCHepe scaffolds. In contrast, scandium catalysis enables an efficient dipolar (3 + 2) annulation with vinyl azides to generate 2-azidobicyclo[2.1.1]hexanes, which subsequently undergo a chemoselective rearrangement to construct 3-aza-BCHepes. Both approaches efficiently deliver unique azabicyclo[3.1.1]heptene scaffolds with a high functional group tolerance. The synthetic utility has been further demonstrated by scale-up reactions and diverse postcatalytic transformations, providing valuable azabicyclics including 2- and 3-azabicyclo[3.1.1]heptanes and rigid bicyclic amino esters. In addition, the related sp2-hybridized nitrogen atom and the similar geometric property between pyridines and corresponding aza-BCHepes indicate that they are promising bioisosteres of pyridines.
Collapse
Affiliation(s)
- Zhongren Lin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Haosong Ren
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xinbo Lin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xinhong Yu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jun Zheng
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
9
|
Lätsch L, Guda SA, Romankov V, Wartmann C, Neudörfl JM, Dreiser J, Berkessel A, Guda AA, Copéret C. Tracking Coordination Environment and Reaction Intermediates in Homogeneous and Heterogeneous Epoxidation Catalysts via Ti L 2,3-Edge Near-Edge X-ray Absorption Fine Structures. J Am Chem Soc 2024; 146:7456-7466. [PMID: 38447178 DOI: 10.1021/jacs.3c12831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Ti-based molecules and materials are ubiquitous and play a major role in both homogeneous and heterogeneous catalytic processes. Understanding the electronic structures of their active sites (oxidation state, local symmetry, and ligand environment) is key to developing molecular-level structure-property relationships. In that context, X-ray absorption spectroscopy (XAS) offers a unique combination of elemental selectivity and sensitivity to local symmetry. Commonly, for early transition metals such as Ti, K-edge XAS is applied for in situ characterization and subsequent structural analysis with high sensitivity toward tetrahedral species. Ti L2,3-edge spectroscopy is in principle complementary and offers specific opportunities to interrogate the electronic structure of five-and six-coordinated species. It is, however, much more rarely implemented because the use of soft X-rays implies ultrahigh vacuum conditions. Furthermore, the interpretation of the data can be challenging. Here, we show how Ti L2,3-edge spectroscopy can help to obtain unique information about both homogeneous and heterogeneous epoxidation catalysts and develop a molecular-level relationship between spectroscopic signatures and electronic structures. Toward this goal, we first establish a spectral library of molecular Ti reference compounds, comprising various coordination environments with mono- and dimeric Ti species having O, N, and Cl ligands. We next implemented a computational methodology based on multiplet ligand field theory and maximally localized Wannier orbitals benchmarked on our library to understand Ti L2,3-edge spectroscopic signatures. We finally used this approach to track and predict the spectra of catalytically relevant intermediates, focusing on Ti-based olefin epoxidation catalysts.
Collapse
Affiliation(s)
- Lukas Lätsch
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog Weg 2, CH 8093Zurich, Switzerland
| | - Sergey A Guda
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178324, 344090Rostov-on-Don, Russia
| | - Vladyslav Romankov
- Swiss Light Source, Paul Scherrer Institut, CH-5232Villigen, Switzerland
| | - Christina Wartmann
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, 50939 Cologne, Germany
| | - Jörg-M Neudörfl
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, 50939 Cologne, Germany
| | - Jan Dreiser
- Swiss Light Source, Paul Scherrer Institut, CH-5232Villigen, Switzerland
| | - Albrecht Berkessel
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, 50939 Cologne, Germany
| | - Alexander A Guda
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178324, 344090Rostov-on-Don, Russia
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog Weg 2, CH 8093Zurich, Switzerland
| |
Collapse
|
10
|
Morozov AG, Dodonov VA, Rychagova EA, Ketkov SY, Fedushkin IL. Ligand-Induced Intramolecular Redox Diversity in Titanium Complexes with Acenaphthene-1,2-diimine. Inorg Chem 2024; 63:4657-4668. [PMID: 38401059 DOI: 10.1021/acs.inorgchem.3c04250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
A series of the chlorido and alkoxychlorido titanium complexes of the general formula (dpp-Bian)Ti(OiPr)nCl3-n, where dpp-Bian = 1,2-bis[(2,6-iPr2C6H3)imino]acenaphthene n = 0 (2), 1 (3), 2 (4), as well as (dpp-Bian)Ti(OiPr)2 (5) and (dpp-Bian)Ti(OiPr)Cl3 (3-Cl), were isolated and characterized using single-crystal X-ray diffraction analysis and spectroscopic studies combined with density functional theory (DFT) calculations. In the solid state, compounds 2-4 reveal a square-pyramidal geometry at the metal center supported with monoanionic dpp-Bian, whereas 3-Cl with a neutral diimine ligand and 5 bearing a dianionic enebisamide dpp-Bian show, respectively, an octahedral and tetrahedral coordination surrounding the metal ion. Paramagnetic complexes 2-4 exhibit electron paramagnetic resonance spectra in both toluene solution and solid state, confirming the transfer of spin density from the metal ion to the dpp-Bian ligand as the number of alkoxy groups increases. The increase in polarity of the Ti-N bonds in the row 2 < 3 < 4 contributes to enhanced stability of the metal complexes with respect to O-donor molecules. Thus, in tetrahydrofuran (THF), compounds 2 and 3 undergo reversible solvolysis, whereas complex 4 is stable. The charge and spin density distributions as well as molecular orbital energies in 2-4 were analyzed on the basis of DFT calculations which also provided information on the electronic transition energies, absorption band assignments, and thermodynamic parameters of the reactions between the complexes and THF.
Collapse
Affiliation(s)
- Alexander G Morozov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences (IOMC RAS), Tropinina 49, Nizhny Novgorod 603950, Russian Federation
| | - Vladimir A Dodonov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences (IOMC RAS), Tropinina 49, Nizhny Novgorod 603950, Russian Federation
| | - Elena A Rychagova
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences (IOMC RAS), Tropinina 49, Nizhny Novgorod 603950, Russian Federation
| | - Sergey Yu Ketkov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences (IOMC RAS), Tropinina 49, Nizhny Novgorod 603950, Russian Federation
| | - Igor L Fedushkin
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences (IOMC RAS), Tropinina 49, Nizhny Novgorod 603950, Russian Federation
| |
Collapse
|
11
|
Ren H, Li T, Xing J, Li Z, Zhang Y, Yu X, Zheng J. Ti-Catalyzed Formal [2π + 2σ] Cycloadditions of Bicyclo[1.1.0]butanes with 2-Azadienes to Access Aminobicyclo[2.1.1]hexanes. Org Lett 2024; 26:1745-1750. [PMID: 38377354 DOI: 10.1021/acs.orglett.4c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Saturated bicyclic amines are increasingly targeted to the pharmaceutical industry as sp3-rich bioisosteres of anilines. Numerous strategies have been established for the preparation of bridgehead aminobicyclics. However, methods to assemble the bridge-amino hydrocarbon skeleton, which serves as a meta-substituted arene bioisostere, are limited. Herein, a general approach to access 2-aminobicyclo[2.1.1]hexanes (aminoBCHs) by titanium-catalyzed formal [2π + 2σ] cycloaddition of bicyclo[1.1.0]butanes and 2-azadienes was developed. Simple derivatization of aminoBCHs leads to various medicinally and agrochemically important analogues.
Collapse
Affiliation(s)
- Haosong Ren
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Tianxiang Li
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jinping Xing
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhenyue Li
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yanxia Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Xinhong Yu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jun Zheng
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
12
|
Li G, Norton JR. Ti(III)-Catalyzed Anti-Markovnikov Reduction of Epoxides with Borohydride. Org Lett 2024; 26:1382-1386. [PMID: 38350153 DOI: 10.1021/acs.orglett.3c04304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
We have developed a Ti catalyst that carries out the anti-Markovnikov reduction of a wide range of epoxides; [BH4]- is used as both the electron and the hydrogen atom source. It requires only mild conditions and accommodates a broad range of epoxide substrates. The Ti catalyst is readily available and is environmentally friendly.
Collapse
Affiliation(s)
- Guangchen Li
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Jack R Norton
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
13
|
Yao L, Bao J, Wang Y, Gui J. Titanium-Mediated Dehydroxylative Cross-Coupling of Allylic Alcohols with Electron-Deficient Olefins. Org Lett 2024; 26:1243-1248. [PMID: 38315609 DOI: 10.1021/acs.orglett.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Herein we report a Ti(III)-mediated dehydroxylative cross-coupling reaction of allylic alcohols with electron-deficient olefins. This reaction is amenable to various synthetically versatile allylic alcohols, including geraniol and farnesol, providing a general method for dehydroxylative C-C bond formation. We demonstrated the reaction's utility by simplifying the syntheses of eight useful building blocks that are otherwise laborious to prepare.
Collapse
Affiliation(s)
- Liangcai Yao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jiajing Bao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yun Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jinghan Gui
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
14
|
Sinhababu S, Singh RP, Radzhabov MR, Kumawat J, Ess DH, Mankad NP. Coordination-induced O-H/N-H bond weakening by a redox non-innocent, aluminum-containing radical. Nat Commun 2024; 15:1315. [PMID: 38351122 PMCID: PMC10864259 DOI: 10.1038/s41467-024-45721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Several renewable energy schemes aim to use the chemical bonds in abundant molecules like water and ammonia as energy reservoirs. Because the O-H and N-H bonds are quite strong (>100 kcal/mol), it is necessary to identify substances that dramatically weaken these bonds to facilitate proton-coupled electron transfer processes required for energy conversion. Usually this is accomplished through coordination-induced bond weakening by redox-active metals. However, coordination-induced bond weakening is difficult with earth's most abundant metal, aluminum, because of its redox inertness under mild conditions. Here, we report a system that uses aluminum with a redox non-innocent ligand to achieve significant levels of coordination-induced bond weakening of O-H and N-H bonds. The multisite proton-coupled electron transfer manifold described here points to redox non-innocent ligands as a design element to open coordination-induced bond weakening chemistry to more elements in the periodic table.
Collapse
Affiliation(s)
- Soumen Sinhababu
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, 60607, USA
| | | | - Maxim R Radzhabov
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Jugal Kumawat
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, 84604, UT, USA
| | - Daniel H Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, 84604, UT, USA
| | - Neal P Mankad
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
15
|
Oloyede UN, Flowers RA. Coordination-induced bond weakening and small molecule activation by low-valent titanium complexes. Dalton Trans 2024; 53:2413-2441. [PMID: 38224159 DOI: 10.1039/d3dt03454b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Bond activation of small molecules through coordination to low valent metal complexes in M⋯X-H type interactions (where X = O, N, B, Si, etc.) leads to the formation of unusually weak X-H bonds and provides a powerful approach for the synthesis of target compounds under very mild conditions. Coordination of small molecules like water, amides, silanes, boranes, and dinitrogen to Ti(III) or Ti(II) complexes results in the synergetic redistribution of electrons between the metal orbitals and the ligand orbitals which weakens and enables the facile cleavage of the X-H or N-N bonds of the ligands. This review presents an overview of coordination-induced bond activation of small molecules by low valent titanium complexes. In particular, the applications of low valent titanium-induced bond weakening in nitrogen fixation are presented. The review concludes with potential future directions for work in this area including low-valent Ti-based PCET systems, photocatalytic nitrogen reduction, and approaches to tailoring complexes for optimal bond activation.
Collapse
Affiliation(s)
| | - Robert A Flowers
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| |
Collapse
|
16
|
Mikhaliov A, Flerko A, Atroshchanka D, Harakhouski A, Budko A, Stasko K, Bialkevich A, Shepialevich S, Rusakovich Y, Hurski A. Visible-Light-Promoted Reduction of Epoxides, Hydroxysulfonates, and Halohydrines with Alkyltitanium Alkoxides. Org Lett 2024; 26:178-182. [PMID: 38148254 DOI: 10.1021/acs.orglett.3c03802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Alkyltitanium alkoxides generally serve as nucleophiles in reactions with carbonyl compounds and cross-coupling. Their application as reductants is known but remains underdeveloped. Here, we report that irradiation with visible light makes these organometallic compounds efficient reducing agents for the dehalogenation of 1,2- and 1,3-haloalcohols. This reaction was utilized for the reduction of epoxides and sulfonates, which proceeded through a sequence of the in situ halohydrin formation and photochemical dehalogenation. Ester, amide, nitrile, alkyne, and remote bromide groups were stable under the reaction conditions.
Collapse
Affiliation(s)
- Artyom Mikhaliov
- Republican Scientific Center of Human Issues, Belarusian State University, Kurčatava 7, Minsk 220064, Belarus
| | - Aliaksei Flerko
- Department of Chemistry, Belarusian State University Niezaliežnasci 4, Minsk 220030, Belarus
| | - Dziyana Atroshchanka
- Republican Scientific Center of Human Issues, Belarusian State University, Kurčatava 7, Minsk 220064, Belarus
| | - Aliaksei Harakhouski
- Republican Scientific Center of Human Issues, Belarusian State University, Kurčatava 7, Minsk 220064, Belarus
| | - Arsenii Budko
- Department of Chemistry, Belarusian State University Niezaliežnasci 4, Minsk 220030, Belarus
| | - Kirill Stasko
- Department of Chemistry, Belarusian State University Niezaliežnasci 4, Minsk 220030, Belarus
| | - Andrei Bialkevich
- Department of Chemistry, Belarusian State University Niezaliežnasci 4, Minsk 220030, Belarus
| | - Siarhei Shepialevich
- Department of Chemistry, Belarusian State University Niezaliežnasci 4, Minsk 220030, Belarus
| | - Yahor Rusakovich
- Republican Scientific Center of Human Issues, Belarusian State University, Kurčatava 7, Minsk 220064, Belarus
| | - Alaksiej Hurski
- Republican Scientific Center of Human Issues, Belarusian State University, Kurčatava 7, Minsk 220064, Belarus
- Scientific Testing Center Campilab Ltd., Centraĺnaja 30A, Dynaraŭka 222202, Belarus
| |
Collapse
|
17
|
Wen L, Ding J, Duan L, Wang S, An Q, Wang H, Zuo Z. Multiplicative enhancement of stereoenrichment by a single catalyst for deracemization of alcohols. Science 2023; 382:458-464. [PMID: 37883537 DOI: 10.1126/science.adj0040] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/04/2023] [Indexed: 10/28/2023]
Abstract
Stereochemical enrichment of a racemic mixture by deracemization must overcome unfavorable entropic effects as well as the principle of microscopic reversibility; recently, photochemical reaction pathways unveiled by the energetic input of light have led to innovations toward this end, most often by ablation of a stereogenic C(sp3)-H bond. We report a photochemically driven deracemization protocol in which a single chiral catalyst effects two mechanistically different steps, C-C bond cleavage and C-C bond formation, to achieve multiplicative enhancement of stereoinduction, which leads to high levels of stereoselectivity. Ligand-to-metal charge transfer excitation of a titanium catalyst coordinated by a chiral phosphoric acid or bisoxazoline efficiently enriches racemic alcohols that feature adjacent and fully substituted stereogenic centers to enantiomeric ratios up to 99:1. Mechanistic investigations support a pathway of sequential radical-mediated bond scission and bond formation through a common prochiral intermediate and reveal that, although the overall stereoenrichment is high, the selectivity in each individual step is moderate.
Collapse
Affiliation(s)
- Lu Wen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jia Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lingfei Duan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shun Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qing An
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hexiang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
18
|
Shen J, Xu Z, Yang S, Li S, Jiang J, Zhang YQ. Quaternary Stereocenters via Catalytic Enantioconvergent Allylation of Epoxides. J Am Chem Soc 2023; 145:21122-21131. [PMID: 37722078 DOI: 10.1021/jacs.3c08188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The development of catalytic and enantioselective transformations for the synthesis of all-carbon quaternary stereocenters has long been recognized as a significant challenge in organic synthesis. While considerable progress has been made in asymmetric allylations, their potential to functionalize the commonly used synthon, epoxide, remains largely underexplored. Here we demonstrate the first highly regio- and enantioselective allylation of epoxides that delivers a range of quaternary stereocenters in the face of potentially problematic elimination and protonation reactions. The reaction proceeds via a radical approach under mild conditions and benefits from the use of earth-abundant titanium with a highly sophisticated salen ligand, which facilitates remarkable enantiocontrol and suppresses undesired side reactions. The resulting allylation products are multifunctional building blocks that can be elaborated chemo- and stereoselectively to a broad array of stereodefined structural motifs.
Collapse
Affiliation(s)
- Jian Shen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Zhongyun Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Shuo Yang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Shengxiao Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Jie Jiang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yong-Qiang Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
19
|
Sancho I, Navarro M, Montilla M, Salvador P, Santamaría C, Luis JM, Hernán-Gómez A. Ti(III) Catalysts for CO 2/Epoxide Copolymerization at Unusual Ambient Pressure Conditions. Inorg Chem 2023; 62:14873-14887. [PMID: 37651747 PMCID: PMC10521022 DOI: 10.1021/acs.inorgchem.3c01249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Indexed: 09/02/2023]
Abstract
Titanium compounds in low oxidation states are highly reducing species and hence powerful tools for the functionalization of small molecules. However, their potential has not yet been fully realized because harnessing these highly reactive complexes for productive reactivity is generally challenging. Advancing this field, herein we provide a detailed route for the formation of titanium(III) orthophenylendiamido (PDA) species using [LiBHEt3] as a reducing agent. Initially, the corresponding lithium PDA compounds [Li2(ArPDA)(thf)3] (Ar = 2,4,6-trimethylphenyl (MesPDA), 2,6-diisopropylphenyl (iPrPDA)) are combined with [TiCl4(thf)2] to form the heterobimetallic complexes [{TiCl(ArPDA)}(μ-ArPDA){Li(thf)n}] (n = 1, Ar = iPr 3 and n = 2, Ar = Mes 4). Compound 4 evolves to species [Ti(MesPDA)2] (6) via thermal treatment. In contrast, the transformation of 3 into [Ti(iPrPDA)2] (5) only occurs in the presence of [LiNMe2], through a lithium-assisted process, as revealed by density functional theory (DFT). Finally, the Ti(IV) compounds 3-6 react with [LiBHEt3] to give rise to the Ti(III) species [Li(thf)4][Ti(ArPDA)2] (Ar = iPr 8, Mes 9). These low-valent compounds in combination with [PPN]Cl (PPN = bis(triphenylphosphine)iminium) are proved to be highly selective catalysts for the copolymerization of CO2 and cyclohexene epoxide. Reactions occur at 1 bar pressure with activity/selectivity levels similar to Salen-Cr(III) compounds.
Collapse
Affiliation(s)
- Ignacio Sancho
- Departamento
de Química Orgánica y Química Inorgánica,
Instituto de Investigación Química “Andrés
M. del Río” (IQAR), Universidad
de Alcalá, Campus
Universitario, E-28805 Alcalá de Henares, Madrid, Spain
| | - Marta Navarro
- Departamento
de Química Orgánica y Química Inorgánica,
Instituto de Investigación Química “Andrés
M. del Río” (IQAR), Universidad
de Alcalá, Campus
Universitario, E-28805 Alcalá de Henares, Madrid, Spain
| | - Marc Montilla
- Institute
of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, Campus de Montilivi, 17003 Girona, Catalonia, Spain
| | - Pedro Salvador
- Institute
of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, Campus de Montilivi, 17003 Girona, Catalonia, Spain
| | - Cristina Santamaría
- Departamento
de Química Orgánica y Química Inorgánica,
Instituto de Investigación Química “Andrés
M. del Río” (IQAR), Universidad
de Alcalá, Campus
Universitario, E-28805 Alcalá de Henares, Madrid, Spain
| | - Josep M. Luis
- Institute
of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, Campus de Montilivi, 17003 Girona, Catalonia, Spain
| | - Alberto Hernán-Gómez
- Departamento
de Química Orgánica y Química Inorgánica,
Instituto de Investigación Química “Andrés
M. del Río” (IQAR), Universidad
de Alcalá, Campus
Universitario, E-28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
20
|
Schmidt J, Domenianni LI, Leuschner M, Gansäuer A, Vöhringer P. Observing the Entry Events of a Titanium-Based Photoredox Catalytic Cycle in Real Time. Angew Chem Int Ed Engl 2023; 62:e202307178. [PMID: 37335756 DOI: 10.1002/anie.202307178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Titanium-based catalysis in single electron transfer (SET) steps has evolved into a versatile approach for the synthesis of fine chemicals and first attempts have recently been made to enhance its sustainability by merging it with photo-redox (PR) catalysis. Here, we explore the photochemical principles of all-Ti-based SET-PR-catalysis, i.e. in the absence of a precious metal PR-co-catalyst. By combining time-resolved emission with ultraviolet-pump/mid-infrared-probe (UV/MIR) spectroscopy on femtosecond-to-microsecond time scales we quantify the dynamics of the critical events of entry into the catalytic cycle; namely, the singlet-triplet interconversion of the do-it-all titanocene(IV) PR-catalyst and its one-electron reduction by a sacrificial amine electron donor. The results highlight the importance of the PR-catalyst's singlet-triplet gap as a design guide for future improvements.
Collapse
Affiliation(s)
- Jonas Schmidt
- Clausius Institute for Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
| | - Luis I Domenianni
- Clausius Institute for Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
| | - Marcel Leuschner
- Kekulé Institute for Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Andreas Gansäuer
- Kekulé Institute for Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Peter Vöhringer
- Clausius Institute for Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
| |
Collapse
|
21
|
Huangfu X, Liu W, Xu H, Wang Z, Wei J, Zhang WX. Photochemical Benzylation of White Phosphorus. Inorg Chem 2023; 62:12009-12017. [PMID: 37458455 DOI: 10.1021/acs.inorgchem.3c01475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Organophosphorus compounds (OPCs) have wide application in organic synthesis, material sciences, and drug discovery. Generally, the vast majority of phosphorus atoms in OPCs are derived from white phosphorus (P4). However, the large-scale preparation of OPCs mainly proceeds through the multistep and environmentally toxic chlorine route from P4. Herein, we report the direct benzylation of P4 promoted by visible light. The cheap and readily available benzyl bromide was used as a benzylation reagent, and tetrabenzylphosphonium bromide was directly synthesized from P4. In addition, the metallaphotoredox catalysis strategy was applied to functionalize P4 for the first time, which significantly improved the application range of the substituted benzyl bromide.
Collapse
Affiliation(s)
- Xinlei Huangfu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hanhua Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhongzhen Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
22
|
Yu P, Zhang W, Lin S. Enantioselective radical cascade cyclization via Ti-catalyzed redox relay. Tetrahedron Lett 2023; 125:154617. [PMID: 37449084 PMCID: PMC10338015 DOI: 10.1016/j.tetlet.2023.154617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Radical cascade cyclization reactions provide an efficient method for the construction of polycyclic architectures with multiple stereogenic centers. However, achieving enantioselectivity control of this type of reaction is a challenging task. Here, we report an enantioselective cyclization of polyfunctional aryl cyclopropyl ketone and alkyne units, wherein the stereochemical outcome is directed by a chiral Ti(salen) catalyst. This transformation was proposed to proceed via a radical cascade process involving the reductive ring-opening of the cyclopropyl ketone followed by two annulation events entailing cyclization of the ensuing alkyl radical onto the alkyne and subsequent addition of the incipient vinyl radical to the Ti(IV)-enolate.
Collapse
Affiliation(s)
- Peng Yu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Wen Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
23
|
Ni J, Xia X, Gu D, Wang Z. Ti-Catalyzed Modular Ketone Synthesis from Carboxylic Derivatives and gem-Dihaloalkanes. J Am Chem Soc 2023. [PMID: 37365677 DOI: 10.1021/jacs.3c04009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Ketones are ubiquitous in organic synthesis. However, the general method to convert widely available carboxylic acids, unactivated esters, and amides into ketones remains elusive. Herein, we describe the Ti-catalyzed modular ketone synthesis from carboxylic derivatives and easily accessed gem-dihaloalkanes. Notably, this protocol could achieve the direct catalytic olefination of carboxylic acids. This method features a sequence of olefination and electrophilic transformation and good functional group compatibility and allows rapid access to various functionalized ketones. Preliminary mechanistic studies provide insights into the reaction pathway and support the intermediacy of plausible alkylidene titanocene and gem-bimetallic complexes.
Collapse
Affiliation(s)
- Jiabin Ni
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, Zhejiang Province, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Xiaowen Xia
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, Zhejiang Province, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Danyu Gu
- Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Zhaobin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, Zhejiang Province, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
24
|
Kong L, Yu H, Deng M, Wu F, Chen SC, Luo T. Enantioselective Total Syntheses of Grayanane Diterpenoids and (+)-Kalmanol: Evolution of the Bridgehead Carbocation-Based Cyclization and Late-Stage Functional Group Manipulation Strategies. J Org Chem 2023; 88:6017-6038. [PMID: 37094797 DOI: 10.1021/acs.joc.3c00365] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Grayanane diterpenoids contain over 300 highly oxidized and structurally complex members, many of which possess important biological activities. Full details are provided for the development of the concise, enantioselective and divergent total syntheses of grayanane diterpenoids and (+)-kalmanol. The unique 7-endo-trig cyclization based on a bridgehead carbocation was designed and implemented to construct the 5/7/6/5 tetracyclic skeleton, demonstrating the practical value of the bridgehead carbocation-based cyclization strategy. Extensive studies of late-stage functional group manipulation were performed to forge the C1 stereogenic center, during which a photoexcited intramolecular hydrogen atom transfer reaction was discovered and the mechanism was further studied through density functional theory (DFT) calculations. The biomimetic 1,2-rearrangement from the grayanoid skeleton provided a 5/8/5/5 tetracyclic framework and resulted in the first total synthesis of (+)-kalmanol.
Collapse
Affiliation(s)
- Lingran Kong
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hang Yu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mengping Deng
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fanrui Wu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Si-Cong Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
25
|
Suzuki T, Ikeda W, Kanno A, Ikeuchi K, Tanino K. Diastereoselective Synthesis of trans-anti-Hydrophenanthrenes via Ti-mediated Radical Cyclization and Total Synthesis of Kamebanin. Chemistry 2023; 29:e202203511. [PMID: 36529687 DOI: 10.1002/chem.202203511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
Ent-kaurenes consist of an ABC-ring based on a trans-anti-hydrophenanthrene skeleton and a D ring with an exomethylene. Highly oxygen-functionalized ent-kauren-15-ones have promising antiinflammatory pharmacological activity. In this study, we developed a novel diastereoselective synthesis of trans-anti-hydrophenanthrenes via a Ti-mediated reductive radical cyclization. We also demonstrated the applicability of this method by developing the first total synthesis of (±)-kamebanin (longest linear sequence; 17 steps, overall yield; 6.5 %). Furthermore, this synthesis provided a formal semi-pinacol rearrangement for the construction of the quaternary carbon at C8 and a novel Thorpe-Ziegler-type reaction for the construction of the D-ring.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, 060-0810, Sapporo, Hokkaido, Japan
| | - Wataru Ikeda
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, 060-0810, Sapporo, Hokkaido, Japan
| | - Ayaka Kanno
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, 060-0810, Sapporo, Hokkaido, Japan
| | - Kazutada Ikeuchi
- Department of Chemistry, Faculty of Science, Hokkaido University, 060-0810, Sapporo, Hokkaido, Japan
| | - Keiji Tanino
- Department of Chemistry, Faculty of Science, Hokkaido University, 060-0810, Sapporo, Hokkaido, Japan
| |
Collapse
|
26
|
Calvo-Molina A, del Horno E, Jover J, Pérez-Redondo A, Yélamos C, Zapata R. Monocyclopentadienyltitanium(III) Complexes with Hydridoborato Ligands. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Adrián Calvo-Molina
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Estefanía del Horno
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Jesús Jover
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Adrián Pérez-Redondo
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Carlos Yélamos
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Rosa Zapata
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
27
|
Tang N, Zachmann RJ, Xie H, Zheng J, Breit B. Visible-light induced metal-free intramolecular reductive cyclisations of ketones with alkynes and allenes. Chem Commun (Camb) 2023; 59:2122-2125. [PMID: 36723349 DOI: 10.1039/d2cc06972e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A visible-light-induced, intramolecular, reductive cyclisation of ketones with an unsaturated hydrocarbon moiety was developed. In contrast to conventional protocols requiring resource precious or hazardous metal sources, this method enables facile access to ketyl radicals under metal-free and mild reaction conditions. By polarity-reversed, ketyl radical hydroalkoxylation of alkynes and allenes, a variety of five-membered (hetero-)cyclic products were generated in good yields with good to excellent stereoselectivities. The embedded homoallylic tertiary alcohol could be transformed into other useful functionalities, highlighting the synthetic utility of this reaction. This efficient and sustainable ketyl-alkyne/allene cross coupling also features broad functional group tolerance and scalability.
Collapse
Affiliation(s)
- Nana Tang
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, Freiburg im Breisgau 79104, Germany.
| | - Raphael J Zachmann
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, Freiburg im Breisgau 79104, Germany.
| | - Hui Xie
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, Freiburg im Breisgau 79104, Germany.
| | - Jun Zheng
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, Freiburg im Breisgau 79104, Germany.
| |
Collapse
|
28
|
Nuñez Bahena E, Schafer LL. From Stoichiometric to Catalytic E–H Functionalization by Non-Metallocene Zirconium Complexes─Recent Advances and Mechanistic Insights. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Erick Nuñez Bahena
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Laurel L. Schafer
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
29
|
Gavin JT, Belli RG, Roberts CC. Radical-Polar Crossover Catalysis with a d 0 Metal Enabled by a Redox-Active Ligand. J Am Chem Soc 2022; 144:21431-21436. [DOI: 10.1021/jacs.2c09114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Joshua T. Gavin
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant St SE, Minneapolis, Minnesota 55455, United States
| | - Roman G. Belli
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant St SE, Minneapolis, Minnesota 55455, United States
| | - Courtney C. Roberts
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant St SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
30
|
Lin Q, Tong W, Shu XZ, Chen Y. Ti-Catalyzed Dehydroxylation of Tertiary Alcohols. Org Lett 2022; 24:8459-8464. [DOI: 10.1021/acs.orglett.2c03119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Quan Lin
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, People’s Republic of China
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, People’s Republic of China
| | - Weiqi Tong
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, People’s Republic of China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Yunrong Chen
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, People’s Republic of China
| |
Collapse
|
31
|
Leushukou AA, Krech AV, Hurski AL. Visible-Light-Promoted Nickel-Catalyzed Cross-Coupling of Alkyltitanium Alkoxides with Aryl and Alkenyl Halides. Org Lett 2022; 24:6277-6281. [PMID: 35997301 DOI: 10.1021/acs.orglett.2c02428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Here, we report that alkyltitanium alkoxides generated in situ from Grignard reagents and Ti(OiPr)4 undergo a photocatalyst-free nickel-catalyzed cross-coupling with organic halides upon irradiation with blue light. Mechanistic studies suggested that the reaction proceeds through radical intermediates formed by photochemical decomposition of the alkyltitanium reagents. Various aryl, heteroaryl, and vinyl halides were efficiently alkylated under the reported conditions, including those containing ester and amide groups.
Collapse
Affiliation(s)
- Andrei A Leushukou
- Department of Chemistry, Belarusian State University, Niezaliežnasci 4, 220030 Minsk, Belarus
| | - Anastasiya V Krech
- National Academy of Sciences of Belarus, Kupreviča 5/2, 220141 Minsk, Belarus
| | - Alaksiej L Hurski
- Department of Chemistry, Belarusian State University, Niezaliežnasci 4, 220030 Minsk, Belarus.,Republican Scientific Center for Human Issues of Belarusian State University, Kurčatava 7, 220064 Minsk, Belarus
| |
Collapse
|
32
|
Schacht JH, Wu S, Klare S, Höthker S, Schmickler N, Gansäuer A. Polymethylhydrosiloxane (PMHS) as sustainable reductant in the titanocene catalyzed epoxide hydrosilylation. ChemCatChem 2022. [DOI: 10.1002/cctc.202200852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Shangze Wu
- Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé Instutu für Organische Chemie GERMANY
| | - Sven Klare
- Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé Institut für Organische Chemie GERMANY
| | - Sebastian Höthker
- Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé Institut für Organische Chemie GERMANY
| | - Niklas Schmickler
- Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé Institut für Organische Chemie GERMANY
| | - Andreas Gansäuer
- Universität Bonn Kekulé-Institut für Organische Chemie Gerhard Domagk Str. 1 53121 Bonn GERMANY
| |
Collapse
|
33
|
Zhang K, Ren BH, Liu XF, Wang LL, Zhang M, Ren WM, Lu XB, Zhang WZ. Direct and Selective Electrocarboxylation of Styrene Oxides with CO2 for Accessing β‐Hydroxy Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ke Zhang
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Bai-Hao Ren
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Xiao-Fei Liu
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Lin-Lin Wang
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Min Zhang
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Wei-Min Ren
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Xiao-Bing Lu
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Wen-Zhen Zhang
- Dalian University of Technology State Key Laboratory of Fine Chemicals E-330 West Campus, No.2 Linggong Road, High-Tech Zone 116024 Dalian CHINA
| |
Collapse
|
34
|
Zhang K, Ren BH, Liu XF, Wang LL, Zhang M, Ren WM, Lu XB, Zhang WZ. Direct and Selective Electrocarboxylation of Styrene Oxides with CO2 for Accessing β-Hydroxy Acids. Angew Chem Int Ed Engl 2022; 61:e202207660. [PMID: 35862121 DOI: 10.1002/anie.202207660] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 11/08/2022]
Abstract
Highly selective and direct electroreductive ring-opening carboxylation of epoxides with CO2 in an undivided cell is reported. This reaction shows broad substrate scopes within styrene oxides under mild conditions, providing practical and scalable access to important synthetic intermediate β-hydroxy acids. Mechanistic studies show that CO2 functions not only as a carboxylative reagent in this reaction but also as a promoter to enable efficient and chemoselective transformation of epoxides under additive-free electrochemical conditions. Cathodically generated α-radical and α-carbanion intermediates lead to the regioselective formation of α-carboxylation products.
Collapse
Affiliation(s)
- Ke Zhang
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Bai-Hao Ren
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Xiao-Fei Liu
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Lin-Lin Wang
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Min Zhang
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Wei-Min Ren
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Xiao-Bing Lu
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Wen-Zhen Zhang
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, E-330 West Campus, No.2 Linggong Road, High-Tech Zone, 116024, Dalian, CHINA
| |
Collapse
|
35
|
Wu X, Chang Y, Lin S. Titanium Radical Redox Catalysis: Recent Innovations in Catalysts, Reactions, and Modes of Activation. Chem 2022; 8:1805-1821. [PMID: 36213842 PMCID: PMC9543366 DOI: 10.1016/j.chempr.2022.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Radical chemistry has emerged as a cornerstone in modern organic synthesis, providing chemists with numerous new tools to rapidly expand reactivity and chemical space in academic and industrial research. In this regard, titanium complexes have been recognized as an attractive class of catalysts owing to their rich redox activities in addition to the abundance and low toxicity of this early transition metal. Traditionally employed for the activation of epoxides and carbonyl compounds, Ti radical redox catalysis has broken into new grounds in recent years, giving rise to a diverse repertoire of useful transformations. In this Perspective, we highlight recent developments in the area of TiIII/IV catalysis with respect to the activation of different types of chemical bonds. Furthermore, we discuss future opportunities in integrating Ti radical chemistry with other catalytic systems as well as with emerging new technologies such as photochemistry and electrochemistry.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Yejin Chang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
36
|
Venditto NJ, Liang YS, El Mokadem RK, Nicewicz DA. Ketone-Olefin Coupling of Aliphatic and Aromatic Carbonyls Catalyzed by Excited-State Acridine Radicals. J Am Chem Soc 2022; 144:11888-11896. [PMID: 35737516 PMCID: PMC10031806 DOI: 10.1021/jacs.2c04822] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ketone-olefin coupling reactions are common methods for the formation of carbon-carbon bonds. This reaction class typically requires stoichiometric or super stoichiometric quantities of metal reductants, and catalytic variations are limited in application. Photoredox catalysis has offered an alternative method toward ketone-olefin coupling reactions, although most methods are limited in scope to easily reducible aromatic carbonyl compounds. Herein, we describe a mild, metal-free ketone-olefin coupling reaction using an excited-state acridine radical super reductant as a photoredox catalyst. We demonstrate both intramolecular and intermolecular ketone-olefin couplings of aliphatic and aromatic ketones and aldehydes. Mechanistic evidence is also presented supporting an "olefin first" ketone-olefin coupling mechanism.
Collapse
Affiliation(s)
- Nicholas J Venditto
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Yiyang S Liang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Roukaya K El Mokadem
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
37
|
Peng X, Hirao Y, Yabu S, Sato H, Higashi M, Akai T, Masaoka S, Mitsunuma H, Kanai M. A Catalytic Alkylation of Ketones via sp3 C-H Bond Activation. J Org Chem 2022; 88:6333-6346. [PMID: 35649206 DOI: 10.1021/acs.joc.2c00603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We identified a ternary hybrid catalyst system composed of an acridinium photoredox catalyst, a thiophosphoric imide (TPI) catalyst, and a titanium complex catalyst that promoted an intermolecular addition reaction of organic molecules with various ketones through sp3 C-H bond activation. The thiyl radical generated via single-electron oxidation of TPI by the excited photoredox catalyst abstracted a hydrogen atom from organic molecules such as toluene, benzyl alcohol, alkenes, aldehydes, and THF. The thus-generated carbon-centered radical species underwent addition to ketones and aldehydes. This intrinsically unfavorable step was promoted by single-electron reduction of the intermediate alkoxy radical by catalytically generated titanium(III) species. This reaction provided an efficient and straightforward route to a broad range of tertiary alcohols and was successfully applied to late-stage functionalization of drugs or their derivatives. The proposed mechanism was supported by both experimental and theoretical studies.
Collapse
Affiliation(s)
- Xue Peng
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuki Hirao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shunsuke Yabu
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan.,Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Masahiro Higashi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| | - Takuya Akai
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Shigeyuki Masaoka
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Harunobu Mitsunuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
38
|
Hilche T, Younas SL, Gansäuer A, Streuff J. A Guide to Low‐Valent Titanocene Complexes as Tunable Single‐Electron Transfer Catalysts for Applications in Organic Chemistry. ChemCatChem 2022. [DOI: 10.1002/cctc.202200530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tobias Hilche
- Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé-Institut für Organische Chemie und Biochemie Gerhard-Domagk-Str. 1 53121 Bonn GERMANY
| | - Sara L. Younas
- Albert-Ludwigs-Universitat Freiburg Institut für Organische Chemie Albertstr. 21 79104 Freiburg im Breisgau GERMANY
| | - Andreas Gansäuer
- Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé-Institut für Organische Chemie und Biochemie Gerhard-Domagk-Str. 1 53121 Bonn GERMANY
| | - Jan Streuff
- Uppsala Universitet Department of Chemistry - BMC Husargatan 3 752 37 Uppsala SWEDEN
| |
Collapse
|
39
|
Calogero F, Magagnano G, Potenti S, Pasca F, Fermi A, Gualandi A, Ceroni P, Bergamini G, Cozzi PG. Diastereoselective and enantioselective photoredox pinacol coupling promoted by titanium complexes with a red-absorbing organic dye. Chem Sci 2022; 13:5973-5981. [PMID: 35685797 PMCID: PMC9132033 DOI: 10.1039/d2sc00800a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
The pinacol coupling reaction, a reductive coupling of carbonyl compounds that proceeds through the formation of ketyl radicals in the presence of an electron donor, affords the corresponding 1,2-diols in one single step. The photoredox version of this transformation has been accomplished using different organic dyes or photoactive metal complexes in the presence of sacrificial donors such as tertiary amines or Hantzsch's ester. Normally, the homo-coupling of such reactive ketyl radicals is neither diastereo- nor enantio-selective. Herein, we report a highly diastereoselective pinacol coupling reaction of aromatic aldehydes promoted by 5 mol% of the non-toxic, inexpensive and available Cp2TiCl2 complex. The key feature that allows the complete control of diastereoselectivity is the employment of a red-absorbing organic dye in the presence of a redox-active titanium complex. Taking advantage of the well-tailored photoredox potential of this organic dye, the selective reduction of Ti(iv) to Ti(iii) is achieved. These conditions enable the formation of the d,l (syn) diastereoisomer as the favored product of the pinacol coupling (d.r. > 20 : 1 in most of the cases). Moreover, employing a simply prepared chiral SalenTi complex, the new photoredox reaction gave a complete diastereoselection for the d,l diastereoisomer, and high enantiocontrol (up to 92% of enantiomeric excess). A metallaphotoredox, diastereoselective and enantioselective pinacol coupling reaction promoted by titanium complexes with the use of a red-absorbing organic dye was developed.![]()
Collapse
Affiliation(s)
- Francesco Calogero
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Giandomenico Magagnano
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Simone Potenti
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Selmi 2 40126 Bologna Italy .,Laboratorio SMART, Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa Italy
| | - Francesco Pasca
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Andrea Fermi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Selmi 2 40126 Bologna Italy .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Andrea Gualandi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Selmi 2 40126 Bologna Italy .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Paola Ceroni
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Selmi 2 40126 Bologna Italy .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Giacomo Bergamini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Pier Giorgio Cozzi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Selmi 2 40126 Bologna Italy .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
40
|
Aida K, Hirao M, Funabashi A, Sugimura N, Ota E, Yamaguchi J. Catalytic reductive ring opening of epoxides enabled by zirconocene and photoredox catalysis. Chem 2022. [DOI: 10.1016/j.chempr.2022.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
41
|
Ni J, Xia X, Zheng WF, Wang Z. Ti-Catalyzed Diastereoselective Cyclopropanation of Carboxylic Derivatives with Terminal Olefins. J Am Chem Soc 2022; 144:7889-7900. [PMID: 35442655 DOI: 10.1021/jacs.2c02360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cyclopropanols and cyclopropylamines not only serve as important structural motifs in medicinal chemistry but also show diverse reactivities in organic synthesis. Owing to the high ring strain energy, the development of a general protocol from stable and readily available starting materials to afford these cyclopropyl derivatives remains a compelling challenge. Herein, we describe that a Ti-based catalyst can effectively promote the diastereoselective syntheses of cyclopropanols and cyclopropylamines from widely accessible carboxylic derivatives (acids, esters, amides) with terminal olefins. To the best of our knowledge, this method represents the first example of direct converting alkyl carboxylic acids into cyclopropanols. Distinct from conventional studies in Ti-mediated cyclopropanations with reactive alkyl Grignard reagents as nucleophiles or reductants, this protocol utilizes Mg and Me2SiCl2 to turn over the Ti catalyst. Our method exhibits broad substrate scope with good functional group compatibility and is amenable to late-stage synthetic manipulations of natural products and biologically active molecules.
Collapse
Affiliation(s)
- Jiabin Ni
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, Zhejiang, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Xiaowen Xia
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, Zhejiang, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Wei-Feng Zheng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, Zhejiang, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Zhaobin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, Zhejiang, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
42
|
Hong P, Song X, Huang Z, Tan K, Wu A, Lu X. Insights into the Mechanism of Metal-Catalyzed Transformation of Oxime Esters: Metal-Bound Radical Pathway vs Free Radical Pathway. J Org Chem 2022; 87:6014-6024. [PMID: 35389656 DOI: 10.1021/acs.joc.2c00273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Controlling of radical reactivity by binding a radical to the metal center is an elegant strategy to overcome the challenge that radical intermediates are "too reactive to be selective". Yet, its application has seemingly been limited to a few strained-ring substrates, azide compounds, and diazo compounds. Meanwhile, first-row transition-metal-catalyzed (mainly, Fe, Ni, Cu) transformations of oxime esters have been reported recently in which the activation processes are assumed to follow free-radical mechanisms. In this work, we show by means of density functional theory calculations that the activation of oxime esters catalyzed by Fe(II) and Cu(I) catalysts more likely affords a metal-bound iminyl radical, rather than the presumed free iminyl radical, and the whole process follows a metal-bound radical mechanism. The as-formed metal-bound radical intermediates are an Fe(III)-iminyl radical (Stotal = 2, SFe = 5/2, and Siminyl = -1/2) and a Cu(II)-iminyl radical (Stotal = 0, SCu = 1/2, and Siminyl = -1/2). The discovery of such novel substrates affording metal-bound radical intermediates may facilitate the experimental design of metal-catalyzed asymmetric synthesis using oxime esters to achieve the desired enantioselectivity.
Collapse
Affiliation(s)
- Pan Hong
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaolin Song
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhengqi Huang
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kai Tan
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Anan Wu
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
43
|
Suga T, Takahashi Y, Miki C, Ukaji Y. Direct and Unified Access to Carbon Radicals from Aliphatic Alcohols by Cost-Efficient Titanium-Mediated Homolytic C-OH Bond Cleavage. Angew Chem Int Ed Engl 2022; 61:e202112533. [PMID: 35014149 DOI: 10.1002/anie.202112533] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 12/28/2022]
Abstract
Low-valent Ti-mediated homolytic C-O bond cleavage offers unified access to carbon radicals from ubiquitous non-activated tertiary, secondary, and even primary alcohols. In contrast to the representative Ti reagents, which were ineffective for this purpose, "TiCl2 (cat)"/Zn (cat=catecholate) was found to be specifically active. This method was applied to the addition reactions of radicals to alkenes and exhibited high generality and yields. More than 50 combinations were examined. The excellent cost-efficiency and accessibility of "TiCl2 (cat)"/Zn further enhance its applicability. Control experiments proved the presence of a carbon radical intermediate and excluded the pathway via alkyl chlorides. Further mechanistic study indicated that the 1 : 2 complex of alkoxide (R-O- ) and TiIII is an active species in the C-O cleavage.
Collapse
Affiliation(s)
- Takuya Suga
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yuuki Takahashi
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Chinatsu Miki
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yutaka Ukaji
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| |
Collapse
|
44
|
Chin M, Suh SM, Fang Z, Hegg EL, Diao T. Depolymerization of Lignin via a Microscopic Reverse Biosynthesis Pathway. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mason Chin
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Sang Mi Suh
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Zhen Fang
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 313A, East Lansing, Michigan 48824, United States
| | - Eric L. Hegg
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 313A, East Lansing, Michigan 48824, United States
| | - Tianning Diao
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
45
|
Henriques DSG, Rojo‐Wiechel E, Klare S, Mika R, Höthker S, Schacht JH, Schmickler N, Gansäuer A. Titanocene(III)‐Catalyzed Precision Deuteration of Epoxides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dina Schwarz G. Henriques
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Elena Rojo‐Wiechel
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Sven Klare
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Regine Mika
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Sebastian Höthker
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Jonathan H. Schacht
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Niklas Schmickler
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| |
Collapse
|
46
|
Henriques DSG, Rojo‐Wiechel E, Klare S, Mika R, Höthker S, Schacht JH, Schmickler N, Gansäuer A. Titanocene(III)-Catalyzed Precision Deuteration of Epoxides. Angew Chem Int Ed Engl 2022; 61:e202114198. [PMID: 34845824 PMCID: PMC9305931 DOI: 10.1002/anie.202114198] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 12/13/2022]
Abstract
We describe a titanocene(III)-catalyzed deuterosilylation of epoxides that provides β-deuterated anti-Markovnikov alcohols with excellent D-incorporation, in high yield, and often excellent diastereoselectivity after desilylation. The key to the success of the reaction is a novel activation method of Cp2 TiCl2 and (tBuC5 H4 )2 TiCl2 with BnMgBr and PhSiD3 to provide [(RC5 H4 )2 Ti(III)D] without isotope scrambling. It was developed after discovering an off-cycle scrambling with the previously described method. Our precision deuteration can be applied to the synthesis of drug precursors and highlights the power of combining radical chemistry with organometallic catalysis.
Collapse
Affiliation(s)
- Dina Schwarz G. Henriques
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Elena Rojo‐Wiechel
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Sven Klare
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Regine Mika
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Sebastian Höthker
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Jonathan H. Schacht
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Niklas Schmickler
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
47
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 221] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
48
|
Mondal S, Dumur F, Gigmes D, Sibi MP, Bertrand MP, Nechab M. Enantioselective Radical Reactions Using Chiral Catalysts. Chem Rev 2022; 122:5842-5976. [DOI: 10.1021/acs.chemrev.1c00582] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shovan Mondal
- Department of Chemistry, Syamsundar College, Shyamsundar 713424, West Bengal, India
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Mukund P. Sibi
- Department of Chemistry and Biochemistry North Dakota State University, Fargo, North Dakota 58108, United States
| | - Michèle P. Bertrand
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Malek Nechab
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| |
Collapse
|
49
|
Suga T, Takahashi Y, Miki C, Ukaji Y. Direct and Unified Access to Carbon Radicals from Aliphatic Alcohols by Cost‐Efficient Titanium‐Mediated Homolytic C–OH Bond Cleavage. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Takuya Suga
- Kanazawa University Graduate School of Natural Science Kakuma 920-1192 Kanazawa JAPAN
| | - Yuuki Takahashi
- Kanazawa University: Kanazawa Daigaku Division of Material Chemistry, Graduate School of Natural Science and Technology JAPAN
| | - Chinatsu Miki
- Kanazawa University: Kanazawa Daigaku Division of Material Chemistry, School of Natural Science and Technology JAPAN
| | - Yutaka Ukaji
- Kanazawa University: Kanazawa Daigaku Division of Material Chemistry, School of Natural Science and Technology JAPAN
| |
Collapse
|
50
|
Xie W, He L. Electrocarboxylation of Aryl Epoxides with CO 2 to Selectively Synthesize β-Hydroxy Acids. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202200057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|